1
|
Sannigrahi A, Ghosh S, Pradhan S, Jana P, Jawed JJ, Majumdar S, Roy S, Karmakar S, Mukherjee B, Chattopadhyay K. Leishmania protein KMP-11 modulates cholesterol transport and membrane fluidity to facilitate host cell invasion. EMBO Rep 2024:10.1038/s44319-024-00302-7. [PMID: 39482488 DOI: 10.1038/s44319-024-00302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
The first step of successful infection by any intracellular pathogen relies on its ability to invade its host cell membrane. However, the detailed structural and molecular understanding underlying lipid membrane modification during pathogenic invasion remains unclear. In this study, we show that a specific Leishmania donovani (LD) protein, KMP-11, forms oligomers that bridge LD and host macrophage (MΦ) membranes. This KMP-11 induced interaction between LD and MΦ depends on the variations in cholesterol (CHOL) and ergosterol (ERG) contents in their respective membranes. These variations are crucial for the subsequent steps of invasion, including (a) the initial attachment, (b) CHOL transport from MΦ to LD, and (c) detachment of LD from the initial point of contact through a liquid ordered (Lo) to liquid disordered (Ld) membrane-phase transition. To validate the importance of KMP-11, we generate KMP-11 depleted LD, which failed to attach and invade host MΦ. Through tryptophan-scanning mutagenesis and synthesized peptides, we develop a generalized mathematical model, which demonstrates that the hydrophobic moment and the symmetry sequence code at the membrane interacting protein domain are key factors in facilitating the membrane phase transition and, consequently, the host cell infection process by Leishmania parasites.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Souradeepa Ghosh
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Supratim Pradhan
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pulak Jana
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Junaid Jibran Jawed
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700156, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Syamal Roy
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
- INSA Senior Scientist, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Sanat Karmakar
- Department of Physics, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
2
|
Liu J. Roles of membrane mechanics-mediated feedback in membrane traffic. Curr Opin Cell Biol 2024; 89:102401. [PMID: 39018789 PMCID: PMC11297666 DOI: 10.1016/j.ceb.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024]
Abstract
Synthesizing the recent progresses, we present our perspectives on how local modulations of membrane curvature, tension, and bending energy define the feedback controls over membrane traffic processes. We speculate the potential mechanisms of, and the control logic behind, the different membrane mechanics-mediated feedback in endocytosis and exo-endocytosis coupling. We elaborate the path forward with the open questions for theoretical considerations and the grand challenges for experimental validations.
Collapse
Affiliation(s)
- Jian Liu
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
3
|
Roggeveen JV, Wang H, Shi Z, Stone HA. A calibration-free model of micropipette aspiration for measuring properties of protein condensates. Biophys J 2024; 123:1393-1403. [PMID: 37789618 PMCID: PMC11163300 DOI: 10.1016/j.bpj.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/13/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
There is growing evidence that biological condensates, which are also referred to as membraneless organelles, and liquid-liquid phase separation play critical roles regulating many important cellular processes. Understanding the roles these condensates play in biology is predicated on understanding the material properties of these complex substances. Recently, micropipette aspiration (MPA) has been proposed as a tool to assay the viscosity and surface tension of condensates. This tool allows the measurement of both material properties in one relatively simple experiment, in contrast to many other techniques that only provide one or a ratio of parameters. While this technique has been commonly used in the literature to determine the material properties of membrane-bound objects dating back decades, the model describing the dynamics of MPA for objects with an external membrane does not correctly capture the hydrodynamics of unbounded fluids, leading to a calibration parameter several orders of magnitude larger than predicted. In this work we derive a new model for MPA of biological condensates that does not require any calibration and is consistent with the hydrodynamics of the MPA geometry. We validate the predictions of this model by conducting MPA experiments on a standard silicone oil of known material properties and are able to predict the viscosity and surface tension using MPA. Finally, we reanalyze with this new model the MPA data presented in previous works for condensates formed from LAF-1 RGG domains.
Collapse
Affiliation(s)
- James V Roggeveen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey.
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
4
|
Ibrahim KA, Naidu AS, Miljkovic H, Radenovic A, Yang W. Label-Free Techniques for Probing Biomolecular Condensates. ACS NANO 2024; 18:10738-10757. [PMID: 38609349 DOI: 10.1021/acsnano.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Biomolecular condensates play important roles in a wide array of fundamental biological processes, such as cellular compartmentalization, cellular regulation, and other biochemical reactions. Since their discovery and first observations, an extensive and expansive library of tools has been developed to investigate various aspects and properties, encompassing structural and compositional information, material properties, and their evolution throughout the life cycle from formation to eventual dissolution. This Review presents an overview of the expanded set of tools and methods that researchers use to probe the properties of biomolecular condensates across diverse scales of length, concentration, stiffness, and time. In particular, we review recent years' exciting development of label-free techniques and methodologies. We broadly organize the set of tools into 3 categories: (1) imaging-based techniques, such as transmitted-light microscopy (TLM) and Brillouin microscopy (BM), (2) force spectroscopy techniques, such as atomic force microscopy (AFM) and the optical tweezer (OT), and (3) microfluidic platforms and emerging technologies. We point out the tools' key opportunities, challenges, and future perspectives and analyze their correlative potential as well as compatibility with other techniques. Additionally, we review emerging techniques, namely, differential dynamic microscopy (DDM) and interferometric scattering microscopy (iSCAT), that have huge potential for future applications in studying biomolecular condensates. Finally, we highlight how some of these techniques can be translated for diagnostics and therapy purposes. We hope this Review serves as a useful guide for new researchers in this field and aids in advancing the development of new biophysical tools to study biomolecular condensates.
Collapse
|
5
|
Sadeghi M, Rosenberger D. Dynamic framework for large-scale modeling of membranes and peripheral proteins. Methods Enzymol 2024; 701:457-514. [PMID: 39025579 DOI: 10.1016/bs.mie.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this chapter, we present a novel computational framework to study the dynamic behavior of extensive membrane systems, potentially in interaction with peripheral proteins, as an alternative to conventional simulation methods. The framework effectively describes the complex dynamics in protein-membrane systems in a mesoscopic particle-based setup. Furthermore, leveraging the hydrodynamic coupling between the membrane and its surrounding solvent, the coarse-grained model grounds its dynamics in macroscopic kinetic properties such as viscosity and diffusion coefficients, marrying the advantages of continuum- and particle-based approaches. We introduce the theoretical background and the parameter-space optimization method in a step-by-step fashion, present the hydrodynamic coupling method in detail, and demonstrate the application of the model at each stage through illuminating examples. We believe this modeling framework to hold great potential for simulating membrane and protein systems at biological spatiotemporal scales, and offer substantial flexibility for further development and parametrization.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
6
|
Yang S, Shi Z. Quantification of membrane geometry and protein sorting on cell membrane protrusions using fluorescence microscopy. Methods Enzymol 2024; 700:385-411. [PMID: 38971608 DOI: 10.1016/bs.mie.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Plasma membranes are flexible and can exhibit numerous shapes below the optical diffraction limit. The shape of cell periphery can either induce or be a product of local protein density changes, encoding numerous cellular functions. However, quantifying membrane curvature and the ensuing sorting of proteins in live cells remains technically demanding. Here, we demonstrate the use of simple widefield fluorescence microscopy to study the geometrical properties (i.e., radius, length, and number) of thin membrane protrusions. Importantly, the quantification of protrusion radius establishes a platform for studying the curvature preferences of membrane proteins.
Collapse
Affiliation(s)
- Shilong Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
7
|
Carney KR, Khan AM, Stam S, Samson SC, Mittal N, Han SJ, Bidone TC, Mendoza MC. Nascent adhesions shorten the period of lamellipodium protrusion through the Brownian ratchet mechanism. Mol Biol Cell 2023; 34:ar115. [PMID: 37672339 PMCID: PMC10846621 DOI: 10.1091/mbc.e23-08-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Directional cell migration is driven by the conversion of oscillating edge motion into lasting periods of leading edge protrusion. Actin polymerization against the membrane and adhesions control edge motion, but the exact mechanisms that determine protrusion period remain elusive. We addressed this by developing a computational model in which polymerization of actin filaments against a deformable membrane and variable adhesion dynamics support edge motion. Consistent with previous reports, our model showed that actin polymerization and adhesion lifetime power protrusion velocity. However, increasing adhesion lifetime decreased the protrusion period. Measurements of adhesion lifetime and edge motion in migrating cells confirmed that adhesion lifetime is associated with and promotes protrusion velocity, but decreased duration. Our model showed that adhesions' control of protrusion persistence originates from the Brownian ratchet mechanism for actin filament polymerization. With longer adhesion lifetime or increased-adhesion density, the proportion of actin filaments tethered to the substrate increased, maintaining filaments against the cell membrane. The reduced filament-membrane distance generated pushing force for high edge velocity, but limited further polymerization needed for protrusion duration. We propose a mechanism for cell edge protrusion in which adhesion strength regulates actin filament polymerization to control the periods of leading edge protrusion.
