1
|
Gu X, Wang D, Zhang N, Zhang Y, Ye C, Du Y. Solvothermal synthesis of PdCu nanorings with high catalytic performance for alcohol electrooxidation. J Colloid Interface Sci 2025; 677:750-757. [PMID: 39121659 DOI: 10.1016/j.jcis.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Two-dimensional (2D) Pd-based nanostructures with a high active surface area and a large number of active sites are commonly used in alcohol oxidation research, whereas the less explored ring structure made of nanosheets with large pores is of interest. In this study, we detail the fabrication of PdCu nanorings (NRs) featuring hollow interiors and low coordinated sites using a straightforward solvothermal approach. Due to increased exposure of active sites and the synergistic effects of bimetallics, the PdCu NRs exhibited superior catalytic performance in both the ethanol oxidation reaction (EOR) and the ethylene glycol oxidation reaction (EGOR). The mass activities of PdCu NRs for EOR and EGOR were measured at 7.05 A/mg and 8.12 A/mg, respectively, surpassing those of commercial Pd/C. Furthermore, the PdCu NRs demonstrated enhanced catalytic stability, maintaining higher mass activity levels compared to other catalysts during stability testing. This research offers valuable insights for the development of efficient catalysts for alcohol oxidation.
Collapse
Affiliation(s)
- Xinyu Gu
- College of Chemistry, Chemical Engineering and Materials Science, SoochowUniversity, Suzhou 215123, China
| | - Dongqiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, SoochowUniversity, Suzhou 215123, China
| | - Nannan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, SoochowUniversity, Suzhou 215123, China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, SoochowUniversity, Suzhou 215123, China
| | - Changqing Ye
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, SoochowUniversity, Suzhou 215123, China; School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China.
| |
Collapse
|
2
|
Shi S, Li X, Zhang Y, Huang H, Liu J, Zhang J, Wang Z, Niu H, Zhang Y, Mei Q. Ultrathin and Biodegradable Bismuth Oxycarbonate Nanosheets with Massive Oxygen Vacancies for Highly Efficient Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307974. [PMID: 38431930 DOI: 10.1002/smll.202307974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Nanomaterials doped with high atom number elements can improve the efficacy of cancer radiotherapy, but their clinical application faces obstacles, such as being difficult to degrade in vivo, or still requiring relatively high radiation dose. In this work, a bismuth oxycarbonate-based ultrathin nanosheet with the thickness of 2.8 nm for safe and efficient tumor radiotherapy under low dose of X-ray irradiation is proposed. The high oxygen content (62.5% at%) and selective exposure of the facets of ultrathin 2D nanostrusctures facilitate the escape of large amounts of oxygen atoms on bismuth nanosheets from surface, forming massive oxygen vacancies and generating reactive oxygen species that explode under the action of X-rays. Moreover, the exposure of almost all atoms to environmental factors and the nature of oxycarbonates makes the nanosheets easily degrade into biocompatible species. In vivo studies demonstrate that nanosheets could induce apoptosis in cancer cells after low dose of X-ray irradiation without causing any damage to the liver or kidney. The tumor growth inhibition effect of radiotherapy increases from 49.88% to 90.76% with the help of bismuth oxycarbonate nanosheets. This work offers a promising future for nanosheet-based clinical radiotherapies of malignant cancers.
Collapse
Affiliation(s)
- Shuzhi Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xin Li
- School of Medicine, Institute of Laboratory Animal Sciences, Jinan University, Guangzhou, 510632, China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Haiyan Huang
- Department of Critical Care Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhigang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Haitao Niu
- School of Medicine, Institute of Laboratory Animal Sciences, Jinan University, Guangzhou, 510632, China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
3
|
Li Z, Liu Z, Gao G, Zhao W, Jiang Y, Tang X, Dai S, Qu Z, Yan N, Ma L. Enhanced Catalytic Oxidation Reactivity over Atomically Dispersed Pt/CeO 2 Catalysts by CO Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12201-12211. [PMID: 38934498 DOI: 10.1021/acs.est.4c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The elevation of the low-temperature oxidation activity for Pt/CeO2 catalysts is challenging to meet the increasingly stringent requirements for effectively eliminating carbon monoxide (CO) from automobile exhaust. Although reducing activation is a facile strategy for boosting reactivity, past research has mainly concentrated on applying H2 as the reductant, ignoring the reduction capabilities of CO itself, a prevalent component of automobile exhaust. Herein, atomically dispersed Pt/CeO2 was fabricated and activated by CO, which could lower the 90% conversion temperature (T90) by 256 °C and achieve a 20-fold higher CO consumption rate at 200 °C. The activated Pt/CeO2 catalysts showed exceptional catalytic oxidation activity and robust hydrothermal stability under the simulated working conditions for gasoline or diesel exhausts. Characterization results illustrated that the CO activation triggered the formation of a large portion of Pt0 terrace sites, acting as inherent active sites for CO oxidation. Besides, CO activation weakened the Pt-O-Ce bond strength to generate a surface oxygen vacancy (Vo). It served as the oxygen reservoir to store the dissociated oxygen and convert it into active dioxygen intermediates. Conversely, H2 activation failed to stimulate Vo, but triggered a deactivating transformation of the Pt nanocluster into inactive PtxOy in the presence of oxygen. The present work offers coherent insight into the upsurging effect of CO activation on Pt/CeO2, aiming to set up a valuable avenue in elevating the efficiency of eliminating CO, C3H6, and NH3 from automobile exhaust.
Collapse
Affiliation(s)
- Zihao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weina Zhao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zhong K, Sun P, Xu H. Advances in Defect Engineering of Metal Oxides for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310677. [PMID: 38686700 DOI: 10.1002/smll.202310677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Photocatalytic CO2 reduction technology, capable of converting low-density solar energy into high-density chemical energy, stands as a promising approach to alleviate the energy crisis and achieve carbon neutrality. Semiconductor metal oxides, characterized by their abundant reserves, good stability, and easily tunable structures, have found extensive applications in the field of photocatalysis. However, the wide bandgap inherent in metal oxides contributes to their poor efficiency in photocatalytic CO2 reduction. Defect engineering presents an effective strategy to address these challenges. This paper reviews the research progress in defect engineering to enhance the photocatalytic CO2 reduction performance of metal oxides, summarizing defect classifications, preparation methods, and characterization techniques. The focus is on defect engineering, represented by vacancies and doping, for improving the performance of metal oxide photocatalysts. This includes advancements in expanding the photoresponse range, enhancing photogenerated charge separation, and promoting CO2 molecule activation. Finally, the paper provides a summary of the current issues and challenges faced by defect engineering, along with a prospective outlook on the future development of photocatalytic CO2 reduction technology.
Collapse
Affiliation(s)
- Kang Zhong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Peipei Sun
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
5
|
Xiao Y, Hu S, Miao Y, Gong F, Chen J, Wu M, Liu W, Chen S. Recent Progress in Hot Spot Regulated Strategies for Catalysts Applied in Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305009. [PMID: 37641184 DOI: 10.1002/smll.202305009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Indexed: 08/31/2023]
Abstract
As a high energy density power system, lithium-carbon dioxide (Li-CO2 ) batteries play an important role in addressing the fossil fuel crisis issues and alleviating the greenhouse effect. However, the sluggish transformation kinetic of CO2 and the difficult decomposition of discharge products impede the achievement of large capacity, small overpotential, and long life span of the batteries, which require exploring efficient catalysts to resolve these problems. In this review, the main focus is on the hot spot regulation strategies of the catalysts, which include the modulation of the active sites, the designing of microstructure, and the construction of composition. The recent progress of promising catalysis with hot spot regulated strategies is systematically addressed. Critical challenges are also presented and perspectives to provide useful guidance for the rational design of highly efficient catalysts for practical advanced Li-CO2 batteries are proposed.
