1
|
Zhao H, Liu Z, Chen H, Han M, Zhang M, Liu K, Jin H, Liu X, Shi M, Pu W, Werner M, Meister M, Kauschke SG, Sun R, Wang J, Shen R, Wang QD, Ma X, Tchorz JS, Zhou B. Identifying specific functional roles for senescence across cell types. Cell 2024; 187:7314-7334.e21. [PMID: 39368477 DOI: 10.1016/j.cell.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/16/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Cellular senescence plays critical roles in aging, regeneration, and disease; yet, the ability to discern its contributions across various cell types to these biological processes remains limited. In this study, we generated an in vivo genetic toolbox consisting of three p16Ink4a-related intersectional genetic systems, enabling pulse-chase tracing (Sn-pTracer), Cre-based tracing and ablation (Sn-cTracer), and gene manipulation combined with tracing (Sn-gTracer) of defined p16Ink4a+ cell types. Using liver injury and repair as an example, we found that macrophages and endothelial cells (ECs) represent distinct senescent cell populations with different fates and functions during liver fibrosis and repair. Notably, clearance of p16Ink4a+ macrophages significantly mitigates hepatocellular damage, whereas eliminating p16Ink4a+ ECs aggravates liver injury. Additionally, targeted reprogramming of p16Ink4a+ ECs through Kdr overexpression markedly reduces liver fibrosis. This study illuminates the functional diversity of p16Ink4a+ cells and offers insights for developing cell-type-specific senolytic therapies in the future.
Collapse
Affiliation(s)
- Huan Zhao
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zixin Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Chen
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Maoying Han
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mingjun Zhang
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kuo Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hengwei Jin
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuxiu Liu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mengyang Shi
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Pu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Markus Werner
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Michael Meister
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Stefan G Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ruilin Sun
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Jinjin Wang
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xin Ma
- Department of Pharmacology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jan S Tchorz
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Bin Zhou
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
2
|
Mi T, Soerens AG, Alli S, Kang TG, Vasandan AB, Wang Z, Vezys V, Kimura S, Iacobucci I, Baylin SB, Jones PA, Hiner C, Mueller A, Goldstein H, Mullighan CG, Zebley CC, Masopust D, Youngblood B. Conserved epigenetic hallmarks of T cell aging during immunity and malignancy. NATURE AGING 2024; 4:1053-1063. [PMID: 38867059 PMCID: PMC11333289 DOI: 10.1038/s43587-024-00649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Chronological aging correlates with epigenetic modifications at specific loci, calibrated to species lifespan. Such 'epigenetic clocks' appear conserved among mammals, but whether they are cell autonomous and restricted by maximal organismal lifespan remains unknown. We used a multilifetime murine model of repeat vaccination and memory T cell transplantation to test whether epigenetic aging tracks with cellular replication and if such clocks continue 'counting' beyond species lifespan. Here we found that memory T cell epigenetic clocks tick independently of host age and continue through four lifetimes. Instead of recording chronological time, T cells recorded proliferative experience through modification of cell cycle regulatory genes. Applying this epigenetic profile across a range of human T cell contexts, we found that naive T cells appeared 'young' regardless of organism age, while in pediatric patients, T cell acute lymphoblastic leukemia appeared to have epigenetically aged for up to 200 years. Thus, T cell epigenetic clocks measure replicative history and can continue to accumulate well-beyond organismal lifespan.
Collapse
Affiliation(s)
- Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew G Soerens
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tae Gun Kang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anoop Babu Vasandan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhaoming Wang
- Department of Computational Biology and Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vaiva Vezys
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Institute, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Christopher Hiner
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - April Mueller
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Harris Goldstein
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Caitlin C Zebley
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - David Masopust
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Lewis CJ, de Grey AD. Combining rejuvenation interventions in rodents: a milestone in biomedical gerontology whose time has come. Expert Opin Ther Targets 2024; 28:501-511. [PMID: 38477630 DOI: 10.1080/14728222.2024.2330425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Longevity research has matured to the point where significantly postponing age-related decline in physical and mental function is now achievable in the laboratory and foreseeable in the clinic. The most promising strategies involve rejuvenation, i.e. reducing biological age, not merely slowing its progression. AREAS COVERED We discuss therapeutic strategies for rejuvenation and results achieved thus far, with a focus on in vivo studies. We discuss the implications of interventions which act on mean or maximum lifespan and those showing effects in accelerated disease models. While the focus is on work conducted in mice, we also highlight notable insights in the field from studies in other model organisms. EXPERT OPINION Rejuvenation was originally proposed as easier than slowing aging because it targets initially inert changes to tissue structure and composition, rather than trying to disentangle processes that both create aging damage and maintain life. While recent studies support this hypothesis, a true test requires a panel of rejuvenation interventions targeting multiple damage categories simultaneously. Considerations of cost, profitability, and academic significance have dampened enthusiasm for such work, but it is vital. Now is the time for the field to take this key step toward the medical control of aging.
Collapse
Affiliation(s)
- Caitlin J Lewis
- Longevity Escape Velocity Foundation, San Francisco, CA, USA
| | | |
Collapse
|
4
|
Okawa H, Tanaka Y, Takahashi A. Network of extracellular vesicles surrounding senescent cells. Arch Biochem Biophys 2024; 754:109953. [PMID: 38432566 DOI: 10.1016/j.abb.2024.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Extracellular vesicles (EVs) are small lipid bilayers released from cells that contain cellular components such as proteins, nucleic acids, lipids, and metabolites. Biological information is transmitted between cells via the EV content. Cancer and senescent cells secrete more EVs than normal cells, delivering more information to the surrounding recipient cells. Cellular senescence is a state of irreversible cell cycle arrest caused by the accumulation of DNA damage. Senescent cells secrete various inflammatory proteins known as the senescence-associated secretory phenotype (SASP). Inflammatory SASP factors, including small EVs, induce chronic inflammation and lead to various age-related pathologies. Recently, senolytic drugs that selectively induce cell death in senescent cells have been developed to suppress the pathogenesis of age-related diseases. This review describes the characteristics of senescent cells, the functions of EVs released from senescent cells, and the therapeutic effects of EVs on age-related diseases. Understanding the biology of EVs secreted from senescent cells will provide valuable insights for achieving healthy longevity in an aging society.
Collapse
Affiliation(s)
- Hikaru Okawa
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Division of Cellular and Molecular Imaging of Cancer, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Yoko Tanaka
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Akiko Takahashi
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.
| |
Collapse
|
5
|
Sharma R. Exploring the emerging bidirectional association between inflamm-aging and cellular senescence in organismal aging and disease. Cell Biochem Funct 2024; 42:e3970. [PMID: 38456500 DOI: 10.1002/cbf.3970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
There is strong evidence that most individuals in the elderly population are characterized by inflamm-aging which refers to a subtle increase in the systemic pro-inflammatory environment and impaired innate immune activation. Although a variety of distinct factors are associated with the progression of inflamm-aging, emerging research is demonstrating a dynamic relationship between the processes of cellular senescence and inflamm-aging. Cellular senescence is a recognized factor governing organismal aging, and through a characteristic secretome, accumulating senescent cells can induce and augment a pro-inflammatory tissue environment that provides a rationale for immune system-independent activation of inflamm-aging and associated diseases. There is also accumulating evidence that inflamm-aging or its components can directly accelerate the development of senescent cells and ultimately senescent cell burden in tissues in a likely vicious inflammatory loop. The present review is intended to describe the emerging senescence-based molecular etiology of inflamm-aging as well as the dynamic reciprocal interactions between inflamm-aging and cellular senescence. Therapeutic interventions concurrently targeting cellular senescence and inflamm-aging are discussed and limitations as well as research opportunities have been deliberated. An effort has been made to provide a rationale for integrating inflamm-aging with cellular senescence both as an underlying cause and therapeutic target for further studies.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| |
Collapse
|
6
|
Rex N, Melk A, Schmitt R. Cellular senescence and kidney aging. Clin Sci (Lond) 2023; 137:1805-1821. [PMID: 38126209 PMCID: PMC10739085 DOI: 10.1042/cs20230140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Life expectancy is increasing worldwide, and by 2050 the proportion of the world's population over 65 years of age is estimated to surpass 1.5 billion. Kidney aging is associated with molecular and physiological changes that cause a loss of renal function and of regenerative potential. As the aging population grows, it is crucial to understand the mechanisms underlying these changes, as they increase the susceptibility to developing acute kidney injury (AKI) and chronic kidney disease (CKD). Various cellular processes and molecular pathways take part in the complex process of kidney aging. In this review, we will focus on the phenomenon of cellular senescence as one of the involved mechanisms at the crossroad of kidney aging, age-related disease, and CKD. We will highlight experimental and clinical findings about the role of cellular senescence in kidney aging and CKD. In addition, we will review challenges in senescence research and emerging therapeutic aspects. We will highlight the great potential of senolytic strategies for the elimination of harmful senescent cells to promote healthy kidney aging and to avoid age-related disease and CKD. This review aims to give insight into recent discoveries and future developments, providing a comprehensive overview of current knowledge on cellular senescence and anti-senescent therapies in the kidney field.