Collapse
Affiliation(s)
- Keith R. Carney
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Akib M. Khan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Samantha Stam
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Shiela C. Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Nikhil Mittal
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Sangyoon J. Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Tamara C. Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
- Scientific Computing and Imaging Institute, Salt Lake City, UT 84112
| | - Michelle C. Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| |
Collapse
|
8
|
Santiago JA, Monroy F. Inhomogeneous Canham-Helfrich Abscission in Catenoid Necks under Critical Membrane Mosaicity. MEMBRANES 2023; 13:796. [PMID: 37755218 PMCID: PMC10534449 DOI: 10.3390/membranes13090796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The mechanical effects of membrane compositional inhomogeneities are analyzed in a process analogous to neck formation in cellular membranes. We cast on the Canham-Helfrich model of fluid membranes with both the spontaneous curvature and the surface tension being non-homogeneous functions along the cell membrane. The inhomogeneous distribution of necking forces is determined by the equilibrium mechanical equations and the boundary conditions as considered in the axisymmetric setting compatible with the necking process. To establish the role played by mechanical inhomogeneity, we focus on the catenoid, a surface of zero mean curvature. Analytic solutions are shown to exist for the spontaneous curvature and the constrictive forces in terms of the border radii. Our theoretical analysis shows that the inhomogeneous distribution of spontaneous curvature in a mosaic-like neck constrictional forces potentially contributes to the membrane scission under minimized work in living cells.
Collapse
Affiliation(s)
- José Antonio Santiago
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Cuajimalpa, Vasco de Quiroga 4871, Ciudad de México 05384, Mexico
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain;
- Translational Biophysics, Institute for Biomedical Research, Hospital Doce de Octubre (imas12), Av. Andalucía s/n, 28041 Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain;
- Translational Biophysics, Institute for Biomedical Research, Hospital Doce de Octubre (imas12), Av. Andalucía s/n, 28041 Madrid, Spain
| |
Collapse
|
9
|
Ogunmowo TH, Jing H, Raychaudhuri S, Kusick GF, Imoto Y, Li S, Itoh K, Ma Y, Jafri H, Dalva MB, Chapman ER, Ha T, Watanabe S, Liu J. Membrane compression by synaptic vesicle exocytosis triggers ultrafast endocytosis. Nat Commun 2023; 14:2888. [PMID: 37210439 PMCID: PMC10199930 DOI: 10.1038/s41467-023-38595-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
Compensatory endocytosis keeps the membrane surface area of secretory cells constant following exocytosis. At chemical synapses, clathrin-independent ultrafast endocytosis maintains such homeostasis. This endocytic pathway is temporally and spatially coupled to exocytosis; it initiates within 50 ms at the region immediately next to the active zone where vesicles fuse. However, the coupling mechanism is unknown. Here, we demonstrate that filamentous actin is organized as a ring, surrounding the active zone at mouse hippocampal synapses. Assuming the membrane area conservation is due to this actin ring, our theoretical model suggests that flattening of fused vesicles exerts lateral compression in the plasma membrane, resulting in rapid formation of endocytic pits at the border between the active zone and the surrounding actin-enriched region. Consistent with model predictions, our data show that ultrafast endocytosis requires sufficient compression by exocytosis of multiple vesicles and does not initiate when actin organization is disrupted, either pharmacologically or by ablation of the actin-binding protein Epsin1. Our work suggests that membrane mechanics underlie the rapid coupling of exocytosis to endocytosis at synapses.
Collapse
Affiliation(s)
- Tyler H Ogunmowo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Haoyuan Jing
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Sumana Raychaudhuri
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Grant F Kusick
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Yuuta Imoto
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Shuo Li
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA, US
| | - Kie Itoh
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Ye Ma
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Haani Jafri
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
- Department of Cell and Molecular Biology and the Tulane Brain Institute, Tulane University, New Orleans, LA, US
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, US
- Howard Hughes Medical Institute, Madison, WI, US
| | - Taekjip Ha
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, US
- Howard Hughes Medical Institute, Baltimore, MD, US
| | - Shigeki Watanabe
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| | - Jian Liu
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| |
Collapse
|
10
|
Day CA, Kang M. The Utility of Fluorescence Recovery after Photobleaching (FRAP) to Study the Plasma Membrane. MEMBRANES 2023; 13:membranes13050492. [PMID: 37233553 DOI: 10.3390/membranes13050492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The plasma membrane of mammalian cells is involved in a wide variety of cellular processes, including, but not limited to, endocytosis and exocytosis, adhesion and migration, and signaling. The regulation of these processes requires the plasma membrane to be highly organized and dynamic. Much of the plasma membrane organization exists at temporal and spatial scales that cannot be directly observed with fluorescence microscopy. Therefore, approaches that report on the membrane's physical parameters must often be utilized to infer membrane organization. As discussed here, diffusion measurements are one such approach that has allowed researchers to understand the subresolution organization of the plasma membrane. Fluorescence recovery after photobleaching (or FRAP) is the most widely accessible method for measuring diffusion in a living cell and has proven to be a powerful tool in cell biology research. Here, we discuss the theoretical underpinnings that allow diffusion measurements to be used in elucidating the organization of the plasma membrane. We also discuss the basic FRAP methodology and the mathematical approaches for deriving quantitative measurements from FRAP recovery curves. FRAP is one of many methods used to measure diffusion in live cell membranes; thus, we compare FRAP with two other popular methods: fluorescence correlation microscopy and single-particle tracking. Lastly, we discuss various plasma membrane organization models developed and tested using diffusion measurements.
Collapse
Affiliation(s)
- Charles A Day
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Minchul Kang
- Department of Mathematics, Texas A&M-Commerce, Commerce, TX 75428, USA
| |
Collapse
|
11
|
Liang Y, Ogawa S, Inaba H, Matsuura K. Dramatic morphological changes in liposomes induced by peptide nanofibers reversibly polymerized and depolymerized by the photoisomerization of spiropyran. Front Mol Biosci 2023; 10:1137885. [PMID: 37065452 PMCID: PMC10101338 DOI: 10.3389/fmolb.2023.1137885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Cytoskeletons such as microtubules and actin filaments are natural protein assemblies, which dynamically control cellular morphology by reversible polymerization/depolymerization. Recently, the control of polymerization/depolymerization of fibrous protein/peptide assemblies by external stimuli has attracted significant attention. However, as far as we know, the creation of an “artificial cytoskeleton” that reversibly controls the polymerization/depolymerization of peptide nanofiber in giant unilamellar vesicles (GUVs) has not been reported. Here, we developed peptide nanofiber self-assembled from spiropyran (SP)-modified β-sheet-forming peptides, which can be reversibly polymerized/depolymerized by light. The reversible photoisomerization of the SP-modified peptide (FKFECSPKFE) to the merocyanine-peptide (FKFECMCKFE) by ultraviolet (UV) and visible light irradiation was confirmed by UV–visible spectroscopy. Confocal laser scanning microscopy with thioflavin T staining and transmission electron microscopy of the peptides showed that the SP-peptide formed β-sheet nanofibers, whereas the photoisomerization to the merocyanine-peptide almost completely dissociated the nanofibers. The merocyanine peptide was encapsulated in spherical GUVs comprising of phospholipids as artificial cell models. Interestingly, the morphology of GUV encapsulating the merocyanine-peptide dramatically changed into worm-like vesicles by the photoisomerization to the SP-modified peptide, and then reversibly changed into spherical GUV by the photoisomerization to the MC-modified peptide. These dynamic morphological changes in GUVs by light can be applied as components of a molecular robot with artificially controlled cellular functions.
Collapse
Affiliation(s)
- Yingbing Liang
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University Koyama-Minami 4-101, Tottori, Japan
| | - Shigesaburo Ogawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University Koyama-Minami 4-101, Tottori, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University Koyama-Minami 4-101, Tottori, Japan
- Centre for Research on Green Sustainable Chemistry Tottori University Koyama-Minami 4-101, Tottori, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University Koyama-Minami 4-101, Tottori, Japan
- Centre for Research on Green Sustainable Chemistry Tottori University Koyama-Minami 4-101, Tottori, Japan
- *Correspondence: Kazunori Matsuura,
| |
Collapse
|
12
|
Close, but not too close: a mesoscopic description of (a)symmetry and membrane shaping mechanisms. Emerg Top Life Sci 2023; 7:81-93. [PMID: 36645200 DOI: 10.1042/etls20220078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023]
Abstract
Biomembranes are fundamental to our understanding of the cell, the basic building block of all life. An intriguing aspect of membranes is their ability to assume a variety of shapes, which is crucial for cell function. Here, we review various membrane shaping mechanisms with special focus on the current understanding of how local curvature and local rigidity induced by membrane proteins leads to emerging forces and consequently large-scale membrane deformations. We also argue that describing the interaction of rigid proteins with membranes purely in terms of local membrane curvature is incomplete and that changes in the membrane rigidity moduli must also be considered.
