1
|
Wang H, Bai R, Wang Y, Qu M, Zhou Y, Gao Z, Wang Y. The multifaceted function of FoxO1 in pancreatic β-cell dysfunction and insulin resistance: Therapeutic potential for type 2 diabetes. Life Sci 2025; 364:123384. [PMID: 39798646 DOI: 10.1016/j.lfs.2025.123384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The forkhead box O1 (FoxO1), the first discovered member of the FoxO family, is a critical transcription factor predominantly found in insulin-secreting and insulin-sensitive tissues. In the pancreas of adults, FoxO1 expression is restricted to islet β cells. We determined that in human islet microarray datasets, FoxO1 expression is higher than other FoxO transcription factors. Our analyses of three human islet datasets revealed that FoxO1 expression tends to shows a negative correlation with type 2 diabetes and no correlation with body mass index (BMI) between individuals with low levels of HbA1C (or ND, non-diabetic) and high levels of HbA1C (or T2D, type 2 diabetes). However, FoxO1 function is multifaceted and mainly regulated by post-translational modifications including phosphorylation and deacetylation that involved in pancreatic β cell function and insulin sensitivity. This study summarized the molecular mechanisms underlying the role of FoxO1 activity in pancreatic β-cell dysfunction and insulin resistance in T2D. In addition, we collected the clinical trials of FoxO1 inhibitor and agonist in diabetes, and discussed the therapeutic potential of FoxO1 activity in diabetes treatment.
Collapse
Affiliation(s)
- Hongyu Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261021, China
| | - Ran Bai
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261021, China
| | - Yubing Wang
- Translational Medical Center, Weifang Second People's Hospital, Weifang 261021, China
| | - Meihua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang 261021, China
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Zhiqin Gao
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261021, China
| | - Yi Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261021, China.
| |
Collapse
|
2
|
Karampelias C, Liu KC, Tengholm A, Andersson O. Mechanistic insights and approaches for beta cell regeneration. Nat Chem Biol 2025:10.1038/s41589-024-01822-y. [PMID: 39881214 DOI: 10.1038/s41589-024-01822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms. We group the pathways according to the cellular processes they affect, that is, proliferation, conversion of other mature cell types to beta cells and beta cell differentiation from progenitor-like populations. We also suggest assays for assessing the functionality of the regenerated beta cells. Although regeneration processes differ between animal models, such as zebrafish, mice and pigs, regenerative mechanisms identified in any one animal model may be translatable to humans. Overall, chemical biology-based approaches in beta cell regeneration give hope that specific molecular pathways can be targeted to enhance beta cell regeneration.
Collapse
Affiliation(s)
- Christos Karampelias
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ka-Cheuk Liu
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
3
|
McKimpson WM, Spiegel S, Mukhanova M, Kraakman M, Du W, Kitamoto T, Yu J, Deng Z, Pajvani U, Accili D. Calorie restriction activates a gastric Notch-FOXO1 pathway to expand ghrelin cells. J Cell Biol 2024; 223:e202305093. [PMID: 38958606 PMCID: PMC11222742 DOI: 10.1083/jcb.202305093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Calorie restriction increases lifespan. Among the tissue-specific protective effects of calorie restriction, the impact on the gastrointestinal tract remains unclear. We report increased numbers of chromogranin A-positive (+), including orexigenic ghrelin+ cells, in the stomach of calorie-restricted mice. This effect was accompanied by increased Notch target Hes1 and Notch ligand Jag1 and was reversed by blocking Notch with DAPT, a gamma-secretase inhibitor. Primary cultures and genetically modified reporter mice show that increased endocrine cell abundance is due to altered Lgr5+ stem and Neurog3+ endocrine progenitor cell proliferation. Different from the intestine, calorie restriction decreased gastric Lgr5+ stem cells, while increasing a FOXO1/Neurog3+ subpopulation of endocrine progenitors in a Notch-dependent manner. Further, activation of FOXO1 was sufficient to promote endocrine cell differentiation independent of Notch. The Notch inhibitor PF-03084014 or ghrelin receptor antagonist GHRP-6 reversed the phenotypic effects of calorie restriction in mice. Tirzepatide additionally expanded ghrelin+ cells in mice. In summary, calorie restriction promotes Notch-dependent, FOXO1-regulated gastric endocrine cell differentiation.
Collapse
Affiliation(s)
- Wendy M. McKimpson
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Sophia Spiegel
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Maria Mukhanova
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Michael Kraakman
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Wen Du
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Takumi Kitamoto
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Junjie Yu
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Zhaobin Deng
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Utpal Pajvani
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Domenico Accili
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Kagami H, Li X. Spheroids and organoids: Their implications for oral and craniofacial tissue/organ regeneration. J Oral Biol Craniofac Res 2024; 14:540-546. [PMID: 39092136 PMCID: PMC11292544 DOI: 10.1016/j.jobcr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Spheroids are spherical aggregates of cells. Normally, most of adherent cells cannot survive in suspension; however, if they adhere to each other and grow to a certain size, they can survive without attaching to the dish surface. Studies have shown that spheroid formation induces dedifferentiation and improves plasticity, proliferative capability, and differentiation capability. In particular, spontaneous spheroids represent a selective and efficient cultivation technique for somatic stem cells. Organoids are considered mini-organs composed of multiple types of cells with extracellular matrices that are maintained in three-dimensional culture. Although their culture environment is similar to that of spheroids, organoids consist of differentiated cells with fundamental tissue/organ structures similar to those of native organs. Organoids have been used for drug development, disease models, and basic biological studies. Spheroid culture has been reported for various cell types in the oral and craniofacial regions, including salivary gland epithelial cells, periodontal ligament cells, dental pulp stem cells, and oral mucosa-derived cells. For broader clinical application, it is crucial to identify treatment targets that can leverage the superior stemness of spheroids. Organoids have been developed from various organs, including taste buds, oral mucosa, teeth, and salivary glands, for basic biological studies and also with the goal to replace damaged or defective organs. The development of novel immune-tolerant cell sources is the key to the widespread clinical application of organoids in regenerative medicine. Further efforts to understand the underlying basic mechanisms of spheroids and organoids will lead to the development of safe and efficient next-generation regenerative therapies.
Collapse
Affiliation(s)
- Hideaki Kagami
- Department of Dentistry and Oral Surgery, Aichi Medical University, Aichi, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| |
Collapse
|
5
|
Bao W, Lyu J, Feng G, Guo L, Zhao D, You K, Liu Y, Li H, Du P, Chen D, Shen X. Aloe emodin promotes mucosal healing by modifying the differentiation fate of enteroendocrine cells via regulating cellular free fatty acid sensitivity. Acta Pharm Sin B 2024; 14:3964-3982. [PMID: 39309505 PMCID: PMC11413701 DOI: 10.1016/j.apsb.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury. Label retaining cells (LRCs) expressing SRY-box transcription factor 9 (SOX9) promote epithelial repair by replenishing LGR5+ intestinal stem cells (ISCs). While, LRCs are also considered precursor cells for enteroendocrine cells (EECs) which exacerbate mucosal damage in inflammatory bowel disease (IBD). The factors that determine LRC-EEC differentiation and the effect of intervening in LRC-EEC differentiation on IBD remain unclear. In this study, we investigated the effects of a natural anthraquinone called aloe emodin (derived from the Chinese herb rhubarb) on mucosal healing in IBD models. Our findings demonstrated that aloe emodin effectively interfered with the differentiation to EECs and preserved a higher number of SOX9+ LRCs, thereby promoting mucosal healing. Furthermore, we discovered that aloe emodin acted as an antagonist of free fatty acid receptors (FFAR1), suppressing the FFAR1-mediated Gβγ/serine/threonine-protein kinase (AKT) pathway and promoting the translocation of forkhead box protein O1 (FOXO1) into the nucleus, ultimately resulting in the intervention of differentiation fate. These findings reveal the effect of free fatty acid accessibility on EEC differentiation and introduce a strategy for promoting mucosal healing in IBD by regulating the FFAR1/AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Jiaren Lyu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Linfeng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Dian Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Haidong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| |
Collapse
|
6
|
Accili D, Talchai SC, Bouchi R, Lee AY, Du W, Kitamoto T, McKimpson WM, Belvedere S, Lin HV. Diabetes treatment by conversion of gut epithelial cells to insulin-producing cells. J Diabetes Investig 2024; 15:797-804. [PMID: 38426644 PMCID: PMC11215681 DOI: 10.1111/jdi.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Insulin-deficient (type 1) diabetes is treated by providing insulin to maintain euglycemia. The current standard of care is a quasi-closed loop integrating automated insulin delivery with a continuous glucose monitoring sensor. Cell replacement technologies are advancing as an alternative treatment and have been tested as surrogates to cadaveric islets in transplants. In addition, immunomodulatory treatments to delay the onset of type 1 diabetes in high-risk (stage 2) individuals have gained regulatory approval. We have pioneered a cell conversion approach to restore insulin production through pharmacological conversion of intestinal epithelial cells into insulin-producing cells. We have advanced this approach along a translational trajectory through the discovery of small molecule forkhead box protein O1 inhibitors. When administered to different rodent models of insulin-deficient diabetes, these inhibitors have resulted in robust glucose-lowering responses and generation of insulin-producing cells in the gut epithelium. We review past work and delineate a path to human clinical trials.