Collapse
Affiliation(s)
- Nikolai Rex
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Medical School Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
7
|
Micheli L, D'Andrea G, Creanza TM, Volpe D, Ancona N, Scardigli R, Tirone F. Transcriptome analysis reveals genes associated with stem cell activation by physical exercise in the dentate gyrus of aged p16Ink4a knockout mice. Front Cell Dev Biol 2023; 11:1270892. [PMID: 37928906 PMCID: PMC10621069 DOI: 10.3389/fcell.2023.1270892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Throughout adulthood neural stem cells divide in neurogenic niches-the dentate gyrus of the hippocampus and the subventricular zone-producing progenitor cells and new neurons. Stem cells self-renew, thus preserving their pool. Furthermore, the number of stem/progenitor cells in the neurogenic niches decreases with age. We have previously demonstrated that the cyclin-dependent kinase inhibitor p16Ink4a maintains, in aged mice, the pool of dentate gyrus stem cells by preventing their activation after a neurogenic stimulus such as exercise (running). We showed that, although p16Ink4a ablation by itself does not activate stem/progenitor cells, exercise strongly induced stem cell proliferation in p16Ink4a knockout dentate gyrus, but not in wild-type. As p16Ink4a regulates stem cell self-renewal during aging, we sought to profile the dentate gyrus transcriptome from p16Ink4a wild-type and knockout aged mice, either sedentary or running for 12 days. By pairwise comparisons of differentially expressed genes and by correlative analyses through the DESeq2 software, we identified genes regulated by p16Ink4a deletion, either without stimulus (running) added, or following running. The p16Ink4a knockout basic gene signature, i.e., in sedentary mice, involves upregulation of apoptotic, neuroinflammation- and synaptic activity-associated genes, suggesting a reactive cellular state. Conversely, another set of 106 genes we identified, whose differential expression specifically reflects the pattern of proliferative response of p16 knockout stem cells to running, are involved in processes that regulate stem cell activation, such as synaptic function, neurotransmitter metabolism, stem cell proliferation control, and reactive oxygen species level regulation. Moreover, we analyzed the regulation of these stem cell-specific genes after a second running stimulus. Surprisingly, the second running neither activated stem cell proliferation in the p16Ink4a knockout dentate gyrus nor changed the expression of these genes, confirming that they are correlated to the stem cell reactivity to stimulus, a process where they may play a role regulating stem cell activation.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Daniel Volpe
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- European Brain Research Institute (EBRI), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| |
Collapse
|
8
|
Holloway K, Neherin K, Dam KU, Zhang H. Cellular senescence and neurodegeneration. Hum Genet 2023; 142:1247-1262. [PMID: 37115318 DOI: 10.1007/s00439-023-02565-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Advancing age is a major risk factor of Alzheimer's disease (AD). The worldwide prevalence of AD is approximately 50 million people, and this number is projected to increase substantially. The molecular mechanisms underlying the aging-associated susceptibility to cognitive impairment in AD are largely unknown. As a hallmark of aging, cellular senescence is a significant contributor to aging and age-related diseases including AD. Senescent neurons and glial cells have been detected to accumulate in the brains of AD patients and mouse models. Importantly, selective elimination of senescent cells ameliorates amyloid beta and tau pathologies and improves cognition in AD mouse models, indicating a critical role of cellular senescence in AD pathogenesis. Nonetheless, the mechanisms underlying when and how cellular senescence contributes to AD pathogenesis remain unclear. This review provides an overview of cellular senescence and discusses recent advances in the understanding of the impact of cellular senescence on AD pathogenesis, with brief discussions of the possible role of cellular senescence in other neurodegenerative diseases including Down syndrome, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kashfia Neherin
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kha Uyen Dam
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Hong Zhang
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
9
|
Ohsawa Y, Ohtsubo H, Munekane A, Ohkubo K, Murakami T, Fujino M, Nishimatsu SI, Hagiwara H, Nishimura H, Kaneko R, Suzuki T, Tatsumi R, Mizunoya W, Hinohara A, Fukunaga M, Sunada Y. Circulating α-Klotho Counteracts Transforming Growth Factor-β-Induced Sarcopenia. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:591-607. [PMID: 36773783 DOI: 10.1016/j.ajpath.2023.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
α-Klotho is a longevity-related protein. Its deficiency shortens lifespan with prominent senescent phenotypes, including muscle atrophy and weakness in mice. α-Klotho has two forms: membrane α-Klotho and circulating α-Klotho (c-α-Klotho). Loss of membrane α-Klotho impairs a phosphaturic effect, thereby accelerating phosphate-induced aging. However, the mechanisms of senescence on c-α-Klotho loss remain largely unknown. Here, we show that, with the aging of wild-type mice, c-α-Klotho declined, whereas Smad2, an intracellular transforming growth factor (TGF)-β effector, became activated in skeletal muscle. Moreover, c-α-Klotho suppressed muscle-wasting TGF-β molecules, including myostatin, growth and differentiation factor 11, activin, and TGF-β1, through binding to ligands as well as type I and type II serine/threonine kinase receptors. Indeed, c-α-Klotho reversed impaired in vitro myogenesis caused by these TGF-βs. Oral administration of Ki26894, a small-molecule inhibitor of type I receptors for these TGF-βs, restored muscle atrophy and weakness in α-Klotho (-/-) mice and in elderly wild-type mice by suppression of activated Smad2 and up-regulated Cdkn1a (p21) transcript, a target of phosphorylated Smad2. Ki26894 also induced the slow to fast myofiber switch. These findings show c-α-Klotho's potential as a circulating inhibitor counteracting TGF-β-induced sarcopenia. A novel therapy involving TGF-β blockade could thus be developed to prevent sarcopenia.
Collapse
Affiliation(s)
- Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan.
| | - Hideaki Ohtsubo
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Asami Munekane
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Kohei Ohkubo
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Tatsufumi Murakami
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Masahiro Fujino
- Department of Health and Sports Science, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki City, Okayama, Japan
| | | | - Hiroki Hagiwara
- Department of Medical Science, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Hirotake Nishimura
- Department of Pathology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Ryuki Kaneko
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Atsushi Hinohara
- Research Coordination Group, Tokyo Research Park, R&D Division, Kyowa Kirin Co, Ltd, Machida-shi, Tokyo, Japan
| | | | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki City, Okayama, Japan.
| |
Collapse
|
10
|
Luo L, Guo J, Li Y, Liu T, Lai L. Klotho promotes AMPK activity and maintains renal vascular integrity by regulating the YAP signaling pathway. Int J Med Sci 2023; 20:194-205. [PMID: 36794161 PMCID: PMC9925983 DOI: 10.7150/ijms.80220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
The development and formation of mammalian blood vessels are closely related to the regulation of signal transduction pathways. Klotho/AMPK and YAP/TAZ signaling pathways are closely related to angiogenesis, but the internal relationship between them is not clear. In this study, we found that Klotho heterozygous deletion mice (Klotho+/- mice) had obvious thickening of the renal vascular wall, obvious enlargement of vascular volume, and significant proliferation and pricking of vascular endothelial cells. Western blot showed that the expression levels of total YAP protein, p-YAP protein (Ser127 and Ser397), p-MOB1, MST1, LATS1, and SAV1 in renal vascular endothelial cells were significantly lower in Klotho+/- mice than in wild-type mice. Knockdown of endogenous Klotho in HUVECs accelerated their ability to divide and form vascular branches in the extracellular matrix. Meanwhile, the results of CO-IP western blot showed that the expression of LATS1 and p-LATS1 interacting with AMPK protein decreased significantly, and the ubiquitination level of YAP protein also decreased significantly in vascular endothelial cells of kidney tissue of Klotho+/- mice. Subsequently, continuous overexpression of exogenous Klotho protein in Klotho heterozygous deficient mice effectively reversed the abnormal renal vascular structure by weakening the expression of the YAP signal transduction pathway. Therefore, we confirmed that Klotho and AMPKα proteins were highly expressed in vascular endothelial cells of adult mouse tissues and organs; this resulted in a phosphorylation modification of YAP protein, closed the activity of the YAP/TAZ signal transduction pathway, and inhibited the growth and proliferation of vascular endothelial cells. When Klotho was absent, the phosphorylation modification of YAP protein by AMPKα was inhibited, resulting in the activation of the YAP/TAZ signal transduction pathway and finally inducing the excessive proliferation of vascular endothelial cells.
Collapse
Affiliation(s)
- Lei Luo
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yi Li
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Lingyun Lai
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
11
|
Amitani H, Chiba S, Amitani M, Michihara S, Takemoto R, Han L, Fujita N, Takahashi R, Inui A. Impact of Ninjin’yoeito on frailty and short life in klotho-hypomorphic (kl/kl) mice. Front Pharmacol 2022; 13:973897. [DOI: 10.3389/fphar.2022.973897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
With the recent aging of society, the prevention of frailty has become an important issue because people desire both a long and healthy lifespan. Klotho-hypomorphic (kl/kl) mice are known to show phenotypes of premature aging. Ninjin’yoeito (NYT) is a traditional Japanese Kampo medicine used to treat patients with vulnerable constitution, fatigue or physical exhaustion caused by aging and illness. Recent studies have reported the potential efficacy of NYT against frailty. We therefore evaluated the effect of NYT on the gait function, activity, the histopathological status of organs and survival using kl/kl mice as a model of aging-related frailty. Two sets of 28-day-old male kl/kl mice were assigned to the vehicle (non-treated; NT), 3% or 5% NYT dietary groups. One set of groups (NT, n = 18; 3% NYT, n = 11; 5% NYT, n = 11) was subjected to the analysis of free walking, rotarod, and spontaneous activity tests at approximately 58 days old. Thereafter, we measured triceps surae muscles weight and myofiber cross-sectional area (CSA), and quantified its telomere content. In addition, we evaluated bone strength and performed histopathological examinations of organs. Survival was measured in the second set of groups (NT, 3% NYT and 5% NYT group, n = 8 each). In the walking test, several indicators such as gait velocity were improved in the NYT 3% group. Similar results were obtained for the latency to fall in the rotarod test and spontaneous motor activity. Triceps muscle mass, CSA and its telomere content were significantly improved in the NYT 3% group. Bone density, pulmonary alveolus destruction and testicular atrophy were also significantly improved in the NYT 3% group. Survival rate and body weight were both significantly improved in the NYT3% group compared with those in the NT group. Continuous administration of NYT from the early stage of aging improved not only gait performance, but also the survival in the aging-related frailty model. This effect may be associated with the improvements in aging-related organ changes such as muscle atrophy. Intervention with NYT against the progression of frailty may contribute to a longer, healthier life span among the elderly individuals.
Collapse
|
12
|
Lai J, Xu T, Yang H. Protein-based prognostic signature for predicting the survival and immunotherapeutic efficiency of endometrial carcinoma. BMC Cancer 2022; 22:325. [PMID: 35337291 PMCID: PMC8957185 DOI: 10.1186/s12885-022-09402-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
Background Endometrial cancer (EC) is the most frequent malignancy of the female genital tract worldwide. Our study aimed to construct an effective protein prognostic signature to predict prognosis and immunotherapy responsiveness in patients with endometrial carcinoma. Methods Protein expression data, RNA expression profile data and mutation data were obtained from The Cancer Proteome Atlas (TCPA) and The Cancer Genome Atlas (TCGA). Prognosis-related proteins in EC patients were screened by univariate Cox regression analysis. Least absolute shrinkage and selection operator (LASSO) analysis and multivariate Cox regression analysis were performed to establish the protein-based prognostic signature. The CIBERSORT algorithm was used to quantify the proportions of immune cells in a mixed cell population. The Immune Cell Abundance Identifier (ImmuCellAI) and The Cancer Immunome Atlas (TCIA) web tools were used to predict the response to immunochemotherapy. The pRRophetic algorithm was used to estimate the sensitivity of chemotherapeutic and targeted agents. Results We constructed a prognostic signature based on 9 prognostic proteins, which could divide patients into high-risk and low-risk groups with distinct prognoses. A novel prognostic nomogram was established based on the prognostic signature and clinicopathological parameters to predict 1, 3 and 5-year overall survival for EC patients. The results obtained with Clinical Proteomic Tumor Analysis Consortium (CPTAC), Human Protein Atlas (HPA) and immunohistochemical (IHC) staining data from EC samples in our hospital supported the predictive ability of these proteins in EC tumors. Next, the CIBERSORT algorithm was used to estimate the proportions of 22 immune cell types. The proportions of CD8 T cells, T follicular helper cells and regulatory T cells were higher in the low-risk group. Moreover, we found that the prognostic signature was positively associated with high tumor mutation burden (TMB) and high microsatellite instability (MSI-H) status in EC patients. Finally, ImmuCellAI and TCIA analyses showed that patients in the low-risk group were more inclined to respond to immunotherapy than patients in the high-risk group. In addition, drug sensitivity analysis indicated that our signature had potential predictive value for chemotherapeutics and targeted therapy. Conclusion Our study constructed a novel prognostic protein signature with robust predictive ability for survival and efficiency in predicting the response to immunotherapy, chemotherapy and targeted therapy. This protein signature represents a promising predictor of prognosis and response to cancer treatment in EC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09402-w.