Collapse
|
13
|
Loshkareva AS, Popova MM, Shilova LA, Fedorova NV, Timofeeva TA, Galimzyanov TR, Kuzmin PI, Knyazev DG, Batishchev OV. Influenza A Virus M1 Protein Non-Specifically Deforms Charged Lipid Membranes and Specifically Interacts with the Raft Boundary. MEMBRANES 2023; 13:76. [PMID: 36676883 PMCID: PMC9864314 DOI: 10.3390/membranes13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Topological rearrangements of biological membranes, such as fusion and fission, often require a sophisticated interplay between different proteins and cellular membranes. However, in the case of fusion proteins of enveloped viruses, even one molecule can execute membrane restructurings. Growing evidence indicates that matrix proteins of enveloped viruses can solely trigger the membrane bending required for another crucial step in virogenesis, the budding of progeny virions. For the case of the influenza A virus matrix protein M1, different studies report both in favor and against M1 being able to produce virus-like particles without other viral proteins. Here, we investigated the physicochemical mechanisms of M1 membrane activity on giant unilamellar vesicles of different lipid compositions using fluorescent confocal microscopy. We confirmed that M1 predominantly interacts electrostatically with the membrane, and its ability to deform the lipid bilayer is non-specific and typical for membrane-binding proteins and polypeptides. However, in the case of phase-separating membranes, M1 demonstrates a unique ability to induce macro-phase separation, probably due to the high affinity of M1's amphipathic helices to the raft boundary. Thus, we suggest that M1 is tailored to deform charged membranes with a specific activity in the case of phase-separating membranes.
Collapse
Affiliation(s)
- Anna S. Loshkareva
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marina M. Popova
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Liudmila A. Shilova
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Natalia V. Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana A. Timofeeva
- Laboratory of Physiology of Viruses, D. I. Ivanovsky Institute of Virology, FSBI N. F. Gamaleya NRCEM, Ministry of Health of Russian Federation, 123098 Moscow, Russia
| | - Timur R. Galimzyanov
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Petr I. Kuzmin
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
14
|
Yang S, Miao X, Arnold S, Li B, Ly AT, Wang H, Wang M, Guo X, Pathak MM, Zhao W, Cox CD, Shi Z. Membrane curvature governs the distribution of Piezo1 in live cells. Nat Commun 2022; 13:7467. [PMID: 36463216 PMCID: PMC9719557 DOI: 10.1038/s41467-022-35034-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Piezo1 is a bona fide mechanosensitive ion channel ubiquitously expressed in mammalian cells. The distribution of Piezo1 within a cell is essential for various biological processes including cytokinesis, cell migration, and wound healing. However, the underlying principles that guide the subcellular distribution of Piezo1 remain largely unexplored. Here, we demonstrate that membrane curvature serves as a key regulator of the spatial distribution of Piezo1 in the plasma membrane of living cells. Piezo1 depletes from highly curved membrane protrusions such as filopodia and enriches to nanoscale membrane invaginations. Quantification of the curvature-dependent sorting of Piezo1 directly reveals the in situ nano-geometry of the Piezo1-membrane complex. Piezo1 density on filopodia increases upon activation, independent of calcium, suggesting flattening of the channel upon opening. Consequently, the expression of Piezo1 inhibits filopodia formation, an effect that diminishes with channel activation.
Collapse
Affiliation(s)
- Shilong Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xinwen Miao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637457, Singapore, Singapore
| | - Steven Arnold
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Boxuan Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Alan T Ly
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, 92697, USA
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Matthew Wang
- Department of Physics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xiangfu Guo
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637457, Singapore, Singapore
| | - Medha M Pathak
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, 92697, USA
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637457, Singapore, Singapore
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA.
- Cancer Pharmacology Research Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
15
|
Membrane Lipid Reshaping Underlies Oxidative Stress Sensing by the Mitochondrial Proteins UCP1 and ANT1. Antioxidants (Basel) 2022; 11:antiox11122314. [PMID: 36552523 PMCID: PMC9774536 DOI: 10.3390/antiox11122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress and ROS are important players in the pathogenesis of numerous diseases. In addition to directly altering proteins, ROS also affects lipids with negative intrinsic curvature such as phosphatidylethanolamine (PE), producing PE adducts and lysolipids. The formation of PE adducts potentiates the protonophoric activity of mitochondrial uncoupling proteins, but the molecular mechanism remains unclear. Here, we linked the ROS-mediated change in lipid shape to the mechanical properties of the membrane and the function of uncoupling protein 1 (UCP1) and adenine nucleotide translocase 1 (ANT1). We show that the increase in the protonophoric activity of both proteins occurs due to the decrease in bending modulus in lipid bilayers in the presence of lysophosphatidylcholines (OPC and MPC) and PE adducts. Moreover, MD simulations showed that modified PEs and lysolipids change the lateral pressure profile of the membrane in the same direction and by the similar amplitude, indicating that modified PEs act as lipids with positive intrinsic curvature. Both results indicate that oxidative stress decreases stored curvature elastic stress (SCES) in the lipid bilayer membrane. We demonstrated that UCP1 and ANT1 sense SCES and proposed a novel regulatory mechanism for the function of these proteins. The new findings should draw the attention of the scientific community to this important and unexplored area of redox biochemistry.
Collapse
|
16
|
Norris MJ, Husby ML, Kiosses WB, Yin J, Saxena R, Rennick LJ, Heiner A, Harkins SS, Pokhrel R, Schendel SL, Hastie KM, Landeras-Bueno S, Salie ZL, Lee B, Chapagain PP, Maisner A, Duprex WP, Stahelin RV, Saphire EO. Measles and Nipah virus assembly: Specific lipid binding drives matrix polymerization. SCIENCE ADVANCES 2022; 8:eabn1440. [PMID: 35857835 PMCID: PMC9299542 DOI: 10.1126/sciadv.abn1440] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/06/2022] [Indexed: 05/03/2023]
Abstract
Measles virus, Nipah virus, and multiple other paramyxoviruses cause disease outbreaks in humans and animals worldwide. The paramyxovirus matrix (M) protein mediates virion assembly and budding from host cell membranes. M is thus a key target for antivirals, but few high-resolution structures of paramyxovirus M are available, and we lack the clear understanding of how viral M proteins interact with membrane lipids to mediate viral assembly and egress that is needed to guide antiviral design. Here, we reveal that M proteins associate with phosphatidylserine and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane. Using x-ray crystallography, electron microscopy, and molecular dynamics, we demonstrate that PI(4,5)P2 binding induces conformational and electrostatic changes in the M protein surface that trigger membrane deformation, matrix layer polymerization, and virion assembly.
Collapse
Affiliation(s)
- Michael J. Norris
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Monica L. Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - William B. Kiosses
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jieyun Yin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Roopashi Saxena
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Linda J. Rennick
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Anja Heiner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Stephanie S. Harkins
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Rudramani Pokhrel
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Sharon L. Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zhe Li Salie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - W. Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines 2022; 10:1593. [PMID: 35884898 PMCID: PMC9313035 DOI: 10.3390/biomedicines10071593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Within 1 millisecond of action potential arrival at presynaptic terminals voltage-gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
18
|
Aryal CM, Bui NN, Song L, Pan J. The N-terminal helices of amphiphysin and endophilin have different capabilities of membrane remodeling. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183907. [PMID: 35247332 DOI: 10.1016/j.bbamem.2022.183907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Amphiphysin and endophilin are two members of the N-BAR protein family. We have reported membrane interactions of the helix 0 of endophilin (H0-Endo). Here we investigate membrane modulations caused by the helix 0 of amphiphysin (H0-Amph). Electron paramagnetic resonance (EPR) spectroscopy was used to explore membrane properties. H0-Amph was found to reduce lipid mobility, make the membrane interior more polar, and decrease lipid chain orientational order. The EPR data also showed that for anionic membranes, H0-Endo acted as a more potent modulator. For instance, at peptide-to-lipid (P/L) ratio of 1/20, the peak-to-peak splitting was increased by 0.27 G and 1.89 G by H0-Amph and H0-Endo, respectively. Similarly, H0-Endo caused a larger change in the bilayer polarity than H0-Amph (30% versus 12% at P/L = 1/20). At P/L = 1/50, the chain orientational order was decreased by 26% and 66% by H0-Amph and H0-Endo, respectively. The different capabilities were explained by considering hydrophobicity score distributions. We employed atomic force microscopy to investigate membrane structural changes. Both peptides caused the formation of micron-sized holes. Interestingly, only H0-Amph induced membrane fusion as evidenced by the formation of high-rise regions. Lastly, experiments of giant unilamellar vesicles showed that H0-Amph and H0-Endo generated thin tubules and miniscule vesicles, respectively. Together, our studies showed that both helices are effective in altering membrane properties; the observed changes might be important for membrane curvature induction. Importantly, comparisons between the two peptides revealed that the degree of membrane remodeling is dependent on the sequence of the N-terminal helix of the N-BAR protein family.
Collapse
Affiliation(s)
- Chinta M Aryal
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America; MED-Cancer & Cell Biology, University of Cincinnati, Cincinnati, OH 45267
| | - Nhat Nguyen Bui
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America.
