1
|
Dwivedi R, Prakash P, Kumbhar BV, Balasubramaniam M, Dash C. HIV-1 capsid and viral DNA integration. mBio 2024; 15:e0021222. [PMID: 38085100 PMCID: PMC10790781 DOI: 10.1128/mbio.00212-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE HIV-1 capsid protein (CA)-independently or by recruiting host factors-mediates several key steps of virus replication in the cytoplasm and nucleus of the target cell. Research in the recent years have established that CA is multifunctional and genetically fragile of all the HIV-1 proteins. Accordingly, CA has emerged as a validated and high priority therapeutic target, and the first CA-targeting antiviral drug was recently approved for treating multi-drug resistant HIV-1 infection. However, development of next generation CA inhibitors depends on a better understanding of CA's known roles, as well as probing of CA's novel roles, in HIV-1 replication. In this timely review, we present an updated overview of the current state of our understanding of CA's multifunctional role in HIV-1 replication-with a special emphasis on CA's newfound post-nuclear roles, highlight the pressing knowledge gaps, and discuss directions for future research.
Collapse
Affiliation(s)
- Richa Dwivedi
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed to be) University, Mumbai, Maharashtra, India
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Gupta M, Pak AJ, Voth GA. Critical mechanistic features of HIV-1 viral capsid assembly. SCIENCE ADVANCES 2023; 9:eadd7434. [PMID: 36608139 PMCID: PMC9821859 DOI: 10.1126/sciadv.add7434 10.1126/sciadv.add7434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 11/04/2023]
Abstract
The maturation of HIV-1 capsid protein (CA) into a cone-shaped lattice capsid is critical for viral infectivity. CA can self-assemble into a range of capsid morphologies made of ~175 to 250 hexamers and 12 pentamers. The cellular polyanion inositol hexakisphosphate (IP6) has recently been demonstrated to facilitate conical capsid formation by coordinating a ring of arginine residues within the central cavity of capsid hexamers and pentamers. However, the kinetic interplay of events during IP6 and CA coassembly is unclear. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanism of capsid formation, including the role played by IP6. We show that IP6, in small quantities at first, promotes curvature generation by trapping pentameric defects in the growing lattice and shifts assembly behavior toward kinetically favored outcomes. Our analysis also suggests that IP6 can stabilize metastable capsid intermediates and can induce structural pleomorphism in mature capsids.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Gupta M, Pak AJ, Voth GA. Critical mechanistic features of HIV-1 viral capsid assembly. SCIENCE ADVANCES 2023; 9:eadd7434. [PMID: 36608139 PMCID: PMC9821859 DOI: 10.1126/sciadv.add7434+10.1126/sciadv.add7434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2024]
Abstract
The maturation of HIV-1 capsid protein (CA) into a cone-shaped lattice capsid is critical for viral infectivity. CA can self-assemble into a range of capsid morphologies made of ~175 to 250 hexamers and 12 pentamers. The cellular polyanion inositol hexakisphosphate (IP6) has recently been demonstrated to facilitate conical capsid formation by coordinating a ring of arginine residues within the central cavity of capsid hexamers and pentamers. However, the kinetic interplay of events during IP6 and CA coassembly is unclear. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanism of capsid formation, including the role played by IP6. We show that IP6, in small quantities at first, promotes curvature generation by trapping pentameric defects in the growing lattice and shifts assembly behavior toward kinetically favored outcomes. Our analysis also suggests that IP6 can stabilize metastable capsid intermediates and can induce structural pleomorphism in mature capsids.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Gupta M, Pak AJ, Voth GA. Critical mechanistic features of HIV-1 viral capsid assembly. SCIENCE ADVANCES 2023; 9:eadd7434. [PMID: 36608139 PMCID: PMC9821859 DOI: 10.1126/sciadv.add7434] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 05/29/2023]
Abstract
The maturation of HIV-1 capsid protein (CA) into a cone-shaped lattice capsid is critical for viral infectivity. CA can self-assemble into a range of capsid morphologies made of ~175 to 250 hexamers and 12 pentamers. The cellular polyanion inositol hexakisphosphate (IP6) has recently been demonstrated to facilitate conical capsid formation by coordinating a ring of arginine residues within the central cavity of capsid hexamers and pentamers. However, the kinetic interplay of events during IP6 and CA coassembly is unclear. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanism of capsid formation, including the role played by IP6. We show that IP6, in small quantities at first, promotes curvature generation by trapping pentameric defects in the growing lattice and shifts assembly behavior toward kinetically favored outcomes. Our analysis also suggests that IP6 can stabilize metastable capsid intermediates and can induce structural pleomorphism in mature capsids.
Collapse
|
5
|
Mangala Prasad V, Leaman DP, Lovendahl KN, Croft JT, Benhaim MA, Hodge EA, Zwick MB, Lee KK. Cryo-ET of Env on intact HIV virions reveals structural variation and positioning on the Gag lattice. Cell 2022; 185:641-653.e17. [PMID: 35123651 PMCID: PMC9000915 DOI: 10.1016/j.cell.2022.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 01/11/2023]
Abstract
HIV-1 Env mediates viral entry into host cells and is the sole target for neutralizing antibodies. However, Env structure and organization in its native virion context has eluded detailed characterization. Here, we used cryo-electron tomography to analyze Env in mature and immature HIV-1 particles. Immature particles showed distinct Env positioning relative to the underlying Gag lattice, providing insights into long-standing questions about Env incorporation. A 9.1-Å sub-tomogram-averaged reconstruction of virion-bound Env in conjunction with structural mass spectrometry revealed unexpected features, including a variable central core of the gp41 subunit, heterogeneous glycosylation between protomers, and a flexible stalk that allows Env tilting and variable exposure of neutralizing epitopes. Together, our results provide an integrative understanding of HIV assembly and structural variation in Env antigen presentation.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel P Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus N Lovendahl
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jacob T Croft
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mark A Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Edgar A Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Krebs AS, Mendonça LM, Zhang P. Structural Analysis of Retrovirus Assembly and Maturation. Viruses 2021; 14:54. [PMID: 35062258 PMCID: PMC8778513 DOI: 10.3390/v14010054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
Abstract
Retroviruses have a very complex and tightly controlled life cycle which has been studied intensely for decades. After a virus enters the cell, it reverse-transcribes its genome, which is then integrated into the host genome, and subsequently all structural and regulatory proteins are transcribed and translated. The proteins, along with the viral genome, assemble into a new virion, which buds off the host cell and matures into a newly infectious virion. If any one of these steps are faulty, the virus cannot produce infectious viral progeny. Recent advances in structural and molecular techniques have made it possible to better understand this class of viruses, including details about how they regulate and coordinate the different steps of the virus life cycle. In this review we summarize the molecular analysis of the assembly and maturation steps of the life cycle by providing an overview on structural and biochemical studies to understand these processes. We also outline the differences between various retrovirus families with regards to these processes.
Collapse
Affiliation(s)
- Anna-Sophia Krebs
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.-S.K.); (L.M.M.)
| | - Luiza M. Mendonça
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.-S.K.); (L.M.M.)
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.-S.K.); (L.M.M.)