Collapse
Affiliation(s)
- Jinzhi Lai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Tianwen Xu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Hainan Yang
- Department of Ultrasound, First Affiliated Hospital of Xiamen University, Xiamen, 361000, Fujian, China.
| |
Collapse
|
13
|
Chen R, Skutella T. Synergistic Anti-Ageing through Senescent Cells Specific Reprogramming. Cells 2022; 11:830. [PMID: 35269453 PMCID: PMC8909644 DOI: 10.3390/cells11050830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
In this review, we seek a novel strategy for establishing a rejuvenating microenvironment through senescent cells specific reprogramming. We suggest that partial reprogramming can produce a secretory phenotype that facilitates cellular rejuvenation. This strategy is desired for specific partial reprogramming under control to avoid tumour risk and organ failure due to loss of cellular identity. It also alleviates the chronic inflammatory state associated with ageing and secondary senescence in adjacent cells by improving the senescence-associated secretory phenotype. This manuscript also hopes to explore whether intervening in cellular senescence can improve ageing and promote damage repair, in general, to increase people's healthy lifespan and reduce frailty. Feasible and safe clinical translational protocols are critical in rejuvenation by controlled reprogramming advances. This review discusses the limitations and controversies of these advances' application (while organizing the manuscript according to potential clinical translation schemes) to explore directions and hypotheses that have translational value for subsequent research.
Collapse
Affiliation(s)
| | - Thomas Skutella
- Group for Regeneration and Reprogramming, Medical Faculty, Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
14
|
Dynamic Spatiotemporal Expression Pattern of the Senescence-Associated Factor p16Ink4a in Development and Aging. Cells 2022; 11:cells11030541. [PMID: 35159350 PMCID: PMC8833900 DOI: 10.3390/cells11030541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
A plethora of factors have been attributed to underly aging, including oxidative stress, telomere shortening and cellular senescence. Several studies have shown a significant role of the cyclin-dependent kinase inhibitor p16ink4a in senescence and aging. However, its expression in development has been less well documented. Therefore, to further clarify a potential role of p16 in development and aging, we conducted a developmental expression study of p16, as well as of p19ARF and p21, and investigated their expression on the RNA level in brain, heart, liver, and kidney of mice at embryonic, postnatal, adult, and old ages. P16 expression was further assessed on the protein level by immunohistochemistry. Expression of p16 was highly dynamic in all organs in embryonic and postnatal stages and increased dramatically in old mice. Expression of p19 and p21 was less variable and increased to a moderate extent at old age. In addition, we observed a predominant expression of p16 mRNA and protein in liver endothelial cells versus non-endothelial cells of old mice, which suggests a functional role specifically in liver endothelium of old subjects. Thus, p16 dynamic spatiotemporal expression might implicate p16 in developmental and physiological processes in addition to its well-known function in the build-up of senescence.
Collapse
|
15
|
Hu MC, Moe OW. Phosphate and Cellular Senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:55-72. [PMID: 35288873 PMCID: PMC10513121 DOI: 10.1007/978-3-030-91623-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cellular senescence is one type of permeant arrest of cell growth and one of increasingly recognized contributor to aging and age-associated disease. High phosphate and low Klotho individually and synergistically lead to age-related degeneration in multiple organs. Substantial evidence supports the causality of high phosphate in cellular senescence, and potential contribution to human aging, cancer, cardiovascular, kidney, neurodegenerative, and musculoskeletal diseases. Phosphate can induce cellular senescence both by direct phosphotoxicity, and indirectly through downregulation of Klotho and upregulation of plasminogen activator inhibitor-1. Restriction of dietary phosphate intake and blockage of intestinal absorption of phosphate help suppress cellular senescence. Supplementation of Klotho protein, cellular senescence inhibitor, and removal of senescent cells with senolytic agents are potential novel strategies to attenuate phosphate-induced cellular senescence, retard aging, and ameliorate age-associated, and phosphate-induced disorders.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Urate S, Wakui H, Azushima K, Yamaji T, Suzuki T, Abe E, Tanaka S, Taguchi S, Tsukamoto S, Kinguchi S, Uneda K, Kanaoka T, Atobe Y, Funakoshi K, Yamashita A, Tamura K. Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice. Int J Mol Sci 2021; 22:ijms222212432. [PMID: 34830314 PMCID: PMC8618437 DOI: 10.3390/ijms222212432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by progressive renal fibrosis and functional decline. Although renal fibrosis is associated with renal aging, whether AA induces renal aging remains unclear. The aim of the present study is to investigate the potential use of AAN as a model of renal aging. Here, we examined senescence-related factors in AAN models by chronically administering AA to C57BL/6 mice. Compared with controls, the AA group demonstrated aging kidney phenotypes, such as renal atrophy, renal functional decline, and tubulointerstitial fibrosis. Additionally, AA promoted cellular senescence specifically in the kidneys, and increased renal p16 mRNA expression and senescence-associated β-galactosidase activity. Furthermore, AA-treated mice exhibited proximal tubular mitochondrial abnormalities, as well as reactive oxygen species accumulation. Klotho, an antiaging gene, was also significantly decreased in the kidneys of AA-treated mice. Collectively, the results of the present study indicate that AA alters senescence-related factors, and that renal fibrosis is closely related to renal aging.
Collapse
MESH Headings
- Aging/drug effects
- Aging/genetics
- Animals
- Aristolochic Acids/pharmacology
- Collagen/agonists
- Collagen/genetics
- Collagen/metabolism
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Disease Models, Animal
- Fibrosis
- Gene Expression Regulation
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Klotho Proteins/genetics
- Klotho Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Nephritis, Interstitial/chemically induced
- Nephritis, Interstitial/genetics
- Nephritis, Interstitial/metabolism
- Nephritis, Interstitial/pathology
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Transforming Growth Factor beta/agonists
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Shingo Urate
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
- Correspondence: ; Tel.: +81-45-787-2635
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Takahiro Yamaji
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Toru Suzuki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Eriko Abe
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Shohei Tanaka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Shinya Taguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Tomohiko Kanaoka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Yoshitoshi Atobe
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.A.); (K.F.)
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.A.); (K.F.)
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Okinawa 903-0215, Japan;
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| |
Collapse
|
17
|
Takeshita H, Yamamoto K, Mogi M, Wang Y, Nozato Y, Fujimoto T, Yokoyama S, Hongyo K, Nakagami F, Akasaka H, Takami Y, Takeya Y, Sugimoto K, Horiuchi M, Rakugi H. Double Deletion of Angiotensin II Type 2 and Mas Receptors Accelerates Aging-Related Muscle Weakness in Male Mice. J Am Heart Assoc 2021; 10:e021030. [PMID: 34212761 PMCID: PMC8403326 DOI: 10.1161/jaha.120.021030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Background The activation of AT2 (angiotensin II type 2 receptor ) and Mas receptor by angiotensin II and angiotensin-(1-7), respectively, is the primary process that counteracts activation of the canonical renin-angiotensin system (RAS). Although inhibition of canonical RAS could delay the progression of physiological aging, we recently reported that deletion of Mas had no impact on the aging process in mice. Here, we used male mice with a deletion of only AT2 or a double deletion of AT2 and Mas to clarify whether these receptors contribute to the aging process in a complementary manner, primarily by focusing on aging-related muscle weakness. Methods and Results Serial changes in grip strength of these mice up to 24 months of age showed that AT2/Mas knockout mice, but not AT2 knockout mice, had significantly weaker grip strength than wild-type mice from the age of 18 months. AT2/Mas knockout mice exhibited larger sizes, but smaller numbers and increased frequency of central nucleation (a marker of aged muscle) of single skeletal muscle fibers than AT2 knockout mice. Canonical RAS-associated genes, inflammation-associated genes, and senescence-associated genes were highly expressed in skeletal muscles of AT2/Mas knockout mice. Muscle angiotensin II content increased in AT2/Mas knockout mice. Conclusions Double deletion of AT2 and Mas in mice exaggerated aging-associated muscle weakness, accompanied by signatures of activated RAS, inflammation, and aging in skeletal muscles. Because aging-associated phenotypes were absent in single deletions of the receptors, AT2 and Mas could complement each other in preventing local activation of RAS during aging.
