1
|
Kundu SK, Bandyopadhyay A, Sarkar R. Tryptophan-specific modification and diversification of peptides and proteins. Org Biomol Chem 2025; 23:1773-1793. [PMID: 39831339 DOI: 10.1039/d4ob02015d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In spite of being the second-lowest abundant proteinogenic amino acid, approximately 90% of proteins contain at least one tryptophan residue. Hence, the chemoselective functionalization of tryptophan residue can provide access to site-selective bioconjugation of almost all known proteins. With the increase in the utility of bioconjugated proteins and peptides as drugs and therapeutic agents, the development of smart protocols to fabricate and modulate biomolecules has flourished. This review provides a comprehensive summary of the latest advances in tryptophan-specific modification and diversification of peptides and proteins that exhibit significant applications in proteomics, protein engineering, living cell imaging, drug discovery, etc. The article also highlights literature gaps and new opportunities for the sake of future innovation in the field.
Collapse
Affiliation(s)
- Sudipta K Kundu
- Department of Chemistry, Muragachha Government College, Nadia 741154, West Bengal, India.
- Department of Higher Education, Government of West Bengal, India
| | - Ayan Bandyopadhyay
- Department of Higher Education, Government of West Bengal, India
- Department of Chemistry, Chapra Government College, Nadia 741123, West Bengal, India
| | - Rajib Sarkar
- Department of Chemistry, Muragachha Government College, Nadia 741154, West Bengal, India.
- Department of Higher Education, Government of West Bengal, India
| |
Collapse
|
2
|
Wang N, Xu Z, Shen H, Cong W, Zhang S, Hu H, Li X. Tyrosinase-Catalyzed Peptide Stapling Using Para-Amino Phenylalanine and Tyrosine Anchoring Residues. Angew Chem Int Ed Engl 2025; 64:e202420522. [PMID: 39777840 DOI: 10.1002/anie.202420522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Peptide stapling techniques have historically relied on metal-catalyzed chemical reactions, with no examples using enzymes. Here, inspired by tyrosinase-mediated oxidation, we describe the efficient side-chain to side-chain coupling of p-amino phenylalanine (Z) and tyrosine (Y) amino acids using a commercially available tyrosinase. Stapling reactions between the i, i+3 to i, i+7 positions were all performed, proceeding in good conversion and under mild conditions compatible with various side chains, functional motifs and ring sizes, with the Z-Y product found to be more stable and obtained in a higher yield than the Y-Z product. Z-Y stapled versions of ER, MC4 and GPR54 binding peptides exhibited higher serum stability, helical content and binding affinity than their linear counterparts, proving the utility of our method to synthesize biologically significant peptides. The tyrosinase-catalyzed Z-Y peptide stapling technique expands the scope of available stapling techniques, and is proposed to develop stapled peptide drug candidates.
Collapse
Affiliation(s)
- Nan Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhengyang Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Huaxing Shen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wei Cong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Shuai Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
3
|
Bazzi S, Hadj Mohamed A, Ryzhakov D, Ghouilem J, Beniddir MA, Gandon V, Messaoudi S. Diastereoselective Anomeric C(sp 3)-H Cyclization Towards the Design of New Cyclophane-Braced Glycopeptides. Angew Chem Int Ed Engl 2025; 64:e202418057. [PMID: 39513488 DOI: 10.1002/anie.202418057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
Here we report a macrocyclization route towards the synthesis of glycophane peptides by a selective C-H arylation of the anomeric bond. This approach demonstrates the power of Pd-catalysis C-H activation to access unusual cyclic peptides.
Collapse
Affiliation(s)
- Sakna Bazzi
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
| | - Ameni Hadj Mohamed
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau, France
| | | | - Juba Ghouilem
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
| | | | - Vincent Gandon
- Université Paris-Saclay, CNRS, ICMMO, 91400, Orsay, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
4
|
Ding XX, Li BT, Dong L. Late-Stage C-H Functionalization of Dehydroalanine-Containing Peptides with Arylthianthrenium Salts and Its Application in Synthesis of Tentoxin Analogue. Org Lett 2025; 27:863-868. [PMID: 39808515 DOI: 10.1021/acs.orglett.4c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Dehydrophenylalanine has a characteristic unsaturated double bond that makes it indispensable in the context of peptides and proteins. In this study, we report the Pd-catalyzed C(sp2)-H arylation of dehydroalanine-containing peptides with arylthianthrenium salts under mild and base free conditions, which provides efficient access to dehydrophenylalanine-containing peptides. This approach enables the efficient coupling of different drug scaffolds and bioactive molecules to the peptides. Remarkably, the method could be used for the concise synthesis of tentoxin and its analogue.
Collapse
Affiliation(s)
- Xing-Xing Ding
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bing-Tong Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Quan Q, Li Y, Zhang Z, Van der Eycken EV, Cai L, Song L. Rh(III)-Catalyzed Double C-H Activation toward Peptide-Benzazepine Conjugates. Org Lett 2025; 27:482-487. [PMID: 39716031 DOI: 10.1021/acs.orglett.4c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
We herein report the efficient synthesis of peptide-benzazepine conjugates from Lys-based peptides and acroleins via Rh(III)-catalyzed double C-H activation. This reaction features mild reaction conditions, broad scope, high atom and step economies, and excellent chemo- and site selectivity. The synthetic utility of this strategy is further demonstrated by scale-up experiments and product derivatizations, including diverse late-stage ligations based on the aldehyde moiety. The preliminary biological activity studies show that peptide-benzazepine conjugates have good antifungal activities toward crop and forest pathogenic fungi.
Collapse
Affiliation(s)
- Qi Quan
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yan Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhefan Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
6
|
Wu Y, Zhu B, Fan H, Bernard H, Hutton CA. Late-Stage Pd(II)-Catalyzed C(sp 3)-H Functionalization of Peptides Directed by a Removable, Backbone-Inserted Amidoxime Ether. Angew Chem Int Ed Engl 2025:e202423979. [PMID: 39757129 DOI: 10.1002/anie.202423979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Palladium(II)-catalyzed C-H functionalization has attracted considerable attention as a pathway to late-stage modification of peptides. Herein, we report the Pd-catalyzed C(sp3)-H arylation of peptides directed by an amidoxime ether, which can be easily incorporated into peptides at any amide bond. Site- and stereoselective arylation of peptides has been achieved, including unprecedented functionalization of internal residues of native peptides. Removal of the amidoxime ether was achieved to generate the parent amide and facilitate a traceless C-H functionalization process.