Collapse
Affiliation(s)
- Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes CenterVagelos College of Physicians and Surgeons of Columbia UniversityNew York CityNew YorkUSA
| | | | - Ryotaro Bouchi
- Diabetes and Metabolism Information Center, Diabetes Research CenterResearch Institute, National Center for Global Health and MedicineTokyoJapan
| | | | - Wen Du
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhouChina
| | - Takumi Kitamoto
- Department of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
| | - Wendy M McKimpson
- Department of Medicine and Naomi Berrie Diabetes CenterVagelos College of Physicians and Surgeons of Columbia UniversityNew York CityNew YorkUSA
| | - Sandro Belvedere
- ARMGO Pharma, Inc.ArdsleyNew YorkUSA
- Avicenna Biosciences, Inc.DurhamNorth CarolinaUSA
| | - Hua V Lin
- Render TherapeuticsLincolnMassachusettsUSA
| |
Collapse
|
7
|
Kamal MM, Ammar RA, Kassem DH. Silencing of forkhead box protein O-1 (FOXO-1) enhances insulin-producing cell generation from adipose mesenchymal stem cells for diabetes therapy. Life Sci 2024; 344:122579. [PMID: 38518842 DOI: 10.1016/j.lfs.2024.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
AIMS Generation of mature β-cells from MSCs has been a challenge in the field of stem cell therapy of diabetes. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) have made their mark in regenerative medicine, and provide several advantages compared to other MSCs sources. Forkhead box protein O-1 (FOXO-1) is an important transcription factor for normal development of β-cells, yet its over expression in β-cells may cause glucose intolerance. In this study, we isolated, characterized Ad-MSCs from rat epididymal fat pads, differentiated these MSCs into insulin producing cells (IPCs) and studied the role of FOXO-1 in such differentiation. MATERIALS AND METHODS We examined the expression of FOXO-1 and its nuclear cytoplasmic localization in the generated IPCs. Afterwards we knocked down FOXO-1 using siRNA targeting FOXO-1 (siFOXO-1). The differentiated siFOXO-1 IPCs were compared to non-targeting siRNA (siNT) IPCs regarding expression of β-cell markers by qRT-PCR and western blotting, dithizone (DTZ) staining and glucose stimulated insulin secretion (GSIS). KEY FINDINGS Isolated Ad-MSCs exhibited all characteristics of MSCs and can generate IPCs. FOXO-1 was initially elevated during differentiation followed by a decline towards end of differentiation. FOXO-1 was dephosphorylated and localized to the nucleus upon differentiation into IPCs. Knock down of FOXO-1 improved the expression of β-cell markers in final differentiated IPCs, improved DTZ uptake and showed increased insulin secretion upon challenging with increased glucose concentration. SIGNIFICANCE These results portray FOXO-1 as a hindering factor of generation of IPCs whose down-regulation can generate more mature IPCs for MSCs therapy of diabetes mellitus.
Collapse
Affiliation(s)
- Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| | - Reham A Ammar
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Oropeza D, Herrera PL. Glucagon-producing α-cell transcriptional identity and reprogramming towards insulin production. Trends Cell Biol 2024; 34:180-197. [PMID: 37626005 DOI: 10.1016/j.tcb.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023]
Abstract
β-Cell replacement by in situ reprogramming of non-β-cells is a promising diabetes therapy. Following the observation that near-total β-cell ablation in adult mice triggers the reprogramming of pancreatic α-, δ-, and γ-cells into insulin (INS)-producing cells, recent studies are delving deep into the mechanisms controlling adult α-cell identity. Systematic analyses of the α-cell transcriptome and epigenome have started to pinpoint features that could be crucial for maintaining α-cell identity. Using different transgenic and chemical approaches, significant advances have been made in reprogramming α-cells in vivo into INS-secreting cells in mice. The recent reprogramming of human α-cells in vitro is an important step forward that must now be complemented with a comprehensive molecular dissection of the mechanisms controlling α-cell identity.
Collapse
Affiliation(s)
- Daniel Oropeza
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Wang Y, Liu Z, Li S, Su X, Lai KP, Li R. Biochemical pancreatic β-cell lineage reprogramming: Various cell fate shifts. Curr Res Transl Med 2024; 72:103412. [PMID: 38246021 DOI: 10.1016/j.retram.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 01/23/2024]
Abstract
The incidence of pancreatic diseases has been continuously rising in recent years. Thus, research on pancreatic regeneration is becoming more popular. Chronic hyperglycemia is detrimental to pancreatic β-cells, leading to impairment of insulin secretion which is the main hallmark of pancreatic diseases. Obtaining plenty of functional pancreatic β-cells is the most crucial aspect when studying pancreatic biology and treating diabetes. According to the International Diabetes Federation, diabetes has become a global epidemic, with about 3 million people suffering from diabetes worldwide. Hyperglycemia can lead to many dangerous diseases, including amputation, blindness, neuropathy, stroke, and cardiovascular and kidney diseases. Insulin is widely used in the treatment of diabetes; however, innovative approaches are needed in the academic and preclinical stages. A new approach aims at synthesizing patient-specific functional pancreatic β-cells. The present article focuses on how cells from different tissues can be transformed into pancreatic β-cells.
Collapse
Affiliation(s)
- Yuqin Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Zhuoqing Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Shengren Li
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Xuejuan Su
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China.
| |
Collapse
|
10
|
Liu W, Wang Q, Bai Y, Xiao H, Li Z, Wang Y, Wang Q, Yang J, Sun H. Potential Application of Intestinal Organoids in Intestinal Diseases. Stem Cell Rev Rep 2024; 20:124-137. [PMID: 37938407 DOI: 10.1007/s12015-023-10651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
To accurately reveal the scenario and mecahnism of gastrointestinal diseases, the establishment of in vitro models of intestinal diseases and drug screening platforms have become the focus of attention. Over the past few decades, animal models and immortalized cell lines have provided valuable but limited insights into gastrointestinal research. In recent years, the development of intestinal organoid culture system has revolutionized in vitro studies of intestinal diseases. Intestinal organoids are derived from self-renewal and self-organization intestinal stem cells (ISCs), which can replicate the genetic characteristics, functions, and structures of the original tissues. Consequently, they provide new stragety for studying various intestinal diseases in vitro. In the review, we will discuss the culture techniques of intestinal organoids and describe the use of intestinal organoids as research tools for intestinal diseases. The role of intestinal epithelial cells (IECs) played in the pathogenesis of inflammatory bowel diseases (IBD) and the treatment of intestinal epithelial dysfunction will be highlighted. Besides, we review the current knowledge on using intestinal organoids as models to study the pathogenesis of IBD caused by epithelial dysfunction and to develop new therapeutic approaches. Finally, we shed light on the current challenges of using intestinal organoids as in vitro models.
Collapse
Affiliation(s)
- Wenxiu Liu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, 730000, Gansu, China
| | - Qian Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhunduo Li
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yan Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Qi Wang
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, 730000, Gansu, China.
| | - Jing Yang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
11
|
Sepyani S, Momenzadeh S, Safabakhsh S, Nedaeinia R, Salehi R. Therapeutic approaches for Type 1 Diabetes: Promising cell-based approaches to achieve ultimate success. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:23-33. [PMID: 37977308 DOI: 10.1016/j.slasd.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Type 1 Diabetes mellitus (T1DM) is a chronic metabolic disorder characterized by pancreatic β-cells destruction. Despite substantial advances in T1DM treatment, lifelong exogenous insulin administration is the mainstay of treatments, and constant control of glucose levels is still a challenge. Endogenous insulin production by replacing insulin-producing cells is an alternative, but the lack of suitable donors is accounted as one of the main obstacles to its widespread application. The research and trials overview demonstrates that endogenous production of insulin has started to go beyond the deceased-derived to stem cells-derived insulin-producing cells. Several protocols have been developed over the past couple of years for generating insulin-producing cells (IPCs) from various stem cell types and reprogramming fully differentiated cells. A straightforward and quick method for achieving this goal is to investigate and apply the β-cell specific transcription factors as a direct strategy for IPCs generation. In this review, we emphasize the significance of transcription factors in IPCs development from different non-beta cell sources, and pertinent research underlies the marked progress in the methods for generating insulin-producing cells and application for Type 1 Diabetes treatment.
Collapse
Affiliation(s)
- Sahar Sepyani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Momenzadeh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU 96910, United States
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Huang X, Gu W, Zhang J, Lan Y, Colarusso JL, Li S, Pertl C, Lu J, Kim H, Zhu J, Breault DT, Sévigny J, Zhou Q. Stomach-derived human insulin-secreting organoids restore glucose homeostasis. Nat Cell Biol 2023; 25:778-786. [PMID: 37106062 PMCID: PMC10859913 DOI: 10.1038/s41556-023-01130-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Gut stem cells are accessible by biopsy and propagate robustly in culture, offering an invaluable resource for autologous cell therapies. Insulin-producing cells can be induced in mouse gut, but it has not been possible to generate abundant and durable insulin-secreting cells from human gut tissues to evaluate their potential as a cell therapy for diabetes. Here we describe a protocol to differentiate cultured human gastric stem cells into pancreatic islet-like organoids containing gastric insulin-secreting (GINS) cells that resemble β-cells in molecular hallmarks and function. Sequential activation of the inducing factors NGN3 and PDX1-MAFA led human gastric stem cells onto a distinctive differentiation path, including a SOX4High endocrine and GalaninHigh GINS precursor, before adopting β-cell identity, at efficiencies close to 70%. GINS organoids acquired glucose-stimulated insulin secretion in 10 days and restored glucose homeostasis for over 100 days in diabetic mice after transplantation, providing proof of concept for a promising approach to treat diabetes.