Collapse
Affiliation(s)
- Ying Xiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilin Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yue Miao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fenglian Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mingxuan Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimou Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Yu H, Ke J, Shao Q. Two Dimensional Ir-Based Catalysts for Acidic OER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304307. [PMID: 37534380 DOI: 10.1002/smll.202304307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Electrochemical water splitting in acidic media is one of the most promising hydrogen production technologies, yet its practical applications in proton exchange membrane (PEM) water electrolyzers are limited by the anodic oxygen evolution reaction (OER). Iridium (Ir)-based materials are considered as the state-of-the-art catalysts for acidic OER due to their good stability under harsh acidic conditions. However, their activities still have much room for improvement. Two-dimensional (2D) materials are full of the advantages of high-surface area, unique electrical properties, facile surface modification, and good stability, making the development of 2D Ir-based catalysts more attractive for achieving high catalytic performance. In this review, first, the unique advantages of 2D catalysts for electrocatalysis are reviewed. Thereafter, the classification, synthesis methods, and recent OER achievements of 2D Ir-based materials, including pure metals, alloys, oxides, and perovskites are introduced. Finally, the prospects and challenges of developing 2D Ir-based catalysts for future acidic OER are discussed.
Collapse
Affiliation(s)
- Hao Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jia Ke
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
7
|
Lu L, Sun M, Wu T, Lu Q, Chen B, Chan CH, Wong HH, Huang B. Progress on Single-Atom Photocatalysts for H 2 Generation: Material Design, Catalytic Mechanism, and Perspectives. SMALL METHODS 2023; 7:e2300430. [PMID: 37653620 DOI: 10.1002/smtd.202300430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Solar energy utilization is of great significance to current challenges of the energy crisis and environmental pollution, which benefit the development of the global community to achieve carbon neutrality goals. Hydrogen energy is also treated as a good candidate for future energy supply since its combustion not only supplies high-density energy but also shows no pollution gas. In particular, photocatalytic water splitting has attracted increasing research as a promising method for H2 production. Recently, single-atom (SA) photocatalysts have been proposed as a potential solution to improve catalytic efficiency and lower the costs of photocatalytic water splitting for H2 generation. Owing to the maximized atom utilization rate, abundant surface active sites, and tunable coordination environment, SA photocatalysts have achieved significant progress. This review reviews developments of advanced SA photocatalysts for H2 generation regarding the different support materials. The recent progress of titanium dioxide, metal-organic frameworks, two-dimensional carbon materials, and red phosphorus supported SA photocatalysts are carefully discussed. In particular, the material designs, reaction mechanisms, modulation strategies, and perspectives are highlighted for realizing improved solar-to-energy efficiency and H2 generation rate. This work will supply significant references for future design and synthesis of advanced SA photocatalysts.
Collapse
Affiliation(s)
- Lu Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Tong Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Qiuyang Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Baian Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Cheuk Hei Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Hon Ho Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
- Research Centre for Carbon-Strategic Catalysis (RC-CSC), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
8
|
Yang J, Fang L, Jiang R, Qi L, Xiao Y, Wang W, Ismail I, Fang X. RuCu Nanosheets with Ultrahigh Nanozyme Activity for Chemodynamic Therapy. Adv Healthc Mater 2023; 12:e2300490. [PMID: 37053081 DOI: 10.1002/adhm.202300490] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Nanoenzymes have been widely explored for chemodynamic therapy (CDT) in cancer treatment. However, poor catalytic efficiency of nanoenzymes, especially in the tumor microenvironment with insufficient H2 O2 and mild acidity, limits the effect of CDT. Herein, a new ultrathin RuCu nanosheet (NS) based nanoenzyme which has a large specific surface area and abundant channels and defects is developed. The RuCu NSs show superb catalytic efficiency for the oxidation of peroxidase substrate H2 O2 at a wide range of pH and their catalytic efficiency (kcat /Km = 177.2 m-1 s-1 ) is about 14.9 times higher than that of the single-atom catalyst FeN3 P. Besides being an efficient nanozyme as peroxidase, the RuCu NSs possess other two enzyme activities, not only disproportionating superoxide anion to produce H2 O2 but also consuming glutathione to keep a high concentration of H2 O2 in the tumor microenvironment for Fenton reaction. With these advantages, the RuCu NSs exhibit good performance to kill cancer cells and inhibit tumor growth in mice, demonstrating a promising potential as new CDT reagent.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Le Fang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Ruibin Jiang
- Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Hangzhou, Zhejiang, 310022, P. R. China
| | - Lubin Qi
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Yating Xiao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Wenxi Wang
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Ismail Ismail
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Xiaohong Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
- Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Hangzhou, Zhejiang, 310022, P. R. China
| |
Collapse
|
9
|
Rong C, Dastafkan K, Wang Y, Zhao C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211884. [PMID: 37549889 DOI: 10.1002/adma.202211884] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Indexed: 08/09/2023]
Abstract
Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
10
|
Kumar R, Sahoo S, Joanni E, Pandey R, Shim JJ. Vacancy designed 2D materials for electrodes in energy storage devices. Chem Commun (Camb) 2023; 59:6109-6127. [PMID: 37128726 DOI: 10.1039/d3cc00815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vacancies are ubiquitous in nature, usually playing an important role in determining how a material behaves, both physically and chemically. As a consequence, researchers have introduced oxygen, sulphur and other vacancies into bi-dimensional (2D) materials, with the aim of achieving high performance electrodes for electrochemical energy storage. In this article, we focused on the recent advances in vacancy engineering of 2D materials for energy storage applications (supercapacitors and secondary batteries). Vacancy defects can effectively modify the electronic characteristics of 2D materials, enhancing the charge-transfer processes/reactions. These atomic-scale defects can also serve as extra host sites for inserted protons or small cations, allowing easier ion diffusion during their operation as electrodes in supercapacitors and secondary batteries. From the viewpoint of materials science, this article summarises recent developments in the exploitation of vacancies (which are surface defects, for these materials), including various defect creation approaches and cutting-edge techniques for detection of vacancies. The crucial role of defects for improvement in the energy storage performance of 2D electrode materials in electrochemical devices has also been highlighted.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Ednan Joanni
- Center for Information Technology Renato Archer (CTI), Campinas 13069-901, Brazil
| | - Raghvendra Pandey
- Department of Physics, ARSD College, University of Delhi, New Delhi, 110021, India
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
11
|
Yi H, Almatrafi E, Ma D, Huo X, Qin L, Li L, Zhou X, Zhou C, Zeng G, Lai C. Spatial confinement: A green pathway to promote the oxidation processes for organic pollutants removal from water. WATER RESEARCH 2023; 233:119719. [PMID: 36801583 DOI: 10.1016/j.watres.2023.119719] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/27/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Organic pollutants removal from water is pressing owing to the great demand for clean water. Oxidation processes (OPs) are the commonly used method. However, the efficiency of most OPs is limited owing to the poor mass transfer process. Spatial confinement is a burgeoning way to solve this limitation by use of nanoreactor. Spatial confinement in OPs would (i) alter the transport characteristics of protons and charges; (ii) bring about molecular orientation and rearrangement; (iii) cause the dynamic redistribution of active sites in catalyst and reduce the entropic barrier that is high in unconfined space. So far, spatial confinement has been utilized for various OPs, such as Fenton, persulfate, and photocatalytic oxidation. A comprehensive summary and discussion on the fundamental mechanisms of spatial confinement mediated OPs is needed. Herein, the application, performance and mechanisms of spatial confinement mediated OPs are overviewed firstly. Subsequently, the features of spatial confinement and their effects on OPs are discussed in detail. Furthermore, environmental influences (including environmental pH, organic matter and inorganic ions) are studied with analyzing their intrinsic connection with the features of spatial confinement in OPs. Lastly, challenges and future development direction of spatial confinement mediated OPs are proposed.