Collapse
MESH Headings
- Age Factors
- Animals
- Fibrosis
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Hand Strength
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Strength/genetics
- Muscle Weakness/genetics
- Muscle Weakness/metabolism
- Muscle Weakness/pathology
- Muscle Weakness/physiopathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Phenotype
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Renin-Angiotensin System/genetics
- Mice
Collapse
Affiliation(s)
- Hikari Takeshita
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Koichi Yamamoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Masaki Mogi
- Department of PharmacologyEhime University Graduate School of MedicineEhimeJapan
| | - Yu Wang
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yoichi Nozato
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Taku Fujimoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Serina Yokoyama
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Kazuhiro Hongyo
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Futoshi Nakagami
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Hiroshi Akasaka
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yoichi Takami
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yasushi Takeya
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Ken Sugimoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and PharmacologyEhime University Graduate School of MedicineEhimeJapan
| | - Hiromi Rakugi
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
18
|
Pilkington SM, Bulfone-Paus S, Griffiths CE, Watson RE. Inflammaging and the Skin. J Invest Dermatol 2021; 141:1087-1095. [DOI: 10.1016/j.jid.2020.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
|
19
|
Squires PE, Price GW, Mouritzen U, Potter JA, Williams BM, Hills CE. Danegaptide Prevents TGFβ1-Induced Damage in Human Proximal Tubule Epithelial Cells of the Kidney. Int J Mol Sci 2021; 22:2809. [PMID: 33802083 PMCID: PMC7999212 DOI: 10.3390/ijms22062809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health problem associated with a number of comorbidities. Recent evidence implicates increased hemichannel-mediated release of adenosine triphosphate (ATP) in the progression of tubulointerstitial fibrosis, the main underlying pathology of CKD. Here, we evaluate the effect of danegaptide on blocking hemichannel-mediated changes in the expression and function of proteins associated with disease progression in tubular epithelial kidney cells. Primary human proximal tubule epithelial cells (hPTECs) were treated with the beta1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± danegaptide. qRT-PCR and immunoblotting confirmed mRNA and protein expression, whilst a cytokine antibody array assessed the expression/secretion of proinflammatory and profibrotic cytokines. Carboxyfluorescein dye uptake and ATP biosensing measured hemichannel activity and ATP release, whilst transepithelial electrical resistance was used to assess paracellular permeability. Danegaptide negated carboxyfluorescein dye uptake and ATP release and protected against protein changes associated with tubular injury. Blocking Cx43-mediated ATP release was paralleled by partial restoration of the expression of cell cycle inhibitors, adherens and tight junction proteins and decreased paracellular permeability. Furthermore, danegaptide inhibited TGFβ1-induced changes in the expression and secretion of key adipokines, cytokines, chemokines, growth factors and interleukins. The data suggest that as a gap junction modulator and hemichannel blocker, danegaptide has potential in the future treatment of CKD.
Collapse
Affiliation(s)
- Paul E. Squires
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Gareth W. Price
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ved Hegnet 2, 2960 Rungsted Kyst, Copenhagen, Denmark;
| | - Joe A. Potter
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Bethany M. Williams
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Claire E. Hills
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| |
Collapse
|
20
|
von Maltzahn J. Regulation of muscle stem cell function. VITAMINS AND HORMONES 2021; 116:295-311. [PMID: 33752822 DOI: 10.1016/bs.vh.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Regeneration of skeletal muscle is a finely tuned process which is depending on muscle stem cells, a population of stem cells in skeletal muscle which is also termed satellite cells. Muscle stem cells are a prerequisite for regeneration of skeletal muscle. Of note, the muscle stem cell population is heterogeneous and subpopulations can be identified depending on gene expression or phenotypic traits. However, all muscle stem cells express the transcription factor Pax7 and their functionality is tightly controlled by intrinsic signaling pathways and extrinsic signals. The latter ones include signals form the stem cell niche as well as circulating factors such as growth factors and hormones. Among them are Wnt proteins, growth factors like IGF-1 or FGF-2 and hormones such as thyroid hormones and the anti-aging hormone Klotho. A highly orchestrated interplay between those factors and muscle stem cells is important for their full functionality and ultimately regeneration of skeletal muscle as outlined here.
Collapse
|
21
|
Zhang Y, Shao C, Li H, Wu K, Gong L, Zheng Q, Dan J, Jia S, Tang X, Wu X, Luo Y. The Distinct Function of p21 Waf1/Cip1 With p16 Ink4a in Modulating Aging Phenotypes of Werner Syndrome by Affecting Tissue Homeostasis. Front Genet 2021; 12:597566. [PMID: 33633779 PMCID: PMC7901894 DOI: 10.3389/fgene.2021.597566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 12/04/2022] Open
Abstract
Human Werner syndrome (WS) is an autosomal recessive progeria disease. A mouse model of WS manifests the disease through telomere dysfunction-induced aging phenotypes, which might result from cell cycle control and cellular senescence. Both p21Waf1/Cip1 (p21, encoded by the Cdkn1a gene) and p16Ink4a (p16, encoded by the Ink4a gene) are cell cycle inhibitors and are involved in regulating two key pathways of cellular senescence. To test the effect of p21 and p16 deficiencies in WS, we crossed WS mice (DKO) with p21–/– or p16–/– mice to construct triple knockout (p21-TKO or p16-TKO) mice. By studying the survival curve, bone density, regenerative tissue (testis), and stem cell capacity (intestine), we surprisingly found that p21-TKO mice displayed accelerated premature aging compared with DKO mice, while p16-TKO mice showed attenuation of the aging phenotypes. The incidence of apoptosis and cellular senescence were upregulated in p21-TKO mice tissue and downregulated in p16-TKO mice. Surprisingly, cellular proliferation in p21-TKO mice tissue was also upregulated, and the p21-TKO mice did not show telomere shortening compared with age-matched DKO mice, although p16-TKO mice displayed obvious enhancement of telomere lengthening. Consistent with these phenotypes, the SIRT1-PGC1 pathway was upregulated in p16-TKO but downregulated in p21-TKO compared with DKO mouse embryo fibroblasts (MEFs). However, the DNA damage response pathway was highly activated in p21-TKO, but rescued in p16-TKO, compared with DKO MEFs. These data suggest that p21 protected the stem cell reservoir by regulating cellular proliferation and turnover at a proper rate and that p21 loss in WS activated fairly severe DNA damage responses (DDR), which might cause an abnormal increase in tissue homeostasis. On the other hand, p16 promoted cellular senescence by inhibiting cellular proliferation, and p16 deficiency released this barrier signal without causing severe DDR.
Collapse
Affiliation(s)
- Yongjin Zhang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Chihao Shao
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Haili Li
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, China.,Guizhou Provincial Key Laboratory of Pathogenesis & Drug Development on Common Chronic Diseases, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Kun Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, China.,Yunnan Provincial Institute of Digestive Disease, Department of Gastroenterology, First People's Hospital of Yunnan Province, Kunming, China
| | - Lixin Gong
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Quan Zheng
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaodan Tang
- Yunnan Provincial Institute of Digestive Disease, Department of Gastroenterology, First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, China.,Guizhou Provincial Key Laboratory of Pathogenesis & Drug Development on Common Chronic Diseases, School of Basic Medicine, Guizhou Medical University, Guiyang, China.,Yunnan Provincial Institute of Digestive Disease, Department of Gastroenterology, First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
22
|
Lai L, Li Y, Liu J, Luo L, Tang J, Xue J, Liu T. Bovine serum albumin aggravates macrophage M1 activation and kidney injury in heterozygous Klotho-deficient mice via the gut microbiota-immune axis. Int J Biol Sci 2021; 17:742-755. [PMID: 33767585 PMCID: PMC7975693 DOI: 10.7150/ijbs.56424] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Klotho expression abnormalities induces kidney injury and chronic kidney disease, however, the underlying mechanism remains unclear. Here, Klotho+/- mice and wild-type mice were treated with low-dose bovine serum albumin (BSA). Pathological examination demonstrated that the area of glomerular collagen deposition and fibrosis in BSA-Kl-/+ mice was significantly larger than that in BSA-WT mice. The serum levels of superoxide dismutase, malondialdehyde, creatinine, and urea in BSA-Kl-/+ mice were significantly increased. Sequencing of gut microbiota 16S rRNA v3-v4 region indicated that BSA-Kl-/+ mice showed a significantly higher relative abundance of the genera Dubosiella, Akkermansia, Alloprevotella, and Lachnospiraceae and a significantly lower relative abundance of the genera Allobaculum and Muribaculaceae than BSA-WT mice. KEGG analysis revealed that the metabolic pathways of signal transduction, xenobiotic biodegradation and metabolism, and lipid metabolism increased significantly in BSA-Kl-/+ mice. Flow cytometry showed that the proportion of CD68+/CD11b+ cells in the peripheral blood was significantly higher in BSA-KL-/+ mice than that in BSA-WT mice. qPCR and western blot suggested that Klotho and Nrf2 expression in MΦ1 cells of BSA-KL-/+ mice was significantly decreased. Thus, the findings suggest during the immune activation and chronic inflammation induced by the gut microbiota imbalance in Klotho-deficient mice treated to BSA, disrupted expression of proteins in the Nrf2/NF-κB signaling pathway in monocyte-derived macrophage M1 cells leads to the aggravation of inflammation and kidney injury.
Collapse
Affiliation(s)
- Lingyun Lai
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Li
- Division of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianjun Liu
- Trauma-Emergency & Critical Care Medicine Center, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Lei Luo
- Division of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianguo Tang
- Trauma-Emergency & Critical Care Medicine Center, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Jun Xue
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
23
|
Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res 2021; 31:187-205. [PMID: 32737416 PMCID: PMC8027439 DOI: 10.1038/s41422-020-0385-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 01/29/2023] Open
Abstract
Accumulating evidence indicates an association between the circadian clock and the aging process. However, it remains elusive whether the deregulation of circadian clock proteins underlies stem cell aging and whether they are targetable for the alleviation of aging-associated syndromes. Here, we identified a transcription factor-independent role of CLOCK, a core component of the molecular circadian clock machinery, in counteracting human mesenchymal stem cell (hMSC) decay. CLOCK expression was decreased during hMSC aging. In addition, CLOCK deficiency accelerated hMSC senescence, whereas the overexpression of CLOCK, even as a transcriptionally inactive form, rejuvenated physiologically and pathologically aged hMSCs. Mechanistic studies revealed that CLOCK formed complexes with nuclear lamina proteins and KAP1, thus maintaining heterochromatin architecture and stabilizing repetitive genomic sequences. Finally, gene therapy with lentiviral vectors encoding CLOCK promoted cartilage regeneration and attenuated age-related articular degeneration in mice. These findings demonstrate a noncanonical role of CLOCK in stabilizing heterochromatin, promoting tissue regeneration, and mitigating aging-associated chronic diseases.
Collapse
|
24
|
Neyra JA, Hu MC, Moe OW. Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clin J Am Soc Nephrol 2020; 16:162-176. [PMID: 32699047 PMCID: PMC7792642 DOI: 10.2215/cjn.02840320] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
αKlotho (called Klotho here) is a membrane protein that serves as the coreceptor for the circulating hormone fibroblast growth factor 23 (FGF23). Klotho is also cleaved and released as a circulating substance originating primarily from the kidney and exerts a myriad of housekeeping functions in just about every organ. The vital role of Klotho is shown by the multiorgan failure with genetic deletion in rodents, with certain features reminiscent of human disease. The most common causes of systemic Klotho deficiency are AKI and CKD. Preclinical data on Klotho biology have advanced considerably and demonstrated its potential diagnostic and therapeutic value; however, multiple knowledge gaps exist in the regulation of Klotho expression, release, and metabolism; its target organs; and mechanisms of action. In the translational and clinical fronts, progress has been more modest. Nonetheless, Klotho has potential clinical applications in the diagnosis of AKI and CKD, in prognosis of progression and extrarenal complications, and finally, as replacement therapy for systemic Klotho deficiency. The overall effect of Klotho in clinical nephrology requires further technical advances and additional large prospective human studies.