Collapse
Affiliation(s)
- Xiaofeng Huang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Wei Gu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiaoyue Zhang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ying Lan
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan L Colarusso
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sanlan Li
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christoph Pertl
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiaqi Lu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hyunkee Kim
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jian Zhu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Qiao Zhou
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
McKimpson WM, Spiegel S, Mukhanova M, Kraakman M, Du W, Kitamoto T, Yu J, Pajvani U, Accili D. Calorie Restriction activates a gastric Notch-FOXO1 pathway to expand Ghrelin cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531352. [PMID: 36945500 PMCID: PMC10028817 DOI: 10.1101/2023.03.06.531352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Calorie restriction increases lifespan. While some tissue-specific protective effects of calorie restriction have been described, the impact of calorie restriction on the gastrointestinal tract remains unclear. We found increased abundance of chromogranin A+, including orexigenic ghrelin+, endocrine cells in the stomach of calorie-restricted mice. This effect coincided with increased Notch target Hes1 and Notch ligand Jag1 and was reversed when Notch signaling was blocked using the γ-secretase inhibitor DAPT. Using primary cultures and genetically-modified reporter mice, we determined that increased endocrine cell abundance was due to altered stem and progenitor proliferation. Different from the intestine, calorie restriction decreased gastric Lgr5+ stem cells, while increasing a FOXO1/Neurog3+ subpopulation of endocrine progenitors in a Notch-dependent manner. Further, calorie restriction triggered nuclear localization of FOXO1, which was sufficient to promote endocrine cell differentiation. Taken together, the data indicate that calorie restriction promotes gastric endocrine cell differentiation triggered by active Notch signaling and regulated by FOXO1.
Collapse
|
14
|
Narayan G, Ronima K R, Thummer RP. Direct Reprogramming of Somatic Cells into Induced β-Cells: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:171-189. [PMID: 36515866 DOI: 10.1007/5584_2022_756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The persistent shortage of insulin-producing islet mass or β-cells for transplantation in the ever-growing diabetic population worldwide is a matter of concern. To date, permanent cure to this medical complication is not available and soon after the establishment of lineage-specific reprogramming, direct β-cell reprogramming became a viable alternative for β-cell regeneration. Direct reprogramming is a straightforward and powerful technique that can provide an unlimited supply of cells by transdifferentiating terminally differentiated cells toward the desired cell type. This approach has been extensively used by multiple groups to reprogram non-β-cells toward insulin-producing β-cells. The β-cell identity has been achieved by various studies via ectopic expression of one or more pancreatic-specific transcription factors in somatic cells, bypassing the pluripotent state. This work highlights the importance of the direct reprogramming approaches (both integrative and non-integrative) in generating autologous β-cells for various applications. An in-depth understanding of the strategies and cell sources could prove beneficial for the efficient generation of integration-free functional insulin-producing β-cells for diabetic patients lacking endogenous β-cells.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ronima K R
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
15
|
Kumar A, Cai S, Allam M, Henderson S, Ozbeyler M, Saiontz L, Coskun AF. Single-Cell and Spatial Analysis of Emergent Organoid Platforms. Methods Mol Biol 2023; 2660:311-344. [PMID: 37191807 DOI: 10.1007/978-1-0716-3163-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Organoids have emerged as a promising advancement of the two-dimensional (2D) culture systems to improve studies in organogenesis, drug discovery, precision medicine, and regenerative medicine applications. Organoids can self-organize as three-dimensional (3D) tissues derived from stem cells and patient tissues to resemble organs. This chapter presents growth strategies, molecular screening methods, and emerging issues of the organoid platforms. Single-cell and spatial analysis resolve organoid heterogeneity to obtain information about the structural and molecular cellular states. Culture media diversity and varying lab-to-lab practices have resulted in organoid-to-organoid variability in morphology and cell compositions. An essential resource is an organoid atlas that can catalog protocols and standardize data analysis for different organoid types. Molecular profiling of individual cells in organoids and data organization of the organoid landscape will impact biomedical applications from basic science to translational use.
Collapse
Affiliation(s)
- Aditi Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Samuel Henderson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Melissa Ozbeyler
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lilly Saiontz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, , Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
16
|
Du W, Wang J, Kuo T, Wang L, McKimpson WM, Son J, Watanabe H, Kitamoto T, Lee Y, Creusot RJ, Ratner LE, McCune K, Chen YW, Grubbs BH, Thornton ME, Fan J, Sultana N, Diaz BS, Balasubramanian I, Gao N, Belvedere S, Accili D. Pharmacological conversion of gut epithelial cells into insulin-producing cells lowers glycemia in diabetic animals. J Clin Invest 2022; 132:e162720. [PMID: 36282594 PMCID: PMC9754100 DOI: 10.1172/jci162720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/18/2022] [Indexed: 01/05/2023] Open
Abstract
As a highly regenerative organ, the intestine is a promising source for cellular reprogramming for replacing lost pancreatic β cells in diabetes. Gut enterochromaffin cells can be converted to insulin-producing cells by forkhead box O1 (FoxO1) ablation, but their numbers are limited. In this study, we report that insulin-immunoreactive cells with Paneth/goblet cell features are present in human fetal intestine. Accordingly, lineage-tracing experiments show that, upon genetic or pharmacologic FoxO1 ablation, the Paneth/goblet lineage can also undergo conversion to the insulin lineage. We designed a screening platform in gut organoids to accurately quantitate β-like cell reprogramming and fine-tune a combination treatment to increase the efficiency of the conversion process in mice and human adult intestinal organoids. We identified a triple blockade of FOXO1, Notch, and TGF-β that, when tested in insulin-deficient streptozotocin (STZ) or NOD diabetic animals, resulted in near normalization of glucose levels, associated with the generation of intestinal insulin-producing cells. The findings illustrate a therapeutic approach for replacing insulin treatment in diabetes.
Collapse
Affiliation(s)
- Wen Du
- Department of Medicine and Naomi Berrie Diabetes Center and
| | - Junqiang Wang
- Systems Biology Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Taiyi Kuo
- Department of Medicine and Naomi Berrie Diabetes Center and
- Department of Neurobiology, Physiology, & Behavior, College of Biological Sciences, University of California, Davis, California, USA
| | - Liheng Wang
- Department of Medicine and Naomi Berrie Diabetes Center and
| | | | - Jinsook Son
- Department of Medicine and Naomi Berrie Diabetes Center and
| | | | | | - Yunkyoung Lee
- Forkhead BioTherapeutics Corp., New York, New York, USA
| | - Remi J. Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Lloyd E. Ratner
- Department of Surgery, Columbia University Medical Center, New York, New York, USA
| | - Kasi McCune
- Department of Surgery, Columbia University Medical Center, New York, New York, USA
| | - Ya-Wen Chen
- Department of Otolaryngology
- Department of Cell, Developmental, and Regenerative Biology, and
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brendan H. Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Matthew E. Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jason Fan
- Bascom Palmer Eye Institute, Department of Ophthalmology, Miami, Florida, USA
| | - Nishat Sultana
- Department of Medicine and Naomi Berrie Diabetes Center and
| | - Bryan S. Diaz
- Department of Medicine and Naomi Berrie Diabetes Center and
| | | | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | | |
Collapse
|
17
|
Baafi K, March JC. Harnessing gut cells for functional insulin production: Strategies and challenges. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 4:7-13. [PMID: 39416909 PMCID: PMC11446352 DOI: 10.1016/j.biotno.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 10/19/2024]
Abstract
Reprogrammed glucose-responsive, insulin + cells ("β-like") exhibit the potential to bypass the hurdles of exogenous insulin delivery in treating diabetes mellitus. Current cell-based therapies-transcription factor regulation, biomolecule-mediated enteric signaling, and transgenics - have demonstrated the promise of reprogramming either mature or progenitor gut cells into surrogate "β-like" cells. However, there are predominant challenges impeding the use of gut "β-like" cells as clinical replacements for insulin therapy. Reprogrammed "β-like" gut cells, even those of enteroendocrine origin, mostly do not exhibit glucose - potentiated insulin secretion. Despite the exceptionally low conversion rate of gut cells into surrogate "β-like" cells, the therapeutic quantity of gut "β-like" cells needed for normoglycemia has not even been established. There is also a lingering uncertainty regarding the functionality and bioavailability of gut derived insulin. Herein, we review the strategies, challenges, and opportunities in the generation of functional, reprogrammed "β-like" cells.