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America.
| |
Collapse
|
19
|
The many faces of membrane tension: Challenges across systems and scales. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183897. [PMID: 35231438 DOI: 10.1016/j.bbamem.2022.183897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Our understanding of the role of membrane tension in the field of membrane biophysics is rapidly evolving from a passive construct to an active player in a variety of cellular phenomena. Membrane tension has been shown to be a key regulator of many cellular processes ranging including trafficking, ion channel activation, and the invasion of red blood cells by malaria parasites. Recent experimental advances in cells, including the development of a fluorescent tension reporter, have shown that membrane tension is heterogeneous. In this mini-review, I summarize the recent advances in membrane tension measurements and discuss the contributions from different cellular constituents such as the cortical cytoskeleton. Then, I will explore how these different complexities can be considered in biophysical models of different scales. Finally, I will elaborate on the need for iterations between models and experiments as technologies in both fields advance to enable us to obtain critical insights into the physiological role of membrane tension as a critical component of mechanotransduction.
Collapse
|
20
|
Sadeghi M. Investigating the entropic nature of membrane-mediated interactions driving the aggregation of peripheral proteins. SOFT MATTER 2022; 18:3917-3927. [PMID: 35543220 DOI: 10.1039/d2sm00118g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral membrane-associated proteins are known to accumulate on the surface of biomembranes as a result of membrane-mediated interactions. For a pair of rotationally-symmetric curvature-inducing proteins, membrane mechanics at the low-temperature limit predicts pure repulsion. On the other hand, temperature-dependent entropic forces arise between pairs of stiff-binding proteins suppressing membrane fluctuations. These Casimir-like interactions have thus been suggested as candidates for attractive forces leading to aggregation. With dense assemblies of peripheral proteins on the membrane, both these abstractions encounter short-range and multi-body complications. Here, we make use of a particle-based membrane model augmented with flexible peripheral proteins to quantify purely membrane-mediated interactions and investigate their underlying nature. We introduce a continuous reaction coordinate corresponding to the progression of protein aggregation. We obtain free energy and entropy landscapes for different surface concentrations along this reaction coordinate. In parallel, we investigate time-dependent estimates of membrane entropy corresponding to membrane undulations and coarse-grained director field and how they change dynamically with protein aggregation. Congruent outcomes of the two approaches point to the conclusion that for low surface concentrations, interactions with an entropic nature may drive the aggregation. But at high concentrations, enthalpic contributions due to concerted membrane deformation by protein clusters are dominant.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany.
| |
Collapse
|
21
|
Bashkirov PV, Kuzmin PI, Vera Lillo J, Frolov VA. Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes. Annu Rev Biophys 2022; 51:473-497. [PMID: 35239417 PMCID: PMC10787580 DOI: 10.1146/annurev-biophys-011422-100054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular membranes self-assemble from and interact with various molecular species. Each molecule locally shapes the lipid bilayer, the soft elastic core of cellular membranes. The dynamic architecture of intracellular membrane systems is based on elastic transformations and lateral redistribution of these elementary shapes, driven by chemical and curvature stress gradients. The minimization of the total elastic stress by such redistribution composes the most basic, primordial mechanism of membrane curvature-composition coupling (CCC). Although CCC is generally considered in the context of dynamic compositional heterogeneity of cellular membrane systems, in this article we discuss a broader involvement of CCC in controlling membrane deformations. We focus specifically on the mesoscale membrane transformations in open, reservoir-governed systems, such as membrane budding, tubulation, and the emergence of highly curved sites of membrane fusion and fission. We reveal that the reshuffling of molecular shapes constitutes an independent deformation mode with complex rheological properties.This mode controls effective elasticity of local deformations as well as stationary elastic stress, thus emerging as a major regulator of intracellular membrane remodeling.
Collapse
Affiliation(s)
- Pavel V Bashkirov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Peter I Kuzmin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Javier Vera Lillo
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain;
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
22
|
Lei F, Tian Y, Miao J, Pan L, Tong R, Zhou Y. Immunotoxicity pathway and mechanism of benzo[a]pyrene on hemocytes of Chlamys farreri in vitro. FISH & SHELLFISH IMMUNOLOGY 2022; 124:208-218. [PMID: 35413479 DOI: 10.1016/j.fsi.2022.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Benzo[a]pyrene (B[a]P), a typical PAHs widely existing in the marine environment, has been extensively studied for its immunotoxicity due to its persistence and high toxicity. Nevertheless, the immunotoxicity mechanism remain incompletely understood. In this study, isolated hemocytes of Chlamys farreri were exposed at three concentrations of B[a]P (5, 10 and 15 μg/mL), and the effects of B[a]P on detoxification metabolism, signal transduction, humoral immune factors, exocytosis and phagocytosis relevant proteins and immune function at 0, 6, 12, 24 h were studied. Results illustrated the AhR, ARNT and CYP1A1 were significantly induced by B[a]P at 12 h. Additionally, the content of B[a]P metabolite BPDE increased in a dose-dependent manner with pollutants. Under B[a]P stimulation, the expressions of PTK (Src, Fyn) and PLC-Ca2+-PKC pathway gene increased significantly, while the transcription level of AC-cAMP-PKA pathway gene decreased remarkably. Additionally, the expressions of nuclear transcription factors (CREB, NF-κB), complement system genes and C-type lectin genes up-regulated obviously. The gene expressions of phagocytosis and exocytosis related proteins were also notably affected. 5 μg/mL B[a]P could promote phagocytosis in a transitory time, but with the increase of exposure time and concentration of B[a]P, the phagocytosis, antibacterial and bacteriolytic activities gradually decreased. These results indicated that similar to vertebrates, BPDE, the metabolite of B[a]P, mediated downstream signal transduction via PTK in bivalves. The declined of the immune defense ability of hemocytes might be closely related to the inhibition of AC-cAMP-PKA pathway and the imbalance of intracellular Ca2+ pathway. In addition, the results manifested that complement and lectin systems play a significant role in regulating immune response. In this study, the direct relationship between detoxification metabolism and immune signal transduction in bivalves under B[a]P stress was demonstrated for the first time, which provided important information for the potential molecular mechanism of B[a]P-induced immune system disorder in bivalves.
Collapse
Affiliation(s)
- Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
23
|
Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions. J Membr Biol 2022; 255:237-259. [PMID: 35451616 PMCID: PMC9028910 DOI: 10.1007/s00232-022-00237-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Cellular membranes are highly dynamic in shape. They can rapidly and precisely regulate their shape to perform various cellular functions. The protein’s ability to sense membrane curvature is essential in various biological events such as cell signaling and membrane trafficking. As they are bound, these curvature-sensing proteins may also change the local membrane shape by one or more curvature driving mechanisms. Established curvature-sensing/driving mechanisms rely on proteins with specific structural features such as amphipathic helices and intrinsically curved shapes. However, the recent discovery and characterization of many proteins have shattered the protein structure–function paradigm, believing that the protein functions require a unique structural feature. Typically, such structure-independent functions are carried either entirely by intrinsically disordered proteins or hybrid proteins containing disordered regions and structured domains. It is becoming more apparent that disordered proteins and regions can be potent sensors/inducers of membrane curvatures. In this article, we outline the basic features of disordered proteins and regions, the motifs in such proteins that encode the function, membrane remodeling by disordered proteins and regions, and assays that may be employed to investigate curvature sensing and generation by ordered/disordered proteins.
Collapse
|
24
|
Sapp K, Sodt AJ. Observed steric crowding at modest coverage requires a particular membrane-binding scheme or a complementary mechanism. Biophys J 2022; 121:430-438. [PMID: 34971618 PMCID: PMC8822614 DOI: 10.1016/j.bpj.2021.12.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/21/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
Membrane shape transitions, including fusion and fission, play an important role in many biological processes. It is therefore essential to understand mechanisms of "curvature generation," the mathematical quantification of membrane shape. Among the different mechanisms is the effect of steric pressure between proteins crowded on a surface. At a higher curvature, there is more space for the crowders and less steric pressure. Currently, the physical model of curvature induction by crowding views the proteins as being bound to the surface as a whole rather than to the underlying lipids. Here, we split the previously understood model into two pieces: first, the reduction in steric pressure due to reduced collisions between proteins, and second, the increased area available to the protein that is independent of other crowders. The cases are distinguished by how the crowder is attached to the membrane. When a protein is attached to a specific lipid, as is the case in a typical crowding experiment, one should not model its lateral entropy; this has already been accounted for by the underlying lipid. The Carnahan-Starling pressure includes this lateral entropy. The revised theory predicts that a purely entropic crowding mechanism is inconsistent with observations of reshaping at the lower range of surface coverage, suggesting that an additional mechanism is at play.
