1
|
De Lima EU, Dos Santos FF, Da Silva IC, De Lima CRA, Frutuoso VS, Caso GF, De Oliveira PR, Bezerra AK, Cerutti JM, Tamura RE, Ramos HE, de Rubio IGS. Reduced expression of FOXE1 in differentiated thyroid cancer, the contribution of CPG methylation, and their clinical relevance. Front Endocrinol (Lausanne) 2024; 15:1454349. [PMID: 39588344 PMCID: PMC11586194 DOI: 10.3389/fendo.2024.1454349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Forkhead box E1 (FOXE1) is a transcription factor with a crucial role in thyroid morphogenesis and differentiation. Promoter hypermethylation downregulates FOXE1 expression in different tumor types; nevertheless, its expression and relationship with methylation status in differentiated thyroid cancer (DTC) remain unclear. Methods A total of 33 pairs of matched samples of PTC tumors and non-tumors were included. Tumor cell cultures were treated with either 5-Aza-2'-deoxycytidine demethylating agent or dimethyl sulfoxide (DMSO). A real-time polymerase chain reaction (RT-PCR) and Western blotting were performed to assess FOXE1 expression. The methylation status was quantified using bisulfite sequencing. A luciferase gene assay was used to determine CpG-island functionality. Gene expression and promoter methylation of FOXE1 and FOXE1-regulated genes were also analyzed with data from The Cancer Genome Atlas (TCGA) thyroid samples. Results After demethylating treatment, increased FOXE1 mRNA was observed concomitantly with reduced promoter methylation of CpGisland2. A negative correlation between mRNA downregulation and an increased methylation level of CpGisland2 was observed in tumors. Diminished protein expression was also detected in some DTC cell lines and in some tumor samples, suggesting the involvement of post-transcriptional regulatory mechanisms. CPGisland2 was proved to be an enhancer. TCGA data analysis showed low FOXE1 mRNA expression in tumors with a negative correlation with methylation status and a positive correlation with the expression of most of its target genes. Reduced FOXE1 expression, accompanied by a high methylation level, was associated with PTC aggressiveness (tall cell variant, advanced extra thyroid extension, T4 American Joint Committee on Cancer (AJCC) classification), age at diagnosis (over 45 years old), and presence of a BRAFV600E mutation. Conclusion FOXE1 mRNA was downregulated in DTC compared with non-tumors, followed by high CpGisland methylation. A coupling of low mRNA expression and high methylation status was related to characteristics of aggressiveness in DTC tumors.
Collapse
Affiliation(s)
- Erika Urbano De Lima
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Filipe Ferreira Dos Santos
- Centro de Oncologia Molecular (MOC), Hospital Sírio-Libanês - Instituto de Ensino e Pesquisa (HSL-IEP), São Paulo, Brazil
- Department of Biochemistry, Chemistry Institute (IQ), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Igor Campos Da Silva
- Departamento de Cirurgia de Cabeça e Pescoço, Monte Tabor – Hospital São Rafael, Salvador, Brazil
| | | | - Vitoria Sousa Frutuoso
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gustavo Felisola Caso
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Paloma Ramos De Oliveira
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Janete Maria Cerutti
- Laboratório de Bases Genéticas dos Tumores da Tiroide, Departamento de Morfologia e Genética Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo Esaki Tamura
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Helton Estrela Ramos
- Laboratório de Estudos da Tireoide, Departamento de Bioregulação, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Ileana Gabriela Sanchez de Rubio
- Laboratório de Ciências Moleculares da Tireoide (LCMT) e Laboratório de Biologia Molecular do Câncer (LBMC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
2
|