Collapse
Affiliation(s)
- Kelvin Baafi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
18
|
Kitamoto T, Lee YK, Sultana N, Watanabe H, McKimpson WM, Du W, Fan J, Diaz B, Lin HV, Leibel RL, Belvedere S, Accili D, Accili D. Chemical induction of gut β-like-cells by combined FoxO1/Notch inhibition as a glucose-lowering treatment for diabetes. Mol Metab 2022; 66:101624. [PMID: 36341906 PMCID: PMC9664469 DOI: 10.1016/j.molmet.2022.101624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Lifelong insulin replacement remains the mainstay of type 1 diabetes treatment. Genetic FoxO1 ablation promotes enteroendocrine cell (EECs) conversion into glucose-responsive β-like cells. Here, we tested whether chemical FoxO1 inhibitors can generate β-like gut cells. METHODS We used Ngn3-or Villin-driven FoxO1 ablation to capture the distinctive developmental effects of FoxO1 on EEC pool. We combined FoxO1 ablation with Notch inhibition to enhance the expansion of EEC pool. We tested the ability of an orally available small molecule of FoxO1 inhibitor, Cpd10, to phenocopy genetic ablation of FoxO1. We evaluated the therapeutic impact of genetic ablation or chemical inhibition of FoxO1 on insulin-deficient diabetes in Ins2Akita/+ mice. RESULTS Pan-intestinal epithelial FoxO1 ablation expanded the EEC pool, induced β-like cells, and improved glucose tolerance in Ins2Akita/+ mice. This genetic effect was phenocopied by Cpd10. Cpd10 induced β-like cells that released insulin in response to glucose in gut organoids, and this effect was enhanced by the Notch inhibitor, DBZ. In Ins2Akita/+ mice, a five-day course of either Cpd10 or DBZ induced intestinal insulin-immunoreactive β-like cells, lowered glycemia, and increased plasma insulin levels without apparent adverse effects. CONCLUSION These results provide proof of principle of gut cell conversion into β-like cells by a small molecule FoxO1 inhibitor, paving the way for clinical applications.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Chiba University Graduate School of Medicine, Chiba, Japan, 2608670.
| | | | - Nishat Sultana
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hitoshi Watanabe
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Wendy M McKimpson
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Wen Du
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Jason Fan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, 33146, USA
| | - Bryan Diaz
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hua V Lin
- BioFront Therapeutics, Beijing, China
| | - Rudolph L Leibel
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Domenico Accili
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
19
|
Nie J, Liao W, Zhang Z, Zhang M, Wen Y, Capanoglu E, Sarker MMR, Zhu R, Zhao C. A 3D co-culture intestinal organoid system for exploring glucose metabolism. Curr Res Food Sci 2022; 6:100402. [DOI: 10.1016/j.crfs.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
|
20
|
Single-agent FOXO1 inhibition normalizes glycemia and induces gut β-like cells in streptozotocin-diabetic mice. Mol Metab 2022; 66:101618. [PMID: 36283677 PMCID: PMC9676376 DOI: 10.1016/j.molmet.2022.101618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Insulin treatment remains the sole effective intervention for Type 1 Diabetes. Here, we investigated the therapeutic potential of converting intestinal epithelial cells to insulin-producing, glucose-responsive β-like cells by targeted inhibition of FOXO1. We have previously shown that this can be achieved by genetic ablation in gut Neurogenin3 progenitors, adenoviral or shRNA-mediated inhibition in human gut organoids, and chemical inhibition in Akita mice, a model of insulin-deficient diabetes. METHODS We profiled two novel FOXO1 inhibitors in reporter gene assays, and hepatocyte gene expression studies, and in vivo pyruvate tolerance test (PTT) for their activity and specificity. We evaluated their glucose-lowering effect in mice rendered insulin-deficient by administration of streptozotocin. RESULTS We provide evidence that two novel FOXO1 inhibitors, FBT432 and FBT374 have glucose-lowering and gut β-like cell-inducing properties in mice. FBT432 is also highly effective in combination with a Notch inhibitor in this model. CONCLUSION The data add to a growing body of evidence suggesting that FOXO1 inhibition be pursued as an alternative treatment to insulin administration in diabetes.
Collapse
|
21
|
Colarusso JL, Zhou Q. Direct Reprogramming of Different Cell Lineages into Pancreatic β-Like Cells. Cell Reprogram 2022; 24:252-258. [PMID: 35838597 PMCID: PMC9634980 DOI: 10.1089/cell.2022.0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One major goal of regenerative medicine is the production of pancreatic endocrine islets to treat insulin-dependent diabetic patients. Among the different methods developed to achieve this goal, a particularly promising approach is direct lineage reprogramming, in which non-β-cells are directly converted to glucose-responsive, insulin-secreting β-like cells. Efforts by different research groups have led to critical insights in the inducing factors necessary and types of somatic tissues suitable for direct conversion to β-like cells. Nevertheless, there is limited understanding of the molecular mechanisms underlying direct cell fate conversion. Significant challenges also remain in translating discoveries into therapeutics that will eventually benefit diabetic patients. This review aims to cover the advances made in the direct reprogramming of somatic cells into β-like cells and discuss the remaining challenges.
Collapse
Affiliation(s)
- Jonathan L. Colarusso
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, USA
| | - Qiao Zhou
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
22
|
Günther C, Winner B, Neurath MF, Stappenbeck TS. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut 2022; 71:1892-1908. [PMID: 35636923 PMCID: PMC9380493 DOI: 10.1136/gutjnl-2021-326560] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
We are entering an era of medicine where increasingly sophisticated data will be obtained from patients to determine proper diagnosis, predict outcomes and direct therapies. We predict that the most valuable data will be produced by systems that are highly dynamic in both time and space. Three-dimensional (3D) organoids are poised to be such a highly valuable system for a variety of gastrointestinal (GI) diseases. In the lab, organoids have emerged as powerful systems to model molecular and cellular processes orchestrating natural and pathophysiological human tissue formation in remarkable detail. Preclinical studies have impressively demonstrated that these organs-in-a-dish can be used to model immunological, neoplastic, metabolic or infectious GI disorders by taking advantage of patient-derived material. Technological breakthroughs now allow to study cellular communication and molecular mechanisms of interorgan cross-talk in health and disease including communication along for example, the gut-brain axis or gut-liver axis. Despite considerable success in culturing classical 3D organoids from various parts of the GI tract, some challenges remain to develop these systems to best help patients. Novel platforms such as organ-on-a-chip, engineered biomimetic systems including engineered organoids, micromanufacturing, bioprinting and enhanced rigour and reproducibility will open improved avenues for tissue engineering, as well as regenerative and personalised medicine. This review will highlight some of the established methods and also some exciting novel perspectives on organoids in the fields of gastroenterology. At present, this field is poised to move forward and impact many currently intractable GI diseases in the form of novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Stem Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
23
|
McKimpson WM, Kuo T, Kitamoto T, Higuchi S, Mills JC, Haeusler RA, Accili D. FOXO1 Is Present in Stomach Epithelium and Determines Gastric Cell Distribution. GASTRO HEP ADVANCES 2022; 1:733-745. [PMID: 36117550 PMCID: PMC9481069 DOI: 10.1016/j.gastha.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Stomach cells can be converted to insulin-producing cells by Neurog3, MafA, and Pdxl over-expression. Enteroendocrine cells can be similarly made to produce insulin by the deletion of FOXO1. Characteristics and functional properties of FOXO1-expressing stomach cells are not known. METHODS Using mice bearing a FOXO1-GFP knock-in allele and primary cell cultures, we examined the identity of FOXO1-expressing stomach cells and analyzed their features through loss-of-function studies with red-to-green fluorescent reporters. RESULTS FOXO1 localizes to a subset of Neurog3 and parietal cells. FOXO1 deletion ex vivo or in vivo using Neurog3-cre or Atp4b-cre increased numbers of parietal cells, generated insulin- and C-peptide-immunoreactive cells, and raised Neurog3 messenger RNA. Gene expression and ChIP- seq experiments identified the cell cycle regulator cyclin E1 (CCNE1) as a FOXO1 target. CONCLUSION FOXO1 is expressed in a subset of stomach cells. Its ablation increases parietal cells and yields insulin-immunoreactive cells, consistent with a role in lineage determination.
Collapse
Affiliation(s)
- Wendy M. McKimpson
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Taiyi Kuo
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Takumi Kitamoto
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Sei Higuchi
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Jason C. Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rebecca A. Haeusler
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Domenico Accili
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| |
Collapse
|
24
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
25
|
Zeve D, Stas E, de Sousa Casal J, Mannam P, Qi W, Yin X, Dubois S, Shah MS, Syverson EP, Hafner S, Karp JM, Carlone DL, Ordovas-Montanes J, Breault DT. Robust differentiation of human enteroendocrine cells from intestinal stem cells. Nat Commun 2022; 13:261. [PMID: 35017529 PMCID: PMC8752608 DOI: 10.1038/s41467-021-27901-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/16/2021] [Indexed: 02/02/2023] Open
Abstract
Enteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, GIP, CCK, GLP-1 and PYY upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.
