1
|
Walla P, Kalt S, Lachmayer K. Neurophysiological Correlates of Expert Knowledge: An Event-Related Potential (ERP) Study about Law-Relevant Versus Law-Irrelevant Terms. Brain Sci 2024; 14:1029. [PMID: 39452041 PMCID: PMC11506756 DOI: 10.3390/brainsci14101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The evaluation of evidence, which frequently takes the form of scientific evidence, necessitates the input of experts in relevant fields. The results are presented as expert opinions or expert evaluations, which are generally accepted as a reliable representation of the facts. A further issue that remains unresolved though is the process of evaluating the expertise and knowledge of an expert in the first instance. In general, earned certificates, grades and other objective criteria are typically regarded as representative documentation to substantiate an expert status. However, there is a possibility that these may not always be sufficiently representative. OBJECTIVES The goal of the present study was to provide evidence that the neural processing of law-relevant and law-irrelevant terms varies significantly between participants who have received training in the field of law (experts) and those who have not (novices). METHODS To this end, changes in brain activity were recorded via electroencephalography (EEG) during visual presentations of terms belonging to five different categories (fake right, democracy, filler word, basic right and rule of law). Event-related potentials (ERPs) were subsequently averaged for each category and subjected to statistical analysis. RESULTS The results clearly demonstrate that participants trained in law processed fake rights and filler words in a similar manner. Furthermore, both of these conditions elicited different levels of brain activity compared to all law-relevant terms. This was not the case in participants who had not received legal training. The brains of untrained participants processed all five term categories in a strikingly similar manner. In light of prior knowledge regarding language processing, the primary focus was on two distinct electrode locations: one in the left posterior region, and the other in the left frontal region. In both locations, the most prominent differences in brain activity elicited by the aforementioned term categories in law-trained participants occurred approximately 450 milliseconds after stimulus onset. The results were further corroborated by a repeated-measures ANOVA and subsequent t-tests, which also demonstrated the absence of this effect in law-untrained participants. CONCLUSIONS The findings of this study provide empirical evidence that brain activity measurements, in particular ERPs, can be used to distinguish between experts trained in a specific field of expertise and novices in that field. Such findings have the potential to facilitate objective assessments of expertise, enabling comparisons between experts and novices that extend beyond traditional criteria such as qualifications and experience. Instead, individuals can be evaluated based on their cognitive processes, as observed through brain activity.
Collapse
Affiliation(s)
- Peter Walla
- Freud CanBeLab, Faculty of Psychology, Sigmund Freud Private University, Freudplatz 1, 1020 Vienna, Austria;
- Faculty of Medicine, Sigmund Freud Private University, Freudplatz 3, 1020 Vienna, Austria
- School of Psychology, Newcastle University, University Drive, Newcastle, NSW 2308, Australia
| | - Stefan Kalt
- Freud CanBeLab, Faculty of Psychology, Sigmund Freud Private University, Freudplatz 1, 1020 Vienna, Austria;
| | - Konrad Lachmayer
- Faculty of Law, Sigmund Freud Private University, Lassallestrasse 3, 1020 Vienna, Austria;
| |
Collapse
|
2
|
Brunet NM, Aguirre BM. Modulation of face processing by top-down attention: Insights from early ERP waveforms. Brain Res 2024; 1846:149258. [PMID: 39366439 DOI: 10.1016/j.brainres.2024.149258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The face fusiform area (FFA) plays a pivotal role in face recognition, yet the precise timeline of its activity remains debated. Using EEG, we conducted three experiments to investigate how expectancy-consistent versus expectancy-inconsistent visual stimuli influence processing dynamics. Participants viewed images of faces, houses, and tools (Experiment 1), celebrity faces (Experiment 2), or animal faces (Experiment 3), preceded by a priming question. Notably, both conditions presented identical visual stimulation, ensuring that observed differences stemmed from cognitive processing rather than sensory input. Our results from Experiments 2 and 3 reveal that while the initial 150 ms period, crucial for unconscious face detection, remained unaffected, subsequent processing exhibited a delay of several milliseconds for expectancy-inconsistent stimuli, indicating additional processing time required for unexpected recognition. Importantly, no significant differences were observed in Experiment 1, where less demanding tasks or generic mental imagery were used, suggesting that the priming effect was not as pronounced in this context. These findings underscore the critical role of the period immediately following the first 150 ms in face identification and individuation, highlighting the influence of top-down attention on face recognition dynamics. This study provides novel insights into the temporal dynamics of face processing and the neural mechanisms underlying top-down attentional modulation.
Collapse
Affiliation(s)
- Nicolas M Brunet
- Department of Psychology, California State University of San Bernardino, San Bernardino, CA 92407, USA.
| | - Britney M Aguirre
- Department of Psychology, California State University of San Bernardino, San Bernardino, CA 92407, USA
| |
Collapse
|
3
|
Li W, Cao D, Li J, Jiang T. Face-Specific Activity in the Ventral Stream Visual Cortex Linked to Conscious Face Perception. Neurosci Bull 2024; 40:1434-1444. [PMID: 38457111 PMCID: PMC11422301 DOI: 10.1007/s12264-024-01185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/25/2023] [Indexed: 03/09/2024] Open
Abstract
When presented with visual stimuli of face images, the ventral stream visual cortex of the human brain exhibits face-specific activity that is modulated by the physical properties of the input images. However, it is still unclear whether this activity relates to conscious face perception. We explored this issue by using the human intracranial electroencephalography technique. Our results showed that face-specific activity in the ventral stream visual cortex was significantly higher when the subjects subjectively saw faces than when they did not, even when face stimuli were presented in both conditions. In addition, the face-specific neural activity exhibited a more reliable neural response and increased posterior-anterior direction information transfer in the "seen" condition than the "unseen" condition. Furthermore, the face-specific neural activity was significantly correlated with performance. These findings support the view that face-specific activity in the ventral stream visual cortex is linked to conscious face perception.
Collapse
Affiliation(s)
- Wenlu Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jin Li
- School of Psychology, Capital Normal University, Beijing, 100048, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou, 311100, China.
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, 425000, China.
| |
Collapse
|
4
|
Lin H, Bruchmann M, Schindler S, Straube T. Acquisition and generalization of emotional and neural responses to faces associated with negative and positive feedback behaviours. Front Neurosci 2024; 18:1399948. [PMID: 39165343 PMCID: PMC11334220 DOI: 10.3389/fnins.2024.1399948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Faces can acquire emotional meaning by learning to associate individuals with specific behaviors. Here, we investigated emotional evaluation and brain activations toward faces of persons who had given negative or positive evaluations to others. Furthermore, we investigated how emotional evaluations and brain activation generalize to perceptually similar faces. Valence ratings indicated learning and generalization effects for both positive and negative faces. Brain activation, measured with functional magnetic resonance imaging (fMRI), showed significantly increased activation in the fusiform gyrus (FG) to negatively associated faces but not positively associated ones. Remarkably, brain activation in FG to faces to which emotional meaning (negative and positive) was successfully generalized was decreased compared to neutral faces. This suggests that the emotional relevance of faces is not simply associated with increased brain activation in visual areas. While, at least for negative conditions, faces paired with negative feedback behavior are related to potentiated brain responses, the opposite is seen for perceptually very similar faces despite generalized emotional responses.
Collapse
Affiliation(s)
- Huiyan Lin
- Laboratory for Behavioural and Regional Finance, School of National Finance, Guangdong University of Finance, Guangzhou, China
- Institute of Applied Psychology, Guangdong University of Finance, Guangzhou, China
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Boring MJ, Richardson RM, Ghuman AS. Interacting ventral temporal gradients of timescales and functional connectivity and their relationships to visual behavior. iScience 2024; 27:110003. [PMID: 38868193 PMCID: PMC11166696 DOI: 10.1016/j.isci.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Cortical gradients in endogenous and stimulus-evoked neurodynamic timescales, and long-range cortical interactions, provide organizational constraints to the brain and influence neural populations' roles in cognition. It is unclear how these functional gradients interrelate and which influence behavior. Here, intracranial recordings from 4,090 electrode contacts in 35 individuals map gradients of neural timescales and functional connectivity to assess their interactions along category-selective ventral temporal cortex. Endogenous and stimulus-evoked information processing timescales were not significantly correlated with one another suggesting that local neural timescales are context dependent and may arise through distinct neurophysiological mechanisms. Endogenous neural timescales correlated with functional connectivity even after removing the effects of shared anatomical gradients. Neural timescales and functional connectivity correlated with how strongly a population's activity predicted behavior in a simple visual task. These results suggest both interrelated and distinct neurophysiological processes give rise to different functional connectivity and neural timescale gradients, which together influence behavior.
Collapse
Affiliation(s)
- Matthew J. Boring
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R. Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Avniel Singh Ghuman
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Tanaka H, Jiang P. P1, N170, and N250 Event-related Potential Components Reflect Temporal Perception Processing in Face and Body Personal Identification. J Cogn Neurosci 2024; 36:1265-1281. [PMID: 38652104 DOI: 10.1162/jocn_a_02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Human faces and bodies represent various socially important signals. Although adults encounter numerous new people in daily life, they can recognize hundreds to thousands of different individuals. However, the neural mechanisms that differentiate one person from another person are unclear. This study aimed to clarify the temporal dynamics of the cognitive processes of face and body personal identification using face-sensitive ERP components (P1, N170, and N250). The present study performed three blocks (face-face, face-body, and body-body) of different ERP adaptation paradigms. Furthermore, in the above three blocks, ERP components were used to compare brain biomarkers under three conditions (same person, different person of the same sex, and different person of the opposite sex). The results showed that the P1 amplitude for the face-face block was significantly greater than that for the body-body block, that the N170 amplitude for a different person of the same sex condition was greater than that for the same person condition in the right hemisphere only, and that the N250 amplitude gradually increased as the degree of face and body sex-social categorization grew closer (i.e., same person condition > different person of the same sex condition > different person of the opposite sex condition). These results suggest that early processing of the face and body processes the face and body separately and that structural encoding and personal identification of the face and body process the face and body collaboratively.