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
7
|
McFadden WM, Snyder AA, Kirby KA, Tedbury PR, Raj M, Wang Z, Sarafianos SG. Rotten to the core: antivirals targeting the HIV-1 capsid core. Retrovirology 2021; 18:41. [PMID: 34937567 PMCID: PMC8693499 DOI: 10.1186/s12977-021-00583-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
The capsid core of HIV-1 is a large macromolecular assembly that surrounds the viral genome and is an essential component of the infectious virus. In addition to its multiple roles throughout the viral life cycle, the capsid interacts with multiple host factors. Owing to its indispensable nature, the HIV-1 capsid has been the target of numerous antiretrovirals, though most capsid-targeting molecules have not had clinical success until recently. Lenacapavir, a long-acting drug that targets the HIV-1 capsid, is currently undergoing phase 2/3 clinical trials, making it the most successful capsid inhibitor to-date. In this review, we detail the role of the HIV-1 capsid protein in the virus life cycle, categorize antiviral compounds based on their targeting of five sites within the HIV-1 capsid, and discuss their molecular interactions and mechanisms of action. The diverse range of inhibition mechanisms provides insight into possible new strategies for designing novel HIV-1 drugs and furthers our understanding of HIV-1 biology. ![]()
Collapse
Affiliation(s)
- William M McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alexa A Snyder
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Qu K, Ke Z, Zila V, Anders-Össwein M, Glass B, Mücksch F, Müller R, Schultz C, Müller B, Kräusslich HG, Briggs JAG. Maturation of the matrix and viral membrane of HIV-1. Science 2021; 373:700-704. [PMID: 34353956 DOI: 10.1126/science.abe6821] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/24/2021] [Indexed: 12/22/2022]
Abstract
Gag, the primary structural protein of HIV-1, is recruited to the plasma membrane for virus assembly by its matrix (MA) domain. Gag is subsequently cleaved into its component domains, causing structural maturation to repurpose the virion for cell entry. We determined the structure and arrangement of MA within immature and mature HIV-1 through cryo-electron tomography. We found that MA rearranges between two different hexameric lattices upon maturation. In mature HIV-1, a lipid extends out of the membrane to bind with a pocket in MA. Our data suggest that proteolytic maturation of HIV-1 not only assembles the viral capsid surrounding the genome but also repurposes the membrane-bound MA lattice for an entry or postentry function and results in the partial removal of up to 2500 lipids from the viral membrane.
Collapse
Affiliation(s)
- Kun Qu
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany
| | - Zunlong Ke
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Vojtech Zila
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Bärbel Glass
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Frauke Mücksch
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Rainer Müller
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Carsten Schultz
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Barbara Müller
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| | - John A G Briggs
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany. .,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
9
|
Summers BJ, Digianantonio KM, Smaga SS, Huang PT, Zhou K, Gerber EE, Wang W, Xiong Y. Modular HIV-1 Capsid Assemblies Reveal Diverse Host-Capsid Recognition Mechanisms. Cell Host Microbe 2019; 26:203-216.e6. [PMID: 31415753 DOI: 10.1016/j.chom.2019.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/21/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
The HIV-1 capsid is an ordered protein shell that houses the viral genome during early infection. Its expansive surface consists of an ordered and interfacing array of capsid protein hexamers and pentamers that are recognized by numerous cellular proteins. Many of these proteins recognize specific, assembled capsid interfaces not present in unassembled capsid subunits. We used protein-engineering tools to capture diverse capsid assembly intermediates. We built a repertoire of capsid assemblies (ranging from two to 42 capsid protein molecules) that recreate the various surfaces in infectious capsids. These assemblies reveal unique capsid-targeting mechanisms for each of the anti-HIV factors, TRIMCyp, MxB, and TRIM5α, linked to inhibition of virus uncoating and nuclear entry, as well as the HIV-1 cofactor FEZ1 that facilitates virus intracellular trafficking. This capsid assembly repertoire enables elucidation of capsid recognition modes by known capsid-interacting factors, identification of new capsid-interacting factors, and potentially, development of capsid-targeting therapeutics.
Collapse
Affiliation(s)
- Brady J Summers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | - Sarah S Smaga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Pei-Tzu Huang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Kaifeng Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Eva E Gerber
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Wei Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
10
|
Abeyratne-Perera HK, Ogharandukun E, Chandran PL. Complex-type N-glycans on VSV-G pseudotyped HIV exhibit 'tough' sialic and 'brittle' mannose self-adhesions. SOFT MATTER 2019; 15:4525-4540. [PMID: 31099376 DOI: 10.1039/c9sm00579j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The complex-type glycan shields of eukaryotic cells have a core layer of mannose residues buried under tiers of sugars that end with sialic acid (SA) residues. We investigate if the self-latching of mannose residues, earlier reported in pure monolayer studies, also manifests in the setting of a complex-type glycan shield. Would distal SA residues impede access to the mannose core? The interactions of mannobiose-, SA-, and lactose-coated probes with the complex-type VSV-G glycan shield on an HIV pseudovirus were studied with force-spectroscopy and gold-nanoparticle solutions. In force spectroscopy, the sugar probes can be forced to sample the depths of the glycan shield, whereas with sugar-coated nanoparticles, only interactions permitted by freely-diffusive contact occur. Deep-indentation mechanics was performed to verify the inferred structure of the engineered virus and to isolate the glycan shield layer for subsequent interaction studies. The adhesion between the sugar-probes and complex-type glycan shield was deconvoluted by comparing against the cross- and self- adhesions between the sugars in pure monolayers. Results from complementing systems were consistent with mannobiose-coated probes latching to the mannose core in the glycan shield, unhindered by the SA and distal sugars, with a short-range 'brittle' release of adhesion resulting in tightly coated viruses. SA-Coated probes, however, adhere to the terminal SA layer of a glycan shield with long-range and mechanically 'tough' adhesions resulting in large-scale virus aggregation. Lactose-coated probes exhibit ill-defined adherence to sialic residues. The selection and positioning of sugars within a glycan shield can influence how carbohydrate surfaces of different composition adhere.
Collapse
Affiliation(s)
- Hashanthi K Abeyratne-Perera
- Biochemistry and Molecular Biology Department, College of Medicine, 1011 LK Downing Hall 2300 6th Street, NW, Howard University, Washington, DC 20059, USA.
| | | | | |
Collapse
|
11
|
Pornillos O, Ganser-Pornillos BK. Maturation of retroviruses. Curr Opin Virol 2019; 36:47-55. [PMID: 31185449 PMCID: PMC6730672 DOI: 10.1016/j.coviro.2019.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 01/10/2023]
Abstract
During retrovirus maturation, cleavage of the precursor structural Gag polyprotein by the viral protease induces architectural rearrangement of the virus particle from an immature into a mature, infectious form. The structural rearrangement encapsidates the viral RNA genome in a fullerene capsid, producing a diffusible viral core that can initiate infection upon entry into the cytoplasm of a host cell. Maturation is an important therapeutic window against HIV-1. In this review, we highlight recent breakthroughs in understanding of the structures of retroviral immature and mature capsid lattices that define the boundary conditions of maturation and provide novel insights on capsid transformation. We also discuss emerging insights on encapsidation of the viral genome in the mature capsid, as well as remaining questions for further study.
Collapse
Affiliation(s)
- Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Novikova M, Zhang Y, Freed EO, Peng K. Multiple Roles of HIV-1 Capsid during the Virus Replication Cycle. Virol Sin 2019; 34:119-134. [PMID: 31028522 PMCID: PMC6513821 DOI: 10.1007/s12250-019-00095-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/16/2019] [Indexed: 11/29/2022] Open
Abstract
Human immunodeficiency virus-1 capsid (HIV-1 CA) is involved in different stages of the viral replication cycle. During virion assembly, CA drives the formation of the hexameric lattice in immature viral particles, while in mature virions CA monomers assemble in cone-shaped cores surrounding the viral RNA genome and associated proteins. In addition to its functions in late stages of the viral replication cycle, CA plays key roles in a number of processes during early phases of HIV-1 infection including trafficking, uncoating, recognition by host cellular proteins and nuclear import of the viral pre-integration complex. As a result of efficient cooperation of CA with other viral and cellular proteins, integration of the viral genetic material into the host genome, which is an essential step for productive viral infection, successfully occurs. In this review, we will summarize available data on CA functions in HIV-1 replication, describing in detail its roles in late and early phases of the viral replication cycle.