Collapse
Affiliation(s)
- Kayla Sapp
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Alexander J. Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland,Corresponding author
| |
Collapse
|
25
|
Batishchev OV. Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:247-260. [PMCID: PMC9734521 DOI: 10.1134/s1990747822050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Over the past few years, the attention of the whole world has been riveted to the emergence of new dangerous strains of viruses, among which a special place is occupied by coronaviruses that have overcome the interspecies barrier in the past 20 years: SARS viruses (SARS), Middle East respiratory syndrome (MERS), as well as a new coronavirus infection (SARS-CoV-2), which caused the largest pandemic since the Spanish flu in 1918. Coronaviruses are members of a class of enveloped viruses that have a lipoprotein envelope. This class also includes such serious pathogens as human immunodeficiency virus (HIV), hepatitis, Ebola virus, influenza, etc. Despite significant differences in the clinical picture of the course of disease caused by enveloped viruses, they themselves have a number of characteristic features, which determine their commonality. Regardless of the way of penetration into the cell—by endocytosis or direct fusion with the cell membrane—enveloped viruses are characterized by the following stages of interaction with the target cell: binding to receptors on the cell surface, interaction of the surface glycoproteins of the virus with the membrane structures of the infected cell, fusion of the lipid envelope of the virion with plasma or endosomal membrane, destruction of the protein capsid and its dissociation from the viral nucleoprotein. Subsequently, within the infected cell, the newly synthesized viral proteins must self-assemble on various membrane structures to form a progeny virion. Thus, both the initial stages of viral infection and the assembly and release of new viral particles are associated with the activity of viral proteins in relation to the cell membrane and its organelles. This review is devoted to the analysis of physicochemical mechanisms of functioning of the main structural proteins of a number of enveloped viruses in order to identify possible strategies for the membrane activity of such proteins at various stages of viral infection of the cell.
Collapse
Affiliation(s)
- O. V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
26
|
Gorelova V, Sprakel J, Weijers D. Plant cell polarity as the nexus of tissue mechanics and morphogenesis. NATURE PLANTS 2021; 7:1548-1559. [PMID: 34887521 DOI: 10.1038/s41477-021-01021-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 05/20/2023]
Abstract
How reproducible body patterns emerge from the collective activity of individual cells is a key question in developmental biology. Plant cells are encaged in their walls and unable to migrate. Morphogenesis thus relies on directional cell division, by precise positioning of division planes, and anisotropic cellular growth, mediated by regulated mechanical inhomogeneity of the walls. Both processes require the prior establishment of cell polarity, marked by the formation of polar domains at the plasma membrane, in a number of developmental contexts. The establishment of cell polarity involves biochemical cues, but increasing evidence suggests that mechanical forces also play a prominent instructive role. While evidence for mutual regulation between cell polarity and tissue mechanics is emerging, the nature of this bidirectional feedback remains unclear. Here we review the role of cell polarity at the interface of tissue mechanics and morphogenesis. We also aim to integrate biochemistry-centred insights with concepts derived from physics and physical chemistry. Lastly, we propose a set of questions that will help address the fundamental nature of cell polarization and its mechanistic basis.
Collapse
Affiliation(s)
- Vera Gorelova
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
27
|
Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization. Nat Commun 2021; 12:6550. [PMID: 34772909 PMCID: PMC8589976 DOI: 10.1038/s41467-021-26591-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
In many physiological situations, BAR proteins reshape membranes with pre-existing curvature (templates), contributing to essential cellular processes. However, the mechanism and the biological implications of this reshaping process remain unclear. Here we show, both experimentally and through modelling, that BAR proteins reshape low curvature membrane templates through a mechanochemical phase transition. This phenomenon depends on initial template shape and involves the co-existence and progressive transition between distinct local states in terms of molecular organization (protein arrangement and density) and membrane shape (template size and spherical versus cylindrical curvature). Further, we demonstrate in cells that this phenomenon enables a mechanotransduction mode, in which cellular stretch leads to the mechanical formation of membrane templates, which are then reshaped into tubules by BAR proteins. Our results demonstrate the interplay between membrane mechanics and BAR protein molecular organization, integrating curvature sensing and generation in a comprehensive framework with implications for cell mechanical responses.
Collapse
|
28
|
Tsujita K, Satow R, Asada S, Nakamura Y, Arnes L, Sako K, Fujita Y, Fukami K, Itoh T. Homeostatic membrane tension constrains cancer cell dissemination by counteracting BAR protein assembly. Nat Commun 2021; 12:5930. [PMID: 34635648 PMCID: PMC8505629 DOI: 10.1038/s41467-021-26156-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
Malignancy is associated with changes in cell mechanics that contribute to extensive cell deformation required for metastatic dissemination. We hypothesized that the cell-intrinsic physical factors that maintain epithelial cell mechanics could function as tumor suppressors. Here we show, using optical tweezers, genetic interference, mechanical perturbations, and in vivo studies, that epithelial cells maintain higher plasma membrane (PM) tension than their metastatic counterparts and that high PM tension potently inhibits cancer cell migration and invasion by counteracting membrane curvature sensing/generating BAR family proteins. This tensional homeostasis is achieved by membrane-to-cortex attachment (MCA) regulated by ERM proteins, whose disruption spontaneously transforms epithelial cells into a mesenchymal migratory phenotype powered by BAR proteins. Consistently, the forced expression of epithelial–mesenchymal transition (EMT)-inducing transcription factors results in decreased PM tension. In metastatic cells, increasing PM tension by manipulating MCA is sufficient to suppress both mesenchymal and amoeboid 3D migration, tumor invasion, and metastasis by compromising membrane-mediated mechanosignaling by BAR proteins, thereby uncovering a previously undescribed mechanical tumor suppressor mechanism. Changes in cell mechanics contribute to cancer cell dissemination. Here the authors show that high plasma membrane (PM) tension inhibits cancer dissemination by counteracting mechanosensitive BAR family protein assembly, while restoration of PM tension phenotypically convert malignant cells into a non-motile epithelial cell state.
Collapse
Affiliation(s)
- Kazuya Tsujita
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan. .,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan. .,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Shinobu Asada
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshikazu Nakamura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Luis Arnes
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Keisuke Sako
- National Cerebral and Cardiovascular Center Research Institute, Osaka, 565-8565, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
29
|
Shrestha A, Pinaud F, Haselwandter CA. Mechanics of cup-shaped caveolae. Phys Rev E 2021; 104:L022401. [PMID: 34525615 DOI: 10.1103/physreve.104.l022401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/16/2021] [Indexed: 11/07/2022]
Abstract
Caveolae are cell membrane invaginations of defined lipid and protein composition that flatten with increasing membrane tension. Super-resolution light microscopy and electron microscopy have revealed that caveolae can take a variety of cuplike shapes. We show here that, for the range in membrane tension relevant for cell membranes, the competition between membrane tension and membrane bending yields caveolae with cuplike shapes similar to those observed experimentally. We find that the caveola shape and its sensitivity to changes in membrane tension can depend strongly on the caveola spontaneous curvature and on the size of caveola domains. Our results suggest that heterogeneity in caveola shape produces a staggered response of caveolae to mechanical perturbations of the cell membrane, which may facilitate regulation of membrane tension over the wide range of scales thought to be relevant for cell membranes.
Collapse
Affiliation(s)
- Ahis Shrestha
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Fabien Pinaud
- Department of Biological Sciences, Department of Physics and Astronomy, and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
30
|
Wang H, Kelley FM, Milovanovic D, Schuster BS, Shi Z. Surface tension and viscosity of protein condensates quantified by micropipette aspiration. BIOPHYSICAL REPORTS 2021; 1:100011. [PMID: 36247368 PMCID: PMC9563586 DOI: 10.1016/j.bpr.2021.100011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022]
Abstract
The material properties of biomolecular condensates have been suggested to play important biological and pathological roles. Despite the rapid increase in the number of biomolecules identified that undergo liquid-liquid phase separation, quantitative studies and direct measurements of the material properties of the resulting condensates have been severely lagging behind. Here, we develop a micropipette-based technique that uniquely, to our knowledge, allows quantifications of both the surface tension and viscosity of biomolecular condensates, independent of labeling and surface-wetting effects. We demonstrate the accuracy and versatility of this technique by measuring condensates of LAF-1 RGG domains and a polymer-based aqueous two-phase system. We further confirm our measurements using established condensate fusion and fluorescence recovery after photobleaching assays. We anticipate the micropipette-based technique will be widely applicable to biomolecular condensates and will resolve several limitations regarding current approaches.