Collapse
Affiliation(s)
- Yuezhou Wu
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Beichen Zhu
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Haoyang Fan
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Hugo Bernard
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Craig A Hutton
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
7
|
Dayanara NL, Froelich J, Roome P, Perrin DM. Chemoselective, regioselective, and positionally selective fluorogenic stapling of unprotected peptides for cellular uptake and direct cell imaging. Chem Sci 2025; 16:584-595. [PMID: 39620082 PMCID: PMC11605703 DOI: 10.1039/d4sc04839c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Peptide stapling reactions represent powerful methods for structuring native α-helices to improve their bioactivity in targeting protein-protein interactions (PPIs). In light of a growing need for regio- and positionally selective stapling methods involving natural amino acid residues in their unprotected states, we report a rapid, mild, and highly chemoselective three-component stapling reation using a class of molecular linchpins based on 2-arylketobenzaldehydes (ArKBCHOs) that create a fluorescent staple, hereafter referred to as a Fluorescent Isoindole Crosslink (FlICk). This methodology offers positional selectivity favouring i, i + 4 helical staples comprising a lysine and cysteine, in the presence of competing nucleophiles on unprotected peptides. In our efforts to further validate this chemistry, we have successfully shown in vitro cytotoxicity of a FlICk-ed peptide (IC50 = 5.10 ± 1.27 μM), equipotent to an olefin-stapled congener. In harnessing the innate fluorescence of the thiol-isoindole, we report new blue-green fluorophores, which arise as a consequence of stapling, with appreciable quantum yields that enable direct cellular imaging in the assessment of cell permeability, thus bridging therapeutic potential with cytological probe development.
Collapse
Affiliation(s)
- Naysilla L Dayanara
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - Juliette Froelich
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - Pascale Roome
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| |
Collapse
|
8
|
Bora JR, Mahalakshmi R. Empowering canonical biochemicals with cross-linked novelty: Recursions in applications of protein cross-links. Proteins 2025; 93:11-25. [PMID: 37589191 PMCID: PMC7616502 DOI: 10.1002/prot.26571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Diversity in the biochemical workhorses of the cell-that is, proteins-is achieved by the innumerable permutations offered primarily by the 20 canonical L-amino acids prevalent in all biological systems. Yet, proteins are known to additionally undergo unusual modifications for specialized functions. Of the various post-translational modifications known to occur in proteins, the recently identified non-disulfide cross-links are unique, residue-specific covalent modifications that confer additional structural stability and unique functional characteristics to these biomolecules. We review an exclusive class of amino acid cross-links encompassing aromatic and sulfur-containing side chains, which not only confer superior biochemical characteristics to the protein but also possess additional spectroscopic features that can be exploited as novel chromophores. Studies of their in vivo reaction mechanism have facilitated their specialized in vitro applications in hydrogels and protein anchoring in monolayer chips. Furthering the discovery of unique canonical cross-links through new chemical, structural, and bioinformatics tools will catalyze the development of protein-specific hyperstable nanostructures, superfoods, and biotherapeutics.
Collapse
Affiliation(s)
- Jinam Ravindra Bora
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
9
|
Zhang Z, Wan T, Quan Q, Zang Y, Xu J, Tang S, Wang N, Cai L, Song L. Triple C-H Activation/Annulation: In Situ Construction of Fluorescent Peptides. Org Lett 2024; 26:10915-10920. [PMID: 39632563 DOI: 10.1021/acs.orglett.4c04081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Herein, we report a Rh(III)-catalyzed triple C-H activation-annulation of Phe-based peptides with alkynes for the preparation of fluorescent peptides. The robustness of this protocol is reflected by a broad substrate scope, high atom- and step-economy, and excellent chemo- and site-selectivity. An in situ generated polycyclic aromatic hydrocarbon carbocation as a fluorophore exhibits good fluorescence properties (maximum emission wavelength up to 628 nm) and low cell cytotoxicity. The synthetic utility of this method is further demonstrated by versatile product applications in bioconjugation with the protein BSA and specifically targeting lysosomes and mitochondria of live mammalian cells.
Collapse
Affiliation(s)
- Zhefan Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Tianyan Wan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Qi Quan
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yiqi Zang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Jinyuan Xu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Shuo Tang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Nanxi Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
10
|
Fang P, Pang WK, Xuan S, Chan WL, Leung KCF. Recent advances in peptide macrocyclization strategies. Chem Soc Rev 2024; 53:11725-11771. [PMID: 39560122 DOI: 10.1039/d3cs01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (e.g., native chemical ligation and transition metal catalysis), biological (e.g., post-translational enzymatic modification and genetic code reprogramming), and supramolecular (e.g., mechanically interlocked, metal-directed folding and self-assembly via noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations. Finally, the synthetic-technical aspects, current unresolved challenges, and outlook of this field are discussed.
Collapse
Affiliation(s)
- Pengyuan Fang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
| | - Wing-Ka Pang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Wai-Lun Chan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
11
|
Bi T, Cui Y, Liu S, Yu H, Qiu W, Hou KQ, Zou J, Yu Z, Zhang F, Xu Z, Zhang J, Xu X, Yang W. Ligand-Enabled Pd-Catalyzed sp 3 C-H Macrocyclization: Synthesis and Evaluation of Macrocyclic Sulfonamide for the Treatment of Parkinson's Disease. Angew Chem Int Ed Engl 2024; 63:e202412296. [PMID: 39078406 DOI: 10.1002/anie.202412296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
The development of simplified synthetic strategy to create structurally and functionally diverse pseudo-natural macrocyclic molecules is highly appealing but poses a marked challenge. Inspired by natural scaffolds, herein, we describe a practical and concise ligand-enabled Pd(II)-catalyzed sp3 C-H alkylation, olefination and arylation macrocyclization, which could offer a novel set of pseudo-natural macrocyclic sulfonamides. Interestingly, the potential of ligand acceleration in C-H activation is also demonstrated by an unprecedented enantioselective sp3 C-H alkylation macrocyclization. Moreover, a combination of in silico screening and biological evaluation led to the identification of a novel spiro-grafted macrocyclic sulfonamide 2 a, which showed a promising efficacy for the treatment of Parkinson's disease (PD) in a mouse model through the activation of silent information regulator sirtuin 3 (SIRT3).
Collapse
Affiliation(s)
- Tongyu Bi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxia Cui
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Haiyue Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weirong Qiu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ke-Qiang Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Zou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Zhipeng Yu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Feili Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongliang Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaojun Xu
- Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
| | - Weibo Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
12
|
Bag R, Kar M, Sharma NK. Ag(I)-Mediated Site-Selective C(sp 2)-H Chalcogenation of Tryptophan-Peptides with Dichalcogenides at Room Temperature. J Org Chem 2024; 89:14981-15002. [PMID: 39373108 DOI: 10.1021/acs.joc.4c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This report presents a silver-mediated site-selective chalcogenation of tryptophan-containing peptides with various dichalcogenides (disulfides/diselenides) at room temperature in good to excellent yields. The significant features include broad substrate scope, functional group diversity, late-stage modification of drug molecules (Dopamine and Levodopa), and various valuable postsynthetic transformations under mild conditions.