Collapse
Affiliation(s)
| | - Peilun Jiang
- Kanazawa University Graduate School, Kanazawa City, Japan
| |
Collapse
|
7
|
Li W, Li J, Chu C, Cao D, Shi W, Zhang Y, Jiang T. Common Sequential Organization of Face Processing in the Human Brain and Convolutional Neural Networks. Neuroscience 2024; 541:1-13. [PMID: 38266906 DOI: 10.1016/j.neuroscience.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Face processing includes two crucial processing levels - face detection and face recognition. However, it remains unclear how human brains organize the two processing levels sequentially. While some studies found that faces are recognized as fast as they are detected, others have reported that faces are detected first, followed by recognition. We discriminated the two processing levels on a fine time scale by combining human intracranial EEG (two females, three males, and three subjects without reported sex information) and representation similarity analysis. Our results demonstrate that the human brain exhibits a "detection-first, recognition-later" pattern during face processing. In addition, we used convolutional neural networks to test the hypothesis that the sequential organization of the two face processing levels in the brain reflects computational optimization. Our findings showed that the networks trained on face recognition also exhibited the "detection-first, recognition-later" pattern. Moreover, this sequential organization mechanism developed gradually during the training of the networks and was observed only for correctly predicted images. These findings collectively support the computational account as to why the brain organizes them in this way.
Collapse
Affiliation(s)
- Wenlu Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- School of Psychology, Capital Normal University, Beijing 100048, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Zhang
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
8
|
Sama MA, Nestor A, Cant JS. The Neural Dynamics of Face Ensemble and Central Face Processing. J Neurosci 2024; 44:e1027232023. [PMID: 38148151 PMCID: PMC10869155 DOI: 10.1523/jneurosci.1027-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
Extensive work has investigated the neural processing of single faces, including the role of shape and surface properties. However, much less is known about the neural basis of face ensemble perception (e.g., simultaneously viewing several faces in a crowd). Importantly, the contribution of shape and surface properties have not been elucidated in face ensemble processing. Furthermore, how single central faces are processed within the context of an ensemble remains unclear. Here, we probe the neural dynamics of ensemble representation using pattern analyses as applied to electrophysiology data in healthy adults (seven males, nine females). Our investigation relies on a unique set of stimuli, depicting different facial identities, which vary parametrically and independently along their shape and surface properties. These stimuli were organized into ensemble displays consisting of six surround faces arranged in a circle around one central face. Overall, our results indicate that both shape and surface properties play a significant role in face ensemble encoding, with the latter demonstrating a more pronounced contribution. Importantly, we find that the neural processing of the center face precedes that of the surround faces in an ensemble. Further, the temporal profile of center face decoding is similar to that of single faces, while those of single faces and face ensembles diverge extensively from each other. Thus, our work capitalizes on a new center-surround paradigm to elucidate the neural dynamics of ensemble processing and the information that underpins it. Critically, our results serve to bridge the study of single and ensemble face perception.
Collapse
Affiliation(s)
- Marco Agazio Sama
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Adrian Nestor
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Jonathan Samuel Cant
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
9
|
Zhang Z, Chen T, Liu Y, Wang C, Zhao K, Liu CH, Fu X. Decoding the temporal representation of facial expression in face-selective regions. Neuroimage 2023; 283:120442. [PMID: 37926217 DOI: 10.1016/j.neuroimage.2023.120442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
The ability of humans to discern facial expressions in a timely manner typically relies on distributed face-selective regions for rapid neural computations. To study the time course in regions of interest for this process, we used magnetoencephalography (MEG) to measure neural responses participants viewed facial expressions depicting seven types of emotions (happiness, sadness, anger, disgust, fear, surprise, and neutral). Analysis of the time-resolved decoding of neural responses in face-selective sources within the inferior parietal cortex (IP-faces), lateral occipital cortex (LO-faces), fusiform gyrus (FG-faces), and posterior superior temporal sulcus (pSTS-faces) revealed that facial expressions were successfully classified starting from ∼100 to 150 ms after stimulus onset. Interestingly, the LO-faces and IP-faces showed greater accuracy than FG-faces and pSTS-faces. To examine the nature of the information processed in these face-selective regions, we entered with facial expression stimuli into a convolutional neural network (CNN) to perform similarity analyses against human neural responses. The results showed that neural responses in the LO-faces and IP-faces, starting ∼100 ms after the stimuli, were more strongly correlated with deep representations of emotional categories than with image level information from the input images. Additionally, we observed a relationship between the behavioral performance and the neural responses in the LO-faces and IP-faces, but not in the FG-faces and lpSTS-faces. Together, these results provided a comprehensive picture of the time course and nature of information involved in facial expression discrimination across multiple face-selective regions, which advances our understanding of how the human brain processes facial expressions.
Collapse
Affiliation(s)
- Zhihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Chongqing Key Laboratory of Non-Linear Circuit and Intelligent Information Processing, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing 400715, China
| | - Ye Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongyang Wang
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Ke Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chang Hong Liu
- Department of Psychology, Bournemouth University, Dorset, United Kingdom
| | - Xiaolan Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Plaza PL, Renier L, Rosemann S, De Volder AG, Rauschecker JP. Sound-encoded faces activate the left fusiform face area in the early blind. PLoS One 2023; 18:e0286512. [PMID: 37992062 PMCID: PMC10664868 DOI: 10.1371/journal.pone.0286512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/17/2023] [Indexed: 11/24/2023] Open
Abstract
Face perception in humans and nonhuman primates is accomplished by a patchwork of specialized cortical regions. How these regions develop has remained controversial. In sighted individuals, facial information is primarily conveyed via the visual modality. Early blind individuals, on the other hand, can recognize shapes using auditory and tactile cues. Here we demonstrate that such individuals can learn to distinguish faces from houses and other shapes by using a sensory substitution device (SSD) presenting schematic faces as sound-encoded stimuli in the auditory modality. Using functional MRI, we then asked whether a face-selective brain region like the fusiform face area (FFA) shows selectivity for faces in the same subjects, and indeed, we found evidence for preferential activation of the left FFA by sound-encoded faces. These results imply that FFA development does not depend on experience with visual faces per se but may instead depend on exposure to the geometry of facial configurations.
Collapse
Affiliation(s)
- Paula L. Plaza
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Laurent Renier
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
- Neural Rehabilitation Laboratory, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Stephanie Rosemann
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Anne G. De Volder
- Neural Rehabilitation Laboratory, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Josef P. Rauschecker
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
11
|
Siddiqui M, Pinti P, Brigadoi S, Lloyd-Fox S, Elwell CE, Johnson MH, Tachtsidis I, Jones EJH. Using multi-modal neuroimaging to characterise social brain specialisation in infants. eLife 2023; 12:e84122. [PMID: 37818944 PMCID: PMC10624424 DOI: 10.7554/elife.84122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
The specialised regional functionality of the mature human cortex partly emerges through experience-dependent specialisation during early development. Our existing understanding of functional specialisation in the infant brain is based on evidence from unitary imaging modalities and has thus focused on isolated estimates of spatial or temporal selectivity of neural or haemodynamic activation, giving an incomplete picture. We speculate that functional specialisation will be underpinned by better coordinated haemodynamic and metabolic changes in a broadly orchestrated physiological response. To enable researchers to track this process through development, we develop new tools that allow the simultaneous measurement of coordinated neural activity (EEG), metabolic rate, and oxygenated blood supply (broadband near-infrared spectroscopy) in the awake infant. In 4- to 7-month-old infants, we use these new tools to show that social processing is accompanied by spatially and temporally specific increases in coupled activation in the temporal-parietal junction, a core hub region of the adult social brain. During non-social processing, coupled activation decreased in the same region, indicating specificity to social processing. Coupling was strongest with high-frequency brain activity (beta and gamma), consistent with the greater energetic requirements and more localised action of high-frequency brain activity. The development of simultaneous multimodal neural measures will enable future researchers to open new vistas in understanding functional specialisation of the brain.
Collapse
Affiliation(s)
- Maheen Siddiqui
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| | - Paola Pinti
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| | - Sabrina Brigadoi
- Department of Development and Social Psychology, University of PadovaPadovaItaly
- Department of Information Engineering, University of PadovaPadovaItaly
| | - Sarah Lloyd-Fox
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Clare E Elwell
- Department of Medical Physics and Biomedical Engineering, University College LondonLondonUnited Kingdom
| | - Mark H Johnson
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College LondonLondonUnited Kingdom
| | - Emily JH Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of LondonLondonUnited Kingdom
| |
Collapse
|
12
|
Wan S, Sun Y, Ye Q, Gu Y, Sommer W, Cao X. Processing objects of perceptual expertise: Differential interhemispheric transmission efficiency but similar transmission direction advantages. Neuropsychologia 2023; 188:108568. [PMID: 37150438 DOI: 10.1016/j.neuropsychologia.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/31/2022] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
Faces and Chinese characters are both objects of perceptual expertise. In this study, we investigated the characteristics of interhemispheric transmission times (IHTTs) in both transmission direction and transmission efficiency during the processing of objects of perceptual expertise. A total of 112 participants engaged in a divided visual field paradigm for faces, Chinese characters, and houses in both upright and inverted orientations. The N170 amplitudes elicited by the objects of perceptual expertise (faces and Chinese characters) involved in this study were larger than those elicited by the non-perceptual expertise objects (houses). We used the latencies of the N170 component of the event-related potential (ERP) recorded in the left and right hemispheres to calculate the IHTTs. For all objects, the N170-related IHTTs from the right to the left hemispheres were shorter than those in the opposite direction. Essentially, the N170-related IHTTs for faces were shorter, that is, more efficient than those for Chinese characters and houses. This result indicates that the IHTTs during perceptual expertise and non-perceptual expertise object processing share a common transmission direction advantage, but transmission efficiency is face-specific.
Collapse
Affiliation(s)
- Simin Wan
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Yini Sun
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Qing Ye
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Yu Gu
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Werner Sommer
- Department of Psychology, Zhejiang Normal University, Jinhua, China; Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiaohua Cao
- Department of Psychology, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
13
|
Yan H, Han Y, Shan X, Li H, Liu F, Li P, Zhao J, Guo W. Breaking the Fear Barrier: Aberrant Activity of Fear Networks as a Prognostic Biomarker in Patients with Panic Disorder Normalized by Pharmacotherapy. Biomedicines 2023; 11:2420. [PMID: 37760861 PMCID: PMC10525800 DOI: 10.3390/biomedicines11092420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Panic disorder (PD) is a prevalent type of anxiety disorder. Previous studies have reported abnormal brain activity in the fear network of patients with PD. Nonetheless, it remains uncertain whether pharmacotherapy can effectively normalize these abnormalities. This longitudinal resting-state functional magnetic resonance imaging study aimed to investigate the spontaneous neural activity in patients with PD and its changes after pharmacotherapy, with a focus on determining whether it could predict treatment response. The study included 54 drug-naive patients with PD and 54 healthy controls (HCs). Spontaneous neural activity was measured using regional homogeneity (ReHo). Additionally, support vector regression (SVR) was employed to predict treatment response from ReHo. At baseline, PD patients had aberrant ReHo in the fear network compared to HCs. After 4 weeks of paroxetine treatment (20 mg/day), a significant increase in ReHo was observed in the left fusiform gyrus, which had shown reduced ReHo before treatment. The SVR analysis showed significantly positive correlations (p < 0.0001) between the predicted and actual reduction rates of the severity of anxiety and depressive symptoms. Here, we show patients with PD had abnormal spontaneous neural activities in the fear networks. Furthermore, these abnormal spontaneous neural activities can be partially normalized by pharmacotherapy and serve as candidate predictors of treatment response. Gaining insight into the trajectories of brain activity normalization following treatment holds the potential to provide vital insights for managing PD.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (H.Y.); (Y.H.); (X.S.); (J.Z.)