Liao S, Deng J, Deng M, Chen C, Han F, Ye K, Wu C, Pan L, Lai M, Tang Z, Zhang H. AFDN Deficiency Promotes Liver Tropism of Metastatic Colorectal Cancer. Cancer Res 2024; 84:3158-3172. [PMID: 39047222 DOI: 10.1158/0008-5472.can-23-3140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Liver metastasis is a major cause of morbidity and mortality in patients with colorectal cancer. A better understanding of the biological mechanisms underlying liver tropism and metastasis in colorectal cancer could help to identify improved prevention and treatment strategies. In this study, we performed genome-wide CRISPR loss-of-function screening in a mouse colorectal cancer model and identified deficiency of AFDN, a protein involved in establishing and maintaining cell-cell contacts, as a driver of liver metastasis. Elevated AFDN expression was correlated with prolonged survival in patients with colorectal cancer. AFDN-deficient colorectal cancer cells preferentially metastasized to the liver but not in the lungs. AFDN loss in colorectal cancer cells at the primary site promoted cancer cell migration and invasion by disrupting tight intercellular junctions. Additionally, CXCR4 expression was increased in AFDN-deficient colorectal cancer cells via the JAK-STAT signaling pathway, which reduced the motility of AFDN-deficient colorectal cancer cells and facilitated their colonization of the liver. Collectively, these data shed light on the mechanism by which AFDN deficiency promotes liver tropism in metastatic colorectal cancer. Significance: A CRISPR screen reveals AFDN loss as a mediator of liver tropism in colorectal cancer metastasis by decreasing tight junctions in the primary tumor and increasing interactions between cancer cells and hepatocytes.
Collapse
Affiliation(s)
- Shaoxia Liao
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, China
| | - Jingwen Deng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengli Deng
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chaoyi Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Fengyan Han
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kehong Ye
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chenxia Wu
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Lvyuan Pan
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Maode Lai
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, China
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, China
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Liu M, Zhang G, Wang Z, Liu X, He K, Luo R, Duan Q, Bai R, Wang Y, Du W, Zheng Y, Shao Y. FOXE1 Contributes to the Development of Psoriasis by Regulating WNT5A. J Invest Dermatol 2023; 143:2366-2377.e7. [PMID: 37394057 DOI: 10.1016/j.jid.2023.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 07/04/2023]
Abstract
Psoriasis is a common, chronic, and relapsing inflammatory skin disease characterized by hyperproliferation of keratinocytes (KCs) and infiltration of immune cells. The pathogenesis of psoriasis is complex, and the exact mechanism remains partially understood. In this study, we showed that the forkhead box family protein, FOXE1, had increased expression in lesional skins compared with nonlesional skin from patients with psoriasis. FOXE1 expression was also increased in an imiquimod-induced psoriatic mouse model as well as in M5-stimulated KCs. Using combinational approaches of knockdown and overexpression of FOXE1, we demonstrated that FOXE1 may promote the proliferation of KCs by facilitating G1/S transition and activating extracellular signal-regulated kinase 1/2 signaling pathway. In addition, knockdown of FOXE1 reduced the production of IL-1β, IL-6, and TNF-α by KCs. RNA-sequencing profiling identified WNT5A as a potential downstream effector of FOXE1. Knockdown of WNT5A inhibited the proliferation of KCs; reduced the production of IL-1β, IL-6, and TNF-α by KCs; and mitigated the growth-promoting effect of FOXE1 in FOXE1-overexpressed KCs. Finally, depletion of FOXE1 by lentiviral delivery of small hairpin RNAs or genetic approach ameliorated dermatitis symptoms in imiquimod-induced psoriasis-like mouse models. Taken together, our results indicated that FOXE1 participates in the pathogenesis of psoriasis and can serve as a target of psoriasis treatment.