Collapse
Affiliation(s)
- Raghunath Bag
- National Institute of Science Education and Research-Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Malobika Kar
- National Institute of Science Education and Research-Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research-Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
13
|
Lu F, Geng Y, Wang H, Liu YN, Zhang E, Yang L, Tang J. Late-Stage Modification of Peptides with Maleimides through Palladium-Catalyzed β-C(sp 3)-H Alkylation. Org Lett 2024; 26:8786-8791. [PMID: 39364794 DOI: 10.1021/acs.orglett.4c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Transition-metal-catalyzed C-H activation has proven to be a powerful tool for the late-stage modification of peptides. We herein report a method for site-selective alkylation of peptides with maleimides through Pd-catalyzed β-C(sp3)-H activation. In this protocol, the methionine residues within peptides serve as the directing groups, which circumvented the preinstallation and subsequent removal of the directing groups. This chemistry exhibited broad substrate scope and can be utilized for peptide ligation.
Collapse
Affiliation(s)
- Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yujie Geng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Huihui Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ya-Ning Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Liyun Yang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P. R. China
| |
Collapse
|
14
|
Das S, Pradhan TK, Samanta R. Recent Progress on Transition Metal Catalyzed Macrocyclizations Based on C-H Bond Activation at Heterocyclic Scaffolds. Chem Asian J 2024; 19:e202400397. [PMID: 38924294 DOI: 10.1002/asia.202400397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Macrocycles are essential in protein-protein interactions and the preferential intake of bioactive scaffolds. Macrocycles are commonly synthesized by late-stage macrolactonizations, macrolactamizations, transition metal-catalyzed ring-closing metathesis, S-S bond-forming reactions, and copper-catalyzed alkyne-azide cycloaddition. Recently, transition metal-catalyzed C-H activation strategies have gained significant interest among chemists to synthesize macrocycles. This article provides a comprehensive overview of the transition metal-catalyzed macrocyclization via C-H bond functionalization of heterocycle-containing peptides, annulations, and heterocycle-ring construction through direct C-H bond functionalization. In the first part, palladium salt catalyzed coupling with indolyl C(sp3)-H and C(sp2)-H bonds for macrocyclization is reported. The second part summarizes rhodium-catalyzed macrocyclizations via site-selective C-H bond functionalization. Earth-abundant, less toxic 3d metal salt Mn-catalyzed cyclizations are reported in the latter part. This summary is expected to spark interest in emerging methods of macrocycle production among organic synthesis and chemical biology practitioners, helping to develop the discipline. We hope that this mini-review will also inspire synthetic chemists to explore new and broadly applicable C-C bond-forming strategies for macrocyclization via intramolecular C-H activation.
Collapse
Affiliation(s)
- Sarbojit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tapan Kumar Pradhan
- Department of Chemistry, Krishnath College Berhampore, Murshidabad, West Bengal, 742101
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
15
|
Krajcovicova S. Ideas Behind the Tryptophan-Mediated Petasis Reaction (TMPR) Concept for Peptide Stapling. ChemMedChem 2024; 19:e202400148. [PMID: 38726738 DOI: 10.1002/cmdc.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/09/2024] [Indexed: 07/22/2024]
Abstract
This Concept short review offers an insightful analysis of pivotal research papers and explores the key synthetic ideas behind the intersection of two realms in peptide chemistry: using tryptophan and Petasis multicomponent reactions for macrocyclisation and labelling of peptides. The recently published tryptophan-mediated Petasis reaction (TMPR) concept represents a critical junction between these two worlds, highlighting how combining such methodologies leads to more effective and versatile synthetic strategies, setting a potentially new direction for future research in the field of peptide-drug conjugates.
Collapse
Affiliation(s)
- Sona Krajcovicova
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
- Department of Organic Chemistry, Faculty of Science, Palacky University in Olomouc, Tr. 17. Listopadu 12, 77900, Olomouc, Czech Republic
| |
Collapse
|
16
|
Liu XY, Mykhailenko O, Faraone A, Waser J. Hypervalent Iodine Amino Acid Building Blocks for Bioorthogonal Peptide Macrocyclization. Angew Chem Int Ed Engl 2024; 63:e202404747. [PMID: 38807563 DOI: 10.1002/anie.202404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Ethynylbenziodoxol(on)es (EB(X)xs) reagents have emerged as useful reagents for peptide/protein modification due to their versatile reactivity and high selectivity. Herein, we report the successful introduction of ethynylbenziodoxoles (EBxs) on different amino acid building blocks (Lys/Orn/Dap), and show their compatibility with both solid phase peptide synthesis (SPPS) and solution phase peptide synthesis (SPS). The selective incorporation of the EBx core into peptide sequences enable efficient macrocyclizations under mild conditions for the synthesis of topologically unique cyclic and bicyclic peptides.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Olha Mykhailenko
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Adriana Faraone
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
17
|
Chen FJ, Lin W, Chen FE. Non-symmetric stapling of native peptides. Nat Rev Chem 2024; 8:304-318. [PMID: 38575678 DOI: 10.1038/s41570-024-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Stapling has emerged as a powerful technique in peptide chemistry. It enables precise control over peptide conformation leading to enhanced properties such as improved stability and enhanced binding affinity. Although symmetric stapling methods have been extensively explored, the field of non-symmetric stapling of native peptides has received less attention, largely as a result of the formidable challenges it poses - in particular the complexities involved in achieving the high chemo-selectivity and site-selectivity required to simultaneously modify distinct proteinogenic residues. Over the past 5 years, there have been significant breakthroughs in addressing these challenges. In this Review, we describe the latest strategies for non-symmetric stapling of native peptides, elucidating the protocols, reaction mechanisms and underlying design principles. We also discuss current challenges and opportunities this field offers for future applications, such as ligand discovery and peptide-based therapeutics.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
| | - Wanzhen Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Fen-Er Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
18
|
Young R, Huang T, Luo Z, Tan YS, Kaur A, Lau YH. Development of stapled NONO-associated peptides reveals unexpected cell permeability and nuclear localisation. J Pept Sci 2024; 30:e3562. [PMID: 38148630 DOI: 10.1002/psc.3562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
The non-POU domain-containing octamer-binding protein (NONO) is a nucleic acid-binding protein with diverse functions that has been identified as a potential cancer target in cell biology studies. Little is known about structural motifs that mediate binding to NONO apart from its ability to form homodimers, as well as heterodimers and oligomers with related homologues. We report a stapling approach to macrocyclise helical peptides derived from the insulin-like growth factor binding protein (IGFBP-3) that NONO interacts with, and also from the dimerisation domain of NONO itself. Using a range of chemistries including Pd-catalysed cross-coupling, cysteine arylation and cysteine alkylation, we successfully improved the helicity and observed modest peptide binding to the NONO dimer, although binding could not be saturated at micromolar concentrations. Unexpectedly, we observed cell permeability and preferential nuclear localisation of various dye-labelled peptides in live confocal microscopy, indicating the potential for developing peptide-based tools to study NONO in a cellular context.