Collapse
Affiliation(s)
- Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Xiuqing Huo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
12
|
Liu F, Fan Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem Soc Rev 2023; 52:1723-1772. [PMID: 36779475 DOI: 10.1039/d2cs00931e] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In the global trend towards carbon neutrality, sustainable energy conversion and storage technologies are of vital significance to tackle the energy crisis and climate change. However, traditional electrode materials gradually reach their property limits. Two-dimensional (2D) materials featuring large aspect ratios and tunable surface properties exhibit tremendous potential for improving the performance of energy conversion and storage devices. To rationally control the physical and chemical properties for specific applications, defect engineering of 2D materials has been investigated extensively, and is becoming a versatile strategy to promote the electrode reaction kinetics. Simultaneously, exploring the in-depth mechanisms underlying defect action in electrode reactions is crucial to provide profound insight into structure tailoring and property optimization. In this review, we highlight the cutting-edge advances in defect engineering in 2D materials as well as their considerable effects in energy-related applications. Moreover, the confronting challenges and promising directions are discussed for the development of advanced energy conversion and storage systems.
Collapse
Affiliation(s)
- Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
13
|
Su Z, Li X, Si W, Artiglia L, Peng Y, Chen J, Wang H, Chen D, Li J. Probing the Actual Role and Activity of Oxygen Vacancies in Toluene Catalytic Oxidation: Evidence from In Situ XPS/NEXAFS and DFT + U Calculation. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Ziang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Xiansheng Li
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Luca Artiglia
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Houlin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Deli Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
14
|
Engineered 2D Metal Oxides for Photocatalysis as Environmental Remediation: A Theoretical Perspective. Catalysts 2022. [DOI: 10.3390/catal12121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modern-day society requires advanced technologies based on renewable and sustainable energy resources to meet environmental remediation challenges. Solar-inspired photocatalytic applications such as water splitting, hydrogen evolution reaction (HER), and carbon dioxide reduction reaction (CO2RR) are unique solutions based on green and efficient technologies. Considering the special electronic features and larger surface area, two-dimensional (2D) materials, especially metal oxides (MOs), have been broadly explored for the abovementioned applications in the past few years. However, their photocatalytic potential has not been optimized yet to the level required for practical and commercial applications. Among many strategies available, defect engineering, including cation and anion vacancy creations, can potentially boost the photocatalytic performance of 2D MOs. This mini-review covers recent advancements in 2D engineered materials for various photocatalysis applications such as H2O2 oxidation, HER, and CO2RR for environmental remediation from theoretical perspectives. By thoroughly addressing the fundamental aspects, recent developments, and associated challenges—the author’s recommendations in compliance with future challenges and prospects will pave the way for readers.
Collapse
|
15
|
Li R, Rao Y, Huang Y. Advances in catalytic elimination of atmospheric pollutants by two-dimensional transition metal oxides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
16
|
Xiao G, Li H, Zhao Y, Wei H, Li J, Su H. Nanoceria-Based Artificial Nanozymes: Review of Materials and Applications. ACS APPLIED NANO MATERIALS 2022; 5:14147-14170. [DOI: 10.1021/acsanm.2c03009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Affiliation(s)
- Gang Xiao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Haotian Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Yilin Zhao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Huiling Wei
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Jiayi Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| |
Collapse
|
17
|
Wang J, Tao J, Dong X, Liu Z, Hou D, Hu Y, Yan B, Su H, Chen G. Hydrothermal oxygen uncoupling of high-concentration biogas slurry over Cu-α-Fe 2O 3·α-MoO 3 catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115827. [PMID: 35944322 DOI: 10.1016/j.jenvman.2022.115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
A hydrothermal oxygen uncoupling (HTOU) method which combines aqueous phase reforming (APR) and oxygen uncoupling was proposed to treat biogas slurry (BS). Based on Le Chatelier's principle, this novel approach was constructed and realized by Cu-α-Fe2O3·α-MoO3 catalyst with van der Waals heterojunction-redox property. Additionally, the catalyst was synthesized by integrating a simple one-pot sol-gel method and thermal hydrogenating. Results indicated that the optimal removal efficiencies of non-purgeable organic carbon (NPOC) (76.29%), total nitrogen (TN) (45.56%), and ammonia nitrogen (AN) (29.03%) were achieved on the Cu-α-Fe2O3·α-MoO3 catalyst at 225.00 °C for 30.00 min, respectively. The significant performance of Cu-α-Fe2O3·α-MoO3 could be attributed to three aspects. (1) The α-MoO3 nanosheets with van der Waals heterostructures obtained at the calcination temperature of 600.00 °C, which can provide the superior performance of APR for hydrogen generation. (2) The adsorbed oxygen species were eliminated by thermal hydrogenating which had a surface passivation effect. (3) The effect of oxygen uncoupling in the lattice oxygen and gaseous oxygen release reaction was beneficial to the degradation of organic matter. Moreover, the reuse of catalysts studies further revealed that the deactivation of catalysts originated from carbon deposition of aromatic polymers and heavy metals oxides pollution. Overall, these findings disclosed that the HTOU could be a promising alternative to the treatment of high-concentration organic wastewater.
Collapse
Affiliation(s)
- Jian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Xiaoshan Dong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zibiao Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Donghao Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yongjie Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Tianjin Key Lab of Biomass Wastes Utilization, Tianjin, 300350, China.
| | - Hong Su
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China; Preparation Office of Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, 518071, China
| |
Collapse
|
18
|
Yan L, Qin J, Liang B, Gao S, Wang B, Cui J, Bolag A, Yang Y. High Pressure Rapid Synthesis of LiCrTiO 4 with Oxygen Vacancy for High Rate Lithium-Ion Battery Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202901. [PMID: 35931464 DOI: 10.1002/smll.202202901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Lithium-ion battery based on LiCrTiO4 (LCTO) is considered to be a promising anode material, as they provide higher safety and durability beyond than that of graphite electrode. However, the applications of this transformative technology demand improved inherent electrical conductivity of LCTO as well as a simple and rapid synthetic route. Here, LCTO with oxygen vacancies (OVs) is fabricated using high-pressure synthesis technology in only 40 min. The optimal synthesis pressure is 0.8 GPa (LCTO-0.8). The reversible capacity of LCTO-0.8 at 1C is 131 mA h g-1 after 1000 cycles and the capacity retention is nearly 97%, and the reversible capacity of LCTO synthesized at atmospheric pressure (LCTO-P) is 85 mA h g-1 under the same circumstances. Even at 5C, the reversible capacity is 110 mA h g-1 , which is 77% higher than LCTO-P. Furthermore, it is confirmed by theoretical calculations that the introduction of OVs has the occupation of electronic states at the Fermi level, which greatly enhances the intrinsic conductivity of LCTO. Specifically, the electronic conductivity has increased by two orders of magnitude compared with LCTO-P. Therefore, high-pressure synthesis technology endows LCTO with superior characteristics, providing a new avenue for industrialization.