Collapse
Affiliation(s)
- Mariia Novikova
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Yulan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
13
|
Darvish A, Lee JS, Peng B, Saharia J, Sundaram RVK, Goyal G, Bandara N, Ahn CW, Kim J, Dutta P, Chaiken I, Kim MJ. Mechanical characterization of HIV-1 with a solid-state nanopore sensor. Electrophoresis 2019; 40:776-783. [PMID: 30151981 PMCID: PMC7400684 DOI: 10.1002/elps.201800311] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Enveloped viruses fuse with cells to transfer their genetic materials and infect the host cell. Fusion requires deformation of both viral and cellular membranes. Since the rigidity of viral membrane is a key factor in their infectivity, studying the rigidity of viral particles is of great significance in understating viral infection. In this paper, a nanopore is used as a single molecule sensor to characterize the deformation of pseudo-type human immunodeficiency virus type 1 at sub-micron scale. Non-infective immature viruses were found to be more rigid than infective mature viruses. In addition, the effects of cholesterol and membrane proteins on the mechanical properties of mature viruses were investigated by chemically modifying the membranes. Furthermore, the deformability of single virus particles was analyzed through a recapturing technique, where the same virus was analyzed twice. The findings demonstrate the ability of nanopore resistive pulse sensing to characterize the deformation of a single virus as opposed to average ensemble measurements.
Collapse
Affiliation(s)
- Armin Darvish
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Jung Soo Lee
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Bin Peng
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Ramalingam Venkat Kalyana Sundaram
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Nuwan Bandara
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Chi Won Ahn
- Nano-Materials Laboratory, National NanoFab Center, Daejeon, Republic of Korea
| | - Jungsuk Kim
- Department of Biomedical Engineering, Gachon University, Incheon, Republic of Korea
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
14
|
Abstract
Immature retroviruses are built by the Gag polyprotein; Gag is then cut into domains, and the resulting CA capsid proteins form the mature capsid, which can mediate infection of a new cell. Murine leukemia virus (MLV) is a model retrovirus and the basis for gene-delivery vectors. We determined the capsid structures and architectures for immature and mature MLV. The mature MLV core does not enclose the genome in a closed capsid by using only part of the available proteins, as is the case for HIV-1. Instead, it wraps the genome in curved sheets incorporating most CA proteins. Retroviruses therefore have fundamentally different modes of core assembly and genome protection, which may relate to differences in their early replication. Retroviruses assemble and bud from infected cells in an immature form and require proteolytic maturation for infectivity. The CA (capsid) domains of the Gag polyproteins assemble a protein lattice as a truncated sphere in the immature virion. Proteolytic cleavage of Gag induces dramatic structural rearrangements; a subset of cleaved CA subsequently assembles into the mature core, whose architecture varies among retroviruses. Murine leukemia virus (MLV) is the prototypical γ-retrovirus and serves as the basis of retroviral vectors, but the structure of the MLV CA layer is unknown. Here we have combined X-ray crystallography with cryoelectron tomography to determine the structures of immature and mature MLV CA layers within authentic viral particles. This reveals the structural changes associated with maturation, and, by comparison with HIV-1, uncovers conserved and variable features. In contrast to HIV-1, most MLV CA is used for assembly of the mature core, which adopts variable, multilayered morphologies and does not form a closed structure. Unlike in HIV-1, there is similarity between protein–protein interfaces in the immature MLV CA layer and those in the mature CA layer, and structural maturation of MLV could be achieved through domain rotations that largely maintain hexameric interactions. Nevertheless, the dramatic architectural change on maturation indicates that extensive disassembly and reassembly are required for mature core growth. The core morphology suggests that wrapping of the genome in CA sheets may be sufficient to protect the MLV ribonucleoprotein during cell entry.
Collapse
|
15
|
Identification of a Structural Element in HIV-1 Gag Required for Virus Particle Assembly and Maturation. mBio 2018; 9:mBio.01567-18. [PMID: 30327442 PMCID: PMC6191540 DOI: 10.1128/mbio.01567-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Late in the HIV-1 replication cycle, the viral structural protein Gag is targeted to virus assembly sites at the plasma membrane of infected cells. The capsid (CA) domain of Gag plays a critical role in the formation of the hexameric Gag lattice in the immature virion, and, during particle release, CA is cleaved from the Gag precursor by the viral protease and forms the conical core of the mature virion. A highly conserved Pro-Pro-Ile-Pro (PPIP) motif (CA residues 122 to 125) [PPIP(122-125)] in a loop connecting CA helices 6 and 7 resides at a 3-fold axis formed by neighboring hexamers in the immature Gag lattice. In this study, we characterized the role of this PPIP(122-125) loop in HIV-1 assembly and maturation. While mutations P123A and P125A were relatively well tolerated, mutation of P122 and I124 significantly impaired virus release, caused Gag processing defects, and abolished infectivity. X-ray crystallography indicated that the P122A and I124A mutations induce subtle changes in the structure of the mature CA lattice which were permissive for in vitro assembly of CA tubes. Transmission electron microscopy and cryo-electron tomography demonstrated that the P122A and I124A mutations induce severe structural defects in the immature Gag lattice and abrogate conical core formation. Propagation of the P122A and I124A mutants in T-cell lines led to the selection of compensatory mutations within CA. Our findings demonstrate that the CA PPIP(122-125) loop comprises a structural element critical for the formation of the immature Gag lattice.IMPORTANCE Capsid (CA) plays multiple roles in the HIV-1 replication cycle. CA-CA domain interactions are responsible for multimerization of the Gag polyprotein at virus assembly sites, and in the mature virion, CA monomers assemble into a conical core that encapsidates the viral RNA genome. Multiple CA regions that contribute to the assembly and release of HIV-1 particles have been mapped and investigated. Here, we identified and characterized a Pro-rich loop in CA that is important for the formation of the immature Gag lattice. Changes in this region disrupt viral production and abrogate the formation of infectious, mature virions. Propagation of the mutants in culture led to the selection of second-site compensatory mutations within CA. These results expand our knowledge of the assembly and maturation steps in the viral replication cycle and may be relevant for development of antiviral drugs targeting CA.
Collapse
|
16
|
High-resolution structures of HIV-1 Gag cleavage mutants determine structural switch for virus maturation. Proc Natl Acad Sci U S A 2018; 115:E9401-E9410. [PMID: 30217893 PMCID: PMC6176557 DOI: 10.1073/pnas.1811237115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The main structural component of HIV-1 is the Gag polyprotein. During virus release, Gag is cleaved by the viral protease at five sites, triggering a major change in the structure and morphology of the virus. This transition, called maturation, is required to make an infectious virion. We used cryoelectron tomography to obtain high-resolution structures of Gag inside virus particles carrying mutations that block specific combinations of cleavage sites. Analysis of these structures suggests that different combinations of cleavages can destabilize a bundle of alpha-helices at the C terminus of CA. This destabilization, rather than formation of a beta-hairpin at the N terminus of CA as previously suggested, acts as the structural switch for maturation of the virus into its infectious form. HIV-1 maturation occurs via multiple proteolytic cleavages of the Gag polyprotein, causing rearrangement of the virus particle required for infectivity. Cleavage results in beta-hairpin formation at the N terminus of the CA (capsid) protein and loss of a six-helix bundle formed by the C terminus of CA and the neighboring SP1 peptide. How individual cleavages contribute to changes in protein structure and interactions, and how the mature, conical capsid forms, are poorly understood. Here, we employed cryoelectron tomography to determine morphology and high-resolution CA lattice structures for HIV-1 derivatives in which Gag cleavage sites are mutated. These analyses prompt us to revise current models for the crucial maturation switch. Unlike previously proposed, cleavage on either terminus of CA was sufficient, in principle, for lattice maturation, while complete processing was needed for conical capsid formation. We conclude that destabilization of the six-helix bundle, rather than beta-hairpin formation, represents the main determinant of structural maturation.