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (H.Y.); (Y.H.); (X.S.); (J.Z.)
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (H.Y.); (Y.H.); (X.S.); (J.Z.)
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China;
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar 161006, China;
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (H.Y.); (Y.H.); (X.S.); (J.Z.)
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (H.Y.); (Y.H.); (X.S.); (J.Z.)
| |
Collapse
|
14
|
Alreja A, Ward MJ, Ma Q, Russ BE, Bickel S, Van Wouwe NC, González-Martínez JA, Neimat JS, Abel TJ, Bagić A, Parker LS, Richardson RM, Schroeder CE, Morency LP, Ghuman AS. A new paradigm for investigating real-world social behavior and its neural underpinnings. Behav Res Methods 2023; 55:2333-2352. [PMID: 35877024 PMCID: PMC10841340 DOI: 10.3758/s13428-022-01882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 11/08/2022]
Abstract
Eye tracking and other behavioral measurements collected from patient-participants in their hospital rooms afford a unique opportunity to study natural behavior for basic and clinical translational research. We describe an immersive social and behavioral paradigm implemented in patients undergoing evaluation for surgical treatment of epilepsy, with electrodes implanted in the brain to determine the source of their seizures. Our studies entail collecting eye tracking with other behavioral and psychophysiological measurements from patient-participants during unscripted behavior, including social interactions with clinical staff, friends, and family in the hospital room. This approach affords a unique opportunity to study the neurobiology of natural social behavior, though it requires carefully addressing distinct logistical, technical, and ethical challenges. Collecting neurophysiological data synchronized to behavioral and psychophysiological measures helps us to study the relationship between behavior and physiology. Combining across these rich data sources while participants eat, read, converse with friends and family, etc., enables clinical-translational research aimed at understanding the participants' disorders and clinician-patient interactions, as well as basic research into natural, real-world behavior. We discuss data acquisition, quality control, annotation, and analysis pipelines that are required for our studies. We also discuss the clinical, logistical, and ethical and privacy considerations critical to working in the hospital setting.
Collapse
Affiliation(s)
- Arish Alreja
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA.
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, USA.
| | - Michael J Ward
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Qianli Ma
- Language Technologies Institute, Carnegie Mellon University, Pittsburgh, USA
| | - Brian E Russ
- Nathan Kline Institute for Psychiatric Research, Orangeburg, USA
| | - Stephan Bickel
- Department of Neurosurgery and Neurology, Northwell Health, The Feinstein Institutes for Medical Research, Manhasset, USA
| | - Nelleke C Van Wouwe
- Department of Neurological Surgery, University of Louisville, Louisville, USA
| | | | - Joseph S Neimat
- Department of Neurological Surgery, University of Louisville, Louisville, USA
| | - Taylor J Abel
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, USA
- Brain Institute, University of Pittsburgh, Pittsburgh, USA
| | - Anto Bagić
- Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Lisa S Parker
- School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, USA
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - Charles E Schroeder
- Nathan Kline Institute for Psychiatric Research, Orangeburg, USA
- Departments of Neurosurgery and Psychiatry, Columbia University, New York, USA
| | | | - Avniel Singh Ghuman
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, USA
- Brain Institute, University of Pittsburgh, Pittsburgh, USA
- Departments of Psychology, Neurobiology, and Psychiatry, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
15
|
Naik S, Adibpour P, Dubois J, Dehaene-Lambertz G, Battaglia D. Event-related variability is modulated by task and development. Neuroimage 2023; 276:120208. [PMID: 37268095 DOI: 10.1016/j.neuroimage.2023.120208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
In carefully designed experimental paradigms, cognitive scientists interpret the mean event-related potentials (ERP) in terms of cognitive operations. However, the huge signal variability from one trial to the next, questions the representability of such mean events. We explored here whether this variability is an unwanted noise, or an informative part of the neural response. We took advantage of the rapid changes in the visual system during human infancy and analyzed the variability of visual responses to central and lateralized faces in 2-to 6-month-old infants compared to adults using high-density electroencephalography (EEG). We observed that neural trajectories of individual trials always remain very far from ERP components, only moderately bending their direction with a substantial temporal jitter across trials. However, single trial trajectories displayed characteristic patterns of acceleration and deceleration when approaching ERP components, as if they were under the active influence of steering forces causing transient attraction and stabilization. These dynamic events could only partly be accounted for by induced microstate transitions or phase reset phenomena. Importantly, these structured modulations of response variability, both between and within trials, had a rich sequential organization, which in infants, was modulated by the task difficulty and age. Our approaches to characterize Event Related Variability (ERV) expand on classic ERP analyses and provide the first evidence for the functional role of ongoing neural variability in human infants.
Collapse
Affiliation(s)
- Shruti Naik
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, F-91190 Gif/Yvette, France
| | - Parvaneh Adibpour
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, F-91190 Gif/Yvette, France
| | - Jessica Dubois
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, F-91190 Gif/Yvette, France; Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | | | - Demian Battaglia
- Institute for System Neuroscience U1106, Aix-Marseille Université, F-13005 Marseille, France; University of Strasbourg Institute for Advanced Studies (USIAS), F-67000 Strasbourg, France.
| |
Collapse
|
16
|
Favela LH, Machery E. Investigating the concept of representation in the neural and psychological sciences. Front Psychol 2023; 14:1165622. [PMID: 37359883 PMCID: PMC10284684 DOI: 10.3389/fpsyg.2023.1165622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2023] Open
Abstract
The concept of representation is commonly treated as indispensable to research on brains, behavior, and cognition. Nevertheless, systematic evidence about the ways the concept is applied remains scarce. We present the results of an experiment aimed at elucidating what researchers mean by "representation." Participants were an international group of psychologists, neuroscientists, and philosophers (N = 736). Applying elicitation methodology, participants responded to a survey with experimental scenarios aimed at invoking applications of "representation" and five other ways of describing how the brain responds to stimuli. While we find little disciplinary variation in the application of "representation" and other expressions (e.g., "about" and "carry information"), the results suggest that researchers exhibit uncertainty about what sorts of brain activity involve representations or not; they also prefer non-representational, causal characterizations of the brain's response to stimuli. Potential consequences of these findings are explored, such as reforming or eliminating the concept of representation from use.
Collapse
Affiliation(s)
- Luis H. Favela
- Department of Philosophy, University of Central Florida, Orlando, FL, United States
- Cognitive Sciences Program, University of Central Florida, Orlando, FL, United States
| | - Edouard Machery
- Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Philosophy of Science, University of Pittsburgh, Pittsburgh, PA, United States
- African Centre for Epistemology and Philosophy of Science, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
17
|
Schwartz E, Alreja A, Richardson RM, Ghuman A, Anzellotti S. Intracranial Electroencephalography and Deep Neural Networks Reveal Shared Substrates for Representations of Face Identity and Expressions. J Neurosci 2023; 43:4291-4303. [PMID: 37142430 PMCID: PMC10255163 DOI: 10.1523/jneurosci.1277-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
According to a classical view of face perception (Bruce and Young, 1986; Haxby et al., 2000), face identity and facial expression recognition are performed by separate neural substrates (ventral and lateral temporal face-selective regions, respectively). However, recent studies challenge this view, showing that expression valence can also be decoded from ventral regions (Skerry and Saxe, 2014; Li et al., 2019), and identity from lateral regions (Anzellotti and Caramazza, 2017). These findings could be reconciled with the classical view if regions specialized for one task (either identity or expression) contain a small amount of information for the other task (that enables above-chance decoding). In this case, we would expect representations in lateral regions to be more similar to representations in deep convolutional neural networks (DCNNs) trained to recognize facial expression than to representations in DCNNs trained to recognize face identity (the converse should hold for ventral regions). We tested this hypothesis by analyzing neural responses to faces varying in identity and expression. Representational dissimilarity matrices (RDMs) computed from human intracranial recordings (n = 11 adults; 7 females) were compared with RDMs from DCNNs trained to label either identity or expression. We found that RDMs from DCNNs trained to recognize identity correlated with intracranial recordings more strongly in all regions tested-even in regions classically hypothesized to be specialized for expression. These results deviate from the classical view, suggesting that face-selective ventral and lateral regions contribute to the representation of both identity and expression.SIGNIFICANCE STATEMENT Previous work proposed that separate brain regions are specialized for the recognition of face identity and facial expression. However, identity and expression recognition mechanisms might share common brain regions instead. We tested these alternatives using deep neural networks and intracranial recordings from face-selective brain regions. Deep neural networks trained to recognize identity and networks trained to recognize expression learned representations that correlate with neural recordings. Identity-trained representations correlated with intracranial recordings more strongly in all regions tested, including regions hypothesized to be expression specialized in the classical hypothesis. These findings support the view that identity and expression recognition rely on common brain regions. This discovery may require reevaluation of the roles that the ventral and lateral neural pathways play in processing socially relevant stimuli.
Collapse
Affiliation(s)
- Emily Schwartz
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts 02467
| | - Arish Alreja
- Center for the Neural Basis of Cognition, Carnegie Mellon University/University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Department of Neurological Surgery, University of Pittsburgh Medical Center Presbyterian, Pittsburgh, Pennsylvania 15213
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
| | - Avniel Ghuman
- Center for the Neural Basis of Cognition, Carnegie Mellon University/University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Department of Neurological Surgery, University of Pittsburgh Medical Center Presbyterian, Pittsburgh, Pennsylvania 15213
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Stefano Anzellotti
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts 02467
| |
Collapse
|
18
|
Gusein-zade NG, Slezkin AA, Allahyarov E. Statistical processing of time slices of electroencephalography signals during brain reaction to visual stimuli. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
19
|
Tiesinga P, Platonov A, Pelliccia V, LoRusso G, Sartori I, Orban GA. Uncovering the fast, directional signal flow through the human temporal pole during semantic processing. Sci Rep 2023; 13:6831. [PMID: 37100843 PMCID: PMC10133264 DOI: 10.1038/s41598-023-33318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
The temporal pole (TP) plays a central role in semantic memory, yet its neural machinery is unknown. Intracerebral recordings in patients discriminating visually the gender or actions of an actor, yielded gender discrimination responses in the ventrolateral (VL) and tip (T) regions of right TP. Granger causality revealed task-specific signals travelling first forward from VL to T, under control of orbitofrontal cortex (OFC) and neighboring prefrontal cortex, and then, strongly, backwards from T to VL. Many other cortical regions provided inputs to or received outputs from both TP regions, often with longer delays, with ventral temporal afferents to VL signaling the actor's physical appearance. The TP response timing reflected more that of the connections to VL, controlled by OFC, than that of the input leads themselves. Thus, visual evidence for gender categories, collected by VL, activates category labels in T, and consequently, category features in VL, indicating a two-stage representation of semantic categories in TP.