Collapse
Affiliation(s)
- Lv Yan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Jieming Qin
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Benkuan Liang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Shanlin Gao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Bo Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Jiuyue Cui
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Altan Bolag
- School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot, 010022, P. R. China
| | - Yanchun Yang
- School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot, 010022, P. R. China
| |
Collapse
|
19
|
Wang L, Saji SE, Wu L, Wang Z, Chen Z, Du Y, Yu XF, Zhao H, Yin Z. Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201642. [PMID: 35843870 DOI: 10.1002/smll.202201642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The development of advanced electronic devices is boosting many aspects of modern technology and industry. The ever-increasing demand for advanced electrical devices and integrated circuits calls for the design of novel materials, with superior properties for the improvement of working performance. In this review, a detailed overview of the synthesis strategies of 2D metal organic frameworks (MOFs) acquiring growing attention is presented, as a basis for expansion of novel key materials in electrical devices and integrated circuits. A framework of controllable synthesis routes to be implanted in the synthesis strategies of 2D materials and MOFs is described. In short, the synthesis methods of 2D MOFs are summarized and discussed in depth followed by the illustrations of promising applications relating to various electrical devices and integrated circuits. It is concluded by outlining how 2D MOFs can be synthesized in a simpler, highly efficient, low-cost, and more environmentally friendly way which can open up their applicable opportunities as key materials in advanced electrical devices and integrated circuits, enabling their use in broad aspects of the society.
Collapse
Affiliation(s)
- Linjuan Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Sandra Elizabeth Saji
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia
| | - Lingjun Wu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zixuan Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zijian Chen
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
20
|
Lei B, Cui W, Chen P, Chen L, Li J, Dong F. C–Doping Induced Oxygen-Vacancy in WO 3 Nanosheets for CO 2 Activation and Photoreduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ben Lei
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wen Cui
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Chen
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lvcun Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Jieyuan Li
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
21
|
Yang M, Ye Z, Iqbal MA, Liang H, Zeng YJ. Progress on two-dimensional binary oxide materials. NANOSCALE 2022; 14:9576-9608. [PMID: 35766429 DOI: 10.1039/d2nr01076c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional van der Waals (2D vdW) materials have attracted much attention because of their unique electronic and optical properties. Since the successful isolation of graphene in 2004, many interesting 2D materials have emerged, including elemental olefins (silicene, germanene, etc.), transition metal chalcogenides, transition metal carbides (nitrides), hexagonal boron, etc. On the other hand, 2D binary oxide materials are an important group in the 2D family owing to their high structural diversity, low cost, high stability, and strong adjustability. This review systematically summarizes the research progress on 2D binary oxide materials. We discuss their composition and structure in terms of vdW and non-vdW categories in detail, followed by a discussion of their synthesis methods. In particular, we focus on strategies to tailor the properties of 2D oxides and their emerging applications in different fields. Finally, the challenges and future developments of 2D binary oxides are provided.
Collapse
Affiliation(s)
- Manli Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Zhixiang Ye
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Muhammad Ahsan Iqbal
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Huawei Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| |
Collapse
|
22
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
23
|
|
24
|
Jeon WJ, Kim H, Byeon SH. Ce3+ concentration control on the surface of ceria nanoparticles and the stability of surface Ce3+ in aqueous, silica, and PVA media. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Tian FX, Li H, Zhu M, Tu W, Lin D, Han YF. Effect of MnO 2 Polymorphs' Structure on Low-Temperature Catalytic Oxidation: Crystalline Controlled Oxygen Vacancy Formation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18525-18538. [PMID: 35418231 DOI: 10.1021/acsami.2c01727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MnO2 polymorphs (α-, β-, and ε-MnO2) were synthesized, and their chemical/physical properties for CO oxidation were systematically studied using multiple techniques. Density functional theory (DFT) calculations and temperature-programmed experiments reveal that β-MnO2 shows low energies for oxygen vacancy generation and excellent redox properties, exhibiting significant CO oxidation activity (T90 = 75 °C) and stability even under a humid atmosphere. For the first time, we report that the specific reaction rate for β-MnO2 (0.135 moleculeCO·nm-2·s-1 at 90 °C) is roughly approximately 4 and 17 times higher than that of ε-MnO2 and α-MnO2, respectively. The specific reaction rate order (β-MnO2 > ε-MnO2 > α-MnO2) is not only in good agreement with reduction rates (CO-TPSR measurements) but also agrees with the DFT calculation. In combination with in situ spectra and intrinsic kinetic studies, the mechanisms of CO oxidation over various crystal structures of MnO2 were proposed as well. We believe the new insights from this study will largely inspire the design of such a kind of catalyst.
Collapse
Affiliation(s)
- Fei-Xiang Tian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hu Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weifeng Tu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Dehai Lin
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fan Han
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
26
|
Song C, Zhan Q, Liu F, Wang C, Li H, Wang X, Guo X, Cheng Y, Sun W, Wang L, Qian J, Pan B. Overturned Loading of Inert CeO 2 to Active Co 3 O 4 for Unusually Improved Catalytic Activity in Fenton-Like Reactions. Angew Chem Int Ed Engl 2022; 61:e202200406. [PMID: 35128779 DOI: 10.1002/anie.202200406] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 11/09/2022]
Abstract
In the past decades, numerous efforts have been devoted to improving the catalytic activity of nanocomposites by either exposing more active sites or regulating the interaction between the support and nanoparticles while keeping the structure of the active sites unchanged. Here, we report the fabrication of a Co3 O4 -CeO2 nanocomposite via overturning the loading direction, i.e., loading an inert CeO2 support onto active Co3 O4 nanoparticles. The resultant catalyst exhibits unexpectedly higher activity and stability in peroxymonosulfate-based Fenton-like reactions than its analog prepared by the traditional impregnation method. Abundant oxygen vacancies (Ov with a Co⋅⋅⋅Ov ⋅⋅⋅Ce structure instead of Co⋅⋅⋅Ov ) are generated as new active sites to facilitate the cleavage of the peroxide bond to produce SO4 .- and accelerate the rate-limiting step, i.e., the desorption of SO4 .- , affording improved activity. This strategy is a new direction for boosting the catalytic activity of nanocomposite catalysts in various scenarios, including environmental remediation and energy applications.