Collapse
Affiliation(s)
- Huan Wang
- Department of Chemistry and Chemical Biology
| | - Fleurie M. Kelley
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Benjamin S. Schuster
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey
| | - Zheng Shi
- Department of Chemistry and Chemical Biology
| |
Collapse
|
31
|
Jin R, Baumgart T. Asymmetric desorption of lipid oxidation products induces membrane bending. SOFT MATTER 2021; 17:7506-7515. [PMID: 34338699 PMCID: PMC8425771 DOI: 10.1039/d1sm00652e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid oxidation, detected in metabolic processes, is induced in excess when the cellular membrane suffers extra oxidative stress. Lipid oxidation can compromise biomembrane function in part through perturbations of lipid packing, membrane permeability, and morphology. Two major types of oxidation products, one with a partially truncated lipid tail with a hydrophilic group at the tail-end, and secondly, a lysolipid (with one of the chains completely truncated) can disturb the membrane bilayer packing significantly. However, they also have an increased tendency to desorb from the membrane. In this study we investigated desorption kinetics of two characteristic lipid oxidation products (PAzePC and 18 : 1 LysoPC) from a model membrane system, and we evaluated the consequences of this process on membrane shape transitions. Using a microfluidic chamber coupled with micropipette aspiration, we observed the incorporation of the two lipids into the membrane of a giant unilamellar vesicle (GUV) and further determined their desorption rates, association rates and flip-flop rates. For both lipids, the desorption is on the time scale of seconds, one to two orders of magnitude faster than their flipping rates. Dilution of the outer solution of the GUVs allowed asymmetric desorption of these two lipids from the GUVs. This process induced lipid number asymmetry and charge asymmetry, specifically for PAzePC containing GUVs, and caused membrane tubulation. Our results indicate that the desorption of lipid oxidation products can alter the local structure of biomembranes and result in morphological changes that may relate to membrane function.
Collapse
Affiliation(s)
- Rui Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
32
|
Noguchi H. Vesicle budding induced by binding of curvature-inducing proteins. Phys Rev E 2021; 104:014410. [PMID: 34412221 DOI: 10.1103/physreve.104.014410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Vesicle budding induced by protein binding that generates an isotropic spontaneous curvature is studied using a mean-field theory. Many spherical buds are formed via protein binding. As the binding chemical potential increases, the proteins first bind to the buds and then to the remainder of the vesicle. For a high spontaneous curvature and/or high bending rigidity of the bound membrane, it is found that a first-order transition occurs between a small number of large buds and a large number of small buds. These two states coexist around the transition point. The proposed scheme is simple and easily applicable to many interaction types, so we investigate the effects of interprotein interactions, the protein-insertion-induced changes in area, the variation of the saddle-splay modulus, and the area-difference-elasticity energy. The differences in the preferred curvatures for curvature sensing and generation are also clarified.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
33
|
Stroh KS, Risselada HJ. Quantifying Membrane Curvature Sensing of Peripheral Proteins by Simulated Buckling and Umbrella Sampling. J Chem Theory Comput 2021; 17:5276-5286. [PMID: 34261315 DOI: 10.1021/acs.jctc.1c00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane curvature plays an essential role in the organization and trafficking of membrane associated proteins. Comparison or prediction of the experimentally resolved protein concentrations adopted at different membrane curvatures requires direct quantification of the relative partitioning free energy. Here, we present a highly efficient and simple to implement a free-energy calculation method which is able to directly resolve the relative partitioning free energy of proteins as a direct function of membrane curvature, i.e., a curvature sensing profile, within (coarse-grained) molecular dynamics simulations. We demonstrate its utility by resolving these profiles for two known curvature sensing peptides, namely ALPS and α-synuclein, for a membrane curvature ranging from -1/6.5 to +1/6.5 nm-1. We illustrate that the difference in relative partitioning (binding) free energy between these two extrema is only about 13 kBT for both peptides, illustrating that the driving force of curvature sensing is subtle. Furthermore, we illustrate that ALPS and α-synuclein sense curvature via a contrasting mechanism, which is differentially affected by membrane composition. In addition, we demonstrate that the intrinsic spontaneous curvature of both of these peptides lies beyond the range of membrane curvature accessible in micropipette aspiration experiments, being about 1/7 nm -1. Our approach offers an efficient and simple to implement in silico tool for exploring and screening the membrane curvature sensing mechanisms of proteins.
Collapse
Affiliation(s)
- Kai Steffen Stroh
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Herre Jelger Risselada
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany.,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.,Leibniz Institute for Surface Engineering, Leipzig, Germany
| |
Collapse
|
34
|
Kenworthy AK, Schmieder SS, Raghunathan K, Tiwari A, Wang T, Kelly CV, Lencer WI. Cholera Toxin as a Probe for Membrane Biology. Toxins (Basel) 2021; 13:543. [PMID: 34437414 PMCID: PMC8402489 DOI: 10.3390/toxins13080543] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cholera toxin B-subunit (CTxB) has emerged as one of the most widely utilized tools in membrane biology and biophysics. CTxB is a homopentameric stable protein that binds tightly to up to five GM1 glycosphingolipids. This provides a robust and tractable model for exploring membrane structure and its dynamics including vesicular trafficking and nanodomain assembly. Here, we review important advances in these fields enabled by use of CTxB and its lipid receptor GM1.
Collapse
Affiliation(s)
- Anne K. Kenworthy
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Stefanie S. Schmieder
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| | - Krishnan Raghunathan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
| | - Ajit Tiwari
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Ting Wang
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Christopher V. Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| | - Wayne I. Lencer
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| |
Collapse
|
35
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Recent developments in membrane curvature sensing and induction by proteins. Biochim Biophys Acta Gen Subj 2021; 1865:129971. [PMID: 34333084 DOI: 10.1016/j.bbagen.2021.129971] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/11/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane-bound intracellular organelles have characteristic shapes attributed to different local membrane curvatures, and these attributes are conserved across species. Over the past decade, it has been confirmed that specific proteins control the large curvatures of the membrane, whereas many others due to their specific structural features can sense the curvatures and bind to the specific geometrical cues. Elucidating the interplay between sensing and induction is indispensable to understand the mechanisms behind various biological processes such as vesicular trafficking and budding. SCOPE OF REVIEW We provide an overview of major classes of membrane proteins and the mechanisms of curvature sensing and induction. We then discuss the importance of membrane elastic characteristics to induce the membrane shapes similar to intracellular organelles. Finally, we survey recently available assays developed for studying the curvature sensing and induction by many proteins. MAJOR CONCLUSIONS Recent theoretical/computational modeling along with experimental studies have uncovered fascinating connections between lipid membrane and protein interactions. However, the phenomena of protein localization and synchronization to generate spatiotemporal dynamics in membrane morphology are yet to be fully understood. GENERAL SIGNIFICANCE The understanding of protein-membrane interactions is essential to shed light on various biological processes. This further enables the technological applications of many natural proteins/peptides in therapeutic treatments. The studies of membrane dynamic shapes help to understand the fundamental functions of membranes, while the medicinal roles of various macromolecules (such as proteins, peptides, etc.) are being increasingly investigated.
Collapse
|
37
|
Landajuela A, Braun M, Rodrigues CDA, Martínez-Calvo A, Doan T, Horenkamp F, Andronicos A, Shteyn V, Williams ND, Lin C, Wingreen NS, Rudner DZ, Karatekin E. FisB relies on homo-oligomerization and lipid binding to catalyze membrane fission in bacteria. PLoS Biol 2021; 19:e3001314. [PMID: 34185788 PMCID: PMC8274934 DOI: 10.1371/journal.pbio.3001314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/12/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Little is known about mechanisms of membrane fission in bacteria despite their requirement for cytokinesis. The only known dedicated membrane fission machinery in bacteria, fission protein B (FisB), is expressed during sporulation in Bacillus subtilis and is required to release the developing spore into the mother cell cytoplasm. Here, we characterized the requirements for FisB-mediated membrane fission. FisB forms mobile clusters of approximately 12 molecules that give way to an immobile cluster at the engulfment pole containing approximately 40 proteins at the time of membrane fission. Analysis of FisB mutants revealed that binding to acidic lipids and homo-oligomerization are both critical for targeting FisB to the engulfment pole and membrane fission. Experiments using artificial membranes and filamentous cells suggest that FisB does not have an intrinsic ability to sense or induce membrane curvature but can bridge membranes. Finally, modeling suggests that homo-oligomerization and trans-interactions with membranes are sufficient to explain FisB accumulation at the membrane neck that connects the engulfment membrane to the rest of the mother cell membrane during late stages of engulfment. Together, our results show that FisB is a robust and unusual membrane fission protein that relies on homo-oligomerization, lipid binding, and the unique membrane topology generated during engulfment for localization and membrane scission, but surprisingly, not on lipid microdomains, negative-curvature lipids, or curvature sensing.