Collapse
Affiliation(s)
- P Tiesinga
- Neuroinformatics Department, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - A Platonov
- Department of Medicine and Surgery, University of Parma, Via Volturno 39/E, 43125, Parma, Italy
| | - V Pelliccia
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - G LoRusso
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - I Sartori
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - G A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
20
|
Axelrod V, Rozier C, Sohier E, Lehongre K, Adam C, Lambrecq V, Navarro V, Naccache L. Intracranial study in humans: Neural spectral changes during watching comedy movie of Charlie Chaplin. Neuropsychologia 2023; 185:108558. [PMID: 37061128 DOI: 10.1016/j.neuropsychologia.2023.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Humor plays a prominent role in our lives. Thus, understanding the cognitive and neural mechanisms of humor is particularly important. Previous studies that investigated neural substrates of humor used functional MRI and to a lesser extent EEG. In the present study, we conducted intracranial recording in human patients, enabling us to obtain the signal with high temporal precision from within specific brain locations. Our analysis focused on the temporal lobe and the surrounding areas, the temporal lobe was most densely covered in our recording. Thirteen patients watched a fragment of a Charlie Chaplin movie. An independent group of healthy participants rated the same movie fragment, helping us to identify the most funny and the least funny frames of the movie. We compared neural activity occurring during the most funny and least funny frames across frequencies in the range of 1-170 Hz. The most funny compared to least funny parts of the movie were associated with activity modulation in the broadband high-gamma (70-170 Hz; mostly activation) and to a lesser extent gamma band (40-69Hz; activation) and low frequencies (1-12 Hz, delta, theta, alpha bands; mostly deactivation). With regard to regional specificity, we found three types of brain areas: (I) temporal pole, middle and inferior temporal gyrus (both anterior and posterior) in which there was both activation in the high-gamma/gamma bands and deactivation in low frequencies; (II) ventral part of the temporal lobe such as the fusiform gyrus, in which there was mostly deactivation the low frequencies; (III) posterior temporal cortex and its environment, such as the middle occipital and the temporo-parietal junction, in which there was activation in the high-gamma/gamma band. Overall, our results suggest that humor appreciation might be achieved by neural activity across the frequency spectrum.
Collapse
Affiliation(s)
- Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Camille Rozier
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Elisa Sohier
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, EEG Unit, Neurophysiology Department, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, EEG Unit, Neurophysiology Department, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France
| | - Lionel Naccache
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, 47-83 boulevard de l'Hôpital, Paris 75013, France
| |
Collapse
|
21
|
Jozwik KM, Kietzmann TC, Cichy RM, Kriegeskorte N, Mur M. Deep Neural Networks and Visuo-Semantic Models Explain Complementary Components of Human Ventral-Stream Representational Dynamics. J Neurosci 2023; 43:1731-1741. [PMID: 36759190 PMCID: PMC10010451 DOI: 10.1523/jneurosci.1424-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 02/11/2023] Open
Abstract
Deep neural networks (DNNs) are promising models of the cortical computations supporting human object recognition. However, despite their ability to explain a significant portion of variance in neural data, the agreement between models and brain representational dynamics is far from perfect. We address this issue by asking which representational features are currently unaccounted for in neural time series data, estimated for multiple areas of the ventral stream via source-reconstructed magnetoencephalography data acquired in human participants (nine females, six males) during object viewing. We focus on the ability of visuo-semantic models, consisting of human-generated labels of object features and categories, to explain variance beyond the explanatory power of DNNs alone. We report a gradual reversal in the relative importance of DNN versus visuo-semantic features as ventral-stream object representations unfold over space and time. Although lower-level visual areas are better explained by DNN features starting early in time (at 66 ms after stimulus onset), higher-level cortical dynamics are best accounted for by visuo-semantic features starting later in time (at 146 ms after stimulus onset). Among the visuo-semantic features, object parts and basic categories drive the advantage over DNNs. These results show that a significant component of the variance unexplained by DNNs in higher-level cortical dynamics is structured and can be explained by readily nameable aspects of the objects. We conclude that current DNNs fail to fully capture dynamic representations in higher-level human visual cortex and suggest a path toward more accurate models of ventral-stream computations.SIGNIFICANCE STATEMENT When we view objects such as faces and cars in our visual environment, their neural representations dynamically unfold over time at a millisecond scale. These dynamics reflect the cortical computations that support fast and robust object recognition. DNNs have emerged as a promising framework for modeling these computations but cannot yet fully account for the neural dynamics. Using magnetoencephalography data acquired in human observers during object viewing, we show that readily nameable aspects of objects, such as 'eye', 'wheel', and 'face', can account for variance in the neural dynamics over and above DNNs. These findings suggest that DNNs and humans may in part rely on different object features for visual recognition and provide guidelines for model improvement.
Collapse
Affiliation(s)
- Kamila M Jozwik
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Tim C Kietzmann
- Institute of Cognitive Science, University of Osnabrück, 49069 Osnabrück, Germany
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Nikolaus Kriegeskorte
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027
| | - Marieke Mur
- Department of Psychology, Western University, London, Ontario N6A 3K7, Canada
- Department of Computer Science, Western University, London, Ontario N6A 3K7, Canada
| |
Collapse
|
22
|
Same, but different: Binding effects in auditory, but not visual detection performance. Atten Percept Psychophys 2023; 85:438-451. [PMID: 35107812 PMCID: PMC9935720 DOI: 10.3758/s13414-021-02436-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 11/08/2022]
Abstract
Responding to a stimulus leads to the integration of response and stimulus' features into an event file. Upon repetition of any of its features, the previous event file is retrieved, thereby affecting ongoing performance. Such integration-retrieval explanations exist for a number of sequential tasks (that measure these processes as 'binding effects') and are thought to underlie all actions. However, based on attentional orienting literature, Schöpper, Hilchey, et al. (2020) could show that binding effects are absent when participants detect visual targets in a sequence: In visual detection performance, there is simply a benefit for target location changes (inhibition of return). In contrast, Mondor and Leboe (2008) had participants detect auditory targets in a sequence, and found a benefit for frequency repetition - presumably reflecting a binding effect in auditory detection performance. In the current study, we conducted two experiments, that only differed in the modality of the target: Participants signaled the detection of a sound (N = 40) or of a visual target (N = 40). Whereas visual detection performance showed a pattern incongruent with binding assumptions, auditory detection performance revealed a non-spatial feature repetition benefit, suggesting that frequency was bound to the response. Cumulative reaction time distributions indicated that the absence of a binding effect in visual detection performance was not caused by overall faster responding. The current results show a clear limitation to binding accounts in action control: Binding effects are not only limited by task demands, but can entirely depend on target modality.
Collapse
|
23
|
Xue G. From remembering to reconstruction: The transformative neural representation of episodic memory. Prog Neurobiol 2022; 219:102351. [PMID: 36089107 DOI: 10.1016/j.pneurobio.2022.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Although memory has long been recognized as a generative process, neural research of memory in recent decades has been predominantly influenced by Tulving's "mental time traveling" perspective and focused on the reactivation and consolidation of encoded memory representations. With the development of multiple powerful analytical approaches to characterize the contents and formats of neural representations, recent studies are able to provide detailed examinations of the representations at various processing stages and have provided exciting new insights into the transformative nature of episodic memory. These studies have revealed the rapid, substantial, and continuous transformation of memory representation during the encoding, maintenance, consolidation, and retrieval of both single and multiple events, as well as event sequences. These transformations are characterized by the abstraction, integration, differentiation, and reorganization of memory representations, enabling the long-term retention and generalization of memory. These studies mark a significant shift in perspective from remembering to reconstruction, which might better reveal the nature of memory and its roles in supporting more effective learning, adaptive decision-making, and creative problem solving.
Collapse
Affiliation(s)
- Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China; Chinese Institute for Brain Research, Beijing 102206, PR China.
| |
Collapse
|
24
|
Liu X, Shi R, Hui Q, Xu S, Wang S, Na R, Sun Y, Ding W, Zheng D, Chen X. TCACNet: Temporal and channel attention convolutional network for motor imagery classification of EEG-based BCI. Inf Process Manag 2022. [DOI: 10.1016/j.ipm.2022.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Steiger R, Tuovinen N, Adukauskaite A, Senoner T, Spitaler P, Bilgeri V, Dabkowska-Mika A, Siedentopf C, Bauer A, Gizewski ER, Hofer A, Barbieri F, Dichtl W. Limbic Responses to Aversive Visual Stimuli during the Acute and Recovery Phase of Takotsubo Syndrome. J Clin Med 2022; 11:jcm11164891. [PMID: 36013130 PMCID: PMC9410353 DOI: 10.3390/jcm11164891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
The role of the limbic system in the acute phase and during the recovery of takotsubo syndrome needs further clarification. In this longitudinal study, anatomical and task-based functional magnetic resonance imaging of the brain was performed during an emotional picture paradigm in 19 postmenopausal female takotsubo syndrome patients in the acute and recovery phases in comparison to sex- and aged-matched 15 healthy controls and 15 patients presenting with myocardial infarction. Statistical analyses were performed based on the general linear model where aversive and positive picture conditions were included in order to reveal group differences during encoding of aversive versus positive pictures and longitudinal changes. In the acute phase, takotsubo syndrome patients showed a lower response in regions involved in affective and cognitive emotional processes (e.g., insula, thalamus, frontal cortex, inferior frontal gyrus) while viewing aversive versus positive pictures compared to healthy controls and patients presenting with myocardial infarction. In the recovery phase, the response in these brain regions normalized in takotsubo syndrome patients to the level of healthy controls, whereas patients 8–12 weeks after myocardial infarction showed lower responses in the limbic regions (mainly in the insula, frontal regions, thalamus, and inferior frontal gyrus) compared to healthy controls and takotsubo syndrome patients. In conclusion, compared to healthy controls and patients suffering from acute myocardial infarction, limbic responses to aversive visual stimuli are attenuated during the acute phase of takotsubo syndrome, recovering within three months. Reduced functional brain responses in the recovery phase after a myocardial infarction need further investigation.