Collapse
Affiliation(s)
- Daniel Zeve
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Eric Stas
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Joshua de Sousa Casal
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Prabhath Mannam
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Wanshu Qi
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Xiaolei Yin
- grid.116068.80000 0001 2341 2786David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.24516.340000000123704535Present Address: Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sarah Dubois
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.416498.60000 0001 0021 3995School of Arts and Sciences, MCPHS University, Boston, MA 02115 USA
| | - Manasvi S. Shah
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Erin P. Syverson
- grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Sophie Hafner
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Jeffrey M. Karp
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Diana L. Carlone
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Jose Ordovas-Montanes
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - David T. Breault
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| |
Collapse
|
26
|
Intestinal Gpr17 deficiency improves glucose metabolism by promoting GLP-1 secretion. Cell Rep 2022; 38:110179. [PMID: 34986353 PMCID: PMC8972502 DOI: 10.1016/j.celrep.2021.110179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) in intestinal enteroendocrine cells (EECs) respond to nutritional, neural, and microbial cues and modulate the release of gut hormones. Here we show that Gpr17, an orphan GPCR, is co-expressed in glucagon-like peptide-1 (GLP-1)-expressing EECs in human and rodent intestinal epithelium. Acute genetic ablation of Gpr17 in intestinal epithelium improves glucose tolerance and glucose-stimulated insulin secretion (GSIS). Importantly, inducible knockout (iKO) mice and Gpr17 null intestinal organoids respond to glucose or lipid ingestion with increased secretion of GLP-1, but not the other incretin glucose-dependent insulinotropic polypeptide (GIP). In an in vitro EEC model, overexpression or agonism of Gpr17 reduces voltage-gated calcium currents and decreases cyclic AMP (cAMP) production, and these are two critical factors regulating GLP-1 secretion. Together, our work shows that intestinal Gpr17 signaling functions as an inhibitory pathway for GLP-1 secretion in EECs, suggesting intestinal GPR17 is a potential target for diabetes and obesity intervention. Yan et al. locate GPR17 expression in the enteroendocrine cells of human and rodent intestinal epithelium. They find that GPR17 signaling inhibits intracellular rise of cAMP and calcium and that loss of intestinal Gpr17 in rodents leads to better glucose tolerance via increased hormone secretion in response to nutrient ingestion.
Collapse
|
27
|
Garrido-Utrilla A, Ayachi C, Friano ME, Atlija J, Balaji S, Napolitano T, Silvano S, Druelle N, Collombat P. Conversion of Gastrointestinal Somatostatin-Expressing D Cells Into Insulin-Producing Beta-Like Cells Upon Pax4 Misexpression. Front Endocrinol (Lausanne) 2022; 13:861922. [PMID: 35573999 PMCID: PMC9103212 DOI: 10.3389/fendo.2022.861922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes results from the autoimmune-mediated loss of insulin-producing beta-cells. Accordingly, important research efforts aim at regenerating these lost beta-cells by converting pre-existing endogenous cells. Following up on previous results demonstrating the conversion of pancreatic somatostatin delta-cells into beta-like cells upon Pax4 misexpression and acknowledging that somatostatin-expressing cells are highly represented in the gastrointestinal tract, one could wonder whether this Pax4-mediated conversion could also occur in the GI tract. We made use of transgenic mice misexpressing Pax4 in somatostatin cells (SSTCrePOE) to evaluate a putative Pax4-mediated D-to-beta-like cell conversion. Additionally, we implemented an ex vivo approach based on mice-derived gut organoids to assess the functionality of these neo-generated beta-like cells. Our results outlined the presence of insulin+ cells expressing several beta-cell markers in gastrointestinal tissues of SSTCrePOE animals. Further, using lineage tracing, we established that these cells arose from D cells. Lastly, functional tests on mice-derived gut organoids established the ability of neo-generated beta-like cells to release insulin upon stimulation. From this study, we conclude that the misexpression of Pax4 in D cells appears sufficient to convert these into functional beta-like cells, thus opening new research avenues in the context of diabetes research.
Collapse
Affiliation(s)
- Anna Garrido-Utrilla
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Chaïma Ayachi
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Marika Elsa Friano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Josipa Atlija
- Department of Cryopreservation, Distribution, Typing and Animal Archiving, Centre National de la Recherche Scientifique-Unité d'Appui à la Recherche (CNRS-UAR) 44 Typage et Archivage d’Animaux Modèles (TAAM), Orléans, France
| | - Shruti Balaji
- PlantaCorp Gesellschaft mit beschränkter Haftung (GmbH), Hamburg, Germany
| | - Tiziana Napolitano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Serena Silvano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Noémie Druelle
- Columbia University College of Physicians & Surgeons, Department of Medicine, New York, NY, United States
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| | - Patrick Collombat
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| |
Collapse
|
28
|
Alpha-to-beta cell trans-differentiation for treatment of diabetes. Biochem Soc Trans 2021; 49:2539-2548. [PMID: 34882233 PMCID: PMC8786296 DOI: 10.1042/bst20210244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is a significant cause of morbidity and mortality in the United States and worldwide. According to the CDC, in 2017, ∼34.2 million of the American population had diabetes. Also, in 2017, diabetes was the seventh leading cause of death and has become the number one biomedical financial burden in the United States. Insulin replacement therapy and medications that increase insulin secretion and improve insulin sensitivity are the main therapies used to treat diabetes. Unfortunately, there is currently no radical cure for the different types of diabetes. Loss of β cell mass is the end result that leads to both type 1 and type 2 diabetes. In the past decade, there has been an increased effort to develop therapeutic strategies to replace the lost β cell mass and restore insulin secretion. α cells have recently become an attractive target for replacing the lost β cell mass, which could eventually be a potential strategy to cure diabetes. This review highlights the advantages of using α cells as a source for generating new β cells, the various investigative approaches to convert α cells into insulin-producing cells, and the future prospects and problems of this promising diabetes therapeutic strategy.
Collapse
|
29
|
Egozi A, Llivichuzhca-Loja D, McCourt BT, Bahar Halpern K, Farack L, An X, Wang F, Chen K, Konnikova L, Itzkovitz S. Insulin is expressed by enteroendocrine cells during human fetal development. Nat Med 2021; 27:2104-2107. [PMID: 34887578 DOI: 10.1038/s41591-021-01586-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
Generation of beta cells via transdifferentiation of other cell types is a promising avenue for the treatment of diabetes. Here we reconstruct a single-cell atlas of the human fetal and neonatal small intestine. We identify a subset of fetal enteroendocrine K/L cells that express high levels of insulin and other beta cell genes. Our findings highlight a potential extra-pancreatic source of beta cells and expose its molecular blueprint.
Collapse
Affiliation(s)
- Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dhana Llivichuzhca-Loja
- Department of Pediatrics and Department of Obstetrics, Gynecology and Reproductive Sciences, Human and Translational Immunology, Yale Medical School, New Haven, CT, USA
| | - Blake T McCourt
- Department of Pediatrics and Department of Obstetrics, Gynecology and Reproductive Sciences, Human and Translational Immunology, Yale Medical School, New Haven, CT, USA
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lydia Farack
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaojing An
- Department of Medicine, University of Pittsburgh Medical Center, Montefiore Hospital, Pittsburgh, PA, USA
| | - Fujing Wang
- Department of Medicine, University of Pittsburgh Medical Center, Montefiore Hospital, Pittsburgh, PA, USA
| | - Kong Chen
- Department of Medicine, University of Pittsburgh Medical Center, Montefiore Hospital, Pittsburgh, PA, USA
| | - Liza Konnikova
- Department of Pediatrics and Department of Obstetrics, Gynecology and Reproductive Sciences, Human and Translational Immunology, Yale Medical School, New Haven, CT, USA.
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Yue Y, Cai P, Xu K, Li H, Chen H, Zhou HC, Huang N. Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electrocatalysts. J Am Chem Soc 2021; 143:18052-18060. [PMID: 34637619 DOI: 10.1021/jacs.1c06238] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of highly stable covalent organic frameworks (COFs) is extremely compelling for their implementation in practical application. In this work, we rationally designed and synthesized new kinds of ultrastable bimetallic polyphthalocyanine COFs, which are constructed with the dioxin linkage through the nucleophilic aromatic substitution between octahydroxylphthalocyanine and hexadecafluorophthalocyanine. The resulting bimetallic CuPcF8-CoPc-COF and CuPcF8-CoNPc-COF exhibited strong robustness under harsh conditions. The eclipsed stacking mode of metallophthalocyanine units supplies a high-speed pathway for electron transfer. With these structural advantages, both COFs displayed considerable activity, selectivity, and stability toward electrocatalytic CO2 reduction in an aqueous system. Notably, CuPcF8-CoNPc-COF showed a faradaic efficiency of 97% and an exceptionally high turnover frequency of 2.87 s-1, which is superior to most COF-based electrocatalysts. Furthermore, the catalytic mechanism was well demonstrated by using a theoretical calculation. This work not only expanded the variety of dioxin-linked COFs, but also constituted a new step toward their practical use in carbon cycle.