Collapse
Affiliation(s)
- Javier A. Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
25
|
Tsurumi A, Li WX. Aging mechanisms-A perspective mostly from Drosophila. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10026. [PMID: 36619249 PMCID: PMC9744567 DOI: 10.1002/ggn2.10026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/11/2023]
Abstract
A mechanistic understanding of the natural aging process, which is distinct from aging-related disease mechanisms, is essential for developing interventions to extend lifespan or healthspan. Here, we discuss current trends in aging research and address conceptual and experimental challenges in the field. We examine various molecular markers implicated in aging with an emphasis on the role of heterochromatin and epigenetic changes. Studies in model organisms have been advantageous in elucidating conserved genetic and epigenetic mechanisms and assessing interventions that affect aging. We highlight the use of Drosophila, which allows controlled studies for evaluating genetic and environmental contributors to aging conveniently. Finally, we propose the use of novel methodologies and future strategies using Drosophila in aging research.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of SurgeryMassachusetts General Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Microbiology and ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Hospitals for Children‐Boston®BostonMassachusettsUSA
| | - Willis X. Li
- Department of MedicineUniversity of California at San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
26
|
Huang K, Cai HL, Bao JP, Wu LD. Dehydroepiandrosterone and age-related musculoskeletal diseases: Connections and therapeutic implications. Ageing Res Rev 2020; 62:101132. [PMID: 32711158 DOI: 10.1016/j.arr.2020.101132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/01/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Musculoskeletal disorders related to ageing are one of the most common causes of mortality and morbidity among elderly individuals worldwide. The typical constitutive components of the musculoskeletal system, including bone, muscle, and joints, gradually undergo a process of tissue loss and degeneration as a result of life-long mechanical and biological stress, ultimately leading to the onset of a series of age-related musculoskeletal diseases, including osteoporosis (OP), sarcopenia, and osteoarthritis (OA). Dehydroepiandrosterone (DHEA), a precursor of androgen secreted mainly by the adrenal gland, has attracted much attention as a marker for senescence due to its unique age-related changes. This pre-hormone has been publicly regarded as an "antidote for ageing" because of its favourable effect against a wide range of age-related diseases, such as Alzheimer disease, cardiovascular diseases, immunosenescence and skin senescence, though its effect on age-related musculoskeletal diseases has been explored to a lesser extent. In the present review, we summarized the action of DHEA against OP, sarcopenia and OA. Extensive detailed descriptions of the pathogenesis of each of these musculoskeletal disorders are beyond the scope of this review; instead, we aim to highlight the association of changes in DHEA with the processes of OP, sarcopenia and OA. A special focus will also be placed on the overlapping pathogeneses among these three diseases, and the molecular mechanisms underlying the action of DHEA against these diseases are discussed or postulated.
Collapse
Affiliation(s)
- Kai Huang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, People's Republic of China.
| | - Hai-Li Cai
- Department of Ultrasound, The 903rd Hospital of PLA, Hangzhou, 310012, People's Republic of China
| | - Jia-Peng Bao
- Department of Orthopedic Surgery, The Second Hospital of Medical College, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Li-Dong Wu
- Department of Orthopedic Surgery, The Second Hospital of Medical College, Zhejiang University, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
27
|
Maique J, Flores B, Shi M, Shepard S, Zhou Z, Yan S, Moe OW, Hu MC. High Phosphate Induces and Klotho Attenuates Kidney Epithelial Senescence and Fibrosis. Front Pharmacol 2020; 11:1273. [PMID: 32973510 PMCID: PMC7468469 DOI: 10.3389/fphar.2020.01273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence is an irreversible cell growth arrest and is associated with aging and age-related diseases. High plasma phosphate (Pi) and deficiency of Klotho contribute to aging and kidney fibrosis, a pathological feature in the aging kidney and chronic kidney disease. This study examined the interactive role of Pi and Klotho in kidney senescence and fibrosis. Homozygous Klotho hypomorphic mice had high plasma Pi, undetectable Klotho in plasma and kidney, high senescence with massive collagen accumulation in kidney tubules, and fibrin deposits in peritubular capillaries. To examine the Pi effect on kidney senescence, a high (2%) Pi diet was given to wild-type mice. One week of high dietary Pi mildly increased plasma Pi, and upregulated kidney p16/p21 expression, but did not significantly decrease Klotho. Two weeks of high Pi intake led to increase in plasminogen activator inhibitor (PAI)-1, and decrease in kidney Klotho, but still without detectable increase in kidney fibrosis. More prolonged dietary Pi for 12 weeks exacerbated kidney senescence and fibrosis; more so in heterozygous Klotho hypomorphic mice compared to wild-type mice, and in mice with chronic kidney disease (CKD) on high Pi diet compared to CKD mice fed a normal Pi diet. In cultured kidney tubular cells, high Pi directly induced cellular senescence, injury and epithelial-mesenchymal transition, and enhanced H2O2-induced cellular senescence and injury, which were abrogated by Klotho. Fucoidan, a bioactive molecule with multiple biologic functions including senescence inhibition, blunted Pi-induced cellular senescence, oxidation, injury, epithelial-mesenchymal transition, and senescence-associated secretary phenotype. In conclusion, high Pi activates senescence through distinct but interconnected mechanisms: upregulating p16/p21 (early), and elevating plasminogen activator inhibitor-1 and downregulating Klotho (late). Klotho may be a promising agent to attenuate senescence and ameliorate age-associated, and Pi-induced kidney degeneration such as kidney fibrosis.
Collapse
Affiliation(s)
- Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brianna Flores
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sierra Shepard
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zhiyong Zhou
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shirely Yan
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
28
|
Wilkinson HN, Hardman MJ. Senescence in Wound Repair: Emerging Strategies to Target Chronic Healing Wounds. Front Cell Dev Biol 2020; 8:773. [PMID: 32850866 PMCID: PMC7431694 DOI: 10.3389/fcell.2020.00773] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a fundamental stress response that restrains tumour formation. Yet, senescence cells are also present in non-cancerous states, accumulating exponentially with chronological age and contributing to age- and diabetes-related cellular dysfunction. The identification of hypersecretory and phagocytic behaviours in cells that were once believed to be non-functional has led to a recent explosion of senescence research. Here we discuss the profound, and often opposing, roles identified for short-lived vs. chronic tissue senescence. Transiently induced senescence is required for development, regeneration and acute wound repair, while chronic senescence is widely implicated in tissue pathology. We recently demonstrated that sustained senescence contributes to impaired diabetic healing via the CXCR2 receptor, which when blocked promotes repair. Further studies have highlighted the beneficial effects of targeting a range of senescence-linked processes to fight disease. Collectively, these findings hold promise for developing clinically viable strategies to tackle senescence in chronic wounds and other cutaneous pathologies.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| |
Collapse
|
29
|
Salech F, Varela-Nallar L, Arredondo SB, Bustamante DB, Andaur GA, Cisneros R, Ponce DP, Ayala P, Inestrosa NC, Valdés JL, I Behrens M, Couve A. Local Klotho Enhances Neuronal Progenitor Proliferation in the Adult Hippocampus. J Gerontol A Biol Sci Med Sci 2020; 74:1043-1051. [PMID: 29300914 DOI: 10.1093/gerona/glx248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Klotho is an aging-related protein associated with hippocampal cognitive performance in mammals. Klotho regulates progenitor cell proliferation in non-neuronal tissues, but its role in adult hippocampal neurogenesis (AHN) has not been explored. Klotho expression in the adult mouse hippocampus was examined by immunofluorescence and polymerase chain reaction. AHN was evaluated in the hippocampus of klotho knock-out mice (KO), klotho KO/vitamin D-receptor mutant mice, and in a model of local klotho hippocampal knockdown. The recombinant Klotho effect on proliferation was measured in mouse-derived hippocampal neural progenitor cells. Hippocampal-dependent memory was assessed by a dry-land version of the Morris water maze. Klotho was expressed in the granular cell layer of the adult Dentate Gyrus. AHN was increased in klotho KO mice, but not in klotho KO/vitamin D-receptor mutant mice. Inversely, local downregulation of hippocampal Klotho diminished AHN. Recombinant Klotho increased the proliferation rate of neural progenitors. Downregulation of hippocampal Klotho correlated with a decreased performance in hippocampal-dependent memory. These results suggest that Klotho directly participates in regulating AHN. Our observations indicate that Klotho promotes proliferation, AHN and hippocampal-dependent cognition. Increased neurogenesis in klotho KO mice may be secondary to the activation of other pathways altered in the model, such as vitamin D.
Collapse
Affiliation(s)
- Felipe Salech
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Unidad de Geriatría, Hospital Clínico Universidad de Chile, Santiago.,Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago
| | - Lorena Varela-Nallar
- Centro de Investigaciones Biomédicas (CIB), Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Sebastián B Arredondo
- Centro de Investigaciones Biomédicas (CIB), Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Daniel B Bustamante
- Centro de Investigaciones Biomédicas (CIB), Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Gabriela A Andaur
- Centro de Investigaciones Biomédicas (CIB), Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Cisneros
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela P Ponce
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago
| | - Patricia Ayala
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago.,Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - José L Valdés
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - María I Behrens
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago.,Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago.,Clínica Alemana de Santiago, Chile
| | - Andrés Couve
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| |
Collapse
|
30
|
Ramez M, Ramezani F, Nasirinezhad F, Rajabi H. High‐intensity interval training increases myocardial levels of Klotho and protects the heart against ischaemia–reperfusion injury. Exp Physiol 2020; 105:652-665. [DOI: 10.1113/ep087994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Maral Ramez
- Department of Exercise physiologyFaculty of Physical Education and Sport Sciences, Kharazmi University Tehran Iran
| | - Fatemeh Ramezani
- Physiology Research Center and Physiology DepartmentFaculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center and Physiology DepartmentFaculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Hamid Rajabi
- Department of Exercise physiologyFaculty of Physical Education and Sport Sciences, Kharazmi University Tehran Iran
| |
Collapse
|
31
|
Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat Commun 2020; 11:889. [PMID: 32060352 PMCID: PMC7021787 DOI: 10.1038/s41467-020-14734-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Idiopathic inflammatory myopathies cause progressive muscle weakness and degeneration. Since high-dose glucocorticoids might not lead to full recovery of muscle function, physical exercise is also an important intervention, but some exercises exacerbate chronic inflammation and muscle fibrosis. It is unknown how physical exercise can have both beneficial and detrimental effects in chronic myopathy. Here we show that senescence of fibro-adipogenic progenitors (FAPs) in response to exercise-induced muscle damage is needed to establish a state of regenerative inflammation that induces muscle regeneration. In chronic inflammatory myopathy model mice, exercise does not promote FAP senescence or resistance against tumor necrosis factor–mediated apoptosis. Pro-senescent intervention combining exercise and pharmacological AMPK activation reverses FAP apoptosis resistance and improves muscle function and regeneration. Our results demonstrate that the absence of FAP senescence after exercise leads to muscle degeneration with FAP accumulation. FAP-targeted pro-senescent interventions with exercise and pharmacological AMPK activation may constitute a therapeutic strategy for chronic inflammatory myopathy. Some exercises exacerbate chronic inflammation and muscle fibrosis in chronic myopathy. Here, the authors show that senescence of fibro-adipogenic progenitors (FAPs) in response to exercise induces muscle regeneration, and impaired FAP senescence worsens inflammation and fibrosis in chronic myopathy in mice.