Collapse
Affiliation(s)
- Chunli Song
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Qing Zhan
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Fei Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Chuan Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Xuan Wang
- Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xuefeng Guo
- Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Sun
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China.,Research Center for Environmental Nanotechnology (ReCENT), School of Environment, State Key Laboratory of Environmental Pollution and Resources Reuse, Nanjing University, Nanjing, 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, State Key Laboratory of Environmental Pollution and Resources Reuse, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
27
|
Cao X, Huang A, Liang C, Chen HC, Han T, Lin R, Peng Q, Zhuang Z, Shen R, Chen HM, Yu Y, Chen C, Li Y. Engineering Lattice Disorder on a Photocatalyst: Photochromic BiOBr Nanosheets Enhance Activation of Aromatic C-H Bonds via Water Oxidation. J Am Chem Soc 2022; 144:3386-3397. [PMID: 35167259 DOI: 10.1021/jacs.1c10112] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solar-driven photocatalytic reactions can mildly activate hydrocarbon C-H bonds to produce value-added chemicals. However, the inefficient utilization of photogenerated carriers hinders the application. Here, we report reversible photochromic BiOBr (denoted as p-BiOBr) nanosheets that were colored by trapping photogenerated holes upon visible light irradiation and bleached by water oxidation to generate hydroxyl radicals, demonstrating enhanced carrier separation and water oxidation. The photocatalytic coupling and oxidation reactions of ethylbenzene were efficiently realized by p-BiOBr in a water-based medium under ambient temperature and pressure (apparent quantum yield is 14 times that of pristine BiOBr). The p-BiOBr nanosheets feature lattice disordered defects on the surface, providing rich uncoordinated catalytic sites and inducing structural distortions and lattice strain, which further leads to an altered band structure and significantly enhanced photocatalytic performances. These hole-trapping materials open up the possibility of substantially elevating the utilization efficiency of photogenerated holes for high-efficiency photocatalytic activation of various saturated C-H bonds.
Collapse
Affiliation(s)
- Xing Cao
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Aijian Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Chao Liang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Chang Gung University, Taoyuan 33302, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Tong Han
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Rui Lin
- Nanoinstitute Munich, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zewen Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Rongan Shen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
28
|
Overturned Loading of Inert CeO
2
to Active Co
3
O
4
for Unusually Improved Catalytic Activity in Fenton‐Like Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Xie H, Li Z, Cheng L, Haidry AA, Tao J, Xu Y, Xu K, Ou JZ. Recent advances in the fabrication of 2D metal oxides. iScience 2022; 25:103598. [PMID: 35005545 PMCID: PMC8717458 DOI: 10.1016/j.isci.2021.103598] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atomically thin two-dimensional (2D) metal oxides exhibit unique optical, electrical, magnetic, and chemical properties, rendering them a bright application prospect in high-performance smart devices. Given the large variety of both layered and non-layered 2D metal oxides, the controllable synthesis is the critical prerequisite for enabling the exploration of their great potentials. In this review, recent progress in the synthesis of 2D metal oxides is summarized and categorized. Particularly, a brief overview of categories and crystal structures of 2D metal oxides is firstly introduced, followed by a critical discussion of various synthesis methods regarding the growth mechanisms, advantages, and limitations. Finally, the existing challenges are presented to provide possible future research directions regarding the synthesis of 2D metal oxides. This work can provide useful guidance on developing innovative approaches for producing both 2D layered and non-layered nanostructures and assist with the acceleration of the research of 2D metal oxides.
Collapse
Affiliation(s)
- Huaguang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Azhar Ali Haidry
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yi Xu
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
30
|
Powar NS, Hiragond CB, Bae D, In SI. Two-dimensional metal carbides for electro- and photocatalytic CO2 reduction: Review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Zeng BF, Wei JY, Zhang XG, Liang QM, Hu S, Wang G, Lei ZC, Zhao SQ, Zhang HW, Shi J, Hong W, Tian ZQ, Yang Y. In situ lattice tuning of quasi-single-crystal surfaces for continuous electrochemical modulation. Chem Sci 2022; 13:7765-7772. [PMID: 35865890 PMCID: PMC9258404 DOI: 10.1039/d2sc01868c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
The ability to control the atomic-level structure of a solid represents a straightforward strategy for fabricating high-performance catalysts and semiconductor materials. Herein we explore the capability of the mechanically controllable surface strain method in adjusting the surface structure of a gold film. Underpotential deposition measurements provide a quantitative and ultrasensitive approach for monitoring the evolution of surface structures. The electrochemical activities of the quasi-single-crystalline gold films are enhanced productively by controlling the surface tension, resulting in a more positive potential for copper deposition. Our method provides an effective way to tune the atom arrangement of solid surfaces with sub-angstrom precision and to achieve a reduction in power consumption, which has vast applications in electrocatalysis, molecular electronics, and materials science. We reported a new method capable of adjusting the lattice structure of solid surfaces with sub-angstrom precision and achieved in situ and continuous control over electrochemical activity.![]()
Collapse
Affiliation(s)
- Biao-Feng Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Jun-Ying Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Qing-Man Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Shu Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Gan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Zhi-Chao Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Shi-Qiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - He-Wei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
32
|
Wang ZQ, Chu DR, Zhou H, Wu XP, Gong XQ. Role of Low-Coordinated Ce in Hydride Formation and Selective Hydrogenation Reactions on CeO2 Surfaces. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - De-Ren Chu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Research Institute of Chemical Industry, Co., Ltd., 345 Yunling Road(E), Shanghai 200062, China
| | - Hui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
33
|
Qian K, Yan Y, Xi S, Wei T, Dai Y, Yan X, Kobayashi H, Wang S, Liu W, Li R. Elucidating the Strain-Vacancy-Activity Relationship on Structurally Deformed Co@CoO Nanosheets for Aqueous Phase Reforming of Formaldehyde. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102970. [PMID: 34636132 DOI: 10.1002/smll.202102970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Lattice strain modulation and vacancy engineering are both effective approaches to control the catalytic properties of heterogeneous catalysts. Here, Co@CoO heterointerface catalysts are prepared via the controlled reduction of CoO nanosheets. The experimental quantifications of lattice strain and oxygen vacancy concentration on CoO, as well as the charge transfer across the Co-CoO interface are all linearly correlated to the catalytic activity toward the aqueous phase reforming of formaldehyde to produce hydrogen. Mechanistic investigations by spectroscopic measurements and density functional theory calculations elucidate the bifunctional nature of the oxygen-vacancy-rich Co-CoO interfaces, where the Co and the CoO sites are responsible for CH bond cleavage and OH activation, respectively. Optimal catalytic activity is achieved by the sample reduced at 350 °C, Co@CoO-350 which exhibits the maximum concentration of Co-CoO interfaces, the maximum concentration of oxygen vacancies, a lattice strain of 5.2% in CoO, and the highest aqueous phase formaldehyde reforming turnover frequency of 50.4 h-1 at room temperature. This work provides not only new insights into the strain-vacancy-activity relationship at bifunctional catalytic interfaces, but also a facile synthetic approach to prepare heterostructures with highly tunable catalytic activities.