Collapse
Affiliation(s)
- Yan Yue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Kai Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Ludikhuize MC, Rodríguez Colman MJ. Metabolic Regulation of Stem Cells and Differentiation: A Forkhead Box O Transcription Factor Perspective. Antioxid Redox Signal 2021; 34:1004-1024. [PMID: 32847377 DOI: 10.1089/ars.2020.8126] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Stem cell activation and differentiation occur along changes in cellular metabolism. Metabolic transitions translate into changes in redox balance, cell signaling, and epigenetics, thereby regulating these processes. Metabolic transitions are key regulators of cell fate and exemplify the moonlighting nature of many metabolic enzymes and their associated metabolites. Recent Advances: Forkhead box O transcription factors (FOXOs) are bona fide regulators of cellular homeostasis. FOXOs are multitasking proteins able to regulate cell cycle, cellular metabolism, and redox state. Recent and ongoing research poses FOXOs as key factors in stem cell maintenance and differentiation in several tissues. Critical Issues: The multitasking nature of FOXOs and their tissue-specific expression patterns hinders to disclose a possible conserved mechanism of regulation of stem cell maintenance and differentiation. Moreover, cellular metabolism, cell signaling, and epigenetics establish complex regulatory interactions, which challenge the establishment of the causal/temporal nature of metabolic changes and stem cell activation and differentiation. Future Directions: The development of single-cell technologies and in vitro models able to reproduce the dynamics of stem cell differentiation are actively contributing to define the role of metabolism in this process. This knowledge is key to understanding and designing therapies for those pathologies where the balance between proliferation and differentiation is lost. Importantly, metabolic interventions could be applied to optimize stem cell cultures meant for therapeutical applications, such as transplantations, to treat autoimmune and degenerative disorders. Antioxid. Redox Signal. 34, 1004-1024.
Collapse
Affiliation(s)
- Marlies Corine Ludikhuize
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - María José Rodríguez Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
33
|
Zhao M, Ren K, Xiong X, Cheng M, Zhang Z, Huang Z, Han X, Yang X, Alejandro EU, Ruan HB. Protein O-GlcNAc Modification Links Dietary and Gut Microbial Cues to the Differentiation of Enteroendocrine L Cells. Cell Rep 2021; 32:108013. [PMID: 32783937 PMCID: PMC7457433 DOI: 10.1016/j.celrep.2020.108013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
Intestinal L cells regulate a wide range of metabolic processes, and L-cell dysfunction has been implicated in the pathogenesis of obesity and diabetes. However, it is incompletely understood how luminal signals are integrated to control the development of L cells. Here we show that food availability and gut microbiota-produced short-chain fatty acids control the posttranslational modification on intracellular proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) in intestinal epithelial cells. Via FOXO1 O-GlcNAcylation, O-GlcNAc transferase (OGT) suppresses expression of the lineage-specifying transcription factor Neurogenin 3 and, thus, L cell differentiation from enteroendocrine progenitors. Intestinal epithelial ablation of OGT in mice not only causes L cell hyperplasia and increased secretion of glucagon-like peptide 1 (GLP-1) but also disrupts gut microbial compositions, which notably contributes to decreased weight gain and improved glycemic control. Our results identify intestinal epithelial O-GlcNAc signaling as a brake on L cell development and function in response to nutritional and microbial cues. Zhao et al. identify OGT in intestinal epithelial cells as a “molecular brake” on L cell development and function in response to nutritional and microbial cues. OGT inhibits Ngn3 gene transcription and enteroendocrine differentiation via FOXO1 O-GlcNAcylation. Microbiota-derived SCFAs drive epithelial O-GlcNAcylation, which further influences gut microbiota to control systemic metabolism.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kaiqun Ren
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; College of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Meng Cheng
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zan Huang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
34
|
Calissi G, Lam EWF, Link W. Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov 2021; 20:21-38. [PMID: 33173189 DOI: 10.1038/s41573-020-0088-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
FOXO proteins are transcription factors that are involved in numerous physiological processes and in various pathological conditions, including cardiovascular disease, cancer, diabetes and chronic neurological diseases. For example, FOXO proteins are context-dependent tumour suppressors that are frequently inactivated in human cancers, and FOXO3 is the second most replicated gene associated with extreme human longevity. Therefore, pharmacological manipulation of FOXO proteins is a promising approach to developing therapeutics for cancer and for healthy ageing. In this Review, we overview the role of FOXO proteins in health and disease and discuss the pharmacological approaches to modulate FOXO function.
Collapse
Affiliation(s)
- Giampaolo Calissi
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
35
|
Ludikhuize MC, Meerlo M, Gallego MP, Xanthakis D, Burgaya Julià M, Nguyen NTB, Brombacher EC, Liv N, Maurice MM, Paik JH, Burgering BMT, Rodriguez Colman MJ. Mitochondria Define Intestinal Stem Cell Differentiation Downstream of a FOXO/Notch Axis. Cell Metab 2020; 32:889-900.e7. [PMID: 33147486 DOI: 10.1016/j.cmet.2020.10.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Differential WNT and Notch signaling regulates differentiation of Lgr5+ crypt-based columnar cells (CBCs) into intestinal cell lineages. Recently we showed that mitochondrial activity supports CBCs, while adjacent Paneth cells (PCs) show reduced mitochondrial activity. This implies that CBC differentiation into PCs involves a metabolic transition toward downregulation of mitochondrial dependency. Here we show that Forkhead box O (FoxO) transcription factors and Notch signaling interact in determining CBC fate. In agreement with the organoid data, Foxo1/3/4 deletion in mouse intestine induces secretory cell differentiation. Importantly, we show that FOXO and Notch signaling converge on regulation of mitochondrial fission, which in turn provokes stem cell differentiation into goblet cells and PCs. Finally, scRNA-seq-based reconstruction of CBC differentiation trajectories supports the role of FOXO, Notch, and mitochondria in secretory differentiation. Together, this points at a new signaling-metabolic axis in CBC differentiation and highlights the importance of mitochondria in determining stem cell fate.
Collapse
Affiliation(s)
- Marlies C Ludikhuize
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Maaike Meerlo
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Marc Pages Gallego
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Despina Xanthakis
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Mar Burgaya Julià
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Nguyen T B Nguyen
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Eline C Brombacher
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Leids Universitair Medisch Centrum, Department of Parasitology, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Nalan Liv
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute
| | - Ji-Hye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute
| | - Maria J Rodriguez Colman
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
36
|
Bender E. Forkhead BioTherapeutics: developing a diabetes pill. Nature 2020:10.1038/d41586-020-01801-y. [PMID: 32606405 DOI: 10.1038/d41586-020-01801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Abstract
Diabetes is one of the most challenging health concerns facing society. Available drugs treat the symptoms but there is no cure. This presents an urgent need to better understand human diabetes in order to develop improved treatments or target remission. New disease models need to be developed that more accurately describe the pathology of diabetes. Organoid technology provides an opportunity to fill this knowledge gap. Organoids are 3D structures, established from pluripotent stem cells or adult stem/progenitor cells, that recapitulate key aspects of the in vivo tissues they mimic. In this review we briefly introduce organoids and their benefits; we focus on organoids generated from tissues important for glucose homeostasis and tissues associated with diabetic complications. We hope this review serves as a touchstone to demonstrate how organoid technology extends the research toolbox and can deliver a step change of discovery in the field of diabetes.
Collapse
Affiliation(s)
- Anastasia Tsakmaki
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Patricia Fonseca Pedro
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Gavin A Bewick
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
38
|
FCoR-Foxo1 Axis Regulates α-Cell Mass through Repression of Arx Expression. iScience 2019; 23:100798. [PMID: 31923647 PMCID: PMC6951314 DOI: 10.1016/j.isci.2019.100798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/10/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023] Open
Abstract
Pancreatic endocrine cell development into differentiated α- and β-cells is highly regulated and involves multiple transcription factors. However, the mechanisms behind the determination of α- and β-cell masses remains unclear. We previously identified Foxo1 CoRepressor (FCoR), which inhibits Foxo1 by acetylation. Here we demonstrate that Fcor-knockout mice (FcorKO) exhibit significantly increased α-cell mass, expression of the master α-cell regulatory transcription factor Aristaless-related homeobox (Arx), which can be normalized by β-cell-specific FCoR overexpression (FcorKO-βFcor), and exhibit β-to-α-cell conversion. Compared with FcorKO, β-cell-specific Foxo1 knockout in the FcorKO (DKO) led to decreased Arx expression and α-cell mass. Foxo1 binding to Arx promoter led to DNA methyltransferase 3a (Dnmt3a) dissociation, Arx promoter hypomethylation, and increased Arx expression. In contrast, FCoR suppressed Arx through Foxo1 inhibition and Dnmt3a recruitment to Arx promoter and increased Arx promoter methylation. Our findings suggest that the FCoR-Foxo1 axis regulates pancreatic α-cell mass by suppressing Arx expression.