Collapse
Affiliation(s)
- Ruth Steiger
- University Hospital for Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Noora Tuovinen
- Division of Psychiatry I, University Hospital for Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Agne Adukauskaite
- University Hospital for Internal Medicine III (Cardiology and Angiology), Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Senoner
- University Hospital for Internal Medicine III (Cardiology and Angiology), Medical University of Innsbruck, 6020 Innsbruck, Austria
- University Hospital for Anesthesiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Spitaler
- University Hospital for Internal Medicine III (Cardiology and Angiology), Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Valentin Bilgeri
- University Hospital for Internal Medicine III (Cardiology and Angiology), Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Agnieszka Dabkowska-Mika
- University Hospital for Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christian Siedentopf
- University Hospital for Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Axel Bauer
- University Hospital for Internal Medicine III (Cardiology and Angiology), Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elke Ruth Gizewski
- University Hospital for Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alex Hofer
- Division of Psychiatry I, University Hospital for Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Fabian Barbieri
- University Hospital for Internal Medicine III (Cardiology and Angiology), Medical University of Innsbruck, 6020 Innsbruck, Austria
- University Hospital for Cardiology, Charité—Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Wolfgang Dichtl
- University Hospital for Internal Medicine III (Cardiology and Angiology), Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-512-504-81388
| |
Collapse
|
26
|
Kim JW, Brückner KE, Badenius C, Hamel W, Schaper M, Le Van Quyen M, El-Allawy-Zielke EK, Stodieck SRG, Hebel JM, Lanz M. Face-induced gamma oscillations and event-related potentials in patients with epilepsy: an intracranial EEG study. BMC Neurosci 2022; 23:36. [PMID: 35698042 PMCID: PMC9195313 DOI: 10.1186/s12868-022-00715-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background To examine the pathological effect of a mesial temporal seizure onset zone (SOZ) on local and inter-regional response to faces in the amygdala and other structures of the temporal lobe. Methods Intracranial EEG data was obtained from the amygdala, hippocampus, fusiform gyrus and parahippocampal gyrus of nine patients with drug-refractory epilepsy during visual stimulation with faces and mosaics. We analyzed event-related potentials (ERP), gamma frequency power, phase-amplitude coupling and phase-slope-index and compared the results between patients with versus without a mesial temporal SOZ. Results In the amygdala and fusiform gyrus, faces triggered higher ERP amplitudes compared to mosaics in both patient groups and higher gamma power in patients without a mesial temporal SOZ. In the hippocampus, famous faces triggered higher gamma power for both groups combined but did not affect ERPs in either group. The differentiated ERP response to famous faces in the parahippocampal gyrus was more pronounced in patients without a mesial temporal SOZ. Phase-amplitude coupling and phase-slope-index results yielded bidirectional modulation between amygdala and fusiform gyrus, and predominately unidirectional modulation between parahippocampal gyrus and hippocampus. Conclusions A mesial temporal SOZ was associated with an impaired response to faces in the amygdala, fusiform gyrus and parahippocampal gyrus in our patients. Compared to this, the response to faces in the hippocampus was impaired in patients with, as well as without, a mesial temporal SOZ. Our results support existing evidence for face processing deficits in patients with a mesial temporal SOZ and suggest the pathological effect of a mesial temporal SOZ on the amygdala to play a pivotal role in this matter in particular.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Epilepsy Center Hamburg, Protestant Hospital Alsterdorf, Hamburg, Germany.
| | - Katja E Brückner
- Epilepsy Center Hamburg, Protestant Hospital Alsterdorf, Hamburg, Germany
| | - Celina Badenius
- Epilepsy Center Hamburg, Protestant Hospital Alsterdorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Schaper
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michel Le Van Quyen
- Laboratoire d'Imagerie Biomédicale (LIB), Inserm U1146 / Sorbonne Université UMCR2 / UMR7371 CNRS, Paris, France
| | | | | | - Jonas M Hebel
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Michael Lanz
- Epilepsy Center Hamburg, Protestant Hospital Alsterdorf, Hamburg, Germany
| |
Collapse
|
27
|
Zhang X, Qiu Y, Li J, Jia C, Liao J, Chen K, Qiu L, Yuan Z, Huang R. Neural correlates of transitive inference: An SDM meta-analysis on 32 fMRI studies. Neuroimage 2022; 258:119354. [PMID: 35659997 DOI: 10.1016/j.neuroimage.2022.119354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022] Open
Abstract
Transitive inference (TI) is a critical capacity involving the integration of relevant information into prior knowledge structure for drawing novel inferences on unobserved relationships. To date, the neural correlates of TI remain unclear due to the small sample size and heterogeneity of various experimental tasks from individual studies. Here, the meta-analysis on 32 fMRI studies was performed to detect brain activation patterns of TI and its three paradigms (spatial inference, hierarchical inference, and associative inference). We found the hippocampus, prefrontal cortex (PFC), putamen, posterior parietal cortex (PPC), retrosplenial cortex (RSC), supplementary motor area (SMA), precentral gyrus (PreCG), and median cingulate cortex (MCC) were engaged in TI. Specifically, the RSC was implicated in the associative inference, whereas PPC, SMA, PreCG, and MCC were implicated in the hierarchical inference. In addition, the hierarchical inference and associative inference both evoked activation in the hippocampus, medial PFC, and PCC. Although the meta-analysis on spatial inference did not generate a reliable result due to insufficient amount of investigations, the present work still offers a new insight for better understanding the neural basis underlying TI.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Yidan Qiu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Jinhui Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Chuchu Jia
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Jiajun Liao
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Kemeng Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Lixin Qiu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| | - Ruiwang Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology; Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
28
|
Woolnough O, Forseth KJ, Rollo PS, Roccaforte ZJ, Tandon N. Event-Related Phase Synchronization Propagates Rapidly across Human Ventral Visual Cortex. Neuroimage 2022; 256:119262. [PMID: 35504563 PMCID: PMC9382906 DOI: 10.1016/j.neuroimage.2022.119262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 11/01/2022] Open
Abstract
Visual inputs to early visual cortex integrate with semantic, linguistic and memory inputs in higher visual cortex, in a manner that is rapid and accurate, and enables complex computations such as face recognition and word reading. This implies the existence of fundamental organizational principles that enable such efficiency. To elaborate on this, we performed intracranial recordings in 82 individuals while they performed tasks of varying visual and cognitive complexity. We discovered that visual inputs induce highly organized posterior-to-anterior propagating patterns of phase modulation across the ventral occipitotemporal cortex. At individual electrodes there was a stereotyped temporal pattern of phase progression following both stimulus onset and offset, consistent across trials and tasks. The phase of low frequency activity in anterior regions was predicted by the prior phase in posterior cortical regions. This spatiotemporal propagation of phase likely serves as a feed-forward organizational influence enabling the integration of information across the ventral visual stream. This phase modulation manifests as the early components of the event related potential; one of the most commonly used measures in human electrophysiology. These findings illuminate fundamental organizational principles of the higher order visual system that enable the rapid recognition and characterization of a variety of inputs.
Collapse
Affiliation(s)
- Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Zachary J Roccaforte
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America; Memorial Hermann Hospital, Texas Medical Center, Houston, TX, 77030, United States of America.
| |
Collapse
|
29
|
Izumika R, Cabeza R, Tsukiura T. Neural Mechanisms of Perceiving and Subsequently Recollecting Emotional Facial Expressions in Young and Older Adults. J Cogn Neurosci 2022; 34:1183-1204. [PMID: 35468212 DOI: 10.1162/jocn_a_01851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is known that emotional facial expressions modulate the perception and subsequent recollection of faces and that aging alters these modulatory effects. Yet, the underlying neural mechanisms are not well understood, and they were the focus of the current fMRI study. We scanned healthy young and older adults while perceiving happy, neutral, or angry faces paired with names. Participants were then provided with the names of the faces and asked to recall the facial expression of each face. fMRI analyses focused on the fusiform face area (FFA), the posterior superior temporal sulcus (pSTS), the OFC, the amygdala, and the hippocampus (HC). Univariate activity, multivariate pattern (MVPA), and functional connectivity analyses were performed. The study yielded two main sets of findings. First, in pSTS and the amygdala, univariate activity and MVPA discrimination during the processing of facial expressions were similar in young and older adults, whereas in FFA and OFC, MVPA discriminated facial expressions less accurately in older than young adults. These findings suggest that facial expression representations in FFA and OFC reflect age-related dedifferentiation and positivity effect. Second, HC-OFC connectivity showed subsequent memory effects (SMEs) for happy expressions in both age groups, HC-FFA connectivity exhibited SMEs for happy and neutral expressions in young adults, and HC-pSTS interactions displayed SMEs for happy expressions in older adults. These results could be related to compensatory mechanisms and positivity effects in older adults. Taken together, the results clarify the effects of aging on the neural mechanisms in perceiving and encoding facial expressions.
Collapse
|
30
|
Yan H, Wu H, Chen Y, Yang Y, Xu M, Zeng W, Zhang J, Chang C, Wang N. Dynamical Complexity Fingerprints of Occupation-Dependent Brain Functional Networks in Professional Seafarers. Front Neurosci 2022; 16:830808. [PMID: 35368265 PMCID: PMC8973415 DOI: 10.3389/fnins.2022.830808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data has been applied for exploring cognitive states and occupational neuroplasticity. However, there is little information about the influence of occupational factors on dynamic complexity and topological properties of the connectivity networks. In this paper, we proposed a novel dynamical brain complexity analysis (DBCA) framework to explore the changes in dynamical complexity of brain activity at the voxel level and complexity topology for professional seafarers caused by long-term working experience. The proposed DBCA is made up of dynamical brain entropy mapping analysis and complex network analysis based on brain entropy sequences, which generate the dynamical complexity of local brain areas and the topological complexity across brain areas, respectively. First, the transient complexity of voxel-wise brain map was calculated; compared with non-seafarers, seafarers showed decreased dynamic entropy values in the cerebellum and increased values in the left fusiform gyrus (BA20). Further, the complex network analysis based on brain entropy sequences revealed small-worldness in terms of topological complexity in both seafarers and non-seafarers, indicating that it is an inherent attribute of human the brain. In addition, seafarers showed a higher average path length and lower average clustering coefficient than non-seafarers, suggesting that the information processing ability is reduced in seafarers. Moreover, the reduction in efficiency of seafarers suggests that they have a less efficient processing network. To sum up, the proposed DBCA is effective for exploring the dynamic complexity changes in voxel-wise activity and region-wise connectivity, showing that occupational experience can reshape seafarers’ dynamic brain complexity fingerprints.