Collapse
|
17
|
Márquez CL, Lau D, Walsh J, Shah V, McGuinness C, Wong A, Aggarwal A, Parker MW, Jacques DA, Turville S, Böcking T. Kinetics of HIV-1 capsid uncoating revealed by single-molecule analysis. eLife 2018; 7:34772. [PMID: 29877795 PMCID: PMC6039174 DOI: 10.7554/elife.34772] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/05/2018] [Indexed: 02/01/2023] Open
Abstract
Uncoating of the metastable HIV-1 capsid is a tightly regulated disassembly process required for release of the viral cDNA prior to nuclear import. To understand the intrinsic capsid disassembly pathway and how it can be modulated, we have developed a single-particle fluorescence microscopy method to follow the real-time uncoating kinetics of authentic HIV capsids in vitro immediately after permeabilizing the viral membrane. Opening of the first defect in the lattice is the rate-limiting step of uncoating, which is followed by rapid, catastrophic collapse. The capsid-binding inhibitor PF74 accelerates capsid opening but stabilizes the remaining lattice. In contrast, binding of a polyanion to a conserved arginine cluster in the lattice strongly delays initiation of uncoating but does not prevent subsequent lattice disassembly. Our observations suggest that different stages of uncoating can be controlled independently with the interplay between different capsid-binding regulators likely to determine the overall uncoating kinetics. Viruses need to enter their host’s cells in order to replicate their genetic material and produce more copies of the virus. A protein shell called a capsid protects the virus during this journey. But the structure of the capsid presents a mystery. How can this protein shell be strong enough to remain intact as it enters a host cell, and yet quickly open up to release the viral genome after replication? Unlike the capsids of many other viruses, those of HIV have irregular structures that rapidly fall apart once removed from the virus. This has thwarted attempts to study intact HIV capsids in order to understand how they work. However, we do know that HIV hijacks a range of molecules produced by the invaded host cell. Dissecting their effects on the capsid is key to understanding how the capsid disassembles. Márquez et al. have now developed a method that can visualize individual HIV capsids – and how they disassemble – in real time using single-molecule microscopy. This revealed that capsids differ widely in their stability. The shell remains closed for a variable period of time and then collapses catastrophically as soon as it loses its first subunit. Using the new technique, Márquez et al. also found that a small molecule drug called PF74 causes the capsid to crack open rapidly, but the remaining shell is then stabilized against further disassembly. These observations reconcile seemingly contradictory observations made by different research groups about how this drug affects the stability of the capsid. The method developed by Márquez et al. enables researchers to measure how molecules produced by host cells interact with the viral capsid, a structure that is fundamental for the virus to establish an infection. It could also be used to test the effects of antiviral drugs that have been designed to target the capsid. The new technique has already been instrumental in related research by Mallery et al., which identifies a molecule found in host cells that stabilizes the capsid of HIV.
Collapse
Affiliation(s)
- Chantal L Márquez
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - Derrick Lau
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - James Walsh
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - Vaibhav Shah
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - Conall McGuinness
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | | | | | - Michael W Parker
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia
| | | | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| |
Collapse
|
18
|
Mak J, de Marco A. Recent advances in retroviruses via cryo-electron microscopy. Retrovirology 2018; 15:23. [PMID: 29471854 PMCID: PMC5824478 DOI: 10.1186/s12977-018-0405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
Cryo-electron microscopy has undergone a revolution in recent years and it has contributed significantly to a number of different areas in biological research. In this manuscript, we will describe some of the recent advancements in cryo-electron microscopy focussing on the advantages that this technique can bring rather than on the technology. We will then conclude discussing how the field of retrovirology has benefited from cryo-electron microscopy.
Collapse
Affiliation(s)
- Johnson Mak
- Institute for Glycomics, Griffith University Gold Coast, Southport, QLD, Australia
| | - Alex de Marco
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
19
|
Abstract
An implicit aim in cellular infection biology is to understand the mechanisms how viruses, microbes, eukaryotic parasites, and fungi usurp the functions of host cells and cause disease. Mechanistic insight is a deep understanding of the biophysical and biochemical processes that give rise to an observable phenomenon. It is typically subject to falsification, that is, it is accessible to experimentation and empirical data acquisition. This is different from logic and mathematics, which are not empirical, but built on systems of inherently consistent axioms. Here, we argue that modeling and computer simulation, combined with mechanistic insights, yields unprecedented deep understanding of phenomena in biology and especially in virus infections by providing a way of showing sufficiency of a hypothetical mechanism. This ideally complements the necessity statements accessible to empirical falsification by additional positive evidence. We discuss how computational implementations of mathematical models can assist and enhance the quantitative measurements of infection dynamics of enveloped and non-enveloped viruses and thereby help generating causal insights into virus infection biology.
Collapse
|
20
|
Wang M, Quinn CM, Perilla JR, Zhang H, Shirra R, Hou G, Byeon IJ, Suiter CL, Ablan S, Urano E, Nitz TJ, Aiken C, Freed EO, Zhang P, Schulten K, Gronenborn AM, Polenova T. Quenching protein dynamics interferes with HIV capsid maturation. Nat Commun 2017; 8:1779. [PMID: 29176596 PMCID: PMC5701193 DOI: 10.1038/s41467-017-01856-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/19/2017] [Indexed: 11/14/2022] Open
Abstract
Maturation of HIV-1 particles encompasses a complex morphological transformation of Gag via an orchestrated series of proteolytic cleavage events. A longstanding question concerns the structure of the C-terminal region of CA and the peptide SP1 (CA-SP1), which represents an intermediate during maturation of the HIV-1 virus. By integrating NMR, cryo-EM, and molecular dynamics simulations, we show that in CA-SP1 tubes assembled in vitro, which represent the features of an intermediate assembly state during maturation, the SP1 peptide exists in a dynamic helix-coil equilibrium, and that the addition of the maturation inhibitors Bevirimat and DFH-055 causes stabilization of a helical form of SP1. Moreover, the maturation-arresting SP1 mutation T8I also induces helical structure in SP1 and further global dynamical and conformational changes in CA. Overall, our results show that dynamics of CA and SP1 are critical for orderly HIV-1 maturation and that small molecules can inhibit maturation by perturbing molecular motions.
Collapse
Affiliation(s)
- Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
- University of Illinois, Theoretical and Computational Biophysics Group, Urbana, IL, 61801, USA.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Randall Shirra
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - In-Ja Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
| | - Sherimay Ablan
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Emiko Urano
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | | | - Christopher Aiken
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eric O Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Peijun Zhang
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | - Klaus Schulten
- University of Illinois, Theoretical and Computational Biophysics Group, Urbana, IL, 61801, USA
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA.