Collapse
Affiliation(s)
- Reginald Young
- School of Chemistry, The University of Sydney, Camperdown, Australia
| | - Tiancheng Huang
- School of Chemistry, The University of Sydney, Camperdown, Australia
| | - Zijie Luo
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Melbourne, Australia
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, Australia
| |
Collapse
|
19
|
Todorovic M, Blanc A, Wang Z, Lozada J, Froelich J, Zeisler J, Zhang C, Merkens H, Benard F, Perrin DM. 5-Hydroxypyrroloindoline Affords Tryptathionine and 2,2'-bis-Indole Peptide Staples: Application to Melanotan-II. Chemistry 2024; 30:e202304270. [PMID: 38285527 DOI: 10.1002/chem.202304270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
With peptides increasingly favored as drugs, natural product motifs, namely the tryptathionine staple, found in amatoxins and phallotoxins, and the 2,2'-bis-indole found in staurosporine represent unexplored staples for unnatural peptide macrocycles. We disclose the efficient condensation of a 5-hydroxypyrroloindoline with either a cysteine-thiol or a tryptophan-indole to form a tryptathionine or 2-2'-bis-indole staple. Judicious use of protecting groups provides for chemoselective stapling using α-MSH, which provides a basis for investigating both chemoselectivity and affinity. Both classes of stapled peptides show nanomolar Ki's, with one showing a sub-nanomolar Ki value.
Collapse
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Antoine Blanc
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Zhou Wang
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Jerome Lozada
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Juliette Froelich
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Francois Benard
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| |
Collapse
|
20
|
Różanowska M, Szczupaj G, Nowakowski M, Rajagopal P, Lipiński PFJ, Matalińska J, Misicka A, Lisowski M, Jaremko Ł, Jaremko M. Applications of biaryl cyclization in the synthesis of cyclic enkephalin analogs with a highly restricted flexibility. Amino Acids 2024; 56:18. [PMID: 38427104 PMCID: PMC10907494 DOI: 10.1007/s00726-023-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024]
Abstract
A series of 10 cyclic, biaryl analogs of enkephalin, with Tyr or Phe residues at positions 1 and 4, were synthesized according to the Miyaura borylation and Suzuki coupling methodology. Biaryl bridges formed by side chains of the two aromatic amino acid residues are of the meta-meta, meta-para, para-meta, and para-para configuration. Conformational properties of the peptides were studied by CD and NMR. CD studies allowed only to compare conformations of individual peptides while NMR investigations followed by XPLOR calculations provided detailed information on their conformation. Reliability of the XPLOR calculations was confirmed by quantum chemical ones performed for one of the analogs. No intramolecular hydrogen bonds were found in all the peptides. They are folded and adopt the type IV β-turn conformation. Due to a large steric strain, the aromatic carbon atoms forming the biaryl bond are distinctly pyramidalized. Seven of the peptides were tested in vitro for their affinity for the µ-opioid receptor.
Collapse
Affiliation(s)
| | - Gabriela Szczupaj
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Michał Nowakowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Priyadharshni Rajagopal
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Marek Lisowski
- Faculty of Chemistry, University of Wrocław, Wrocław, Poland
| | - Łukasz Jaremko
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
21
|
Liu XY, Cai W, Ronceray N, Radenovic A, Fierz B, Waser J. Synthesis of Fluorescent Cyclic Peptides via Gold(I)-Catalyzed Macrocyclization. J Am Chem Soc 2023; 145:26525-26531. [PMID: 38035635 PMCID: PMC10722513 DOI: 10.1021/jacs.3c09261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Rapid and efficient cyclization methods that form structurally novel peptidic macrocycles are of high importance for medicinal chemistry. Herein, we report the first gold(I)-catalyzed macrocyclization of peptide-EBXs (ethynylbenziodoxolones) via C2-Trp C-H activation. This reaction was carried out in the presence of protecting group free peptide sequences and is enabled by a simple commercial gold catalyst (AuCl·Me2S). The method displayed a rapid reaction rate (within 10 min), wide functional group tolerance (27 unprotected peptides were cyclized), and up to 86% isolated yield. The obtained highly conjugated cyclic peptide linker, formed through C-H alkynylation, can be directly applied to live-cell imaging as a fluorescent probe without further attachment of fluorophores.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory
of Catalysis and Organic Synthesis, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, 1015 Lausanne, Switzerland
| | - Wei Cai
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCBM, 1015 Lausanne, Switzerland
| | - Nathan Ronceray
- Laboratory
of Nanoscale Biology, School of Engineering, Institute of Bioengineering, EPFL STI IBI LBEN, 1015 Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory
of Nanoscale Biology, School of Engineering, Institute of Bioengineering, EPFL STI IBI LBEN, 1015 Lausanne, Switzerland
| | - Beat Fierz
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCBM, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory
of Catalysis and Organic Synthesis, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Meena R, Shekhar S, Ansari SB, Tiwari A, Lal J, Reddy DN. Metal-free sp 2 -C7-H Borylation of Tryptophan Containing Peptides and Late-stage Modification. Chem Asian J 2023; 18:e202300638. [PMID: 37847482 DOI: 10.1002/asia.202300638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
The discovery of milder and robust strategies to enable the introduction of organoboronates in peptides remains conspicuously underdeveloped. Herein, we demonstrate an efficient method for the site-selective sp2 -C7-H borylation of tryptophan under metal-free condition using BBr3 directed by pivaloyl group. The versatility of this approach is that gram scale synthesis and C7-borylated N-Phth-Trp(N-Piv)(C7-BPin)-OMe was modified into various C7-substituted derivatives. Moreover, the strategy enables for the peptide elongation and late-stage borylation of peptides, natural product Brevianamide F and drug Oglufanide.
Collapse
Affiliation(s)
- Rachana Meena
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Shashank Shekhar
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Shabina B Ansari
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Ashwani Tiwari
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Jhajan Lal
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Damodara N Reddy
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| |
Collapse
|
23
|
Bag R, Sharma NK. Pd-Catalyzed Picolinamide-Directed Late-Stage Chalcogenation of Tryptophan-Containing Peptides. J Org Chem 2023; 88:15666-15686. [PMID: 37883335 DOI: 10.1021/acs.joc.3c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
This report describes the Pd-catalyzed late-stage chalcogenation of tryptophan-containing peptides with disulfides/diselenides in moderate to good yields. It comprises broad substrate scope, functional group diversity, late-stage modification of drug molecules, and various valuable synthetic transformations, including room temperature easy removal of the picolinamide auxiliary, which could be applicable to tune the structure and function of peptides.