Collapse
Affiliation(s)
- Meng Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanfei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ziyang Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyi Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke He
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiting Luo
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiqi Duan
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuqian Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenqian Du
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yongping Shao
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Sun X, Lu L, Wang K, Song L, Jiao J, Wu Y, Wang X, Song Y, Zhan L. Scribble deficiency mediates colon inflammation by inhibiting autophagy-dependent oxidative stress elimination. Sci Rep 2023; 13:18327. [PMID: 37884590 PMCID: PMC10603050 DOI: 10.1038/s41598-023-45176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Scribble is a master scaffold protein in apical-basal polarity. Current knowledge about the biological function of Scribble in colonic epithelial plasticity/regeneration during intestinal inflammation is limited. Here, we showed that the level of Scribble is decreased in inflammatory bowel disease (IBD) patients and mice with DSS-induced colitis. ScribΔIEC mice develops severe acute colitis with disrupted epithelial barrier integrity and impaired crypt stem cell's function. Mechanistically, Scribble suppressed the process of autophagy by modulating the stability of caspase-dependent degradation of Atg16L1 by directly interacting with Atg16L1 in a LRR domain-dependent manner in IECs and led to an accumulation of ROS both in intestinal stem cells and epithelial cells. In addition, further study indicates that dietary sphingomyelin alleviates DSS-induced colitis by increase the expression of Scribble, which suggests that Scribble may be the critical marker of IBD. Our study shows that Scribble deficiency is associated with the dysregulated autophagy and impaired maintenance of colonic stemness, and it may be a target for diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Xia Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liying Lu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lele Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Xinyu W, Qian W, Yanjun W, Jingwen K, Keying X, Jiazheng J, Haibing Z, Kai W, Xiao X, Lixing Z. Polarity protein AF6 functions as a modulator of necroptosis by regulating ubiquitination of RIPK1 in liver diseases. Cell Death Dis 2023; 14:673. [PMID: 37828052 PMCID: PMC10570300 DOI: 10.1038/s41419-023-06170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
AF6, a known polarity protein, contributes to the maintenance of homeostasis while ensuring tissue architecture, repair, and integrity. Mice that lack AF6 display embryonic lethality owing to cell-cell junction disruption. However, we show AF6 promotes necroptosis via regulating the ubiquitination of RIPK1 by directly interact with the intermediate domain of RIPK1, which was mediated by the deubiquitylase enzyme USP21. Consistently, while injection of mice with an adenovirus providing AF6 overexpression resulted in accelerated TNFα-induced necroptosis-mediated mortality in vivo, we observed that mice with hepatocyte-specific deletion of AF6 prevented hepatocytes from necroptosis and the subsequent inflammatory response in various liver diseases model, including non-alcoholic steatohepatitis (NASH) and the systemic inflammatory response syndrome (SIRS).Together, these data suggest that AF6 represents a novel regulator of RIPK1-RIPK3 dependent necroptotic pathway. Thus, the AF6-RIPK1-USP21 axis are potential therapeutic targets for treatment of various liver injuries and metabolic diseases.
Collapse
Affiliation(s)
- Wang Xinyu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen Qian
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wu Yanjun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kong Jingwen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Keying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiao Jiazheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhang Haibing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Wang Kai
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xu Xiao
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Zhan Lixing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Shields MA, Metropulos AE, Spaulding C, Hirose T, Ohno S, Pham TN, Munshi HG. BET inhibition rescues ciliogenesis and ameliorates pancreatitis-driven phenotypic changes in mice with Par3 loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557654. [PMID: 37745543 PMCID: PMC10515915 DOI: 10.1101/2023.09.14.557654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The apical-basal polarity of pancreatic acinar cells is essential for maintaining tissue architecture. However, the mechanisms by which polarity proteins regulate acinar pancreas tissue homeostasis are poorly understood. Here, we evaluate the role of Par3 in acinar pancreas injury and homeostasis. While Par3 loss in the mouse pancreas disrupts tight junctions, Par3 loss is dispensable for pancreatogenesis. However, with aging, Par3 loss results in low-grade inflammation, acinar degeneration, and pancreatic lipomatosis. Par3 loss also exacerbates pancreatitis-induced acinar cell loss, resulting in pronounced pancreatic lipomatosis and failure to regenerate. Moreover, Par3 loss in mice harboring mutant Kras causes extensive pancreatic intraepithelial neoplastic (PanIN) lesions and large pancreatic cysts. We also show that Par3 loss restricts injury-induced primary ciliogenesis. Significantly, targeting BET proteins enhances primary ciliogenesis during pancreatitis-induced injury and, in mice with Par3 loss, limits pancreatitis-induced acinar loss and facilitates acinar cell regeneration. Combined, this study demonstrates how Par3 restrains pancreatitis- and Kras-induced changes in the pancreas and identifies a potential role for BET inhibitors to attenuate pancreas injury and facilitate pancreas tissue regeneration.