Collapse
Affiliation(s)
- Ane Landajuela
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Martha Braun
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | | | | | - Thierry Doan
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Aix-Marseille Université, Marseilles, France
| | - Florian Horenkamp
- Cell Biology, Yale University, New Haven, Connecticut, United States of America
| | - Anna Andronicos
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
| | - Vladimir Shteyn
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Nathan D Williams
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Cell Biology, Yale University, New Haven, Connecticut, United States of America
| | - Chenxiang Lin
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Cell Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erdem Karatekin
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Université de Paris, SPPIN-Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
38
|
PI(3,4)P 2-mediated membrane tubulation promotes integrin trafficking and invasive cell migration. Proc Natl Acad Sci U S A 2021; 118:2017645118. [PMID: 33947811 PMCID: PMC8126793 DOI: 10.1073/pnas.2017645118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Invadopodia are integrin-mediated adhesions with abundant PI(3,4)P2 However, the functional role of PI(3,4)P2 in adhesion signaling remains unclear. Here, we find that the PI(3,4)P2 biogenesis regulates the integrin endocytosis at invadopodia. PI(3,4)P2 is locally produced by PIK3CA and SHIP2 and is concentrated at the trailing edge of the invadopodium arc. The PI(3,4)P2-rich compartment locally forms small puncta (membrane buds) in a SNX9-dependent manner, recruits dynein activator Hook1 through AKTIP, and rearranges into micrometer-long tubular invaginations (membrane tubes). The uncurving membrane tube extends rapidly, follows the retrograde movement of dynein along microtubule tracks, and disconnects from the plasma membrane. Activated integrin-beta3 is locally internalized through the pathway of PI(3,4)P2-mediated membrane invagination and is then actively recycled. Blockages of PI3K, SHIP2, and SNX9 suppress integrin-beta3 endocytosis, delay adhesion turnover, and impede transwell invasion of MEF-Src and MDA-MB-231 cells. Thus, the production of PI(3,4)P2 promotes invasive cell migration by stimulating the trafficking of integrin receptor at the invadopodium.
Collapse
|
39
|
Tsai FC, Simunovic M, Sorre B, Bertin A, Manzi J, Callan-Jones A, Bassereau P. Comparing physical mechanisms for membrane curvature-driven sorting of BAR-domain proteins. SOFT MATTER 2021; 17:4254-4265. [PMID: 33870384 DOI: 10.1039/d0sm01573c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein enrichment at specific membrane locations in cells is crucial for many cellular functions. It is well-recognized that the ability of some proteins to sense membrane curvature contributes partly to their enrichment in highly curved cellular membranes. In the past, different theoretical models have been developed to reveal the physical mechanisms underlying curvature-driven protein sorting. This review aims to provide a detailed discussion of the two continuous models that are based on the Helfrich elasticity energy, (1) the spontaneous curvature model and (2) the curvature mismatch model. These two models are commonly applied to describe experimental observations of protein sorting. We discuss how they can be used to explain the curvature-induced sorting data of two BAR proteins, amphiphysin and centaurin. We further discuss how membrane rigidity, and consequently the membrane curvature generated by BAR proteins, could influence protein organization on the curved membranes. Finally, we address future directions in extending these models to describe some cellular phenomena involving protein sorting.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| | - Mijo Simunovic
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA and Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, NY 10032, USA
| | - Benoit Sorre
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France. and Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université de Paris, Paris, France.
| | - Aurélie Bertin
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| | - John Manzi
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université de Paris, Paris, France.
| | - Patricia Bassereau
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| |
Collapse
|
40
|
Alqabandi M, de Franceschi N, Maity S, Miguet N, Bally M, Roos WH, Weissenhorn W, Bassereau P, Mangenot S. The ESCRT-III isoforms CHMP2A and CHMP2B display different effects on membranes upon polymerization. BMC Biol 2021; 19:66. [PMID: 33832485 PMCID: PMC8033747 DOI: 10.1186/s12915-021-00983-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. RESULTS Here, we use a combination of techniques on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moderate bulk concentrations, CHMP2B forms a reticular structure on membranes whereas CHMP2A (+CHMP3) binds homogeneously. Thus, CHMP2A and CHMP2B unexpectedly induce different mechanical effects to membranes: CHMP2B strongly rigidifies them while CHMP2A (+CHMP3) has no significant effect. CONCLUSIONS We therefore conclude that CHMP2B and CHMP2A exhibit different mechanical properties and might thus contribute differently to the diverse ESCRT-III-catalyzed membrane remodeling processes.
Collapse
Affiliation(s)
- Maryam Alqabandi
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France
| | - Nicola de Franceschi
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nolwenn Miguet
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Marta Bally
- Umeå University, Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine, 90185, Umeå, Sweden
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France
| | - Stéphanie Mangenot
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France.
| |
Collapse
|
41
|
Tozzi C, Walani N, Le Roux AL, Roca-Cusachs P, Arroyo M. A theory of ordering of elongated and curved proteins on membranes driven by density and curvature. SOFT MATTER 2021; 17:3367-3379. [PMID: 33644786 DOI: 10.1039/d0sm01733g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell membranes interact with a myriad of curvature-active proteins that control membrane morphology and are responsible for mechanosensation and mechanotransduction. Some of these proteins, such as those containing BAR domains, are curved and elongated, and hence may adopt different states of orientational order, from isotropic to maximize entropy to nematic as a result of crowding or to adapt to the curvature of the underlying membrane. Here, extending the classical work of Onsager for ordering in hard particle systems and that of [E. S. Nascimento et al., Phys. Rev. E, 2017, 96, 022704], we develop a mean-field density functional theory to predict the orientational order and evaluate the free energy of ensembles of elongated and curved objects on curved membranes. This theory depends on the microscopic properties of the particles and explains how a density-dependent isotropic-to-nematic transition is modified by anisotropic curvature. We also examine the coexistence of isotropic and nematic phases. This theory predicts how ordering depends on geometry but we assume here that the geometry is fixed. It also lays the ground to understand the interplay between membrane reshaping by BAR proteins and molecular order, examined by [Le Roux et al., submitted, 2020].
Collapse
Affiliation(s)
- Caterina Tozzi
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
42
|
Biofuels from Micro-Organisms: Thermodynamic Considerations on the Role of Electrochemical Potential on Micro-Organisms Growth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofuels from micro-organisms represents a possible response to the carbon dioxide mitigation. One open problem is to improve their productivity, in terms of biofuels production. To do so, an improvement of the present model of growth and production is required. However, this implies an understanding of the growth spontaneous conditions of the bacteria. In this paper, a thermodynamic approach is developed in order to highlight the fundamental role of the electrochemical potential in bacteria proliferation. Temperature effect on the biosystem behaviour has been pointed out. The results link together the electrochemical potential, the membrane electric potential, the pH gradient through the membrane, and the temperature, with the result of improving the thermodynamic approaches, usually introduced in this topic of research.
Collapse
|
43
|
Lee CT, Akamatsu M, Rangamani P. Value of models for membrane budding. Curr Opin Cell Biol 2021; 71:38-45. [PMID: 33706232 DOI: 10.1016/j.ceb.2021.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022]
Abstract
The budding of membranes and curvature generation is common to many forms of trafficking in cells. Clathrin-mediated endocytosis, as a prototypical example of trafficking, has been studied in great detail using a variety of experimental systems and methods. Recently, advances in experimental methods have led to great strides in insights on the molecular mechanisms and the spatiotemporal dynamics of the protein machinery associated with membrane curvature generation. These advances have been ably supported by computational models, which have given us insights into the underlying mechanical principles of clathrin-mediated endocytosis. On the other hand, targeted experimental perturbation of membranes has lagged behind that of proteins in cells. In this area, modeling is especially critical to interpret experimental measurements in a mechanistic context. Here, we discuss the contributions made by these models to our understanding of endocytosis and identify opportunities to strengthen the connections between models and experiments.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0411, La Jolla, CA, 92093, USA
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0411, La Jolla, CA, 92093, USA.