Collapse
Affiliation(s)
- Raghunath Bag
- National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400094, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
24
|
Krajcovicova S, Spring DR. Tryptophan in Multicomponent Petasis Reactions for Peptide Stapling and Late-Stage Functionalisation. Angew Chem Int Ed Engl 2023; 62:e202307782. [PMID: 37389988 DOI: 10.1002/anie.202307782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/02/2023]
Abstract
Peptide stapling is a robust strategy for generating enzymatically stable, macrocyclic peptides. The incorporation of biologically relevant tags (such as cell-penetrating motifs or fluorescent dyes) into peptides, while preserving their binding interactions and enhancing their stability, is highly sought after. Despite the unique opportunities offered by tryptophan's indole scaffold for targeted functionalisation, its utilisation in peptide stapling has been limited as compared to other amino acids. Herein, we present an approach for peptide stapling using the tryptophan-mediated Petasis reaction. This method enables the synthesis of both stapled and labelled peptides and is applicable to both solution and solid-phase synthesis. Importantly, the use of the Petasis reaction in combination with tryptophan facilitates the formation of stapled peptides in a straightforward, multicomponent fashion, while circumventing the formation of undesired by-products. Furthermore, this approach allows for efficient and diverse late-stage peptide modifications, thereby enabling rapid production of numerous conjugates for biological and medicinal applications.
Collapse
Affiliation(s)
- Sona Krajcovicova
- Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
- Department of Organic Chemistry, Palacky University Olomouc, Tr. 17. Listopadu 12, 77900, Olomouc, Czech Republic
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
| |
Collapse
|
25
|
Mao M, Li J, Dong K, Li RP, Chen X, Liu J, Tang S. Metal-Free Late-Stage Alkylation of Tryptophan and Tryptophan-Containing Peptides with 1,3-Dithiane Derivatives. Org Lett 2023; 25:5784-5789. [PMID: 37503958 DOI: 10.1021/acs.orglett.3c02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Late-stage diversification of structurally complex peptides has enormous potential for drug discovery and molecular imaging. We report a simple, metal-free, late-stage reductive C2 alkylation of tryptophan and tryptophan-containing peptides using readily available 1,3-dithianes. This alkylation protocol has a wide substrate scope and an excellent tolerance for reactive functional groups.
Collapse
Affiliation(s)
- Mingming Mao
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jia Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kang Dong
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Rui-Peng Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xi Chen
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jian Liu
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shouchu Tang
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
26
|
Lee JC, Cuthbertson JD, Mitchell NJ. Chemoselective Late-Stage Functionalization of Peptides via Photocatalytic C2-Alkylation of Tryptophan. Org Lett 2023; 25:5459-5464. [PMID: 37462428 PMCID: PMC10391624 DOI: 10.1021/acs.orglett.3c01795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Across eukaryotic proteomes, tryptophan is the least abundant of the 20 canonical amino acids, which makes it an ideal chemical handle for the late-stage functionalization of peptide and protein scaffolds with minimal production of undesired isoforms. Herein, we report the photocatalytic C2-alkylation of tryptophan using bromodifluoroacetate/acetamide-derived radical precursors. This rapid visible-light-mediated reaction is additive-free, operationally simple, and tolerates diverse functionality. We demonstrate the late-stage modification of a variety of complex peptides, including examples of biological significance.
Collapse
Affiliation(s)
- Joanna C Lee
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
| | - James D Cuthbertson
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
| | - Nicholas J Mitchell
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
27
|
Tang J, Lu F, Geng Y, Liu Y, Zhang E. Site-Selective Modification of Peptides via Late-Stage Pd-Catalyzed Tandem Reaction of Phenylalanine with Benzoquinone. Org Lett 2023; 25:5378-5382. [PMID: 37439546 DOI: 10.1021/acs.orglett.3c01952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
An efficient and straightforward approach for site-selective functionalization of phenylalanine and phenylalanine-containing peptide via a Pd-catalyzed tandem reaction has been developed. The robust method underwent dual C-H activation, including C-C coupling with benzoquinone and intramolecular C-N cyclization, providing a feasible and rapid synthetic route to incorporate 4-benzoquinone-indoline fragments into peptides.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yujie Geng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yanxia Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
28
|
Wang P, Liu J, Zhu X, Yan Z, Yan J, Jiang J, Fu M, Ge J, Zhu Q, Zheng Y. Modular synthesis of clickable peptides via late-stage maleimidation on C(7)-H tryptophan. Nat Commun 2023; 14:3973. [PMID: 37407547 DOI: 10.1038/s41467-023-39703-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Cyclic peptides have attracted tremendous attention in the pharmaceutical industry owing to their excellent cell penetrability, stability, thermostability, and drug-like properties. However, the currently available facile methodologies for creating such peptides are rather limited. Herein, we report an efficient and direct peptide cyclization via rhodium(III)-catalyzed C(7)-H maleimidation. Notably, this catalytical system has excellent regioselectivity and high tolerance of functional groups which enable late-stage cyclization of peptides. This architecture of cyclic peptides exhibits higher bioactivity than its parent linear peptides. Moreover, the Trp-substituted maleimide displays excellent reactivity toward Michael addition, indicating its potential as a click functional group for applications in chemical biology and medicinal chemistry. As a proof of principle, RGD-GFLG-DOX, which is a peptide-drug-conjugate, is constructed and it displays a strong binding affinity and high antiproliferative activity toward integrin-αvβ3 overexpressed cancer cell lines. The proposed strategy for rapid preparation of stapled peptides would be a robust tool for creating peptide-drug conjugates.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaomei Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengqing Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiahui Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jitong Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Manlin Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
29
|
Yang P, Širvinskas MJ, Li B, Heller NW, Rong H, He G, Yudin AK, Chen G. Teraryl Braces in Macrocycles: Synthesis and Conformational Landscape Remodeling of Peptides. J Am Chem Soc 2023. [PMID: 37326500 DOI: 10.1021/jacs.3c03512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The three-dimensional structure of medium-sized cyclic peptides accounts for their biological activity and other important physiochemical properties. Despite significant advances in the past few decades, chemists' ability to fine-tune the structure, in particular, the backbone conformation, of short peptides made of canonical amino acids is still quite limited. Nature has shown that cross-linking the aromatic side chains of linear peptide precursors via enzyme catalysis can generate cyclophane-braced products with unusual structures and diverse activities. However, the biosynthetic path to these natural products is challenging to replicate in the synthetic laboratory using practical chemical modifications of peptides. Herein, we report a broadly applicable strategy to remodel the structure of homodetic peptides by cross-linking the aromatic side chains of Trp, His, and Tyr residues with various aryl linkers. The aryl linkers can be easily installed via copper-catalyzed double heteroatom-arylation reactions of peptides with aryl diiodides. These aromatic side chains and aryl linkers can be combined to form a large variety of assemblies of heteroatom-linked multi-aryl units. The assemblies can serve as tension-bearable multijoint braces to modulate the backbone conformation of peptides as an entry to previously inaccessible conformational space.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | | | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nicholas W Heller
- Department of Chemistry, University of Toronto, Toronto M5S 3H4, Canada
| | - Hua Rong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto, Toronto M5S 3H4, Canada
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
30
|
Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev 2023. [PMID: 37163671 DOI: 10.1021/acs.chemrev.2c00888] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Site-predictable and chemoselective C-H bond functionalization reactions offer synthetically powerful strategies for the step-economic diversification of both feedstock and fine chemicals. Many transition-metal-catalyzed methods have emerged for the selective activation and functionalization of C-H bonds. However, challenges of regio- and chemoselectivity have emerged with application to highly complex molecules bearing significant functional group density and diversity. As molecular complexity increases within molecular structures the risks of catalyst intolerance and limited applicability grow with the number of functional groups and potentially Lewis basic heteroatoms. Given the abundance of C-H bonds within highly complex and already diversified molecules such as pharmaceuticals, natural products, and materials, design and selection of reaction conditions and tolerant catalysts has proved critical for successful direct functionalization. As such, innovations within transition-metal-catalyzed C-H bond functionalization for the direct formation of carbon-carbon bonds have been discovered and developed to overcome these challenges and limitations. This review highlights progress made for the direct metal-catalyzed C-C bond forming reactions including alkylation, methylation, arylation, and olefination of C-H bonds within complex targets.