Collapse
|
39
|
Dayem AA, Lee SB, Kim K, Lim KM, Jeon TI, Cho SG. Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges. BMB Rep 2019. [PMID: 30940326 PMCID: PMC6549913 DOI: 10.5483/bmbrep.2019.52.5.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Breakthroughs in stem cell technology have contributed to disease modeling and drug screening via organoid technology. Organoid are defined as three-dimensional cellular aggregations derived from adult tissues or stem cells. They recapitulate the intricate pattern and functionality of the original tissue. Insulin is secreted mainly by the pancreatic β cells. Large-scale production of insulin-secreting β cells is crucial for diabetes therapy. Here, we provide a brief overview of organoids and focus on recent advances in protocols for the generation of pancreatic islet organoids from pancreatic tissue or pluripotent stem cells for insulin secretion. The feasibility and limitations of organoid cultures derived from stem cells for insulin production will be described. As the pancreas and gut share the same embryological origin and produce insulin, we will also discuss the possible application of gut organoids for diabetes therapy. Better understanding of the challenges associated with the current protocols for organoid culture facilitates development of scalable organoid cultures for applications in biomedicine.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Tak-Il Jeon
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
40
|
Abstract
Diabetes is a major worldwide health problem which results from the loss and/or dysfunction of pancreatic insulin-producing β cells in the pancreas. Therefore, there is great interest in understanding the endogenous capacity of β cells to regenerate under normal or pathological conditions, with the goal of restoring functional β cell mass in patients with diabetes. Here, we summarize the current status of β cell regeneration research, which has been broadly divided into three in vivo mechanisms: 1. proliferation of existing β cells; 2. neogenesis of β cells from adult ductal progenitors; and 3. transdifferentiation of other cell types into β cells. We discuss the evidence and controversies for each mechanism in mice and humans, as well as the prospect of using these approaches for the treatment of diabetes.
Collapse
|
41
|
Abstract
BACKGROUND Current therapeutic strategies for type 1 (T1DM) and type 2 diabetes mellitus (T2DM) rely on increasing or substituting endogenous insulin secretion in combination with lifestyle changes. β-cell regeneration, a process whereby new β-cells arise from progenitors, self-renewal or transdifferentiation, has the potential to become a viable route to insulin self-sufficiency. Current regeneration strategies capture many of the transcriptomic and protein features of native β-cells, generating cells capable of glucose-dependent insulin secretion in vitro and alleviation of hyperglycemia in vivo. However, whether novel β-cells display appreciable heterogeneity remains poorly understood, with potential consequences for long-term functional robustness. SCOPE OF REVIEW The review brings together crucial discoveries in the β-cell regeneration field with state-of-the-art knowledge regarding β-cell heterogeneity. Aspects that might aid production of longer-lasting and more plastic regenerated β-cells are highlighted and discussed. MAJOR CONCLUSIONS Different β-cell regeneration approaches result in a similar outcome: glucose-sensitive, insulin-positive cells that mimic the native β-cell phenotype but which lack normal plasticity. The β-cell subpopulations identified to date expand our understanding of β-cell survival, proliferation and function, signposting the direction for future regeneration strategies. Therefore, regenerated β-cells should exhibit stimulus-dependent differences in gene and protein expression, as well as establish a functional network with different β-cells, all while coexisting with other cell types on a three-dimensional platform.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Lewis Everett
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
42
|
Piccand J, Vagne C, Blot F, Meunier A, Beucher A, Strasser P, Lund ML, Ghimire S, Nivlet L, Lapp C, Petersen N, Engelstoft MS, Thibault-Carpentier C, Keime C, Correa SJ, Schreiber V, Molina N, Schwartz TW, De Arcangelis A, Gradwohl G. Rfx6 promotes the differentiation of peptide-secreting enteroendocrine cells while repressing genetic programs controlling serotonin production. Mol Metab 2019; 29:24-39. [PMID: 31668390 PMCID: PMC6728766 DOI: 10.1016/j.molmet.2019.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022] Open
Abstract
Objective Enteroendocrine cells (EECs) of the gastro-intestinal tract sense gut luminal factors and release peptide hormones or serotonin (5-HT) to coordinate energy uptake and storage. Our goal is to decipher the gene regulatory networks controlling EECs specification from enteroendocrine progenitors. In this context, we studied the role of the transcription factor Rfx6 which had been identified as the cause of Mitchell–Riley syndrome, characterized by neonatal diabetes and congenital malabsorptive diarrhea. We previously reported that Rfx6 was essential for pancreatic beta cell development and function; however, the role of Rfx6 in EECs differentiation remained to be elucidated. Methods We examined the molecular, cellular, and metabolic consequences of constitutive and conditional deletion of Rfx6 in the embryonic and adult mouse intestine. We performed single cell and bulk RNA-Seq to characterize EECs diversity and identify Rfx6-regulated genes. Results Rfx6 is expressed in the gut endoderm; later, it is turned on in, and restricted to, enteroendocrine progenitors and persists in hormone-positive EECs. In the embryonic intestine, the constitutive lack of Rfx6 leads to gastric heterotopia, suggesting a role in the maintenance of intestinal identity. In the absence of intestinal Rfx6, EECs differentiation is severely impaired both in the embryo and adult. However, the number of serotonin-producing enterochromaffin cells and mucosal 5-HT content are increased. Concomitantly, Neurog3-positive enteroendocrine progenitors accumulate. Combined analysis of single-cell and bulk RNA-Seq data revealed that enteroendocrine progenitors differentiate in two main cell trajectories, the enterochromaffin (EC) cells and the Peptidergic Enteroendocrine (PE) cells, the differentiation programs of which are differentially regulated by Rfx6. Rfx6 operates upstream of Arx, Pax6 and Isl1 to trigger the differentiation of peptidergic EECs such as GIP-, GLP-1-, or CCK-secreting cells. On the contrary, Rfx6 represses Lmx1a and Tph1, two genes essential for serotonin biosynthesis. Finally, we identified transcriptional changes uncovering adaptive responses to the prolonged lack of enteroendocrine hormones and leading to malabsorption and lower food efficiency ratio in Rfx6-deficient mouse intestine. Conclusion These studies identify Rfx6 as an essential transcriptional regulator of EECs specification and shed light on the molecular mechanisms of intestinal failures in human RFX6-deficiencies such as Mitchell–Riley syndrome. The lack of Rfx6 impairs the differentiation of peptide-producing enteroendocrine cells. The number of 5-HT-expressing-cells is increased in Rfx6-deficient intestine. Intestinal inactivation of Rfx6 leads to lipid malabsorption and decreased food efficiency.
Collapse
Affiliation(s)
- Julie Piccand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Constance Vagne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Florence Blot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Aline Meunier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Anthony Beucher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Perrine Strasser
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Mari L Lund
- Centre for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Science, University of Copenhagen, Denmark
| | - Sabitri Ghimire
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laure Nivlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Céline Lapp
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Natalia Petersen
- Centre for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Science, University of Copenhagen, Denmark
| | - Maja S Engelstoft
- Centre for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Science, University of Copenhagen, Denmark
| | - Christelle Thibault-Carpentier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Sara Jimenez Correa
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Valérie Schreiber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Thue W Schwartz
- Centre for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Science, University of Copenhagen, Denmark
| | - Adèle De Arcangelis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Gérard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
43
|
Srivastava S, Pandey H, Singh SK, Tripathi YB. GLP 1 Regulated Intestinal Cell's Insulin Expression and Selfadaptation before the Onset of Type 2 Diabetes. Adv Pharm Bull 2019; 9:325-330. [PMID: 31380261 PMCID: PMC6664108 DOI: 10.15171/apb.2019.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/20/2019] [Accepted: 04/14/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose: Basically insulin is known to be secreted by β cells of the pancreas. Recently, it has also been found to be produced and expressed by intestinal epithelial cells with the help of L cells secreting glucagon like peptide 1 (GLP 1). Here, we have studied the same intestinal insulin expression property in T2D rats.
Methods: Following 2 weeks of high fat diet (HFD) consumption, we have been given a single dose of streptozotocin (STZ) (35 mg/kg bw). Rats were then sacrificed after 1, 7 and 21 days. The GLP 1 analogue, liraglutide was also given to one group of diabetic rats, upto their respective durations. Intestinal cells apoptosis were checked by tunnel assay, Incretin hormones secretion and dipeptidyl peptidase 4 (DPP-IV) activity were analyzed through ELISA and immunohistochemistry was used to determine the insulin expression of intestine at different time interval during diabetes progression.
Results: As compared to 1 and 21 days, we have found minor cells apoptosis in 7 days group along with high level of GLP 1 in diabetic model. Further, these effects were enhanced by liraglutide. In response to these we have found, decreased insulin expression after 21 days and with no significant effect upto 7 days in diabetic control groups. In contrast to this, GLP-1 level and insulin expression enhances prominently after 7 days of liraglutide treatment.
Conclusion: These results explain the self-adapting approach of intestinal cells against diabetes onset and insulin expression enhancing property of liraglutide under stressful conditions. This study should be continued in future for the development of intestinal insulin producing drugs, to control diabetes under irreversible β cells damage.
Collapse
Affiliation(s)
- Shivani Srivastava
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P, India
| | - Harsh Pandey
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P, India
| | - Surya Kumar Singh
- Department of Endocrinology and Metabolism, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P, India
| | - Yamini Bhusan Tripathi
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P, India
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Pancreatic β-cells play a critical role in whole-body glucose homeostasis by regulating the release of insulin in response to minute by minute alterations in metabolic demand. As such, β-cells are staunchly resilient but there are circumstances where they can become functionally compromised or physically lost due to pathophysiological changes which culminate in overt hyperglycemia and diabetes. RECENT FINDINGS In humans, β-cell mass appears to be largely defined in the postnatal period and this early replicative and generative phase is followed by a refractory state which persists throughout life. Despite this, efforts to identify physiological and pharmacological factors which might re-initiate β-cell replication (or cause the replenishment of β-cells by neogenesis or transdifferentiation) are beginning to bear fruit. Controlled manipulation of β-cell mass in humans still represents a holy grail for therapeutic intervention in diabetes, but progress is being made which may lead to ultimate success.