Collapse
|
32
|
Rao Z, Zheng L, Huang H, Feng Y, Shi R. α-Klotho Expression in Mouse Tissues Following Acute Exhaustive Exercise. Front Physiol 2019; 10:1498. [PMID: 31920703 PMCID: PMC6919267 DOI: 10.3389/fphys.2019.01498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
α-Klotho, a multifunctional protein, has been demonstrated to protect tissues from injury via anti-oxidation and anti-inflammatory effects. The expression of α-klotho is regulated by several physiological and pathological factors, including acute inflammatory stress, oxidative stress, hypertension, and chronic renal failure. Exhaustive exercise has been reported to result in tissue damage, which is induced by inflammation, oxidative stress, and energy metabolism disturbance. However, little is known about the effects of exhaustive exercise on the expression of α-klotho in various tissues. To determine the effects, the treadmill exhaustion test in mice was performed and the mice were sacrificed at different time points following exhaustive exercise. Our results confirmed that the full-length (130 kDa) and shorter-form (65 kDa) α-klotho were primarily expressed in the kidneys. Moreover, we found that, except for the kidneys and brain, other tissues primarily expressed the shorter-form α-klotho, including liver, which was in contrast to previous reports. Furthermore, the shorter-form α-klotho was decreased immediately following the acute exhaustive exercise and was then restored to the pre-exercise level or even higher levels in the next few days. Our results indicate that α-klotho may play a key role in the body exhaustion and recovery following exhaustive exercise.
Collapse
Affiliation(s)
- Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai, China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Department of Kinesiology and Physiology, East Carolina University, Greenville, NC, United States
| | - Lifang Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hu Huang
- Department of Kinesiology and Physiology, East Carolina University, Greenville, NC, United States
| | - Yu Feng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Rengfei Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
33
|
Chen B, Huang S, Pisanic Ii TR, Stark A, Tao Y, Cheng B, Li Y, Wei Y, Zhao W, Wang TH, Wu J. Rab8 GTPase regulates Klotho-mediated inhibition of cell growth and progression by directly modulating its surface expression in human non-small cell lung cancer. EBioMedicine 2019; 49:118-132. [PMID: 31707148 PMCID: PMC6945242 DOI: 10.1016/j.ebiom.2019.10.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The klotho (KL) gene is an anti-aging gene that has recently been shown to also function as a general tumor suppressor. However, there is currently only limited information regarding the potential molecular signals for regulation of Klotho without identifying precise molecular mechanisms or interactions. METHODS We performed a mass spectrometry (MS) assay to screen candidate proteins complexed with Klotho derived from immunoprecipitation in human non-small cell lung cancer (NSCLC) cells, and identified Rab8 to be the protein that most prominently interacts with Klotho. We further investigated whether Rab8 can regulate trafficking of Klotho and which process it would modulate using surface biotinylation assay, immunofluorescence and fluorescence ratio microscopy. Furthermore, we explored whether Rab8 is involved in Klotho-mediated function in NSCLC, and verified the results which we found in vivo using xenograft mouse model. FINDINGS We report discovery of Rab8 as a Klotho-interacting protein that acts as a critical modulator of Klotho surface expression in human NSCLC. In particular, we report that Rab8 is co-localized and associated with Klotho, and Klotho trafficking is regulated by Rab8. Moreover, we found that Rab8 modulates surface levels of Klotho via a post-biosynthetic pathway, as opposed to an endocytic pathway. Furthermore, we demonstrate that Rab8 is involved in Klotho-mediated regulation of cell proliferation, migration, invasiveness, epithelial-mesenchymal transition (EMT), and Wnt-β-catenin signaling in NSCLC. Additionally, Rab8 overexpression was also found to increase Klotho-mediated inhibition of NSCLC tumorigenesis in vivo. INTERPRETATION Overall, our findings suggest that Rab8 GTPase can regulate Klotho-mediated inhibition of Wnt signaling activity by modulating translocation of Klotho onto the cell surface, which in turn affects Klotho-mediated inhibition of cell proliferation, migration and invasiveness in NSCLC. These results have important implications for the development of new therapeutic targets, Klotho-related research in the context of NSCLC as well as other areas, and provide a working model for Rab8 function in the context of cancer and cancer biology.
Collapse
Affiliation(s)
- Bo Chen
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China; Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Shuhong Huang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Thomas R Pisanic Ii
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alejandro Stark
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yong Tao
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Bei Cheng
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yue Li
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Yunyan Wei
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Weihong Zhao
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Tza-Huei Wang
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jianqing Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
34
|
Angiotensin 1-7 alleviates aging-associated muscle weakness and bone loss, but is not associated with accelerated aging in ACE2-knockout mice. Clin Sci (Lond) 2019; 133:2005-2018. [PMID: 31519791 DOI: 10.1042/cs20190573] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023]
Abstract
The angiotensin-converting enzyme 2 (ACE2)-angiotensin 1-7 (A1-7)-A1-7 receptor (Mas) axis plays a protective role in the renin-angiotensin system (RAS). We recently found that ACE2 knockout (ACE2KO) mice exhibit earlier aging-associated muscle weakness, and that A1-7 alleviates muscle weakness in aging mice. In the present study, we investigated the role of the A1-7-Mas pathway in the effect of ACE2 on physiological aging. Male wild-type, ACE2KO, and Mas knockout (MasKO) mice were subjected to periodical grip strength measurement, followed by administration of A1-7 or vehicle for 4 weeks at 24 months of age. ACE2KO mice exhibited decreased grip strength after 6 months of age, while grip strength of MasKO mice was similar to that of wild-type mice. A1-7 improved grip strength in ACE2KO and wild-type mice, but not in MasKO mice. Muscle fibre size was smaller in ACE2KO mice than that in wild-type and MasKO mice, and increased with A1-7 in ACE2KO and WT mice, but not in MasKO mice. Centrally nucleated fibres (CNFs) and expression of the senescence-associated gene p16INK4a in skeletal muscles were enhanced only in ACE2KO mice and were not altered by A1-7. ACE2KO mice, but not MasKO mice, exhibited thinning of peripheral fat along with increased adipose expression of p16INK4a A1-7 significantly increased bone volume in wild-type and ACE2KO mice, but not in MasKO mice. Our findings suggest that the impact of ACE2 on physiological aging does not depend on the endogenous production of A1-7 by ACE2, while overactivation of the A1-7-Mas pathway could alleviate sarcopenia and osteoporosis in aged mice.
Collapse
|
35
|
Liu T, Liu Y, Huang Y, Chen J, Yu Z, Chen C, Lai L. miR-15b induces premature ovarian failure in mice via inhibition of α-Klotho expression in ovarian granulosa cells. Free Radic Biol Med 2019; 141:383-392. [PMID: 31310795 DOI: 10.1016/j.freeradbiomed.2019.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/10/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023]
Abstract
A thorough understanding of epigenetics regulatory mechanisms of premature ovarian failure (POF) is still lacking. Here, we found that cyclophosphamide induced significantly decrease in α-Klotho (Kl) expression in mouse ovarian granulosa cells (mOGCs), suggesting that cyclophosphamide inhibited Kl expression. Cyclophosphamide also significantly accelerated ageing and led to a decline in the pregnancy rate of C. elegans. We subsequently noted that the pathological condition exhibited by Kl-/- mice was similar to that observed in cyclophosphamide-induced POF mice. Furthermore, the mOGCs in both types of mice showed significant signs of oxidative stress damage, including decreased SOD and ATP, increased ROS levels. Detailed analyses revealed that the decreased Kl expression led to the reduced expression of autophagy-related proteins in mOGCs, which resulted in decreased autophagy activity. Finally, we found that cyclophosphamide attenuated the autophagy function of mOGCs via upregulating microRNA-15b expression, which silenced the endogenous Kl mRNA expression and stimulated the activity of the downstream TGFβ1/Smad pathway. Therefore, we demonstrated that Kl was one of the key inhibitory factors in the development of POF. It elucidated the underlying epigenetic regulatory mechanism, whereby cyclophosphamide-dependent microRNA-15b inhibited Kl expression, leading to the reduced ability of mOGCs to induce autophagy and ROS scavenging, ultimately causing POF.
Collapse
Affiliation(s)
- Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, China.
| | - Yan Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yongyi Huang
- Shanghai Topbiox Co. Ltd, Shanghai, 200031, China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, China
| | - Zhihua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, China.
| | - Lingyun Lai
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
36
|
郑 中, 季 慧, 陈 楚, 李 银, 段 世. [Correlation between methylation level of CDKN2A and CDKN2B genes and aging in healthy individuals]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:724-730. [PMID: 31270053 PMCID: PMC6743916 DOI: 10.12122/j.issn.1673-4254.2019.06.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To analyze the relationship between CDKN2A and CDKN2B gene methylation with aging in the general population. METHODS We collected peripheral blood samples from 284 male and 246 female healthy subjects for detection of methylation levels of CDKN2A and CDKN2B genes using quantitative methylation-specific PCR (qMSP). The relationship between the methylation levels of CDKN2A and CDKN2B genes and aging was analyzed using Spearman or Pearson correlation test. RESULTS We found a significant positive correlation between the methylation levels of the two genes in these subjects (P < 0.05). In the overall population as well in the female subjects, CDKN2A methylation was found to be inversely correlated with age (P < 0.05). The methylation levels of CDKN2A and CDKN2B genes were inversely correlated with TG, ApoE, Lp(a) and AST in the overall population (P < 0.05). In both the female and male subjects, the methylation levels of the two genes were inversely correlated with Lp(a) (P < 0.05). In the male subjects, CDKN2A methylation was inversely correlated with AST (P < 0.05), while CDKN2B methylation was inversely correlated with HDL and ApoE (P < 0.05). In the female subjects, CDKN2A methylation was positively correlated with LDL and inversely correlated with ApoE and AST (P < 0.05). CONCLUSIONS The methylation levels of CDKN2A and CDKN2B are closely related to age and the levels of multiple proteins in healthy subjects.