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15261, USA.
| |
Collapse
|
21
|
Abstract
A complete picture of HIV antigenicity during early replication is needed to elucidate the full range of options for controlling infection. Such information is frequently gained through analyses of isolated viral envelope antigens, host CD4 receptors, and cognate antibodies. However, direct examination of viral particles and virus-cell interactions is now possible via advanced microscopy techniques and reagents. Using such methods, we recently determined that CD4-induced (CD4i) transition state epitopes in the HIV surface antigen, gp120, while not exposed on free particles, rapidly become immunoreactive upon virus-cell binding. Here, we use 3D direct stochastic optical reconstruction microscopy (dSTORM) to show that certain CD4i epitopes specific to transition state structures are exposed across the surface of cell-bound virions, thus explaining their immunoreactivity. Moreover, such structures and their marker epitopes are dispersed to regions of virions distal to CD4 contact. We further show that the appearance and positioning of distal CD4i exposures is partially dependent on Gag maturation and intact matrix-gp41 interactions within the virion. Collectively, these observations provide a unique perspective of HIV during early replication. These features may define unique insights for understanding how humoral responses target virions and for developing related antiviral countermeasures.
Collapse
|
22
|
Mattei S, Glass B, Hagen WJH, Kräusslich HG, Briggs JAG. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 2017; 354:1434-1437. [PMID: 27980210 DOI: 10.1126/science.aah4972] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/18/2016] [Indexed: 12/30/2022]
Abstract
HIV-1 contains a cone-shaped capsid encasing the viral genome. This capsid is thought to follow fullerene geometry-a curved hexameric lattice of the capsid protein, CA, closed by incorporating 12 CA pentamers. Current models for core structure are based on crystallography of hexameric and cross-linked pentameric CA, electron microscopy of tubular CA arrays, and simulations. Here, we report subnanometer-resolution cryo-electron tomography structures of hexameric and pentameric CA within intact HIV-1 particles. Whereas the hexamer structure is compatible with crystallography studies, the pentamer forms using different interfaces. Determining multiple structures revealed how CA flexes to form the variably curved core shell. We show that HIV-1 CA assembles both aberrant and perfect fullerene cones, supporting models in which conical cores assemble de novo after maturation.
Collapse
Affiliation(s)
- Simone Mattei
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Bärbel Glass
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. .,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
In vitro assembly of the Rous Sarcoma Virus capsid protein into hexamer tubes at physiological temperature. Sci Rep 2017; 7:2913. [PMID: 28588198 PMCID: PMC5460288 DOI: 10.1038/s41598-017-02060-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
During a proteolytically-driven maturation process, the orthoretroviral capsid protein (CA) assembles to form the convex shell that surrounds the viral genome. In some orthoretroviruses, including Rous Sarcoma Virus (RSV), CA carries a short and hydrophobic spacer peptide (SP) at its C-terminus early in the maturation process, which is progressively removed as maturation proceeds. In this work, we show that RSV CA assembles in vitro at near-physiological temperatures, forming hexamer tubes that effectively model the mature capsid surface. Tube assembly is strongly influenced by electrostatic effects, and is a nucleated process that remains thermodynamically favored at lower temperatures, but is effectively arrested by the large Gibbs energy barrier associated with nucleation. RSV CA tubes are multi-layered, being formed by nested and concentric tubes of capsid hexamers. However the spacer peptide acts as a layering determinant during tube assembly. If only a minor fraction of CA-SP is present, multi-layered tube formation is blocked, and single-layered tubes predominate. This likely prevents formation of biologically aberrant multi-layered capsids in the virion. The generation of single-layered hexamer tubes facilitated 3D helical image reconstruction from cryo-electron microscopy data, revealing the basic tube architecture.
Collapse
|
24
|
Sha H, Zhu F. Parameter Optimization for Interaction between C-Terminal Domains of HIV-1 Capsid Protein. J Chem Inf Model 2017; 57:1134-1141. [PMID: 28426204 DOI: 10.1021/acs.jcim.7b00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HIV-1 capsid proteins (CAs) assemble into a capsid that encloses the viral RNA. The binding between a pair of C-terminal domains (CTDs) constitutes a major interface in both the CA dimers and the large CA assemblies. Here, we attempt to use a general residue-level coarse-grained model to describe the interaction between two isolated CTDs in Monte Carlo simulations. With the standard parameters that depend only on the residue types, the model predicts a much weaker binding in comparison to the experiments. Detailed analysis reveals that some Lennard-Jones parameters are not compatible with the experimental CTD dimer structure, thus resulting in an unfavorable interaction energy. To improve the model for the CTD binding, we introduce ad hoc modifications to a small number of Lennard-Jones parameters for some specific pairs of residues at the binding interface. Through a series of extensive Monte Carlo simulations, we identify the optimal parameters for the CTD-CTD interactions. With the refined model parameters, both the binding affinity (with a dissociation constant of 13 ± 2 μM) and the binding mode are in good agreement with the experimental data. This study demonstrates that the general interaction model based on the Lennard-Jones potential, with some modest adjustment of the parameters for key residues, could correctly reproduce the reversible protein binding, thus potentially applicable for simulating the thermodynamics of the CA assemblies.
Collapse
Affiliation(s)
- Hao Sha
- Department of Physics, Indiana University - Purdue University Indianapolis , 402 N. Blackford, LD 154, Indianapolis, Indiana 46202, United States
| | - Fangqiang Zhu
- Department of Physics, Indiana University - Purdue University Indianapolis , 402 N. Blackford, LD 154, Indianapolis, Indiana 46202, United States
| |
Collapse
|
25
|
Jeon J, Qiao X, Hung I, Mitra AK, Desfosses A, Huang D, Gor’kov PL, Craven RC, Kingston RL, Gan Z, Zhu F, Chen B. Structural Model of the Tubular Assembly of the Rous Sarcoma Virus Capsid Protein. J Am Chem Soc 2017; 139:2006-2013. [DOI: 10.1021/jacs.6b11939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jaekyun Jeon
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xin Qiao
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Ivan Hung
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Alok K. Mitra
- School
of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ambroise Desfosses
- School
of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniel Huang
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Peter L. Gor’kov
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Rebecca C. Craven
- Department
of Microbiology and Immunology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Richard L. Kingston
- School
of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Zhehong Gan
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Fangqiang Zhu
- Department
of Physics, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Bo Chen
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
26
|
Ning J, Erdemci-Tandogan G, Yufenyuy EL, Wagner J, Himes BA, Zhao G, Aiken C, Zandi R, Zhang P. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway. Nat Commun 2016; 7:13689. [PMID: 27958264 PMCID: PMC5159922 DOI: 10.1038/ncomms13689] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation. Two competing models—disassembly/reassembly and displacive—have been proposed for how immature spherical HIV virions transform into mature particles with conical cores. Here the authors provide evidence that both disassembly/reassembly and displacive processes occur sequentially during the maturation process.