Collapse
Affiliation(s)
- Giorgio Basile
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Noel G. Morgan
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| |
Collapse
|
45
|
Dayem AA, Lee SB, Kim K, Lim KM, Jeon TI, Cho SG. Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges. BMB Rep 2019; 52:295-303. [PMID: 30940326 PMCID: PMC6549913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 10/13/2023] Open
Abstract
Breakthroughs in stem cell technology have contributed to disease modeling and drug screening via organoid technology. Organoid are defined as three-dimensional cellular aggregations derived from adult tissues or stem cells. They recapitulate the intricate pattern and functionality of the original tissue. Insulin is secreted mainly by the pancreatic β cells. Large-scale production of insulin-secreting β cells is crucial for diabetes therapy. Here, we provide a brief overview of organoids and focus on recent advances in protocols for the generation of pancreatic islet organoids from pancreatic tissue or pluripotent stem cells for insulin secretion. The feasibility and limitations of organoid cultures derived from stem cells for insulin production will be described. As the pancreas and gut share the same embryological origin and produce insulin, we will also discuss the possible application of gut organoids for diabetes therapy. Better understanding of the challenges associated with the current protocols for organoid culture facilitates development of scalable organoid cultures for applications in biomedicine. [BMB Reports 2019; 52(5): 295-303].
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Tak-il Jeon
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
46
|
Abstract
Type 1 diabetes is a disease characterized by the destruction of insulin-secreting β-cells in the pancreas. Individuals are treated for this disease with lifelong insulin replacement. However, one attractive treatment possibility is to reprogram an individual’s endogenous cells to acquire the ability to secrete insulin, essentially replacing destroyed β-cells. Herein, we review the literature on the topic of reprogramming endodermal cells to produce insulin.
Collapse
Affiliation(s)
- Wendy M McKimpson
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| | - Domenico Accili
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| |
Collapse
|
47
|
Oh JE, Choi OK, Park HS, Jung HS, Ryu SJ, Lee YD, Lee SA, Chung SS, Choi EY, Lee DS, Gho YS, Lee H, Park KS. Direct differentiation of bone marrow mononucleated cells into insulin producing cells using pancreatic β-cell-derived components. Sci Rep 2019; 9:5343. [PMID: 30926860 PMCID: PMC6441031 DOI: 10.1038/s41598-019-41823-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
Transplantation of stem cell-derived insulin producing cells (IPCs) has been proposed as an alternative to islet transplantation for the treatment of diabetes mellitus. However, current IPC differentiation protocols are focused on generating functional cells from the pluripotent stem cells and tend to rely on multistep, long-term exposure to various exogenous factors. In this study, we addressed the observation that under stress, pancreatic β-cells release essential components that direct the differentiation of the bone marrow nucleated cells (BMNCs) into IPCs. Without any supplementation with known differentiation-inducing factors, IPCs can be generated from BMNCs by in vitro priming for 6 days with conditioned media (CM) from the β-cells. In vitro primed BMNCs expressed the β-cell-specific transcription factors, as well as insulin, and improved hyperglycemia and glucose intolerance after transplantation into the streptozotocin-induced diabetic mice. Furthermore, we have found that components of the CM which trigger the differentiation were enclosed by or integrated into micro particles (MPs), rather than being secreted as soluble factors. Identification of these differentiation-directing factors might enable us to develop novel technologies required for the production of clinically applicable IPCs.
Collapse
Affiliation(s)
- Ju Eun Oh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Ok Kyung Choi
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Ho Seon Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hye Seung Jung
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Su Jeong Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yong Deok Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Seung-Ah Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sung Soo Chung
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hakmo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea. .,Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, 05368, Republic of Korea.
| | - Kyong Soo Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Republic of Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
48
|
Ostermann AL, Wunderlich CM, Schneiders L, Vogt MC, Woeste MA, Belgardt BF, Niessen CM, Martiny B, Schauss AC, Frommolt P, Nikolaev A, Hövelmeyer N, Sears RC, Koch PJ, Günzel D, Brüning JC, Wunderlich FT. Intestinal insulin/IGF1 signalling through FoxO1 regulates epithelial integrity and susceptibility to colon cancer. Nat Metab 2019; 1:371-389. [PMID: 32694718 DOI: 10.1038/s42255-019-0037-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/24/2019] [Indexed: 12/30/2022]
Abstract
Obesity promotes the development of insulin resistance and increases the incidence of colitis-associated cancer (CAC), but whether a blunted insulin action specifically in intestinal epithelial cells (IECs) affects CAC is unknown. Here, we show that obesity impairs insulin sensitivity in IECs and that mice with IEC-specific inactivation of the insulin and IGF1 receptors exhibit enhanced CAC development as a consequence of impaired restoration of gut barrier function. Blunted insulin signalling retains the transcription factor FOXO1 in the nucleus to inhibit expression of Dsc3, thereby impairing desmosome formation and epithelial integrity. Both IEC-specific nuclear FoxO1ADA expression and IEC-specific Dsc3 inactivation recapitulate the impaired intestinal integrity and increased CAC burden. Spontaneous colonic tumour formation and compromised intestinal integrity are also observed upon IEC-specific coexpression of FoxO1ADA and a stable Myc variant, thus suggesting a molecular mechanism through which impaired insulin action and nuclear FOXO1 in IECs promotes CAC.
Collapse
Affiliation(s)
- A L Ostermann
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
| | - C M Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - L Schneiders
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - M C Vogt
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - M A Woeste
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - B F Belgardt
- Max Planck Institute for Metabolism Research, Cologne, Germany
- German Diabetes Center (DDZ), Düsseldorf, Germany
| | - C M Niessen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - B Martiny
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - A C Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - P Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - A Nikolaev
- Institute for Molecular Medicine, University Hospital Mainz, Mainz, Germany
| | - N Hövelmeyer
- Institute for Molecular Medicine, University Hospital Mainz, Mainz, Germany
| | - R C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR, USA
| | - P J Koch
- Department of Dermatology, Charles C. Gates Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver, Aurora, CO, USA
| | - D Günzel
- Institute for Clinical Physiology, Charité, Berlin, Germany
| | - J C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - F T Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany.
| |
Collapse
|
49
|
Paving the way for successful islet encapsulation. Drug Discov Today 2019; 24:737-748. [PMID: 30738185 DOI: 10.1016/j.drudis.2019.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a disorder that decimates pancreatic β-cells which produce insulin. Direct pancreatic islet transplantation cannot serve as a widespread therapeutic modality owing to the need for lifelong immunosuppression and donor shortage. Therefore, several encapsulation techniques have been developed to enclose the islets in semipermeable vehicles that will allow oxygen and nutrient input as well as insulin, other metabolites and waste output, while accomplishing immunoisolation. Although encapsulation technology continues to face significant obstacles, recent advances in material science, stem cell biology and immunology potentially serve as pathways to success. This review summarizes the accomplishments of the past 5 years.
Collapse
|
50
|
Moshref M, Tangey B, Gilor C, Papas KK, Williamson P, Loomba-Albrecht L, Sheehy P, Kol A. Concise Review: Canine Diabetes Mellitus as a Translational Model for Innovative Regenerative Medicine Approaches. Stem Cells Transl Med 2019; 8:450-455. [PMID: 30719867 PMCID: PMC6476992 DOI: 10.1002/sctm.18-0163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus (DM) is a common spontaneous endocrine disorder in dogs, which is defined by persistent hyperglycemia and insulin deficiency. Like type 1 diabetes (T1D) in people, canine DM is a complex and multifactorial disease in which genomic and epigenomic factors interact with environmental cues to induce pancreatic β‐cell loss and insulin deficiency, although the pathogenesis of canine DM is poorly defined and the role of autoimmunity is further controversial. Both diseases are incurable and require life‐long exogenous insulin therapy to maintain glucose homeostasis. Human pancreatic islet physiology, size, and cellular composition is further mirrored by canine islets. Although pancreatic or isolated islets transplantation are the only clinically validated methods to achieve long‐term normoglycemia and insulin independence, their availability does not meet the clinical need; they target a small portion of patients and have significant potential adverse effects. Therefore, providing a new source for β‐cell replacement is an unmet need. Naturally occurring DM in pet dogs, as a translational platform, is an untapped resource for various regenerative medicine applications that may offer some unique advantages given dogs' large size, longevity, heterogenic genetic background, similarity to human physiology and pathology, and long‐term clinical management. In this review, we outline different strategies for curative approaches, animal models used, and consider the value of canine DM as a translational animal/disease model for T1D in people. stem cells translational medicine2019;8:450–455
Collapse
Affiliation(s)
- Maryam Moshref
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Bonnie Tangey
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Chen Gilor
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Klearchos K Papas
- Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA
| | - Peter Williamson
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Lindsey Loomba-Albrecht
- Department of Pediatric Endocrinology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Paul Sheehy
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Amir Kol
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|