Collapse
Affiliation(s)
- Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Huijun Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yanyan Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yang Yang
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, China
| | - Weiming Zeng
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Jian Zhang
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
- *Correspondence: Nizhuan Wang,
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
- *Correspondence: Nizhuan Wang,
| |
Collapse
|
31
|
Axelrod V, Rozier C, Malkinson TS, Lehongre K, Adam C, Lambrecq V, Navarro V, Naccache L. Face-selective multi-unit activity in the proximity of the FFA modulated by facial expression stimuli. Neuropsychologia 2022; 170:108228. [DOI: 10.1016/j.neuropsychologia.2022.108228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/13/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023]
|
32
|
An EEG Classification-Based Method for Single-Trial N170 Latency Detection and Estimation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6331956. [PMID: 35222689 PMCID: PMC8881175 DOI: 10.1155/2022/6331956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Event-related potentials (ERPs) can reflect the high-level thinking activities of the brain. In ERP analysis, the superposition and averaging method is often used to estimate ERPs. However, the single-trial ERP estimation can provide researchers with more information on cognitive activities. In recent years, more and more researchers try to find an effective method to extract single-trial ERPs, because most of the existing methods have poor generalization ability or suffer from strong assumptions about the characteristics of ERPs, resulting in unsatisfactory results under the condition of a very low signal-to-noise ratio. In this paper, an EEG classification-based method for single-trial ERP detection and estimation was proposed. This study used a linear generated EEG model containing templates of ERP local descriptors which include amplitude and latency, and this model can avoid the invalid assumption about ERPs taken by other methods. The purpose of this method is not to recover the whole ERP waveform but to model the amplitude and latency of ERP components. This method afterwards examined the three machine learning models including logistic regression, neural network, and support vector machine in the EEG signal classification for ERP detection and selected the best performed MLPNN model for detection. To get the utmost out of information produced in the classification process, this study also used extra information to propose a new optimization model, with which outperformed detection results were obtained. Performance of the proposed method is evaluated on simulated N170 and real P50 data sets, and the results show that the model is more effective than the Woody filter and the SingleTrialEM algorithm. These results are also consistent with the conclusion of sensory gating, which demonstrated good generalization ability.
Collapse
|
33
|
Schwartz R, Rozier C, Seidel Malkinson T, Lehongre K, Adam C, Lambrecq V, Navarro V, Naccache L, Axelrod V. Comparing stimulus-evoked and spontaneous response of the face-selective multi-units in the human posterior fusiform gyrus. Neurosci Conscious 2021; 2021:niab033. [PMID: 34667640 PMCID: PMC8520048 DOI: 10.1093/nc/niab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
The stimulus-evoked neural response is a widely explored phenomenon. Conscious awareness is associated in many cases with the corresponding selective stimulus-evoked response. For example, conscious awareness of a face stimulus is associated with or accompanied by stimulus-evoked activity in the fusiform face area (FFA). In addition to the stimulus-evoked response, spontaneous (i.e. task-unrelated) activity in the brain is also abundant. Notably, spontaneous activity is considered unconscious. For example, spontaneous activity in the FFA is not associated with conscious awareness of a face. The question is: what is the difference at the neural level between stimulus-evoked activity in a case that this activity is associated with conscious awareness of some content (e.g. activity in the FFA in response to fully visible face stimuli) and spontaneous activity in that same region of the brain? To answer this question, in the present study, we had a rare opportunity to record two face-selective multi-units in the vicinity of the FFA in a human patient. We compared multi-unit face-selective task-evoked activity with spontaneous prestimulus and a resting-state activity. We found that when activity was examined over relatively long temporal windows (e.g. 100–200 ms), face-selective stimulus-evoked firing in the recorded multi-units was much higher than the spontaneous activity. In contrast, when activity was examined over relatively short windows, we found many cases of high firing rates within the spontaneous activity that were comparable to stimulus-evoked activity. Our results thus indicate that the sustained activity is what might differentiate between stimulus-evoked activity that is associated with conscious awareness and spontaneous activity.
Collapse
Affiliation(s)
- Rina Schwartz
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 52900, Israel
| | - Camille Rozier
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Tal Seidel Malkinson
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Katia Lehongre
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Claude Adam
- Neurology Department, AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit, 47-83 boulevard de l'Hôpital, Paris 75013, France
| | - Virginie Lambrecq
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Vincent Navarro
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Lionel Naccache
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
34
|
Liu J, Zhang H, Yu T, Ren L, Ni D, Yang Q, Lu B, Zhang L, Axmacher N, Xue G. Transformative neural representations support long-term episodic memory. SCIENCE ADVANCES 2021; 7:eabg9715. [PMID: 34623910 PMCID: PMC8500506 DOI: 10.1126/sciadv.abg9715] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Memory is often conceived as a dynamic process that involves substantial transformations of mental representations. However, the neural mechanisms underlying these transformations and their role in memory formation and retrieval have only started to be elucidated. Combining intracranial EEG recordings with deep neural network models, we provide a detailed picture of the representational transformations from encoding to short-term memory maintenance and long-term memory retrieval that underlie successful episodic memory. We observed substantial representational transformations during encoding. Critically, more pronounced semantic representational formats predicted better subsequent long-term memory, and this effect was mediated by more consistent item-specific representations across encoding events. The representations were further transformed right after stimulus offset, and the representations during long-term memory retrieval were more similar to those during short-term maintenance than during encoding. Our results suggest that memory representations pass through multiple stages of transformations to achieve successful long-term memory formation and recall.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum 44801, Germany
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Liankun Ren
- Comprehensive Epilepsy Center of Beijing, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qinhao Yang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Baoqing Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Nikolai Axmacher
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum 44801, Germany
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
35
|
Quek GL, Rossion B, Liu-Shuang J. Critical information thresholds underlying generic and familiar face categorisation at the same face encounter. Neuroimage 2021; 243:118481. [PMID: 34416398 DOI: 10.1016/j.neuroimage.2021.118481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
Seeing a face in the real world provokes a host of automatic categorisations related to sex, emotion, identity, and more. Such individual facets of human face recognition have been extensively examined using overt categorisation judgements, yet their relative informational dependencies during the same face encounter are comparatively unknown. Here we used EEG to assess how increasing access to sensory input governs two ecologically relevant brain functions elicited by seeing a face: Distinguishing faces and nonfaces, and recognising people we know. Observers viewed a large set of natural images that progressively increased in either image duration (experiment 1) or spatial frequency content (experiment 2). We show that in the absence of an explicit categorisation task, the human brain requires less sensory input to categorise a stimulus as a face than it does to recognise whether that face is familiar. Moreover, where sensory thresholds for distinguishing faces/nonfaces were remarkably consistent across observers, there was high inter-individual variability in the lower informational bound for familiar face recognition, underscoring the neurofunctional distinction between these categorisation functions. By i) indexing a form of face recognition that goes beyond simple low-level differences between categories, and ii) tapping multiple recognition functions elicited by the same face encounters, the information minima we report bear high relevance to real-world face encounters, where the same stimulus is categorised along multiple dimensions at once. Thus, our finding of lower informational requirements for generic vs. familiar face recognition constitutes some of the strongest evidence to date for the intuitive notion that sensory input demands should be lower for recognising face category than face identity.
Collapse
Affiliation(s)
- Genevieve L Quek
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; School of Psychology, The University of Sydney, Sydney, Australia.
| | - Bruno Rossion
- Institute of Research in Psychology (IPSY), University of Louvain, Louvain, Belgium; Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, Lorraine F-54000, France
| | - Joan Liu-Shuang
- Institute of Research in Psychology (IPSY), University of Louvain, Louvain, Belgium
| |
Collapse
|
36
|
Boring MJ, Silson EH, Ward MJ, Richardson RM, Fiez JA, Baker CI, Ghuman AS. Multiple Adjoining Word- and Face-Selective Regions in Ventral Temporal Cortex Exhibit Distinct Dynamics. J Neurosci 2021; 41:6314-6327. [PMID: 34099511 PMCID: PMC8287994 DOI: 10.1523/jneurosci.3234-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
The map of category-selectivity in human ventral temporal cortex (VTC) provides organizational constraints to models of object recognition. One important principle is lateral-medial response biases to stimuli that are typically viewed in the center or periphery of the visual field. However, little is known about the relative temporal dynamics and location of regions that respond preferentially to stimulus classes that are centrally viewed, such as the face- and word-processing networks. Here, word- and face-selective regions within VTC were mapped using intracranial recordings from 36 patients. Partially overlapping, but also anatomically dissociable patches of face- and word-selectivity, were found in VTC. In addition to canonical word-selective regions along the left posterior occipitotemporal sulcus, selectivity was also located medial and anterior to face-selective regions on the fusiform gyrus at the group level and within individual male and female subjects. These regions were replicated using 7 Tesla fMRI in healthy subjects. Left hemisphere word-selective regions preceded right hemisphere responses by 125 ms, potentially reflecting the left hemisphere bias for language, with no hemispheric difference in face-selective response latency. Word-selective regions along the posterior fusiform responded first, then spread medially and laterally, then anteriorally. Face-selective responses were first seen in posterior fusiform regions bilaterally, then proceeded anteriorally from there. For both words and faces, the relative delay between regions was longer than would be predicted by purely feedforward models of visual processing. The distinct time courses of responses across these regions, and between hemispheres, suggest that a complex and dynamic functional circuit supports face and word perception.SIGNIFICANCE STATEMENT Representations of visual objects in the human brain have been shown to be organized by several principles, including whether those objects tend to be viewed centrally or peripherally in the visual field. However, it remains unclear how regions that process objects that are viewed centrally, such as words and faces, are organized relative to one another. Here, invasive and noninvasive neuroimaging suggests that there is a mosaic of regions in ventral temporal cortex that respond selectively to either words or faces. These regions display differences in the strength and timing of their responses, both within and between brain hemispheres, suggesting that they play different roles in perception. These results illuminate extended, bilateral, and dynamic brain pathways that support face perception and reading.