Collapse
Affiliation(s)
- Jamie H Docherty
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Thomas M Lister
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gillian Mcarthur
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael T Findlay
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo Domingo-Legarda
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jacob Kenyon
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shweta Choudhary
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
31
|
Song L, Lv Z, Li Y, Zhang K, Van der Eycken EV, Cai L. Construction of Peptide-Isoquinolone Conjugates via Rh(III)-Catalyzed C-H Activation/Annulation. Org Lett 2023; 25:2996-3000. [PMID: 37129283 DOI: 10.1021/acs.orglett.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Herein, we disclose a Rh(III)-catalyzed C-H activation/annulation reaction for the derivatization of Lys-based peptides, in situ affording diverse peptide-isoquinolone conjugates. This approach features racemization-free conditions, high atom- and step-economy, excellent chemo- and site-selectivity, and broad scope including substrates bearing unprotected Trp and Tyr, free Ser and Gln, and Met residues. The peptide-isoquinolone conjugates also display good fluorescent properties with maximum emission wavelengths up to 460 nm. Importantly, preliminary antifungal activity studies indicate that peptide-isoquinolone conjugates show potential activities toward crop and forest pathogenic fungi, in which the peptide-isoquinolone conjugate bearing unprotected Tyr residue exhibits much better antifungal activities toward B. cinerea Pers. and C. chrysosperma than the positive control.
Collapse
Affiliation(s)
- Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhenwei Lv
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yan Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kui Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russia
| | - Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
32
|
Kuschert S, Stroet M, Chin YKY, Conibear AC, Jia X, Lee T, Bartling CRO, Strømgaard K, Güntert P, Rosengren KJ, Mark AE, Mobli M. Facilitating the structural characterisation of non-canonical amino acids in biomolecular NMR. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:57-72. [PMID: 37904802 PMCID: PMC10583272 DOI: 10.5194/mr-4-57-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2023] [Indexed: 11/01/2023]
Abstract
Peptides and proteins containing non-canonical amino acids (ncAAs) are a large and important class of biopolymers. They include non-ribosomally synthesised peptides, post-translationally modified proteins, expressed or synthesised proteins containing unnatural amino acids, and peptides and proteins that are chemically modified. Here, we describe a general procedure for generating atomic descriptions required to incorporate ncAAs within popular NMR structure determination software such as CYANA, CNS, Xplor-NIH and ARIA. This procedure is made publicly available via the existing Automated Topology Builder (ATB) server (https://atb.uq.edu.au, last access: 17 February 2023) with all submitted ncAAs stored in a dedicated database. The described procedure also includes a general method for linking of side chains of amino acids from CYANA templates. To ensure compatibility with other systems, atom names comply with IUPAC guidelines. In addition to describing the workflow, 3D models of complex natural products generated by CYANA are presented, including vancomycin. In order to demonstrate the manner in which the templates for ncAAs generated by the ATB can be used in practice, we use a combination of CYANA and CNS to solve the structure of a synthetic peptide designed to disrupt Alzheimer-related protein-protein interactions. Automating the generation of structural templates for ncAAs will extend the utility of NMR spectroscopy to studies of more complex biomolecules, with applications in the rapidly growing fields of synthetic biology and chemical biology. The procedures we outline can also be used to standardise the creation of structural templates for any amino acid and thus have the potential to impact structural biology more generally.
Collapse
Affiliation(s)
- Sarah Kuschert
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin Stroet
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yanni Ka-Yan Chin
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anne Claire Conibear
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, Wien 1060, Vienna, Austria
| | - Xinying Jia
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Department of Chemistry, Tokyo Metropolitan University, Hachiōji, Tokyo 192-0397, Japan
| | - Karl Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan Edward Mark
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
33
|
Kaplaneris N, Puet A, Kallert F, Pöhlmann J, Ackermann L. Late-stage C-H Functionalization of Tryptophan-Containing Peptides with Thianthrenium Salts: Conjugation and Ligation. Angew Chem Int Ed Engl 2023; 62:e202216661. [PMID: 36581584 DOI: 10.1002/anie.202216661] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Bioorthogonal late-stage diversification of structurally complex peptides bears enormous potential for drug discovery and molecular imaging, among other applications. Herein, we report on a palladium-catalyzed C-H arylation of tryptophan-containing peptides with readily accessible and modular arylthianthrenium salts. Under exceedingly mild reaction conditions, the late-stage diversification of structurally complex peptides was accomplished. The tunability and ease of preparation of arylthianthrenium salts allowed the expedient stitching of tryptophan-containing peptides with drug, natural product, and peptidic scaffolds by forging sterically congested biaryl linkages. The robustness of the palladium catalysis regime was reflected by the full tolerance of a plethora of sensitive and coordinating functional groups. Hence, our manifold enabled efficient access to highly decorated, labelled, conjugated, and ligated linear and cyclic peptides.