Collapse
Affiliation(s)
- Mario A. Shields
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Anastasia E. Metropulos
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Thao N.D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
7
|
Smith MJ. Defining bone fide effectors of RAS GTPases. Bioessays 2023; 45:e2300088. [PMID: 37401638 DOI: 10.1002/bies.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
RAS GTPases play essential roles in normal development and are direct drivers of human cancers. Three decades of study have failed to wholly characterize pathways stimulated by activated RAS, driven by engagement with 'effector' proteins that have RAS binding domains (RBDs). Bone fide effectors must bind directly to RAS GTPases in a nucleotide-dependent manner, and this interaction must impart a clear change in effector activity. Despite this, for most proteins currently deemed effectors there is little mechanistic understanding of how binding to the GTPase alters protein function. There has also been limited effort to comprehensively resolve the specificity of effector binding to the full array of RAS superfamily GTPase proteins. This review will summarize what is known about RAS-driven activation for an array of potential effector proteins, focusing on structural and mechanistic effects and highlighting how little is still known regarding this key paradigm of cellular signal transduction.
Collapse
Affiliation(s)
- Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Goudreault M, Gagné V, Jo CH, Singh S, Killoran RC, Gingras AC, Smith MJ. Afadin couples RAS GTPases to the polarity rheostat Scribble. Nat Commun 2022; 13:4562. [PMID: 35931706 PMCID: PMC9355967 DOI: 10.1038/s41467-022-32335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
AFDN/Afadin is required for establishment and maintenance of cell-cell contacts and is a unique effector of RAS GTPases. The biological consequences of RAS complex with AFDN are unknown. We used proximity-based proteomics to generate an interaction map for two isoforms of AFDN, identifying the polarity protein SCRIB/Scribble as the top hit. We reveal that the first PDZ domain of SCRIB and the AFDN FHA domain mediate a direct but non-canonical interaction between these important adhesion and polarity proteins. Further, the dual RA domains of AFDN have broad specificity for RAS and RAP GTPases, and KRAS co-localizes with AFDN and promotes AFDN-SCRIB complex formation. Knockout of AFDN or SCRIB in epithelial cells disrupts MAPK and PI3K activation kinetics and inhibits motility in a growth factor-dependent manner. These data have important implications for understanding why cells with activated RAS have reduced cell contacts and polarity defects and implicate AFDN as a genuine RAS effector. Goudreault et al. investigate the role of Afadin downstream of RAS GTPases, substantiating this cell adhesion protein as a true RAS effector that couples its activation to cell polarity through the Scribble protein.