Collapse
Affiliation(s)
- Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Ernest L Yufenyuy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Jef Wagner
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Christopher Aiken
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK.,Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
27
|
Designed proteins induce the formation of nanocage-containing extracellular vesicles. Nature 2016; 540:292-295. [PMID: 27919066 DOI: 10.1038/nature20607] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/31/2016] [Indexed: 01/26/2023]
Abstract
Complex biological processes are often performed by self-organizing nanostructures comprising multiple classes of macromolecules, such as ribosomes (proteins and RNA) or enveloped viruses (proteins, nucleic acids and lipids). Approaches have been developed for designing self-assembling structures consisting of either nucleic acids or proteins, but strategies for engineering hybrid biological materials are only beginning to emerge. Here we describe the design of self-assembling protein nanocages that direct their own release from human cells inside small vesicles in a manner that resembles some viruses. We refer to these hybrid biomaterials as 'enveloped protein nanocages' (EPNs). Robust EPN biogenesis requires protein sequence elements that encode three distinct functions: membrane binding, self-assembly, and recruitment of the endosomal sorting complexes required for transport (ESCRT) machinery. A variety of synthetic proteins with these functional elements induce EPN biogenesis, highlighting the modularity and generality of the design strategy. Biochemical analyses and cryo-electron microscopy reveal that one design, EPN-01, comprises small (~100 nm) vesicles containing multiple protein nanocages that closely match the structure of the designed 60-subunit self-assembling scaffold. EPNs that incorporate the vesicular stomatitis viral glycoprotein can fuse with target cells and deliver their contents, thereby transferring cargoes from one cell to another. These results show how proteins can be programmed to direct the formation of hybrid biological materials that perform complex tasks, and establish EPNs as a class of designed, modular, genetically-encoded nanomaterials that can transfer molecules between cells.
Collapse
|
28
|
Sadiq SK. Reaction-diffusion basis of retroviral infectivity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0148. [PMID: 27698042 PMCID: PMC5052732 DOI: 10.1098/rsta.2016.0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 05/27/2023]
Abstract
Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3 Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Collapse
Affiliation(s)
- S Kashif Sadiq
- Infection Biology Unit, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| |
Collapse
|
29
|
Saxena P, He L, Malyutin A, Datta SAK, Rein A, Bond KM, Jarrold MF, Spilotros A, Svergun D, Douglas T, Dragnea B. Virus Matryoshka: A Bacteriophage Particle-Guided Molecular Assembly Approach to a Monodisperse Model of the Immature Human Immunodeficiency Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5862-5872. [PMID: 27634413 PMCID: PMC6810630 DOI: 10.1002/smll.201601712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/05/2016] [Indexed: 05/27/2023]
Abstract
Immature human immunodeficiency virus type 1 (HIV-1) is approximately spherical, but is constructed from a hexagonal lattice of the Gag protein. As a hexagonal lattice is necessarily flat, the local symmetry cannot be maintained throughout the structure. This geometrical frustration presumably results in bending stress. In natural particles, the stress is relieved by incorporation of packing defects, but the magnitude of this stress and its significance for the particles is not known. In order to control this stress, we have now assembled the Gag protein on a quasi-spherical template derived from bacteriophage P22. This template is monodisperse in size and electron-transparent, enabling the use of cryo-electron microscopy in structural studies. These templated assemblies are far less polydisperse than any previously described virus-like particles (and, while constructed according to the same lattice as natural particles, contain almost no packing defects). This system gives us the ability to study the relationship between packing defects, curvature and elastic energy, and thermodynamic stability. As Gag is bound to the P22 template by single-stranded DNA, treatment of the particles with DNase enabled us to determine the intrinsic radius of curvature of a Gag lattice, unconstrained by DNA or a template. We found that this intrinsic radius is far larger than that of a virion or P22-templated particle. We conclude that Gag is under elastic strain in a particle; this has important implications for the kinetics of shell growth, the stability of the shell, and the type of defects it will assume as it grows.
Collapse
Affiliation(s)
- Pooja Saxena
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Li He
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Andrey Malyutin
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Siddhartha A K Datta
- National Cancer Institute, P.O. Box B, Building 535, Frederick, MD, 21702-1201, USA
| | - Alan Rein
- National Cancer Institute, P.O. Box B, Building 535, Frederick, MD, 21702-1201, USA
| | - Kevin M Bond
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Alessandro Spilotros
- European Molecular Biology Laboratory-DESY, Notkestrasse 85, Geb. 25a, 22603, Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory-DESY, Notkestrasse 85, Geb. 25a, 22603, Hamburg, Germany
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| |
Collapse
|
30
|
Roshal DS, Konevtsova OV, Myasnikova AE, Rochal SB. Assembly of the most topologically regular two-dimensional micro and nanocrystals with spherical, conical, and tubular shapes. Phys Rev E 2016; 94:052605. [PMID: 27967001 DOI: 10.1103/physreve.94.052605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 06/06/2023]
Abstract
We consider how to control the extension of curvature-induced defects in the hexagonal order covering different curved surfaces. In these frames we propose a physical mechanism for improving structures of two-dimensional spherical colloidal crystals (SCCs). For any SCC comprising of about 300 or less particles the mechanism transforms all extended topological defects (ETDs) in the hexagonal order into the point disclinations. Perfecting the structure is carried out by successive cycles of the particle implantation and subsequent relaxation of the crystal. The mechanism is potentially suitable for obtaining colloidosomes with better selective permeability. Our approach enables modeling the most topologically regular tubular and conical two-dimensional nanocrystals including various possible polymorphic forms of the HIV viral capsid. Different HIV-like shells with an arbitrary number of structural units (SUs) and desired geometrical parameters are easily formed. Faceting of the obtained structures is performed by minimizing the suggested elastic energy.
Collapse
Affiliation(s)
- D S Roshal
- Faculty of Physics, Southern Federal University, 5 Zorge strasse, 344090 Rostov-on-Don, Russia
| | - O V Konevtsova
- Faculty of Physics, Southern Federal University, 5 Zorge strasse, 344090 Rostov-on-Don, Russia
| | - A E Myasnikova
- Faculty of Physics, Southern Federal University, 5 Zorge strasse, 344090 Rostov-on-Don, Russia
| | - S B Rochal
- Faculty of Physics, Southern Federal University, 5 Zorge strasse, 344090 Rostov-on-Don, Russia
| |
Collapse
|
31
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
32
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
33
|
Maldonado JO, Cao S, Zhang W, Mansky LM. Distinct Morphology of Human T-Cell Leukemia Virus Type 1-Like Particles. Viruses 2016; 8:v8050132. [PMID: 27187442 PMCID: PMC4885087 DOI: 10.3390/v8050132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 02/06/2023] Open
Abstract
The Gag polyprotein is the main retroviral structural protein and is essential for the assembly and release of virus particles. In this study, we have analyzed the morphology and Gag stoichiometry of human T-cell leukemia virus type 1 (HTLV-1)-like particles and authentic, mature HTLV-1 particles by using cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission electron microscopy (STEM). HTLV-1-like particles mimicked the morphology of immature authentic HTLV-1 virions. Importantly, we have observed for the first time that the morphology of these virus-like particles (VLPs) has the unique local feature of a flat Gag lattice that does not follow the curvature of the viral membrane, resulting in an enlarged distance between the Gag lattice and the viral membrane. Other morphological features that have been previously observed with other retroviruses include: (1) a Gag lattice with multiple discontinuities; (2) membrane regions associated with the Gag lattice that exhibited a string of bead-like densities at the inner leaflet; and (3) an arrangement of the Gag lattice resembling a railroad track. Measurement of the average size and mass of VLPs and authentic HTLV-1 particles suggested a consistent range of size and Gag copy numbers in these two groups of particles. The unique local flat Gag lattice morphological feature observed suggests that HTLV-1 Gag could be arranged in a lattice structure that is distinct from that of other retroviruses characterized to date.
Collapse
Affiliation(s)
- José O Maldonado
- Institute for Molecular Virology & DDS-PhD Dual Degree Program, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA.
| | - Sheng Cao
- Institute for Molecular Virology, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA.
| | - Wei Zhang
- Institute for Molecular Virology & Characterization Facility, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
34
|
Abstract
The HIV genome materials are encaged by a proteinaceous shell called the capsid, constructed from ∼1000-1500 copies of the capsid proteins. Because its stability and integrity are critical to the normal life cycle and infectivity of the virus, the HIV capsid is a promising antiviral drug target. In this paper, we review the studies shaping our understanding of the structure and dynamics of the capsid proteins and various forms of their assemblies, as well as the assembly mechanism.