Collapse
Affiliation(s)
- Kaicheng Qian
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yong Yan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education, 1 CREATE Way, Singapore, 138602, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Science Limited, Agency for Science Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
| | - Tong Wei
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yihu Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoqing Yan
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hisayoshi Kobayashi
- Emeritus Professor of Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Sheng Wang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wen Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education, 1 CREATE Way, Singapore, 138602, Singapore
| | - Renhong Li
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
34
|
Zeng J, Li Z, Jiang H, Wang X. Progress on photocatalytic semiconductor hybrids for bacterial inactivation. MATERIALS HORIZONS 2021; 8:2964-3008. [PMID: 34609391 DOI: 10.1039/d1mh00773d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to its use of green and renewable energy and negligible bacterial resistance, photocatalytic bacterial inactivation is to be considered a promising sterilization process. Herein, we explore the relevant mechanisms of the photoinduced process on the active sites of semiconductors with an emphasis on the active sites of semiconductors, the photoexcited electron transfer, ROS-induced toxicity and interactions between semiconductors and bacteria. Pristine semiconductors such as metal oxides (TiO2 and ZnO) have been widely reported; however, they suffer some drawbacks such as narrow optical response and high photogenerated carrier recombination. Herein, some typical modification strategies will be discussed including noble metal doping, ion doping, hybrid heterojunctions and dye sensitization. Besides, the biosafety and biocompatibility issues of semiconductor materials are also considered for the evaluation of their potential for further biomedical applications. Furthermore, 2D materials have become promising candidates in recent years due to their wide optical response to NIR light, superior antibacterial activity and favorable biocompatibility. Besides, the current research limitations and challenges are illustrated to introduce the appealing directions and design considerations for the future development of photocatalytic semiconductors for antibacterial applications.
Collapse
Affiliation(s)
- Jiayu Zeng
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Ziming Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
35
|
Functionalized carbon nanotube bridge interface drove Bi2O2CO3/g-C3N4 S-scheme heterojunction with enhanced visible-light photocatalytic activity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Xie W, Ren Y, Yu B, Yang X, Gao M, Ma J, Zou Y, Xu P, Li X, Deng Y. Self-Hybrid Transition Metal Oxide Nanosheets Synthesized by a Facile Programmable and Scalable Carbonate-Template Method. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103176. [PMID: 34405523 DOI: 10.1002/smll.202103176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Indexed: 06/13/2023]
Abstract
2D transition metal oxides (TMO) nanosheets have attracted considerable attention in both fundamental research and practical applications. Herein, a convenient programmable and scalable carbonate crystals templating synthesis is developed to produce high-quality self-hybrid TMO nanosheets (Si-WO3- x , Tax Oy , Mnx Oy ) and their respective polymetallic oxide hybrid nanosheets with tunable composition, low-cost and high-yield. Taking tungsten oxide nanosheets as example, silicotungstic acid precursor is in situ converted into tungsten oxide nanosheets like scales on the surface of calcium carbonate crystals through the simple soaking-drying-calcination process, and after selectively dissolving calcium carbonate by etching, the dispersive tungsten oxide nanosheets with unique self-hybrid Si-doped h-WO3 /ε-WO3 /WO2 compositions are obtained, which show excellent acetone gas-sensing performances at low temperatures. This carbonate-template method opens up the possibility to economically produce various functional TMO nanosheets with specific compositions for diverse applications.
Collapse
Affiliation(s)
- Wenhe Xie
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yuan Ren
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Bingjie Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Meiqi Gao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Junhao Ma
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yidong Zou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Pengcheng Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
37
|
Ying M, Lin X, Yang G, Ye H, Pan H, Du M. Rich oxygen vacancies on ultrathin NiFe layered double hydroxide nanosheets raised by cerium-assisted synthesis for enhanced electrocatalytic water oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Liao C, Xiao Z, Zhang N, Liang B, Chen G, Wu W, Pan J, Liu M, Zheng XR, Kang Q, Cao X, Liu X, Ma R. Photo-irradiation tunes highly active sites over β-Ni(OH) 2 nanosheets for the electrocatalytic oxygen evolution reaction. Chem Commun (Camb) 2021; 57:9060-9063. [PMID: 34498644 DOI: 10.1039/d1cc03410c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile photo-irradiation method is developed to tune active sites over β-Ni(OH)2 nanosheets. Photo-irradiated β-Ni(OH)2 nanosheets possess disordered surface atoms and preferred growth of highly active crystal facets, which exhibit enhanced performance for the electrocatalytic oxygen evolution reaction.
Collapse
Affiliation(s)
- Chengan Liao
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China.
| | - Ziyi Xiao
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China.
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China. .,Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Bo Liang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China.
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China.
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Jianglin Pan
- School of Physical Science and Electronics Central South University, Changsha, 410083, Hunan, P. R. China
| | - Min Liu
- School of Physical Science and Electronics Central South University, Changsha, 410083, Hunan, P. R. China
| | - Xiang-Rong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Xianwu Cao
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Xiaohe Liu
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China. .,School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
39
|
Yan D, Li T, Liu P, Mo S, Zhong J, Ren Q, Sun Y, Cheng H, Fu M, Wu J, Chen P, Huang H, Ye D. In-situ atmosphere thermal pyrolysis of spindle-like Ce(OH)CO 3 to fabricate Pt/CeO 2 catalysts: Enhancing Pt-O-Ce bond intensity and boosting toluene degradation. CHEMOSPHERE 2021; 279:130658. [PMID: 34134427 DOI: 10.1016/j.chemosphere.2021.130658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In this work, a series of spindle-like CeO2 supports with different contents of surface oxygen vacancies were fabricated by an in-situ atmosphere thermal pyrolysis method. Due to the unique surface physicochemical properties of the modified CeO2 supports, the interaction between Pt and CeO2 can be regulated during the synthesis of the Pt/CeO2 catalyst. The abundant oxygen vacancies on the CeO2 support could preferentially trap Pt2+ ions in solution during the Pt impregnation process and enhance the Pt-CeO2 interaction in the subsequent reduction process, which results in the strongest Pt-O-Ce bonds formed on the PCH catalysts successfully (0.6% Pt loading on the CH support, which generated by thermal pyrolysis of Ce(OH)CO3 under H2 atmosphere). The strong Pt-O-Ce bond would trigger abundant surface oxygen species generated and enhanced the lattice oxygen species transfer from CeO2 supports to Pt nanoparticles. It was crucial to boosting the toluene catalytic activity. Therefore, the PCH catalyst exhibits the highest activity for toluene oxidation (T10 = 120 °C, T50 = 138 °C, and T90 = 150 °C with WHSV = 60,000 mL g-1 h-1) and remarkable durability and water resistance among all catalysts. We also conclude that the Pt-O-Ce bond may be the active site for toluene oxidation by calculating the turnover frequencies (TOFPt-O-Ce) value for all Pt/CeO2 catalysts. Moreover, the DFT calculation indicates that the Pt/CeO2 catalyst with a strong Pt-O-Ce bond possesses the lowest oxygen absorption energy and higher CO tolerance ability, which leads to excellent catalytic performance for toluene and CO catalytic oxidation.