Collapse
Affiliation(s)
- Marilyn Goudreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Valérie Gagné
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Chang Hwa Jo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Swati Singh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Ryan C Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1X5, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada. .,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
9
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
10
|
Chen S, Huang F, He C, Li J, Chen S, Li Y, Chen Y, Lian G, Huang K. Peripheral blood monocytes predict clinical prognosis and support tumor invasiveness through NF-κB-dependent upregulation of Snail in pancreatic cancer. Transl Cancer Res 2022; 10:4773-4785. [PMID: 35116330 PMCID: PMC8797572 DOI: 10.21037/tcr-21-980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022]
Abstract
Background The tumor inflammatory microenvironment plays a vital role in the initiation and progression of pancreatic cancer (PC). Both the lymphocyte-to-monocyte ratio (LMR) and preoperative peripheral blood monocytes are related to the prognosis of PC patients. However, the direct effect of monocytes on PC cells is not fully understood. The current study aimed to assess the effect of monocytes on PC and explore its potential mechanism. Methods The cutoff value of peripheral blood monocytes was evaluated by the receiver operating characteristic (ROC) curve. Transwell migration and invasion assays were used to detect the mobility of PC cells. The cytokines derived from monocytes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Western blotting was utilized to assess the expression of epithelial-mesenchymal transition (EMT) related markers. The expression level of Snail in PC tissue was determined by immunohistochemical (IHC) staining. Results A high monocyte count was inversely correlated with lymph node status and 5-year overall survival in PC. The PC cells underwent a cellular morphology change and increased cell motility after coculture with THP-1 monocytes. The THP-1 monocytes secreted various proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1α (IL-1α), which activated the nuclear factor-κB (NF-κB) signaling pathway leading to the upregulation of Snail and thereby promoting the EMT of PC cells. The expression level of Snail correlated significantly with the density of peripheral blood monocytes, and their level status was significantly associated with 5-year overall survival. Conclusions These findings indicated that elevated monocytes counts were a poor prognostic marker in PC, and monocytes could directly induce the EMT process of PC cells by upregulating Snail expression through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feifei Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chong He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Li
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shangxiang Chen
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Long noncoding RNA Meg3 sponges miR-708 to inhibit intestinal tumorigenesis via SOCS3-repressed cancer stem cells growth. Cell Death Dis 2021; 13:25. [PMID: 34934045 PMCID: PMC8692598 DOI: 10.1038/s41419-021-04470-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) remains the most common gastrointestinal cancer and a leading cause of cancer deaths worldwide, with most showing pathologies indicating the malignant transformation of early stage intestinal stem cells. The long non-coding RNA Meg3, which functions as a tumor suppressor, has been reported to be abnormal in multiple tumorigenesis events; however, the underlying mechanism by which Meg3 contributes to the malignant proliferation of colonic stem cells remains unclear. METHODS We analyzed the expression levels of Meg3, miR-708, and SOCS3 in samples from Apc loss-of-function (Apcmin) mice and patients with CRC, particularly in colonic crypt cells. Apcmin mice and AMO/DSS-induced mice model (in vivo) and organoid culture system (in vitro) were used to explore the effect of the Meg3/miR-708/SOCS3 axis on tumorigenesis in the colon. In vitro, we performed RNApull-down, RNA immunoprecipitation, and luciferase reporter assays using DLD1 and RKO cell lines. FINDINGS The Meg3/miR-708/SOCS3 signaling axis plays a critical role in the early stage of CRC development. Our data showed Meg3 levels negatively correlate with miR-708 levels both in clinical samples and in the Apcmin mouse model, which indicated that Meg3 acts as a competitive endogenous RNA (ceRNA) of miR-708. Then, miR-708 served as an oncogene, inducing neoplasia in both Apcmin mice and cultured colonic organoids. Put together, miR-708 appears to promote malignant proliferation of colonic stem cells by targeting SOCS3/STAT3 signaling. INTERPRETATION These data revealed that Meg3 sponges miR-708 to inhibit CRC development via SOCS3-mediated repression of the malignant proliferation of colonic stem cells. The Meg3/miR-708/SOCS3 signaling axis provides potential targets for the diagnosis and treatment of CRC, particularly early stage CRC.