Collapse
Affiliation(s)
- Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany
| | - Alejandro Puet
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany
| | - Felix Kallert
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany
| | - Julia Pöhlmann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany.,Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Potsdamer Strasse 58, 10785, Berlin, Germany
| |
Collapse
|
34
|
Song B, Guo X, Yang L, Yu H, Zong X, Liu X, Wang H, Xu Z, Lin Z, Yang W. Rhodium(III)-Catalyzed C-H/O 2 Dual Activation and Macrocyclization: Synthesis and Evaluation of Pyrido[2,1-a]isoindole Grafted Macrocyclic Inhibitors for Influenza H1N1. Angew Chem Int Ed Engl 2023; 62:e202218886. [PMID: 36788706 DOI: 10.1002/anie.202218886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The development of environment-friendly, step economic couplings to generate structurally diverse macrocyclic compounds is highly desirable but poses a marked challenge. Inspired by the C-H oxidation mechanism of cytochromes P450, an unprecedented and practical RhIII -catalyzed acylmethylation macrocyclization via C-H/O2 dual activation has been developed by us. The process of macrocyclization is facilitated by a synergic coordination from pyridine and ester group. Interestingly, the reaction mode derives from a three-component coupling which differs from established olefination and alkylation paths. Density functional theory (DFT) calculations and control experiments revealed the mechanism of this unique C-H/O2 dual activation. The newly achieved acylmethylation macrocyclic products and their derivatives showed a potent anti-H1N1 bioactivity, which may provide an opportunity for the discovery of novel anti-H1N1 macrocyclic leading compounds.
Collapse
Affiliation(s)
- Bichao Song
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China
| | - Li Yang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyue Yu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlei Zong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Xiujuan Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hao Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongliang Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China
| | - Weibo Yang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210000, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
35
|
Li J, Sun J, Zhang X, Zhang R, Wang Q, Wang L, Zhang L, Xie X, Li C, Zhou Y, Wang J, Xiao G, Bai F, Liu H. Synthesis of maleimide-braced peptide macrocycles and their potential anti-SARS-CoV-2 mechanisms. Chem Commun (Camb) 2023; 59:868-871. [PMID: 36546610 DOI: 10.1039/d2cc06371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrocycles often exhibit good biological properties and potential druggability, which lead to versatile applications in the pharmaceutical industry. Herein, we report a highly efficient and practical methodology for the functionalization and macrocyclization of Trp and Trp-containing peptides via Pd(II)-catalyzed C-H alkenylation at the Trp C4 position. This method provides direct access to C4 maleimide-decorated Trp-containing peptidomimetics and maleimide-braced 17- to 30-membered peptide macrocycles. In particular, these unique macrocycles revealed low micro- to sub-micromolar EC50 values with promising anti-SARS-CoV-2 activities. Further explorations with computational methodologies and experimental validations indicated that these macrocycles exert antiviral effects through binding with the N protein of SARS-CoV-2.
Collapse
Affiliation(s)
- Jian Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jina Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xianglei Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Ruxue Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Qian Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
36
|
Han Y, Shi J, Li S, Dan T, Yang W, Yang M. Selective editing of a peptide skeleton via C-N bond formation at N-terminal aliphatic side chains. Chem Sci 2022; 13:14382-14386. [PMID: 36545141 PMCID: PMC9749142 DOI: 10.1039/d2sc04909k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
The applications of peptides and peptidomimetics have been demonstrated in the fields of therapeutics, diagnostics, and chemical biology. Strategies for the direct late-stage modification of peptides and peptidomimetics are highly desirable in modern drug discovery. Transition-metal-catalyzed C-H functionalization is emerging as a powerful strategy for late-stage peptide modification that is able to construct functional groups or increase skeletal diversity. However, the installation of directing groups is necessary to control the site selectivity. In this work, we describe a transition metal-free strategy for late-stage peptide modification. In this strategy, a linear aliphatic side chain at the peptide N-terminus is cyclized to deliver a proline skeleton via site-selective δ-C(sp3)-H functionalization under visible light. Natural and unnatural amino acids are demonstrated as suitable substrates with the transformations proceeding with excellent regio- and stereo-selectivity.
Collapse
Affiliation(s)
- Yujie Han
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Junjie Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Songrong Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Tingting Dan
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Wenwen Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| |
Collapse
|
37
|
Banerjee A, Chatterjee I, Panda G. Total synthesis of selected tyrosine‐derived alkaloids: A comparative analysis of tyrosine‐based chiral pool vs other synthetic approaches. ChemistrySelect 2022. [DOI: 10.1002/slct.202202750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Arpita Banerjee
- Indranil Chatterjee and Gautam Panda Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
| | - Indranil Chatterjee
- Indranil Chatterjee and Gautam Panda Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
| | - Gautam Panda
- Indranil Chatterjee and Gautam Panda Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| |
Collapse
|
38
|
Feng D, Liu L, Shi Y, Du P, Xu S, Zhu Z, Xu J, Yao H. Current development of bicyclic peptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Multicomponent coupling and macrocyclization enabled by Rh(III)-catalyzed dual C–H activation: Macrocyclic oxime inhibitor of influenza H1N1. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Ullrich S, George J, Coram AE, Morewood R, Nitsche C. Biocompatible and Selective Generation of Bicyclic Peptides. Angew Chem Int Ed Engl 2022; 61:e202208400. [PMID: 35852030 DOI: 10.1002/anie.202208400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 01/07/2023]
Abstract
Bicyclic peptides possess superior properties for drug discovery; however, their chemical synthesis is not straightforward and often neither biocompatible nor fully orthogonal to all canonical amino acids. The selective reaction between 1,2-aminothiols and 2,6-dicyanopyridine allows direct access to complex bicyclic peptides in high yield. The process can be fully automated using standard solid-phase peptide synthesis. Bicyclization occurs in water at physiological pH within minutes and without the need for a catalyst. The use of various linkers allows tailored bicyclic peptides with qualities such as plasma stability, conformational preorganization, and high target affinity. We demonstrate this for a bicyclic inhibitor of the Zika virus protease NS2B-NS3 as well as for bicyclic versions of the α-helical antimicrobial peptide aurein 1.2.
Collapse
Affiliation(s)
- Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Josemon George
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Alexandra E Coram
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Richard Morewood
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
41
|
Zhao Y, Marschall E, Treisman M, McKay A, Padva L, Crüsemann M, Nelson DR, Steer DL, Schittenhelm RB, Tailhades J, Cryle MJ. Cytochrome P450 Blt Enables Versatile Peptide Cyclisation to Generate Histidine- and Tyrosine-Containing Crosslinked Tripeptide Building Blocks. Angew Chem Int Ed Engl 2022; 61:e202204957. [PMID: 35851739 PMCID: PMC9542247 DOI: 10.1002/anie.202204957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 12/05/2022]
Abstract
We report our investigation of the utility of peptide crosslinking cytochrome P450 enzymes from biarylitide biosynthesis to generate a range of cyclic tripeptides from simple synthons. The crosslinked tripeptides produced by this P450 include both tyrosine-histidine (A-N-B) and tyrosine-tryptophan (A-O-B) crosslinked tripeptides, the latter a rare example of a phenolic crosslink to an indole moiety. Tripeptides are easily isolated following proteolytic removal of the leader peptide and can incorporate a wide range of amino acids in the residue inside the crosslinked tripeptide. Given the utility of peptide crosslinks in important natural products and the synthetic challenge that these can represent, P450 enzymes have the potential to play roles as important tools in the generation of high-value cyclic tripeptides for incorporation in synthesis, which can be yet further diversified using selective chemical techniques through specific handles contained within these tripeptides.