Collapse
Affiliation(s)
- Dengfeng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Tan Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Peng Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shengpeng Mo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinping Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Quanming Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuhai Sun
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hairong Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou, 510006, China
| | - Junliang Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou, 510006, China
| | - Peirong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou, 510006, China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou, 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou, 510006, China.
| |
Collapse
|
40
|
Li L, Lu F, Xiong W, Ding Y, Lu Y, Xiao Y, Tong X, Wang Y, Jia S, Wang J, Mendes RG, Rümmeli MH, Yuan S, Zeng M, Fu L. General synthesis of 2D rare-earth oxide single crystals with tailorable facets. Natl Sci Rev 2021; 9:nwab153. [PMID: 35591917 PMCID: PMC9113103 DOI: 10.1093/nsr/nwab153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023] Open
Abstract
Two-dimensional (2D) rare-earth oxides (REOs) are a large family of materials with various intriguing applications and precise facet control is essential for investigating new properties in the 2D limit. However, a bottleneck remains with regard to obtaining their 2D single crystals with specific facets because of the intrinsic non-layered structure and disparate thermodynamic stability of different facets. Herein, for the first time, we achieve the synthesis of a wide variety of high-quality 2D REO single crystals with tailorable facets via designing a hard-soft-acid-base couple for controlling the 2D nucleation of the predetermined facets and adjusting the growth mode and direction of crystals. Also, the facet-related magnetic properties of 2D REO single crystals were revealed. Our approach provides a foundation for further exploring other facet-dependent properties and various applications of 2D REO, as well as inspiration for the precise growth of other non-layered 2D materials.
Collapse
Affiliation(s)
- Linyang Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fangyun Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wenqi Xiong
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yu Ding
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yangyi Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Xiao
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xin Tong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shuangfeng Jia
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Rafael G Mendes
- College of Physics, Optoelectronics and Energy, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Institute for Complex Materials, IFW Dresden, Dresden 01069, Germany
| | - Mark H Rümmeli
- College of Physics, Optoelectronics and Energy, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Institute for Complex Materials, IFW Dresden, Dresden 01069, Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze 41-819, Poland
- Institute of Environmental Technology, VSB-Technical University of Ostrava, Ostrava 708 33, Czech Republic
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
41
|
Zhang Y, Zhao S, Feng J, Song S, Shi W, Wang D, Zhang H. Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Li M, Li L, Fan Y, Huang L, Geng D, Yang W. Controlled growth of 2D ultrathin Ga 2O 3 crystals on liquid metal. NANOSCALE ADVANCES 2021; 3:4411-4415. [PMID: 36133481 PMCID: PMC9419326 DOI: 10.1039/d1na00375e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 06/14/2023]
Abstract
2D metal oxides (2DMOs) have drawn intensive interest in the past few years owing to their rich surface chemistry and unique electronic structures. Striving for large-scale and high-quality novel 2DMOs is of great significance for developing future nano-enabled technologies. In this work, we demonstrate for the first time controllable growth of highly crystalline 2D ultrathin Ga2O3 single crystals on liquid Ga by the chemical vapor deposition approach. With the introduction of oxygen into the growth process, large-area hexagonal α-Ga2O3 crystals with a uniform size distribution have been produced. At high temperature, fast diffusion of oxygen atoms onto the liquid surface facilitates reaction with Ga and thus leads to in situ formation of 2D ultrathin crystals. By precisely controlling the amount of oxygen, the vertical growth of the Ga2O3 single crystal has been realized. Furthermore, phase engineering can be achieved and thus 2D β-Ga2O3 crystals were also prepared by precisely tuning the growth temperature. The controlled growth of 2D Ga2O3 crystals offers an applicable avenue for fabrication of other 2D metal oxides and can further open up possibilities for future electronics.
Collapse
Affiliation(s)
- Menghan Li
- Institute of Molecular Plus, Tianjin University Tianjin 300072 China
| | - Lin Li
- Institute of Molecular Plus, Tianjin University Tianjin 300072 China
| | - Yixuan Fan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 China
| | - Le Huang
- School of Materials and Energy, Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Dechao Geng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University Tianjin 300072 China
| |
Collapse
|
43
|
Qian W, Xu S, Zhang X, Li C, Yang W, Bowen CR, Yang Y. Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. NANO-MICRO LETTERS 2021; 13:156. [PMID: 34264418 PMCID: PMC8282827 DOI: 10.1007/s40820-021-00681-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/06/2021] [Indexed: 05/22/2023]
Abstract
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century. Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials. This has led to significant interest in the exploitation of 2D nanomaterials for catalysis. There have been a variety of excellent reviews on 2D nanomaterials for catalysis, but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant. Here, we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials. Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted, which point out the differences and similarities of series issues for photocatalysis and electrocatalysis. In addition, 2D nanocatalysts and their catalytic applications are discussed. Finally, opportunities, challenges and development directions for 2D nanocatalysts are described. The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Weiqi Qian
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Suwen Xu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Xiaoming Zhang
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Chuanbo Li
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China.
| | - Weiyou Yang
- Institute of Materials, Ningbo University of Technology, Ningbo, 315016, People's Republic of China.
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AK, UK
| | - Ya Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
44
|
Wang H, Chen J, Lin Y, Wang X, Li J, Li Y, Gao L, Zhang L, Chao D, Xiao X, Lee JM. Electronic Modulation of Non-van der Waals 2D Electrocatalysts for Efficient Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008422. [PMID: 34032317 DOI: 10.1002/adma.202008422] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The exploration of efficient electrocatalysts for energy conversion is important for green energy development. Owing to their high surface areas and unusual electronic structure, 2D electrocatalysts have attracted increasing interest. Among them, non-van der Waals (non-vdW) 2D materials with numerous chemical bonds in all three dimensions and novel chemical and electronic properties beyond those of vdW 2D materials have been studied increasingly over the past decades. Herein, the progress of non-vdW 2D electrocatalysts is critically reviewed, with a special emphasis on electronic structure modulation. Strategies for heteroatom doping, vacancy engineering, pore creation, alloying, and heterostructure engineering are analyzed for tuning electronic structures and achieving intrinsically enhanced electrocatalytic performances. Lastly, a roadmap for the future development of non-vdW 2D electrocatalysts is provided from material, mechanism, and performance viewpoints.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Jianmei Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yanping Lin
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - Xiaohan Wang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Jianmin Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yao Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lijun Gao
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - Labao Zhang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Xu Xiao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
45
|
Goff A, Aukarasereenont P, Nguyen CK, Grant R, Syed N, Zavabeti A, Elbourne A, Daeneke T. An exploration into two-dimensional metal oxides, and other 2D materials, synthesised via liquid metal printing and transfer techniques. Dalton Trans 2021; 50:7513-7526. [PMID: 33977926 DOI: 10.1039/d0dt04364h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two-dimensional (2D) metal oxides can be difficult to synthesise, and scaling up production using traditional methods is challenging. However, a new liquid metal-based technique, that utilises both "top-down" and "bottom-up" processes, has recently been introduced. These liquids oxidise to form an oxide surface "skin" which may be exfoliated as a 2D flake and subsequently used in various electronic devices and chemical reactions.