Collapse
Affiliation(s)
- Matthew J Boring
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania 15213
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - Edward H Silson
- National Institute of Mental Health, National Institutes of Health, Magnuson Clinical Center, Bethesda, Maryland 20814
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Michael J Ward
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02144
- Harvard Medical School, Boston, Massachusetts 02115
| | - Julie A Fiez
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania 15213
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Chris I Baker
- National Institute of Mental Health, National Institutes of Health, Magnuson Clinical Center, Bethesda, Maryland 20814
| | - Avniel Singh Ghuman
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania 15213
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
37
|
Abbasi B, Rizzo JF. Advances in Neuroscience, Not Devices, Will Determine the Effectiveness of Visual Prostheses. Semin Ophthalmol 2021; 36:168-175. [PMID: 33734937 DOI: 10.1080/08820538.2021.1887902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Innovations in engineering and neuroscience have enabled the development of sophisticated visual prosthetic devices. In clinical trials, these devices have provided visual acuities as high as 20/460, enabled coarse navigation, and even allowed for reading of short words. However, long-term commercial viability arguably rests on attaining even better vision and more definitive improvements in tasks of daily living and quality of life. Purpose: Here we review technological and biological obstacles in the implementation of visual prosthetics. Conclusions: Research in the visual prosthetic field has tackled significant technical challenges, including biocompatibility, signal spread through neural tissue, and inadvertent activation of passing axons; however, significant gaps in knowledge remain in the realm of neuroscience, including the neural code of vision and visual plasticity. We assert that further optimization of prosthetic devices alone will not provide markedly improved visual outcomes without significant advances in our understanding of neuroscience.
Collapse
Affiliation(s)
- Bardia Abbasi
- Neuro-Ophthalmology Service, Department of Ophthalmology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Joseph F Rizzo
- Neuro-Ophthalmology Service, Department of Ophthalmology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Sanada T, Kapeller C, Jordan M, Grünwald J, Mitsuhashi T, Ogawa H, Anei R, Guger C. Multi-modal Mapping of the Face Selective Ventral Temporal Cortex-A Group Study With Clinical Implications for ECS, ECoG, and fMRI. Front Hum Neurosci 2021; 15:616591. [PMID: 33828468 PMCID: PMC8020907 DOI: 10.3389/fnhum.2021.616591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Face recognition is impaired in patients with prosopagnosia, which may occur as a side effect of neurosurgical procedures. Face selective regions on the ventral temporal cortex have been localized with electrical cortical stimulation (ECS), electrocorticography (ECoG), and functional magnetic resonance imagining (fMRI). This is the first group study using within-patient comparisons to validate face selective regions mapping, utilizing the aforementioned modalities. Five patients underwent surgical treatment of intractable epilepsy and joined the study. Subdural grid electrodes were implanted on their ventral temporal cortices to localize seizure foci and face selective regions as part of the functional mapping protocol. Face selective regions were identified in all patients with fMRI, four patients with ECoG, and two patients with ECS. From 177 tested electrode locations in the region of interest (ROI), which is defined by the fusiform gyrus and the inferior temporal gyrus, 54 face locations were identified by at least one modality in all patients. fMRI mapping showed the highest detection rate, revealing 70.4% for face selective locations, whereas ECoG and ECS identified 64.8 and 31.5%, respectively. Thus, 28 face locations were co-localized by at least two modalities, with detection rates of 89.3% for fMRI, 85.7% for ECoG and 53.6 % for ECS. All five patients had no face recognition deficits after surgery, even though five of the face selective locations, one obtained by ECoG and the other four by fMRI, were within 10 mm to the resected volumes. Moreover, fMRI included a quite large volume artifact on the ventral temporal cortex in the ROI from the anatomical structures of the temporal base. In conclusion, ECS was not sensitive in several patients, whereas ECoG and fMRI even showed activation within 10 mm to the resected volumes. Considering the potential signal drop-out in fMRI makes ECoG the most reliable tool to identify face selective locations in this study. A multimodal approach can improve the specificity of ECoG and fMRI, while simultaneously minimizing the number of required ECS sessions. Hence, all modalities should be considered in a clinical mapping protocol entailing combined results of co-localized face selective locations.
Collapse
Affiliation(s)
- Takahiro Sanada
- Department of Neurosurgery, Nayoro City General Hospital, Nayoro, Japan.,Department of Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
| | - Christoph Kapeller
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Guger Technologies OG, Graz, Austria
| | - Michael Jordan
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Guger Technologies OG, Graz, Austria
| | - Johannes Grünwald
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Guger Technologies OG, Graz, Austria
| | - Takumi Mitsuhashi
- Department of Neurosurgery, Juntendo University, Tokyo, Japan.,Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, United States
| | - Hiroshi Ogawa
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ryogo Anei
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
| | - Christoph Guger
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Guger Technologies OG, Graz, Austria
| |
Collapse
|
39
|
FFA and OFA Encode Distinct Types of Face Identity Information. J Neurosci 2021; 41:1952-1969. [PMID: 33452225 DOI: 10.1523/jneurosci.1449-20.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/11/2023] Open
Abstract
Faces of different people elicit distinct fMRI patterns in several face-selective regions of the human brain. Here we used representational similarity analysis to investigate what type of identity-distinguishing information is encoded in three face-selective regions: fusiform face area (FFA), occipital face area (OFA), and posterior superior temporal sulcus (pSTS). In a sample of 30 human participants (22 females, 8 males), we used fMRI to measure brain activity patterns elicited by naturalistic videos of famous face identities, and compared their representational distances in each region with models of the differences between identities. We built diverse candidate models, ranging from low-level image-computable properties (pixel-wise, GIST, and Gabor-Jet dissimilarities), through higher-level image-computable descriptions (OpenFace deep neural network, trained to cluster faces by identity), to complex human-rated properties (perceived similarity, social traits, and gender). We found marked differences in the information represented by the FFA and OFA. Dissimilarities between face identities in FFA were accounted for by differences in perceived similarity, Social Traits, Gender, and by the OpenFace network. In contrast, representational distances in OFA were mainly driven by differences in low-level image-based properties (pixel-wise and Gabor-Jet dissimilarities). Our results suggest that, although FFA and OFA can both discriminate between identities, the FFA representation is further removed from the image, encoding higher-level perceptual and social face information.SIGNIFICANCE STATEMENT Recent studies using fMRI have shown that several face-responsive brain regions can distinguish between different face identities. It is however unclear whether these different face-responsive regions distinguish between identities in similar or different ways. We used representational similarity analysis to investigate the computations within three brain regions in response to naturalistically varying videos of face identities. Our results revealed that two regions, the fusiform face area and the occipital face area, encode distinct identity information about faces. Although identity can be decoded from both regions, identity representations in fusiform face area primarily contained information about social traits, gender, and high-level visual features, whereas occipital face area primarily represented lower-level image features.
Collapse
|
40
|
Koyano KW, Jones AP, McMahon DBT, Waidmann EN, Russ BE, Leopold DA. Dynamic Suppression of Average Facial Structure Shapes Neural Tuning in Three Macaque Face Patches. Curr Biol 2021; 31:1-12.e5. [PMID: 33065012 PMCID: PMC7855058 DOI: 10.1016/j.cub.2020.09.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
The visual perception of identity in humans and other primates is thought to draw upon cortical areas specialized for the analysis of facial structure. A prominent theory of face recognition holds that the brain computes and stores average facial structure, which it then uses to efficiently determine individual identity, though the neural mechanisms underlying this process are controversial. Here, we demonstrate that the dynamic suppression of average facial structure plays a prominent role in the responses of neurons in three fMRI-defined face patches of the macaque. Using photorealistic face stimuli that systematically varied in identity level according to a psychophysically based face space, we found that single units in the AF, AM, and ML face patches exhibited robust tuning around average facial structure. This tuning emerged after the initial excitatory response to the face and was expressed as the selective suppression of sustained responses to low-identity faces. The coincidence of this suppression with increased spike timing synchrony across the population suggests a mechanism of active inhibition underlying this effect. Control experiments confirmed that the diminished responses to low-identity faces were not due to short-term adaptation processes. We propose that the brain's neural suppression of average facial structure facilitates recognition by promoting the extraction of distinctive facial characteristics and suppressing redundant or irrelevant responses across the population.
Collapse
Affiliation(s)
- Kenji W Koyano
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, 49 Convent Dr., Bethesda, MD 20892, USA.
| | - Adam P Jones
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, 49 Convent Dr., Bethesda, MD 20892, USA
| | - David B T McMahon
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, 49 Convent Dr., Bethesda, MD 20892, USA; Neuronal Networks Section, National Eye Institute, 49 Convent Dr., Bethesda, MD 20892, USA
| | - Elena N Waidmann
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, 49 Convent Dr., Bethesda, MD 20892, USA
| | - Brian E Russ
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, 49 Convent Dr., Bethesda, MD 20892, USA; Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, 49 Convent Dr., Bethesda, MD 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, 49 Convent Dr., Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Distress severity in perceptual anomalies moderates the relationship between prefrontal brain structure and psychosis proneness in nonclinical individuals. Eur Arch Psychiatry Clin Neurosci 2021; 271:1111-1122. [PMID: 33532868 PMCID: PMC8354976 DOI: 10.1007/s00406-020-01229-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
In the general population, psychosis risk phenotypes occur independently of attenuated prodromal syndromes. Neurobiological correlates of vulnerability could help to understand their meaningfulness. Interactions between the occurrence of psychotic-like experiences (PLE) and other psychological factors e.g., distress related to PLE, may distinguish psychosis-prone individuals from those without risk of future psychotic disorder. We aimed to investigate whether (a) correlates of total PLE and distress, and (b) symptom dimension-specific moderation effects exist at the brain structural level in non-help-seeking adults reporting PLE below and above the screening criterion for clinical high-risk (CHR). We obtained T1-weighted whole-brain MRI scans from 104 healthy adults from the community without psychosis CHR states for voxel-based morphometry (VBM). Brain structural associations with PLE and PLE distress were analysed with multiple linear regression models. Moderation of PLE by distress severity of two types of positive symptoms from the Prodromal Questionnaire (PQ-16) screening inventory was explored in regions-of-interest after VBM. Total PQ-16 score was positively associated with grey matter volume (GMV) in prefrontal regions, occipital fusiform and lingual gyri (p < 0.05, FDR peak-level corrected). Overall distress severity and GMV were not associated. Examination of distress severity on the positive symptom dimensions as moderators showed reduced strength of the association between PLE and rSFG volume with increased distress severity for perceptual PLE. In this study, brain structural variation was related to PLE level, but not distress severity, suggesting specificity. In healthy individuals, positive relationships between PLE and prefrontal volumes may indicate protective features, which supports the insufficiency of PLE for the prediction of CHR. Additional indicators of vulnerability, such as distress associated with perceptual PLE, change the positive brain structure relationship. Brain structural findings may strengthen clinical objectives through disentanglement of innocuous and risk-related PLE.