Collapse
Affiliation(s)
- Bo Chen
- Department of Physics, University of Central Florida , Orlando, Florida 32816, United States
| |
Collapse
|
35
|
Lu JX, Bayro MJ, Tycko R. Major Variations in HIV-1 Capsid Assembly Morphologies Involve Minor Variations in Molecular Structures of Structurally Ordered Protein Segments. J Biol Chem 2016; 291:13098-112. [PMID: 27129282 DOI: 10.1074/jbc.m116.720557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Indexed: 12/13/2022] Open
Abstract
We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35-60 nm diameters, planar sheets formed by the Arg(18)-Leu mutant (R18L-CA), and R18L-CA spheres with 20-100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of (15)N,(13)C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in (15)N and (13)C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing.
Collapse
Affiliation(s)
- Jun-Xia Lu
- From the Laboratory of Chemical Physics, NIDKK, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Marvin J Bayro
- From the Laboratory of Chemical Physics, NIDKK, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Robert Tycko
- From the Laboratory of Chemical Physics, NIDKK, National Institutes of Health, Bethesda, Maryland 20892-0520
| |
Collapse
|
36
|
Perilla JR, Gronenborn AM. Molecular Architecture of the Retroviral Capsid. Trends Biochem Sci 2016; 41:410-420. [PMID: 27039020 DOI: 10.1016/j.tibs.2016.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/21/2016] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
Retroviral capsid cores are proteinaceous containers that self-assemble to encase the viral genome and a handful of proteins that promote infection. Their function is to protect and aid in the delivery of viral genes to the nucleus of the host, and, in many cases, infection pathways are influenced by capsid-cellular interactions. From a mathematical perspective, capsid cores are polyhedral cages and, as such, follow well-defined geometric rules. However, marked morphological differences in shapes exist, depending on virus type. Given the specific roles of capsid in the viral life cycle, the availability of detailed molecular structures, particularly at assembly interfaces, opens novel avenues for targeted drug development against these pathogens. Here, we summarize recent advances in the structure and understanding of retroviral capsid, with particular emphasis on assemblies and the capsid cores.
Collapse
Affiliation(s)
- Juan R Perilla
- Beckman Institute for Advanced Science and Technology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, and Pittsburgh Center for HIV Protein Interactions, Pittsburgh, PA 15260, USA.
| |
Collapse
|
37
|
Hagan MF, Zandi R. Recent advances in coarse-grained modeling of virus assembly. Curr Opin Virol 2016; 18:36-43. [PMID: 27016708 DOI: 10.1016/j.coviro.2016.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA.
| |
Collapse
|
38
|
Mattei S, Schur FK, Briggs JA. Retrovirus maturation-an extraordinary structural transformation. Curr Opin Virol 2016; 18:27-35. [PMID: 27010119 DOI: 10.1016/j.coviro.2016.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
Abstract
Retroviruses such as HIV-1 assemble and bud from infected cells in an immature, non-infectious form. Subsequently, a series of proteolytic cleavages catalysed by the viral protease leads to a spectacular structural rearrangement of the viral particle into a mature form that is competent to fuse with and infect a new cell. Maturation involves changes in the structures of protein domains, in the interactions between protein domains, and in the architecture of the viral components that are assembled by the proteins. Tight control of proteolytic cleavages at different sites is required for successful maturation, and the process is a major target of antiretroviral drugs. Here we will describe what is known about the structures of immature and mature retrovirus particles, and about the maturation process by which one transitions into the other. Despite a wealth of available data, fundamental questions about retroviral maturation remain unanswered.
Collapse
Affiliation(s)
- Simone Mattei
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Florian Km Schur
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - John Ag Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany.
| |
Collapse
|
39
|
Gupta R, Lu M, Hou G, Caporini MA, Rosay M, Maas W, Struppe J, Suiter C, Ahn J, Byeon IJL, Franks WT, Orwick-Rydmark M, Bertarello A, Oschkinat H, Lesage A, Pintacuda G, Gronenborn AM, Polenova T. Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies. J Phys Chem B 2016; 120:329-39. [PMID: 26709853 DOI: 10.1021/acs.jpcb.5b12134] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies.
Collapse
Affiliation(s)
- Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Marc A Caporini
- Bruker Biospin Corporation , 15 Fortune Drive, Billerica, Massachusetts United States
| | - Melanie Rosay
- Bruker Biospin Corporation , 15 Fortune Drive, Billerica, Massachusetts United States
| | - Werner Maas
- Bruker Biospin Corporation , 15 Fortune Drive, Billerica, Massachusetts United States
| | - Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive, Billerica, Massachusetts United States
| | - Christopher Suiter
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | | - W Trent Franks
- Leibniz-Institut für Molekulare Pharmakologie , Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Marcella Orwick-Rydmark
- Leibniz-Institut für Molekulare Pharmakologie , Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Andrea Bertarello
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS/Ecole Normale Supérieure de Lyon , 5 rue de la Doua, 69100 Villeurbanne (Lyon), France
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie , Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS/Ecole Normale Supérieure de Lyon , 5 rue de la Doua, 69100 Villeurbanne (Lyon), France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS/Ecole Normale Supérieure de Lyon , 5 rue de la Doua, 69100 Villeurbanne (Lyon), France
| | | | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
40
|
Fontana J, Jurado KA, Cheng N, Ly NL, Fuchs JR, Gorelick RJ, Engelman AN, Steven AC. Distribution and Redistribution of HIV-1 Nucleocapsid Protein in Immature, Mature, and Integrase-Inhibited Virions: a Role for Integrase in Maturation. J Virol 2015; 89:9765-80. [PMID: 26178982 PMCID: PMC4577894 DOI: 10.1128/jvi.01522-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/09/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED During virion maturation, HIV-1 capsid protein assembles into a conical core containing the viral ribonucleoprotein (vRNP) complex, thought to be composed mainly of the viral RNA and nucleocapsid protein (NC). After infection, the viral RNA is reverse transcribed into double-stranded DNA, which is then incorporated into host chromosomes by integrase (IN) catalysis. Certain IN mutations (class II) and antiviral drugs (allosteric IN inhibitors [ALLINIs]) adversely affect maturation, resulting in virions that contain "eccentric condensates," electron-dense aggregates located outside seemingly empty capsids. Here we demonstrate that in addition to this mislocalization of electron density, a class II IN mutation and ALLINIs each increase the fraction of virions with malformed capsids (from ∼ 12% to ∼ 53%). Eccentric condensates have a high NC content, as demonstrated by "tomo-bubblegram" imaging, a novel labeling technique that exploits the susceptibility of NC to radiation damage. Tomo-bubblegrams also localized NC inside wild-type cores and lining the spherical Gag shell in immature virions. We conclude that eccentric condensates represent nonpackaged vRNPs and that either genetic or pharmacological inhibition of IN can impair vRNP incorporation into mature cores. Supplying IN in trans as part of a Vpr-IN fusion protein partially restored the formation of conical cores with internal electron density and the infectivity of a class II IN deletion mutant virus. Moreover, the ability of ALLINIs to induce eccentric condensate formation required both IN and viral RNA. Based on these observations, we propose a role for IN in initiating core morphogenesis and vRNP incorporation into the mature core during HIV-1 maturation. IMPORTANCE Maturation, a process essential for HIV-1 infectivity, involves core assembly, whereby the viral ribonucleoprotein (vRNP, composed of vRNA and nucleocapsid protein [NC]) is packaged into a conical capsid. Allosteric integrase inhibitors (ALLINIs) affect multiple viral processes. We have characterized ALLINIs and integrase mutants that have the same phenotype. First, by comparing the effects of ALLINIs on several steps of the viral cycle, we show that inhibition of maturation accounts for compound potency. Second, by using cryoelectron tomography, we find that ALLINIs impair conical capsid assembly. Third, by developing tomo-bubblegram imaging, which specifically labels NC protein, we find that ALLINIs block vRNP packaging; instead, vRNPs form "eccentric condensates" outside the core. Fourth, malformed cores, typical of integrase-deleted virus, are partially replaced by conical cores when integrase is supplied in trans. Fifth, vRNA is necessary for ALLINI-induced eccentric condensate formation. These observations suggest that integrase is involved in capsid morphogenesis and vRNP packaging.