Collapse
|
12
|
Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4393266. [PMID: 34777687 PMCID: PMC8580629 DOI: 10.1155/2021/4393266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is a lethal malignancy cancer, and its mortality rates have been increasing worldwide. Diagnosis of this cancer is complicated, as it does not often present symptoms, and most patients present an irremediable tumor having a 5-year survival rate after diagnosis. Regarding treatment, many concerns have also been raised, as most tumors are found at advanced stages. At present, anticancer compounds-rich foods have been utilized to control PC. Among such bioactive molecules, flavonoid compounds have shown excellent anticancer abilities, such as quercetin, which has been used as an adjunctive or alternative drug to PC treatment by inhibitory or stimulatory biological mechanisms including autophagy, apoptosis, cell growth reduction or inhibition, EMT, oxidative stress, and enhancing sensitivity to chemotherapy agents. The recognition that this natural product has beneficial effects on cancer treatment has boosted the researchers' interest towards more extensive studies to use herbal medicine for anticancer purposes. In addition, due to the expensive cost and high rate of side effects of anticancer drugs, attempts have been made to use quercetin but also other flavonoids for preventing and treating PC. Based on related studies, it has been found that the quercetin compound has significant effect on cancerous cell lines as well as animal models. Therefore, it can be used as a supplementary drug to treat a variety of cancers, particularly pancreatic cancer. This review is aimed at discussing the therapeutic effects of quercetin by targeting the molecular signaling pathway and identifying antigrowth, cell proliferation, antioxidative stress, EMT, induction of apoptotic, and autophagic features.
Collapse
|
13
|
Hu W, Li M, Wu J, Chen H, Zhao T, Zhang C, Wang Z. Inhibition of Dishevelled-2 suppresses the biological behavior of pancreatic cancer by downregulating Wnt/β-catenin signaling. Oncol Lett 2021; 22:769. [PMID: 34589148 PMCID: PMC8442142 DOI: 10.3892/ol.2021.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 05/26/2021] [Indexed: 12/04/2022] Open
Abstract
Dishevelled-2 (DVL2) has been proven to be involved in the tumorigenesis of several human cancers, such as colorectal cancer, lung cancer, prostate cancer, etc. However, its role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. The present study investigated the effects of aberrantly expressed DVL2 on PDAC. A total of 97 pancreatic cancer (PC) samples and 85 adjacent normal samples were obtained from patients who were histopathologically diagnosed with primary PDAC. The present study demonstrated that DVL2 expression was upregulated in PDAC tissues and was positively associated with advanced clinical stage and lymph node metastasis in patients with PDAC. In addition, patients with high expression of DVL2 had a shorter overall survival rate compared with those with low expression. To elucidate the role of DVL2 in PDAC, lentivirus-mediated short hairpin RNA was used to silence DVL2 and its physiological function was analyzed in CFPAC-1 and PANC-1 cells. The results indicated that DVL2 downregulation significantly impaired its oncogenic functions including cell proliferation, migration, invasion and epithelial-mesenchymal transition. Furthermore, DVL2 knockdown inhibits the proliferation and invasion of PC cells in vivo. In addition, co-immunoprecipitation assays revealed that DVL2 interacted with β-catenin; knockdown of DVL2 reduced the expression level of β-catenin and inhibited β-catenin translocation into the nucleus. In conclusion the findings of the present study suggested that DVL2 may be a potential therapeutic target in the treatment of PDAC.
Collapse
Affiliation(s)
- Wei Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Mingxu Li
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Junyi Wu
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Hong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Ting Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Chunjie Zhang
- Department of Pathology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222001, P.R. China
| | - Zhong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| |
Collapse
|
14
|
RAS GTPase signalling to alternative effector pathways. Biochem Soc Trans 2021; 48:2241-2252. [PMID: 33125484 DOI: 10.1042/bst20200506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
RAS GTPases are fundamental regulators of development and drivers of an extraordinary number of human cancers. RAS oncoproteins constitutively signal through downstream effector proteins, triggering cancer initiation, progression and metastasis. In the absence of targeted therapeutics to mutant RAS itself, inhibitors of downstream pathways controlled by the effector kinases RAF and PI3K have become tools in the treatment of RAS-driven tumours. Unfortunately, the efficacy of this approach has been greatly minimized by the prevalence of acquired drug resistance. Decades of research have established that RAS signalling is highly complex, and in addition to RAF and PI3K these small GTPase proteins can interact with an array of alternative effectors that feature RAS binding domains. The consequence of RAS binding to these effectors remains relatively unexplored, but these pathways may provide targets for combinatorial therapeutics. We discuss here three candidate alternative effectors: RALGEFs, RASSF5 and AFDN, detailing their interaction with RAS GTPases and their biological significance. The metastatic nature of RAS-driven cancers suggests more attention should be granted to these alternate pathways, as they are highly implicated in the regulation of cell adhesion, polarity, cell size and cytoskeletal architecture.