Collapse
Affiliation(s)
- 中华 郑
- />宁波大学医学院//浙江省病理生理学技术研究重点实验室,浙江 宁波 315211Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - 慧慧 季
- />宁波大学医学院//浙江省病理生理学技术研究重点实验室,浙江 宁波 315211Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - 楚嘉 陈
- />宁波大学医学院//浙江省病理生理学技术研究重点实验室,浙江 宁波 315211Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - 银 李
- />宁波大学医学院//浙江省病理生理学技术研究重点实验室,浙江 宁波 315211Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - 世伟 段
- />宁波大学医学院//浙江省病理生理学技术研究重点实验室,浙江 宁波 315211Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
37
|
Kim S, Shan P, Hwangbo C, Zhang Y, Min J, Zhang X, Ardito T, Li A, Peng T, Sauler M, Lee PJ. Endothelial toll-like receptor 4 maintains lung integrity via epigenetic suppression of p16 INK4a. Aging Cell 2019; 18:e12914. [PMID: 30790400 PMCID: PMC6516428 DOI: 10.1111/acel.12914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/16/2018] [Accepted: 01/06/2019] [Indexed: 02/05/2023] Open
Abstract
We previously reported that the canonical innate immune receptor toll-like receptor 4 (TLR4) is critical in maintaining lung integrity. However, the molecular mechanisms via which TLR4 mediates its effect remained unclear. In the present study, we identified distinct contributions of lung endothelial cells (Ec) and epithelial cells TLR4 to pulmonary homeostasis using genetic-specific, lung- and cell-targeted in vivo methods. Emphysema was significantly prevented via the reconstituting of human TLR4 expression in the lung Ec of TLR4-/- mice. Lung Ec-silencing of TLR4 in wild-type mice induced emphysema, highlighting the specific and distinct role of Ec-expressed TLR4 in maintaining lung integrity. We also identified a previously unrecognized role of TLR4 in preventing expression of p16INK4a , a senescence-associated gene. Lung Ec-p16INK4a -silencing prevented TLR4-/- induced emphysema, revealing a new functional role for p16INK4a in lungs. TLR4 suppressed endogenous p16INK4a expression via HDAC2-mediated deacetylation of histone H4. These findings suggest a novel role for TLR4 in maintaining of lung homeostasis via epigenetic regulation of senescence-related gene expression.
Collapse
Affiliation(s)
- So‐Jin Kim
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineYale University School of MedicineNew HavenConnecticut
| | - Peiying Shan
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineYale University School of MedicineNew HavenConnecticut
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), PMBBRC, Division of Life Science, College of National SciencesGyeongsang National UniversityJinjuKorea
| | - Yi Zhang
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineYale University School of MedicineNew HavenConnecticut
| | - Jin‐Na Min
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineYale University School of MedicineNew HavenConnecticut
| | - Xuchen Zhang
- Department of PathologyYale University School of MedicineNew HavenConnecticut
| | - Taylor Ardito
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineYale University School of MedicineNew HavenConnecticut
| | - Alfred Li
- Bone Imaging Research CoreUniversity of California, San Francisco (UCSF)San FranciscoCalifornia
| | - Tien Peng
- Department of Medicine, Cardiovascular Research InstituteUCSFSan FranciscoCalifornia
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineYale University School of MedicineNew HavenConnecticut
| | - Patty J. Lee
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineYale University School of MedicineNew HavenConnecticut
| |
Collapse
|
38
|
Klotho at the Edge of Alzheimer’s Disease and Senile Depression. Mol Neurobiol 2018; 56:1908-1920. [DOI: 10.1007/s12035-018-1200-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023]
|
39
|
Ahrens HE, Huettemeister J, Schmidt M, Kaether C, von Maltzahn J. Klotho expression is a prerequisite for proper muscle stem cell function and regeneration of skeletal muscle. Skelet Muscle 2018; 8:20. [PMID: 29973273 PMCID: PMC6030782 DOI: 10.1186/s13395-018-0166-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/21/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Klotho is a well-known anti-aging hormone, which serves as a suppressor of aging through a variety of mechanisms. Aging of skeletal muscle is concomitant with a decrease in muscle stem cell function resulting in impaired regeneration. METHODS Here we investigate the functional role of the anti-aging hormone Klotho for muscle stem cell function after cardiotoxin-induced injury of skeletal muscle using a klotho hypomorphic mouse line, which is characterized by a premature aging phenotype. Furthermore, we perform floating single myofiber cultures with their adjacent muscle stem cells to investigate the interplay between canonical Wnt signaling and Klotho function. RESULTS We demonstrate that muscle stem cell numbers are significantly decreased in klotho hypomorphic mice. Furthermore, we show that muscle stem cell function is also severely impaired upon loss of klotho expression, in culture and during regeneration in vivo. Moreover, we demonstrate that addition of recombinant Klotho protein inhibits aberrant excessive Wnt signaling in aged muscle stem cells thereby restoring their functionality. CONCLUSIONS The anti-aging hormone Klotho counteracts aberrant canonical Wnt signaling in muscle stem cells and might be one of the naturally occurring inhibitors of canonical Wnt signaling in skeletal muscle.
Collapse
Affiliation(s)
- Hellen E Ahrens
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Judith Huettemeister
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745, Jena, Germany.,Present address: Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manuel Schmidt
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Christoph Kaether
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Julia von Maltzahn
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
| |
Collapse
|
40
|
Baar MP, Perdiguero E, Muñoz-Cánoves P, de Keizer PLJ. Musculoskeletal senescence: a moving target ready to be eliminated. Curr Opin Pharmacol 2018; 40:147-155. [DOI: 10.1016/j.coph.2018.05.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 11/17/2022]
|
41
|
Takahashi A, Loo TM, Okada R, Kamachi F, Watanabe Y, Wakita M, Watanabe S, Kawamoto S, Miyata K, Barber GN, Ohtani N, Hara E. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat Commun 2018; 9:1249. [PMID: 29593264 PMCID: PMC5871854 DOI: 10.1038/s41467-018-03555-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence indicates that the senescence-associated secretory phenotype (SASP) contributes to many aspects of physiology and disease. Thus, controlling the SASP will have tremendous impacts on our health. However, our understanding of SASP regulation is far from complete. Here, we show that cytoplasmic accumulation of nuclear DNA plays key roles in the onset of SASP. Although both DNase2 and TREX1 rapidly remove the cytoplasmic DNA fragments emanating from the nucleus in pre-senescent cells, the expression of these DNases is downregulated in senescent cells, resulting in the cytoplasmic accumulation of nuclear DNA. This causes the aberrant activation of cGAS-STING cytoplasmic DNA sensors, provoking SASP through induction of interferon-β. Notably, the blockage of this pathway prevents SASP in senescent hepatic stellate cells, accompanied by a decline of obesity-associated hepatocellular carcinoma development in mice. These findings provide valuable new insights into the roles and mechanisms of SASP and possibilities for their control. Activation of DNA damage response induces the acquisition of senescence-associated secretory phenotype (SASP) in senescent cells, but precise mechanisms remain unclear. Here, the authors show that the cytoplasmic accumulation of nuclear DNA activated cytoplasmic DNA sensors to provoke SASP.
Collapse
Affiliation(s)
- Akiko Takahashi
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan.,PRESTO, JST, Kawaguchi, Saitama, 332-0012, Japan
| | - Tze Mun Loo
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan.,Faculty of Science & Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510, Japan
| | - Ryo Okada
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Fumitaka Kamachi
- Faculty of Science & Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510, Japan
| | - Yoshihiro Watanabe
- Faculty of Science & Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510, Japan
| | - Masahiro Wakita
- Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka, 565-0871, Japan
| | - Sugiko Watanabe
- Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka, 565-0871, Japan
| | - Shimpei Kawamoto
- Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka, 565-0871, Japan
| | - Kenichi Miyata
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Glen N Barber
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Naoko Ohtani
- Faculty of Science & Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510, Japan.,Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka, 545-8585, Japan
| | - Eiji Hara
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan. .,Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka, 565-0871, Japan.
| |
Collapse
|
42
|
Abstract
The ARF and INK4a genes are located in the same CDKN2a locus, both showing its tumor suppressive activity. ARF has been shown to detect potentially harmful oncogenic signals, making incipient cancer cells undergo senescence or apoptosis. INK4a, on the other hand, responds to signals from aging in a variety of tissues including islets of Langerhans, neuronal cells, and cancer stem cells in general. It also detects oncogenic signals from incipient cancer cells to induce them senescent to prevent neoplastic transformation. Both of these genes are inactivated by gene deletion, promoter methylation, frame shift, and aberrant splicing although mutations changing the amino acid sequences affect only the latter. Recent studies indicated that polycomb gene products EZH2 and BMI1 repressed p16INK4a expression in primary cells, but not in cells deficient for pRB protein function. It was also reported that that p14ARF inhibits the stability of the p16INK4a protein in human cancer cell lines and mouse embryonic fibroblasts through its interaction with regenerating islet-derived protein 3γ. Overexpression of INK4a is associated with better prognosis of cancer when it is associated with human papilloma virus infection. However, it has a worse prognostic value in other tumors since it is an indicator of pRB loss. The p16INK4a tumor suppressive protein can thus be used as a biomarker to detect early stage cancer cells as well as advanced tumor cells with pRB inactivation since it is not expressed in normal cells.