Collapse
Affiliation(s)
- Yongwei Zhao
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - Edward Marschall
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - Maxine Treisman
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - Alasdair McKay
- Department of ChemistryMonash UniversityClaytonVIC 3800Australia
| | - Leo Padva
- Institute of Pharmaceutical BiologyUniversity of Bonn53115BonnGermany
| | - Max Crüsemann
- Institute of Pharmaceutical BiologyUniversity of Bonn53115BonnGermany
| | - David R. Nelson
- Department of Microbiology, Immunology and BiochemistryUniversity of TennesseeMemphisTN 38163USA
| | - David L. Steer
- Monash Proteomics and Metabolomics FacilityMonash UniversityClaytonVIC 3800Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics and Metabolomics FacilityMonash UniversityClaytonVIC 3800Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - Max J. Cryle
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| |
Collapse
|
42
|
Li G, Yuan F, Yao B. Post-Assembly Modification of Head-to-Tail Cyclic Peptides by Methionine-Directed β-C(sp 3)-H Arylation. Org Lett 2022; 24:5767-5771. [PMID: 35916500 DOI: 10.1021/acs.orglett.2c02253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Peptide modification by C(sp3)-H functionalization of internal residues remains a major challenge due to the inhibitory effect of peptide bonds. In this work, we developed a methionine-directed β-C(sp3)-H arylation method for internal alanine functionalization. By tuning the σC-C bond rotation of internal Ala through head-to-tail cyclization, we overcame the inhibitory effect and functionalized a wide range of head-to-tail cyclic peptides with aryl iodides with excellent position selectivity.
Collapse
Affiliation(s)
- Gang Li
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Feipeng Yuan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing 102488, P. R. China
| |
Collapse
|
43
|
Liu L, Fan X, Wang B, Deng H, Wang T, Zheng J, Chen J, Shi Z, Wang H. P
III
‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206177. [DOI: 10.1002/anie.202206177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Lei Liu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Xinlong Fan
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Boning Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Hong Deng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Tianhang Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jun Chen
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
44
|
Zhao Y, Marschall E, Treisman M, McKay A, Padva L, Crüsemann M, Nelson DR, Steer DL, Schittenhelm RB, Tailhades J, Cryle MJ. Cytochrome P450Blt Enables Versatile Peptide Cyclisation to Generate Histidine and Tyrosine Containing Crosslinked Tripeptide Building Blocks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | - Leo Padva
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Institute of Pharmaceutical Biology GERMANY
| | - Max Crüsemann
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Pharmaceutical Biology GERMANY
| | - David R Nelson
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine Microbiology UNITED STATES
| | - David L Steer
- Monash University Biochemistry and Molecular Biology AUSTRALIA
| | | | | | - Max J. Cryle
- Monash University Department of Biochemistry and Molecular Biology 15 Innovation WalkMonash University 3800 Melbourne AUSTRALIA
| |
Collapse
|
45
|
Ullrich S, George J, Coram A, Morewood R, Nitsche C. Biocompatible and Selective Generation of Bicyclic Peptides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sven Ullrich
- Australian National University Research School of Chemistry AUSTRALIA
| | - Josemon George
- Australian National University Research School of Chemistry AUSTRALIA
| | - Alexandra Coram
- Australian National University Research School of Chemistry AUSTRALIA
| | - Richard Morewood
- Australian National University Research School of Chemistry AUSTRALIA
| | - Christoph Nitsche
- Australian National University Research School of Chemistry Sullivans Creek Road ACT 2601 Canberra AUSTRALIA
| |
Collapse
|
46
|
Cornier PG, Delpiccolo CM, Martiren NL, Mata EG, Mendez L, Permingeat Squizatto C, Pizzio MG. Transition Metal‐Catalyzed Reactions and Solid‐Phase Synthesis: A Convenient Blend. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patricia G. Cornier
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Carina M.L. Delpiccolo
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Nadia L. Martiren
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 Rosario ARGENTINA
| | - Ernesto G Mata
- Instituto de Química Rosario Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Luciana Mendez
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 ROSARIO ARGENTINA
| | | | - Marianela G. Pizzio
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 Rosario ARGENTINA
| |
Collapse
|
47
|
Melsen PRA, Yoshisada R, Jongkees SAK. Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA-Displayed Peptide Libraries. Chembiochem 2022; 23:e202100685. [PMID: 35100479 PMCID: PMC9306583 DOI: 10.1002/cbic.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Indexed: 11/07/2022]
Abstract
DNA-encoded small-molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide-tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the 'drug-likeness' of the molecules that each can be used to discover. We give here an overview of the two techniques, comparing some advantages and disadvantages of each, and suggest areas where particularly mRNA display can benefit from adopting advances developed with DNA-encoded small molecule libraries. We outline cases where chemical modification of the peptide library has already been used in mRNA display, and survey opportunities to expand this using examples from DNA-encoded small molecule libraries. We also propose potential opportunities for encoding such reactions within the mRNA/cDNA tag of an mRNA-displayed peptide library to allow a more diversity-oriented approach to library modification. Finally, we outline alternate approaches for enriching target-binding hits from a pooled and tagged library, and close by detailing several examples of how an adjusted mRNA-display based approach could be used to discover new 'drug-like' modified small peptides.
Collapse
Affiliation(s)
- Paddy R. A. Melsen
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
48
|
LIU LEI, FAN XINLONG, WANG BONING, DENG HONG, WANG TIANHANG, ZHENG JIE, CHEN JUN, SHI ZHUANGZHI, Wang H. P(III)‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- LEI LIU
- Nanjing University CHEMISTRY AND CHEMICAL ENGINEERING CHINA
| | | | | | | | | | | | - JUN CHEN
- Nanjing University CHEMISTRY CHINA
| | | | - Huan Wang
- Nanjing University Chemistry and Chemical Engineering 163 Xianlin Ave.Chemistry Building, E504 210023 Nanjing CHINA
| |
Collapse
|
49
|
Purushotham M, Paul B. Iodinated Diketopiperazines: Synthesis and Biological Evaluation of Iodinated Analogues of Cyclo(L‐Tyrosine‐L‐Tyrosine) Peptides. ChemistrySelect 2022. [DOI: 10.1002/slct.202201120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Manasa Purushotham
- Department of Chemistry Jnana Bharathi Campus Bangalore University Bangalore 560056 India
| | - Bishwajit Paul
- Department of Chemistry Jnana Bharathi Campus Bangalore University Bangalore 560056 India
| |
Collapse
|
50
|
Bi T, Xu Y, Xu X, Tang B, Yang Q, Zang Y, Lin Z, Li J, Yang W. Natural scaffolds-inspired synthesis of CF3-substituted macrolides enabled by Rh-catalyzed C–H alkylation macrocyclization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|