Collapse
Affiliation(s)
- Abigail Goff
- School of Engineering, RMIT University, Melbourne, VIC, 3001 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhou F, Li Y, Liao X, Lin S, Song H, Liu Y, Yang F, Yan S, Lai Z, Liu Y, Xu CY, Yang Z, Huang Y, Zhen L, Zhu J, Yao J. Topotactic Growth of Free-Standing Two-Dimensional Perovskite Niobates with Low Symmetry Phase. NANO LETTERS 2021; 21:4700-4707. [PMID: 34018750 DOI: 10.1021/acs.nanolett.1c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we report a novel topotactic method to grow 2D free-standing perovskite using KNbO3 (KN) as a model system. Perovskite KN with monoclinic phase, distorted by as large as ∼6 degrees compared with orthorhombic KN, is obtained from 2D KNbO2 after oxygen-assisted annealing at relatively low temperature (530 °C). Piezoresponse force microscopy (PFM) measurements confirm that the 2D KN sheets show strong spontaneous polarization (Ps) along [101̅]pc direction and a weak in-plane polarization, which is consistent with theoretical predictions. Thickness-dependent stripe domains, with increased surface displacement and PFM phase changes, are observed along the monoclinic tilt direction, indicating the preserved strain in KN induces the variation of nanoscale ferroelectric properties. 2D perovskite KN with low symmetry phase stable at room temperature will provide new opportunities in the exploration of nanoscale information storage devices and better understanding of ferroelectric/ferroelastic phenomena in 2D perovskite oxides.
Collapse
Affiliation(s)
- Fei Zhou
- National Key Laboratory for Precision Hot Processing of Metals; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Li
- National Key Laboratory for Precision Hot Processing of Metals; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xingqi Liao
- National Key Laboratory for Precision Hot Processing of Metals; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shuren Lin
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Haizeng Song
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yin Liu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Fuyi Yang
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Shancheng Yan
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhonghong Lai
- Center of Analysis and Measurement, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Liu
- National Key Laboratory for Precision Hot Processing of Metals; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhihua Yang
- National Key Laboratory for Precision Hot Processing of Metals; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Liang Zhen
- National Key Laboratory for Precision Hot Processing of Metals; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingchuan Zhu
- National Key Laboratory for Precision Hot Processing of Metals; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Yao
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Tsinghua-Berkeley Shenzhen Institute, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
47
|
Li L, Meng T, Wang J, Mao B, Huang J, Cao M. Oxygen Vacancies Boosting Lithium-Ion Diffusion Kinetics of Lithium Germanate for High-Performance Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24804-24813. [PMID: 34009932 DOI: 10.1021/acsami.1c04200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oxygen vacancies play a positive role in optimizing the physical and chemical properties of metal oxides. In this work, we demonstrated oxygen vacancy-promoted enhancement of Li-ion diffusion kinetics in Li2GeO3 nanoparticle-encapsulated carbon nanofibers (denoted as Li2GeO3-x/C) and accordingly boosted lithium storage. The introduction of the oxygen vacancies in Li2GeO3-x/C can enhance electronic conductivity and evidently decrease activation energy of Li-ion transport, thus resulting in evidently accelerated Li-ion diffusion kinetics during the lithiation/delithiation process. Thus, the Li2GeO3-x/C nanofibers exhibit an exceptionally large discharge capacity of 1460.5 mA h g-1 at 0.1 A g-1, high initial Coulombic efficiency of 81.3%, and excellent rate capability. This facile and efficient strategy could provide a reference for injecting the oxygen vacancies into other metal oxides for high-performance anode materials.
Collapse
Affiliation(s)
- Long Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Tao Meng
- College of Sciences, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jie Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Baoguang Mao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jingbin Huang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
48
|
Kou Z, Li X, Zhang L, Zang W, Gao X, Wang J. Dynamic Surface Chemistry of Catalysts in Oxygen Evolution Reaction. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Zongkui Kou
- Department of Materials Science and Engineering National University of Singapore 117574 Singapore Singapore
| | - Xin Li
- Department of Materials Science and Engineering National University of Singapore 117574 Singapore Singapore
| | - Lei Zhang
- Department of Materials Science and Engineering National University of Singapore 117574 Singapore Singapore
| | - Wenjie Zang
- Department of Materials Science and Engineering National University of Singapore 117574 Singapore Singapore
| | - Xiaorui Gao
- Jiangsu Laboratory of Advanced Functional Materials School of Electronic and Information Engineering Changshu Institute of Technology Changshu 215500 P. R. China
| | - John Wang
- Department of Materials Science and Engineering National University of Singapore 117574 Singapore Singapore
| |
Collapse
|
49
|
S Mofarah S, Schreck L, Cazorla C, Zheng X, Adabifiroozjaei E, Tsounis C, Scott J, Shahmiri R, Yao Y, Abbasi R, Wang Y, Arandiyan H, Sheppard L, Wong V, Doustkhah E, Koshy P, Sorrell CC. Highly catalytically active CeO 2-x-based heterojunction nanostructures with mixed micro/meso-porous architectures. NANOSCALE 2021; 13:6764-6771. [PMID: 33885478 DOI: 10.1039/d0nr08097g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The architectural design of nanocatalysts plays a critical role in the achievement of high densities of active sites but current technologies are hindered by process complexity and limited scaleability. The present work introduces a rapid, flexible, and template-free method to synthesize three-dimensional (3D), mesoporous, CeO2-x nanostructures comprised of extremely thin holey two-dimensional (2D) nanosheets of centimetre-scale. The process leverages the controlled conversion of stacked nanosheets of a newly developed Ce-based coordination polymer into a range of stable oxide morphologies controllably differentiated by the oxidation kinetics. The resultant polycrystalline, hybrid, 2D-3D CeO2-x exhibits high densities of defects and surface area as high as 251 m2 g-1, which yield an outstanding CO conversion performance (T90% = 148 °C) for all oxides. Modification by the creation of heterojunction nanostructures using transition metal oxides (TMOs) results in further improvements in performance (T90% = 88 °C), which are interpreted in terms of the active sites associated with the TMOs that are identified through structural analyses and density functional theory (DFT) simulations. This unparalleled catalytic performance for CO conversion is possible through the ultra-high surface areas, defect densities, and pore volumes. This technology offers the capacity to establish efficient pathways to engineer nanostructures of advanced functionalities for catalysis.
Collapse
Affiliation(s)
- Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhao S, Zhang J, Fu L. Liquid Metals: A Novel Possibility of Fabricating 2D Metal Oxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005544. [PMID: 33448060 DOI: 10.1002/adma.202005544] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Indexed: 06/12/2023]
Abstract
2D metal oxides (2DMOs) have been widely applied in the fields of electronic, magnetic, optical, and catalytic materials, owing to their rich surface chemistry and unique electronic structures. However, their further development faces challenges such as the difficulty in fabricating 2DMOs with unstable surface induced by strong surface polarizability, or the high cost and limited yield of the fabrication process. Recently, liquid metals have shown great potential in the fabrication of 2DMOs. The native oxide skin formed on the surface of liquid metals can be considered as a perfect 2D planar material. Due to the solubility, fluidity, and reactivity of liquid metals, they can act as the solvent, reactant, and interface in the fabrication of 2DMOs. Moreover, liquid metals undergo a liquid-solid phase transition, enabling them to be a symmetric matched substrate for growing high-quality 2DMOs. An insightful survey of the recent progress in this research direction is presented. The features of liquid metals including good solubility, chemical reactivity, weak interface force, and liquid-solid phase transitions are introduced in detail. Furthermore, strategies for the fabrication of 2DMOs by virtue of these features are summarized comprehensively. Finally, current challenges and prospects regarding the future development in the fabrication of 2DMOs via liquid metals are highlighted.
Collapse
Affiliation(s)
- Shasha Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|