| |
Collapse
|
44
|
Hedde PN, Malacrida L, Barylko B, Binns DD, Albanesi JP, Jameson DM. Membrane Remodeling by Arc/Arg3.1. Front Mol Biosci 2021; 8:630625. [PMID: 33763452 PMCID: PMC7982473 DOI: 10.3389/fmolb.2021.630625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
The activity-regulated cytoskeletal-associated protein (Arc, also known as Arg3.1) is an immediate early gene product induced by activity/experience and required for multiple modes of synaptic plasticity. Both long-term potentiation (LTP) and long-term depression (LTD) are impaired upon Arc deletion, as well as the ability to form long-term spatial, taste and fear memories. The best-characterized cellular function of Arc is enhancement of the endocytic internalization of AMPA receptors (AMPARs) in dendritic spines. Solution of the crystal structure of a C-terminal segment of Arc revealed a striking similarity to the capsid domain of HIV Gag. It was subsequently shown that Arc assembles into viral capsid-like structures that enclose Arc mRNA, are released into the extracellular space, and are internalized by neighboring cells. Thus, Arc is unique in participating in plasma membrane budding both into and out of the cell. In this report we study the interaction of Arc with membranes using giant unilamellar vesicles (GUVs). Using the fluorescent lipid probe LAURDAN, we find that Arc promotes the formation of smaller vesicles that penetrate into the GUV interior. Our results suggest that Arc induces negative membrane curvature and may therefore facilitate the formation of mRNA-containing extracellular vesicles from the plasma membrane.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI, United States.,Laboratory for Fluorescence Dynamics, University of California, Irvine , CA, United States
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo , Uruguay.,Advanced Bioimaging Unit, Institute Pasteur of Montevideo-Universidad de la República, Montevideo, Uruguay
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Derk D Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joseph P Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M Jameson
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
45
|
Hedde PN, Malacrida L, Barylko B, Binns DD, Albanesi JP, Jameson DM. Membrane Remodeling by Arc/Arg3.1. Front Mol Biosci 2021; 8:630625. [PMID: 33763452 DOI: 10.3389/fmolb.2021.630625/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 05/23/2023] Open
Abstract
The activity-regulated cytoskeletal-associated protein (Arc, also known as Arg3.1) is an immediate early gene product induced by activity/experience and required for multiple modes of synaptic plasticity. Both long-term potentiation (LTP) and long-term depression (LTD) are impaired upon Arc deletion, as well as the ability to form long-term spatial, taste and fear memories. The best-characterized cellular function of Arc is enhancement of the endocytic internalization of AMPA receptors (AMPARs) in dendritic spines. Solution of the crystal structure of a C-terminal segment of Arc revealed a striking similarity to the capsid domain of HIV Gag. It was subsequently shown that Arc assembles into viral capsid-like structures that enclose Arc mRNA, are released into the extracellular space, and are internalized by neighboring cells. Thus, Arc is unique in participating in plasma membrane budding both into and out of the cell. In this report we study the interaction of Arc with membranes using giant unilamellar vesicles (GUVs). Using the fluorescent lipid probe LAURDAN, we find that Arc promotes the formation of smaller vesicles that penetrate into the GUV interior. Our results suggest that Arc induces negative membrane curvature and may therefore facilitate the formation of mRNA-containing extracellular vesicles from the plasma membrane.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI, United States
- Laboratory for Fluorescence Dynamics, University of California, Irvine , CA, United States
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo , Uruguay
- Advanced Bioimaging Unit, Institute Pasteur of Montevideo-Universidad de la República, Montevideo, Uruguay
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Derk D Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joseph P Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M Jameson
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
46
|
Franquelim HG, Dietz H, Schwille P. Reversible membrane deformations by straight DNA origami filaments. SOFT MATTER 2021; 17:276-287. [PMID: 32406895 DOI: 10.1039/d0sm00150c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Membrane-active cytoskeletal elements, such as FtsZ, septin or actin, form filamentous polymers able to induce and stabilize curvature on cellular membranes. In order to emulate the characteristic dynamic self-assembly properties of cytoskeletal subunits in vitro, biomimetic synthetic scaffolds were here developed using DNA origami. In contrast to our earlier work with pre-curved scaffolds, we specifically assessed the potential of origami mimicking straight filaments, such as actin and microtubules, by origami presenting cholesteryl anchors for membrane binding and additional blunt end stacking interactions for controllable polymerization into linear filaments. By assessing the interaction of our DNA nanostructures with model membranes using fluorescence microscopy, we show that filaments can be formed, upon increasing MgCl2 in solution, for structures displaying blunt ends; and can subsequently depolymerize, by decreasing the concentration of MgCl2. Distinctive spike-like membrane protrusions were generated on giant unilamellar vesicles at high membrane-bound filament densities, and the presence of such deformations was reversible and shown to correlate with the MgCl2-triggered polymerization of DNA origami subunits into filamentous aggregates. In the end, our approach reveals the formation of membrane-bound filaments as a minimal requirement for membrane shaping by straight cytoskeletal-like objects.
Collapse
Affiliation(s)
| | - Hendrik Dietz
- Technical University of Munich, Garching Near Munich, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried near Munich, Germany.
| |
Collapse
|
47
|
Agudo-Canalejo J. Particle engulfment by strongly asymmetric membranes with area reservoirs. SOFT MATTER 2021; 17:298-307. [PMID: 32119018 DOI: 10.1039/c9sm02367d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological cells are capable of undergoing extensive shape transformations thanks to the existence of membrane area reservoirs from which they can pull out membrane when required. A particularly relevant example of such membrane remodelling is given by endocytic and phagocytic processes, during which the cell membrane engulfs nano- and micrometer sized particles. Recently, it was shown that cell-like membrane reservoirs can be mimicked in giant vesicles with nanotubes stabilized by strong bilayer asymmetry, as quantified by the membrane's spontaneous curvature. Here, we theoretically investigate particle engulfment by such strongly-asymmetric membranes. We find that, depending on the sign of the spontaneous curvature, the engulfment transition may be continuous or discontinuous. Moreover, we find that, in the case of particle engulfment, the presence of asymmetry-stabilized reservoirs is not well captured by the constant-tension model typically used to describe cell-membrane deformations. This highlights the need for a better understanding of the nature of cellular membrane reservoirs, in order to accurately describe membrane remodelling processes.
Collapse
Affiliation(s)
- Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany.
| |
Collapse
|
48
|
Bonazzi F, Hall CK, Weikl TR. Membrane morphologies induced by mixtures of arc-shaped particles with opposite curvature. SOFT MATTER 2021; 17:268-275. [PMID: 32270169 DOI: 10.1039/c9sm02476j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological membranes are shaped by various proteins that either generate inward or outward membrane curvature. In this article, we investigate the membrane morphologies induced by mixtures of arc-shaped particles with coarse-grained modeling and simulations. The particles bind to the membranes either with their inward, concave side or their outward, convex side and, thus, generate membrane curvature of opposite sign. We find that small fractions of convex-binding particles can stabilize three-way junctions of membrane tubules, as suggested for the protein lunapark in the endoplasmic reticulum of cells. For comparable fractions of concave-binding and convex-binding particles, we observe lines of particles of the same type, and diverse membrane morphologies with grooves and bulges induced by these particle lines. The alignment and segregation of the particles is driven by indirect, membrane-mediated interactions.
Collapse
Affiliation(s)
- Francesco Bonazzi
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | |
Collapse
|
49
|
Saric A, Freeman SA. Endomembrane Tension and Trafficking. Front Cell Dev Biol 2021; 8:611326. [PMID: 33490077 PMCID: PMC7820182 DOI: 10.3389/fcell.2020.611326] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic cells employ diverse uptake mechanisms depending on their specialized functions. While such mechanisms vary widely in their defining criteria: scale, molecular machinery utilized, cargo selection, and cargo destination, to name a few, they all result in the internalization of extracellular solutes and fluid into membrane-bound endosomes. Upon scission from the plasma membrane, this compartment is immediately subjected to extensive remodeling which involves tubulation and vesiculation/budding of the limiting endomembrane. This is followed by a maturation process involving concomitant retrograde transport by microtubule-based motors and graded fusion with late endosomes and lysosomes, organelles that support the degradation of the internalized content. Here we review an important determinant for sorting and trafficking in early endosomes and in lysosomes; the control of tension on the endomembrane. Remodeling of endomembranes is opposed by high tension (caused by high hydrostatic pressure) and supported by the relief of tension. We describe how the timely and coordinated efflux of major solutes along the endocytic pathway affords the cell control over such tension. The channels and transporters that expel the smallest components of the ingested medium from the early endocytic fluid are described in detail as these systems are thought to enable endomembrane deformation by curvature-sensing/generating coat proteins. We also review similar considerations for the lysosome where resident hydrolases liberate building blocks from luminal macromolecules and transporters flux these organic solutes to orchestrate trafficking events. How the cell directs organellar trafficking based on the luminal contents of organelles of the endocytic pathway is not well-understood, however, we propose that the control over membrane tension by solute transport constitutes one means for this to ensue.
Collapse
Affiliation(s)
- Amra Saric
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Center for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Mondal S, Narayan KB, Powers I, Botterbusch S, Baumgart T. Endophilin recruitment drives membrane curvature generation through coincidence detection of GPCR loop interactions and negative lipid charge. J Biol Chem 2021; 296:100140. [PMID: 33268381 PMCID: PMC7948419 DOI: 10.1074/jbc.ra120.016118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Endophilin plays key roles during endocytosis of cellular receptors, including generating membrane curvature to drive internalization. Electrostatic interactions between endophilin's BIN/Amphiphysin/Rvs domain and anionic membrane lipids have been considered the major driving force in curvature generation. However, the SH3 domain of endophilin also interacts with the proline-rich third intracellular loop (TIL) of various G-protein-coupled receptors (GPCRs), and it is unclear whether this interaction has a direct role in generating membrane curvature during endocytosis. To examine this, we designed model membranes with a membrane density of 1400 receptors per μm2 represented by a covalently conjugated TIL region from the β1-adrenergic receptor. We observed that TIL recruits endophilin to membranes composed of 95 mol% of zwitterionic lipids via the SH3 domain. More importantly, endophilin recruited via TIL tubulates vesicles and gets sorted onto highly curved membrane tubules. These observations indicate that the cellular membrane bending and curvature sensing activities of endophilin can be facilitated through detection of the TIL of activated GPCRs in addition to binding to anionic lipids. Furthermore, we show that TIL electrostatically interacts with membranes composed of anionic lipids. Therefore, anionic lipids can modulate TIL/SH3 domain binding. Overall, our findings imply that an interplay between TIL, charged membrane lipids, BAR domain, and SH3 domain could exist in the biological system and that these components may act in coordination to regulate the internalization of cellular receptors.
Collapse
Affiliation(s)
- Samsuzzoha Mondal
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karthik B Narayan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Imania Powers
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samuel Botterbusch
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|