Collapse
Affiliation(s)
- Juan Fontana
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kellie A Jurado
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ngoc L Ly
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alan N Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Zhang W, Cao S, Martin JL, Mueller JD, Mansky LM. Morphology and ultrastructure of retrovirus particles. AIMS BIOPHYSICS 2015; 2:343-369. [PMID: 26448965 PMCID: PMC4593330 DOI: 10.3934/biophy.2015.3.343] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retrovirus morphogenesis entails assembly of Gag proteins and the viral genome on the host plasma membrane, acquisition of the viral membrane and envelope proteins through budding, and formation of the core through the maturation process. Although in both immature and mature retroviruses, Gag and capsid proteins are organized as paracrystalline structures, the curvatures of these protein arrays are evidently not uniform within one or among all virus particles. The heterogeneity of retroviruses poses significant challenges to studying the protein contacts within the Gag and capsid lattices. This review focuses on current understanding of the molecular organization of retroviruses derived from the sub-nanometer structures of immature virus particles, helical capsid protein assemblies and soluble envelope protein complexes. These studies provide insight into the molecular elements that maintain the stability, flexibility and infectivity of virus particles. Also reviewed are morphological studies of retrovirus budding, maturation, infection and cell-cell transmission, which inform the structural transformation of the viruses and the cells during infection and viral transmission, and lead to better understanding of the interplay between the functioning viral proteins and the host cell.
Collapse
Affiliation(s)
- Wei Zhang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA ; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA ; Characterization Facility, University of Minnesota, Minneapolis, MN, USA
| | - Sheng Cao
- Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Jessica L Martin
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA ; Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Joachim D Mueller
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA ; School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA ; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA ; Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN, USA ; Department of Microbiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
42
|
Bharat TAM, Russo CJ, Löwe J, Passmore LA, Scheres SHW. Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging. Structure 2015; 23:1743-1753. [PMID: 26256537 PMCID: PMC4559595 DOI: 10.1016/j.str.2015.06.026] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/11/2015] [Accepted: 06/21/2015] [Indexed: 01/03/2023]
Abstract
Recent innovations in specimen preparation, data collection, and image processing have led to improved structure determination using single-particle electron cryomicroscopy (cryo-EM). Here we explore some of these advances to improve structures determined using electron cryotomography (cryo-ET) and sub-tomogram averaging. We implement a new three-dimensional model for the contrast transfer function, and use this in a regularized likelihood optimization algorithm as implemented in the RELION program. Using direct electron detector data, we apply both single-particle analysis and sub-tomogram averaging to analyze radiation-induced movements of the specimen. As in single-particle cryo-EM, we find that significant sample movements occur during tomographic data acquisition, and that these movements are substantially reduced through the use of ultrastable gold substrates. We obtain a sub-nanometer resolution structure of the hepatitis B capsid, and show that reducing radiation-induced specimen movement may be central to attempts at further improving tomogram quality and resolution. The Bayesian approach in RELION is extended to sub-tomogram averaging A new 3D CTF and missing-wedge model for sub-tomogram averaging is proposed Ultrastable gold supports reduce radiation-induced motion in tomography tilt series Using the above, an 8 Å structure of hepatitis B capsid from cryo-ET is presented
Collapse
Affiliation(s)
- Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Christopher J Russo
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Löwe
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lori A Passmore
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sjors H W Scheres
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
43
|
Goh BC, Perilla JR, England MR, Heyrana KJ, Craven RC, Schulten K. Atomic Modeling of an Immature Retroviral Lattice Using Molecular Dynamics and Mutagenesis. Structure 2015; 23:1414-1425. [PMID: 26118533 PMCID: PMC4526393 DOI: 10.1016/j.str.2015.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/18/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
Defining the molecular interaction between Gag proteins in an assembled hexagonal lattice of immature retrovirus particles is crucial for elucidating the mechanisms of virus assembly and maturation. Recent advances in cryo-electron microscopy have yielded subnanometer structural information on the morphology of immature Gag lattices, making computational modeling and simulations feasible for investigating the Gag-Gag interactions at the atomic level. We have examined the structure of Rous sarcoma virus (RSV) using all-atom molecular dynamics simulations and in vitro assembly, to create the first all-atom model of an immature retroviral lattice. Microseconds-long replica exchange molecular dynamics simulation of the spacer peptide (SP)-nucleocapsid (NC) subdomains results in a six-helix bundle with amphipathic properties. The resulting model of the RSV Gag lattice shows features and dynamics of the capsid protein with implications for the maturation process, and confirms the stabilizing role of the upstream and downstream regions of Gag, namely p10 and SP-NC.
Collapse
Affiliation(s)
- Boon Chong Goh
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Juan R Perilla
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew R England
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Katrina J Heyrana
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Rebecca C Craven
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
44
|
Abstract
Major advances have occurred in recent years in our understanding of HIV-1 assembly, release and maturation, as work in this field has been propelled forwards by developments in imaging technology, structural biology, and cell and molecular biology. This increase in basic knowledge is being applied to the development of novel inhibitors designed to target various aspects of virus assembly and maturation. This Review highlights recent progress in elucidating the late stages of the HIV-1 replication cycle and the related interplay between virology, cell and molecular biology, and drug discovery.
Collapse
Affiliation(s)
- Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Bg. 535, Room 110, 1050 Boyles St., Frederick, Maryland 21702-1201, USA
| |
Collapse
|
45
|
Nelson B. CytoSource: Current Issues for Cytopathology. Cancer Cytopathol 2015; 123:267-8. [PMID: 25970843 DOI: 10.1002/cncy.21556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Konvalinka J, Kräusslich HG, Müller B. Retroviral proteases and their roles in virion maturation. Virology 2015; 479-480:403-17. [PMID: 25816761 DOI: 10.1016/j.virol.2015.03.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Proteolytic processing of viral polyproteins is essential for retrovirus infectivity. Retroviral proteases (PR) become activated during or after assembly of the immature, non-infectious virion. They cleave viral polyproteins at specific sites, inducing major structural rearrangements termed maturation. Maturation converts retroviral enzymes into their functional form, transforms the immature shell into a metastable state primed for early replication events, and enhances viral entry competence. Not only cleavage at all PR recognition sites, but also an ordered sequence of cleavages is crucial. Proteolysis is tightly regulated, but the triggering mechanisms and kinetics and pathway of morphological transitions remain enigmatic. Here, we outline PR structures and substrate specificities focusing on HIV PR as a therapeutic target. We discuss design and clinical success of HIV PR inhibitors, as well as resistance development towards these drugs. Finally, we summarize data elucidating the role of proteolysis in maturation and highlight unsolved questions regarding retroviral maturation.
Collapse
Affiliation(s)
- Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany.
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| |
Collapse
|