Collapse
|
42
|
Yang F, Qu M, Zhang Y, Zhao L, Xing W, Zhou G, Tang J, Wu J, Zhang Y, Liao W. Aberrant Brain Network Integration and Segregation in Diabetic Peripheral Neuropathy Revealed by Structural Connectomics. Front Neurosci 2020; 14:585588. [PMID: 33343281 PMCID: PMC7746555 DOI: 10.3389/fnins.2020.585588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common forms of peripheral neuropathy, and its incidence has been increasing. Mounting evidence has shown that patients with DPN have been associated with widespread alterations in the structure, function and connectivity of the brain, suggesting possible alterations in large-scale brain networks. Using structural covariance networks as well as advanced graph-theory-based computational approaches, we investigated the topological abnormalities of large-scale brain networks for a relatively large sample of patients with DPN (N = 67) compared to matched healthy controls (HCs; N = 88). Compared with HCs, the structural covariance networks of patients with DPN showed an increased characteristic path length, clustering coefficient, sigma, transitivity, and modularity, suggestive of inefficient global integration and increased local segregation. These findings may improve our understanding of the pathophysiological mechanisms underlying alterations in the central nervous system of patients with DPN from the perspective of large-scale structural brain networks.
Collapse
Affiliation(s)
- Fangxue Yang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Minli Qu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Zhao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Gaofeng Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Tang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Molecular Imaging Research Center of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (XiangYa), Changsha, China
| |
Collapse
|
43
|
Sadoun A, Chauhan T, Mameri S, Zhang Y, Barone P, Deguine O, Strelnikov K. Stimulus-specific information is represented as local activity patterns across the brain. Neuroimage 2020; 223:117326. [PMID: 32882381 DOI: 10.1016/j.neuroimage.2020.117326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
|
44
|
Jacques C, Rossion B, Volfart A, Brissart H, Colnat-Coulbois S, Maillard L, Jonas J. The neural basis of rapid unfamiliar face individuation with human intracerebral recordings. Neuroimage 2020; 221:117174. [DOI: 10.1016/j.neuroimage.2020.117174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
|
45
|
Li Y, Richardson RM, Ghuman AS. Posterior Fusiform and Midfusiform Contribute to Distinct Stages of Facial Expression Processing. Cereb Cortex 2020; 29:3209-3219. [PMID: 30124788 DOI: 10.1093/cercor/bhy186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 11/12/2022] Open
Abstract
Though the fusiform is well-established as a key node in the face perception network, its role in facial expression processing remains unclear, due to competing models and discrepant findings. To help resolve this debate, we recorded from 17 subjects with intracranial electrodes implanted in face sensitive patches of the fusiform. Multivariate classification analysis showed that facial expression information is represented in fusiform activity and in the same regions that represent identity, though with a smaller effect size. Examination of the spatiotemporal dynamics revealed a functional distinction between posterior fusiform and midfusiform expression coding, with posterior fusiform showing an early peak of facial expression sensitivity at around 180 ms after subjects viewed a face and midfusiform showing a later and extended peak between 230 and 460 ms. These results support the hypothesis that the fusiform plays a role in facial expression perception and highlight a qualitative functional distinction between processing in posterior fusiform and midfusiform, with each contributing to temporally segregated stages of expression perception.
Collapse
Affiliation(s)
- Yuanning Li
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA.,Program in Neural Computation and Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Mark Richardson
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Avniel Singh Ghuman
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA.,Program in Neural Computation and Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Nestor A, Lee ACH, Plaut DC, Behrmann M. The Face of Image Reconstruction: Progress, Pitfalls, Prospects. Trends Cogn Sci 2020; 24:747-759. [PMID: 32674958 PMCID: PMC7429291 DOI: 10.1016/j.tics.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
Abstract
Recent research has demonstrated that neural and behavioral data acquired in response to viewing face images can be used to reconstruct the images themselves. However, the theoretical implications, promises, and challenges of this direction of research remain unclear. We evaluate the potential of this research for elucidating the visual representations underlying face recognition. Specifically, we outline complementary and converging accounts of the visual content, the representational structure, and the neural dynamics of face processing. We illustrate how this research addresses fundamental questions in the study of normal and impaired face recognition, and how image reconstruction provides a powerful framework for uncovering face representations, for unifying multiple types of empirical data, and for facilitating both theoretical and methodological progress.
Collapse
Affiliation(s)
- Adrian Nestor
- Department of Psychology at Scarborough, University of Toronto, Toronto, Ontario, Canada.
| | - Andy C H Lee
- Department of Psychology at Scarborough, University of Toronto, Toronto, Ontario, Canada; Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| | - David C Plaut
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Ma J, Wang X, Qiu Q, Zhan H, Wu W. Changes in Empathy in Patients With Chronic Low Back Pain: A Structural-Functional Magnetic Resonance Imaging Study. Front Hum Neurosci 2020; 14:326. [PMID: 32973477 PMCID: PMC7473423 DOI: 10.3389/fnhum.2020.00326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
Objective: Many pieces of research have focused on pain within individuals, but little attention has been paid to whether pain can change an individual’s empathic ability and affect social relationships. The purpose of this study is to explore how chronic low back pain changes empathy. Methods: Twenty-four chronic low back pain patients and 22 healthy controls were recruited. We set up an experimental pain-exposed model for each healthy subject. All subjects received a painful-empathic magnetic resonance scan. After the scan, all subjects rated the pain intensity and multiple empathy-related indicators. The clinical assessment scale was the 20-item Basic Empathy Scale in Adults. Result: The chronic low back pain patients reported lower scores on the total scores of BES-A, the subscale scores of emotional disconnection and cognitive empathy, and the discomfort rating. The fMRI results in the chronic low back pain patients showed that there were multiple abnormal brain pathways centered on the anterior insula. The DTI results in the chronic low back pain patients showed that there were reduced fractional anisotropy values in the corpus callosum, bilateral anterior thalamic radiation (ATR), right posterior thalamic radiation (PTR), right superior longitudinal fasciculus (SLF), and left anterior corona radiate (ACR). Conclusion: Our study found that patients with chronic low back pain have impaired empathy ability. The abnormal functional connectivity of multiple brain networks, multiple damaged white matter tracts, and the lower behavioral scores in chronic low back pain patients supported our findings.
Collapse
Affiliation(s)
- Junqin Ma
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xianglong Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Qiu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrui Zhan
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Physical Medicine and Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Li Y, Ward MJ, Richardson RM, G'Sell M, Ghuman AS. Endogenous activity modulates stimulus and circuit-specific neural tuning and predicts perceptual behavior. Nat Commun 2020; 11:4014. [PMID: 32782303 PMCID: PMC7419548 DOI: 10.1038/s41467-020-17729-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/07/2020] [Indexed: 11/08/2022] Open
Abstract
Perception reflects not only sensory inputs, but also the endogenous state when these inputs enter the brain. Prior studies show that endogenous neural states influence stimulus processing through non-specific, global mechanisms, such as spontaneous fluctuations of arousal. It is unclear if endogenous activity influences circuit and stimulus-specific processing and behavior as well. Here we use intracranial recordings from 30 pre-surgical epilepsy patients to show that patterns of endogenous activity are related to the strength of trial-by-trial neural tuning in different visual category-selective neural circuits. The same aspects of the endogenous activity that relate to tuning in a particular neural circuit also correlate to behavioral reaction times only for stimuli from the category that circuit is selective for. These results suggest that endogenous activity can modulate neural tuning and influence behavior in a circuit- and stimulus-specific manner, reflecting a potential mechanism by which endogenous neural states facilitate and bias perception.
Collapse
Affiliation(s)
- Yuanning Li
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA.
- Program in Neural Computation and Machine Learning, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| | - Michael J Ward
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Max G'Sell
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Avniel Singh Ghuman
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA
- Program in Neural Computation and Machine Learning, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Typical visual unfamiliar face individuation in left and right mesial temporal epilepsy. Neuropsychologia 2020; 147:107583. [PMID: 32771474 DOI: 10.1016/j.neuropsychologia.2020.107583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Patients with chronic mesial temporal lobe epilepsy have difficulties at identifying familiar faces as well as at explicit old/new face recognition tasks. However, the extent to which these difficulties can be attributed to visual individuation of faces, independently of general explicit learning and semantic memory processes, is unknown. We tested 42 mesial temporal lobe epilepsy patients divided into two groups according to the side of epilepsy (left and right) and 42 matched controls on an extensive series of individuation tasks of unfamiliar faces and control visual stimuli, as well as on face detection, famous face recognition and naming, and face and non-face learning. Overall, both patient groups had difficulties at identifying and naming famous faces, and at explicitly learning face and non-face images. However, there was no group difference in accuracy between patients and controls at the two most widely used neuropsychological tests assessing visual individuation of unfamiliar faces (Benton Facial Recognition Test and Cambridge Face Memory Test). While patients with right mesial temporal lobe epilepsy were slowed down at all tasks, this effect was not specific to faces or even high-level stimuli. Importantly, both groups showed the same profile of response as typical participants across various stimulus manipulations, showing no evidence of qualitative processing impairments. Overall, these results point to largely preserved visual face individuation processes in patients with mesial temporal lobe epilepsy, with semantic and episodic memory difficulties being consistent with the localization of the neural structures involved in their epilepsy (anterior temporal cortex and hippocampus). These observations have implications for the prediction of neuropsychological outcomes in the case of surgery and support the validity of intracranial electroencephalographic recordings performed in this population to understand neural mechanisms of human face individuation, notably through intracranial electrophysiological recordings and stimulations.
Collapse
|
50
|
Woolnough O, Rollo PS, Forseth KJ, Kadipasaoglu CM, Ekstrom AD, Tandon N. Category Selectivity for Face and Scene Recognition in Human Medial Parietal Cortex. Curr Biol 2020; 30:2707-2715.e3. [PMID: 32502406 DOI: 10.1016/j.cub.2020.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023]
Abstract
The rapid recognition and memory of faces and scenes implies the engagement of category-specific computational hubs in the ventral visual stream with the distributed cortical memory network. To better understand how recognition and identification occur in humans, we performed direct intracranial recordings, in a large cohort of patients (n = 50), from the medial parietal cortex (MPC) and the medial temporal lobe (MTL), structures known to be engaged during face and scene identification. We discovered that the MPC is topologically tuned to face and scene recognition, with clusters in MPC performing scene recognition bilaterally and face recognition in right subparietal sulcus. The MTL displayed a selectivity gradient with anterior, entorhinal cortex showing face selectivity and posterior parahippocampal regions showing scene selectivity. In both MPC and MTL, stimulus-specific identifiable exemplars led to greater activity in these cortical patches. These two regions work in concert for recognition of faces and scenes. Feature selectivity and identity-sensitive activity in the two regions was coincident, and they exhibited theta-phase locking during face and scene recognition. These findings together provide clear evidence for a specific role of subregions in the MPC for the recognition of unique entities.
Collapse
Affiliation(s)
- Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, USA; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, USA; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, USA; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cihan M Kadipasaoglu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, USA; Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, USA
| | - Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, USA; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, USA.
| |
Collapse
|