Collapse
Affiliation(s)
- Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| | - Elizabeth A Fry
- The Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| |
Collapse
|
43
|
Sofue T, Kushida Y, Ozaki T, Moritoki M, Nishijima Y, Ohsaki H, Ueda N, Kakehi Y, Nishiyama A, Minamino T. Tubular Cell Senescence in the Donated Kidney Predicts Allograft Function, but Not Donor Remnant Kidney Function, in Living Donor Kidney Transplantation. Am J Nephrol 2017; 47:8-17. [PMID: 29275400 DOI: 10.1159/000485845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND It is uncertain whether kidneys from marginal donors are suitable for live kidney transplantation. In deceased donor kidneys, tubular cell senescence affects allograft function. However, the degree of cell senescence in a living donor kidney with marginal factors has not been reported. In this study, we assessed the association of tubular cell senescence with allograft and remnant kidney function by a prospective observational clinical study. METHODS Thirty-eight living donor kidney transplantations were analyzed prospectively. Tissue sections obtained from preimplantation kidney biopsies were immunostained for p16INK4a to indicate cell senescence. Various kidney biomarkers were analyzed in urine and blood samples. RESULTS Of the 38 donors, 21 had marginal factors. Severe tubular senescence was found in living donors with overlapping marginal criteria. Tubular senescence in living donor kidneys was significantly related to donor age and lower recipient kidney function at 1 year after transplantation independently of donor age (β = -0.281; p = 0.050) but did not affect remnant kidney function after donation. Pretransplantation donor pre-estimated glomerular filtration rate and hypertension did not show a significant area under the curve (AUC) for prediction of high tubular senescence. High plasma levels of soluble αKlotho were associated with a higher predictive value for low tubular cell senescence with an AUC of 0.78 (95% CI 0.62-0.93; p < 0.01). CONCLUSIONS The nuclear p16-staining rate in donated kidney tubules is a predictor for allograft kidney function but not donor remnant kidney function. Detection of tubular cell senescence may facilitate selection of appropriate living donor candidates.
Collapse
Affiliation(s)
- Tadashi Sofue
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Kagawa University, Kagawa, Japan
| | - Yoshio Kushida
- Department of Pathology, Kagawa University, Kagawa, Japan
| | - Taro Ozaki
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Kagawa University, Kagawa, Japan
| | - Masahiro Moritoki
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Kagawa University, Kagawa, Japan
| | - Yoko Nishijima
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Kagawa University, Kagawa, Japan
| | - Hiroyuki Ohsaki
- Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Nobufumi Ueda
- Department of Urology, Kagawa University, Kagawa, Japan
| | | | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Tetsuo Minamino
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
44
|
Aliper A, Belikov AV, Garazha A, Jellen L, Artemov A, Suntsova M, Ivanova A, Venkova L, Borisov N, Buzdin A, Mamoshina P, Putin E, Swick AG, Moskalev A, Zhavoronkov A. In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging (Albany NY) 2017; 8:2127-2152. [PMID: 27677171 PMCID: PMC5076455 DOI: 10.18632/aging.101047] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/10/2016] [Indexed: 12/19/2022]
Abstract
Populations in developed nations throughout the world are rapidly aging, and the search for geroprotectors, or anti-aging interventions, has never been more important. Yet while hundreds of geroprotectors have extended lifespan in animal models, none have yet been approved for widespread use in humans. GeroScope is a computational tool that can aid prediction of novel geroprotectors from existing human gene expression data. GeroScope maps expression differences between samples from young and old subjects to aging-related signaling pathways, then profiles pathway activation strength (PAS) for each condition. Known substances are then screened and ranked for those most likely to target differential pathways and mimic the young signalome. Here we used GeroScope and shortlisted ten substances, all of which have lifespan-extending effects in animal models, and tested 6 of them for geroprotective effects in senescent human fibroblast cultures. PD-98059, a highly selective MEK1 inhibitor, showed both life-prolonging and rejuvenating effects. Natural compounds like N-acetyl-L-cysteine, Myricetin and Epigallocatechin gallate also improved several senescence-associated properties and were further investigated with pathway analysis. This work not only highlights several potential geroprotectors for further study, but also serves as a proof-of-concept for GeroScope, Oncofinder and other PAS-based methods in streamlining drug prediction, repurposing and personalized medicine.
Collapse
Affiliation(s)
- Alexander Aliper
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Aleksey V Belikov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Andrew Garazha
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Center for Biogerontology and Regenerative Medicine, Moscow, 121099, Russia
| | - Leslie Jellen
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Artem Artemov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Maria Suntsova
- D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| | - Alena Ivanova
- D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| | - Larisa Venkova
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Nicolas Borisov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Anton Buzdin
- Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Polina Mamoshina
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Evgeny Putin
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | | | - Alexey Moskalev
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia.,School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA.,Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,The Biogerontology Research Foundation, Oxford, UK
| |
Collapse
|
45
|
Mencke R, Olauson H, Hillebrands JL. Effects of Klotho on fibrosis and cancer: A renal focus on mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2017; 121:85-100. [PMID: 28709936 DOI: 10.1016/j.addr.2017.07.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
Klotho is a membrane-bound protein predominantly expressed in the kidney, where it acts as a permissive co-receptor for Fibroblast Growth Factor 23. In its shed form, Klotho exerts anti-fibrotic effects in several tissues. Klotho-deficient mice spontaneously develop fibrosis and Klotho deficiency exacerbates the disease progression in fibrotic animal models. Furthermore, Klotho overexpression or supplementation protects against fibrosis in various models of renal and cardiac fibrotic disease. These effects are mediated at least partially by the direct inhibitory effects of soluble Klotho on TGFβ1 signaling, Wnt signaling, and FGF2 signaling. Soluble Klotho, as present in the circulation, appears to be the primary mediator of anti-fibrotic effects. Similarly, through inhibition of the TGFβ1, Wnt, FGF2, and IGF1 signaling pathways, Klotho also inhibits tumorigenesis. The Klotho promoter gene is generally hypermethylated in cancer, and overexpression or supplementation of Klotho has been found to inhibit tumor growth in various animal models. This review focuses on the protective effects of soluble Klotho in inhibiting renal fibrosis and fibrosis in distant organs secondary to renal Klotho deficiency. We also discuss the structure-function relationships of Klotho domains and biological effects in the context of potential targeted treatment strategies.
Collapse
Affiliation(s)
- Rik Mencke
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hannes Olauson
- Department of Clinical Science, Intervention and Technology (Division of Renal Medicine), Karolinska Institutet, Stockholm, Sweden
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
46
|
Cheng XY, Li YY, Huang C, Li J, Yao HW. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema. Oncotarget 2017; 8:22513-22523. [PMID: 28186975 PMCID: PMC5410241 DOI: 10.18632/oncotarget.15116] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Current drug therapy fails to reduce lung destruction of chronic obstructive pulmonary disease (COPD). AMP-activated protein kinase (AMPK) has emerged as an important integrator of signals that control energy balance and lipid metabolism. However, there are no studies regarding the role of AMPK in reducing inflammatory responses and cellular senescence during the development of emphysema. Therefore, we hypothesize that AMPK reduces inflammatroy responses, senescence, and lung injury. To test this hypothesis, human bronchial epithelial cells (BEAS-2B) and small airway epithelial cells (SAECs) were treated with cigarette smoke extract (CSE) in the presence of a specific AMPK activator (AICAR, 1 mM) and inhibitor (Compound C, 5 μM). Elastase injection was performed to induce mouse emphysema, and these mice were treated with a specific AMPK activator metformin as well as Compound C. AICAR reduced, whereas Compound C increased CSE-induced increase in IL-8 and IL-6 release and expression of genes involved in cellular senescence. Knockdown of AMPKα1/α2 increased expression of pro-senescent genes (e.g., p16, p21, and p66shc) in BEAS-2B cells. Prophylactic administration of an AMPK activator metformin (50 and 250 mg/kg) reduced while Compound C (4 and 20 mg/kg) aggravated elastase-induced airspace enlargement, inflammatory responses and cellular senescence in mice. This is in agreement with therapeutic effect of metformin (50 mg/kg) on airspace enlargement. Furthermore, metformin prophylactically protected against but Compound C further reduced mitochondrial proteins SOD2 and SIRT3 in emphysematous lungs. In conclusion, AMPK reduces abnormal inflammatory responses and cellular senescence, which implicates as a potential therapeutic target for COPD/emphysema.
Collapse
Affiliation(s)
- Xiao-Yu Cheng
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Yang-Yang Li
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| | - Hong-Wei Yao
- School of Pharmacy, Anhui Medical University, Hefei, The People's Republic of China
| |
Collapse
|
47
|
Schmitt R, Melk A. Molecular mechanisms of renal aging. Kidney Int 2017; 92:569-579. [DOI: 10.1016/j.kint.2017.02.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
|
48
|
Olauson H, Mencke R, Hillebrands JL, Larsson TE. Tissue expression and source of circulating αKlotho. Bone 2017; 100:19-35. [PMID: 28323144 DOI: 10.1016/j.bone.2017.03.043] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
αKlotho (Klotho), a type I transmembrane protein and a coreceptor for Fibroblast Growth Factor-23, was initially thought to be expressed only in a limited number of tissues, most importantly the kidney, parathyroid gland and choroid plexus. Emerging data may suggest a more ubiquitous Klotho expression pattern which has prompted reevaluation of the restricted Klotho paradigm. Herein we systematically review the evidence for Klotho expression in various tissues and cell types in humans and other mammals, and discuss potential reasons behind existing conflicting data. Based on current literature and tissue expression atlases, we propose a classification of tissues into high, intermediate and low/absent Klotho expression. The functional relevance of Klotho in organs with low expression levels remain uncertain and there is currently limited data on a role for membrane-bound Klotho outside the kidney. Finally, we review the evidence for the tissue source of soluble Klotho, and conclude that the kidney is likely to be the principal source of circulating Klotho in physiology.
Collapse
Affiliation(s)
- Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Rik Mencke
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tobias E Larsson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Sav1 Loss Induces Senescence and Stat3 Activation Coinciding with Tubulointerstitial Fibrosis. Mol Cell Biol 2017; 37:MCB.00565-16. [PMID: 28320873 DOI: 10.1128/mcb.00565-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/09/2017] [Indexed: 01/02/2023] Open
Abstract
Tubulointerstitial fibrosis (TIF) is recognized as a final phenotypic manifestation in the transition from chronic kidney disease (CKD) to end-stage renal disease (ESRD). Here we show that conditional inactivation of Sav1 in the mouse renal epithelium resulted in upregulated expression of profibrotic genes and TIF. Loss of Sav1 induced Stat3 activation and a senescence-associated secretory phenotype (SASP) that coincided with the development of tubulointerstitial fibrosis. Treatment of mice with the YAP inhibitor verteporfin (VP) inhibited activation of genes associated with senescence, SASPs, and activation of Stat3 as well as impeded the development of fibrosis. Collectively, our studies offer novel insights into molecular events that are linked to fibrosis development from Sav1 loss and implicate VP as a potential pharmacological inhibitor to treat patients at risk for developing CKD and TIF.
Collapse
|
50
|
Susnik N, Sen P, Melk A, Schmitt R. Aging, Cellular Senescence, and Kidney Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|