Collapse
|
15
|
Lundh M, Altıntaş A, Tozzi M, Fabre O, Ma T, Shamsi F, Gerhart-Hines Z, Barrès R, Tseng YH, Emanuelli B. Cold-induction of afadin in brown fat supports its thermogenic capacity. Sci Rep 2021; 11:9794. [PMID: 33963248 PMCID: PMC8105362 DOI: 10.1038/s41598-021-89207-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
The profound energy-expending nature of brown adipose tissue (BAT) thermogenesis makes it an attractive target tissue to combat obesity-associated metabolic disorders. While cold exposure is the strongest inducer of BAT activity, the temporal mechanisms tuning BAT adaptation during this activation process are incompletely understood. Here we show that the scaffold protein Afadin is dynamically regulated by cold in BAT, and participates in cold acclimation. Cold exposure acutely increases Afadin protein levels and its phosphorylation in BAT. Knockdown of Afadin in brown pre-adipocytes does not alter adipogenesis but restricts β3-adrenegic induction of thermogenic genes expression and HSL phosphorylation in mature brown adipocytes. Consistent with a defect in thermogenesis, an impaired cold tolerance was observed in fat-specific Afadin knockout mice. However, while Afadin depletion led to reduced Ucp1 mRNA induction by cold, stimulation of Ucp1 protein was conserved. Transcriptomic analysis revealed that fat-specific ablation of Afadin led to decreased functional enrichment of gene sets controlling essential metabolic functions at thermoneutrality in BAT, whereas it led to an altered reprogramming in response to cold, with enhanced enrichment of different pathways related to metabolism and remodeling. Collectively, we demonstrate a role for Afadin in supporting the adrenergic response in brown adipocytes and BAT function.
Collapse
Affiliation(s)
- Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marco Tozzi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Odile Fabre
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Farnaz Shamsi
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Yuan Z, Wei W. RAB5A promotes the formation of filopodia in pancreatic cancer cells via the activation of cdc42 and β1-integrin. Biochem Biophys Res Commun 2021; 535:54-59. [PMID: 33341673 DOI: 10.1016/j.bbrc.2020.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Abstract
Filopodia are slender actin-rich plasma membrane protrusions that function to drive cell migration and invasion. Despite the observation of defective filopodia formation in many malignant tumors, the regulation mechanism remained unknown to date. In the present study, for the first time, we demonstrate that RAB5A, a Rab GTPase family protein, is a potent regulator of filopodia formation in pancreatic cancer cells. High expression of RAB5A was associated with filopodia formation and migration in pancreatic cancer cells. Overexpression of RAB5A promoted filopodia formation and migration in CF Pac-1 cells. In contrast, down-regulation of RAB5A expression in SW1990 cells with a high endogenous RAB5A expression level impeded the formation of filopodia. Further analysis indicated that RAB5A was required for cdc42 activation in CF Pac-1 and SW1990 cells. Moreover, to investigate the underlying mechanism by which the activation of cdc42 mediates RAB5A-induced filopodia formation, the active state of β1-integrin was examined in cells with different expression levels of RAB5A. We observed that RAB5A regulated the accumulation of the active β1-integrin. We demonstrated that down-regulation of the expression of β1-integrin strongly suppressed filopodia formation and cdc42 activation mediated by RAB5A. These results indicate the important role of RAB5A in the regulation of filopodia formation in pancreatic cancer cells, which is dependent on the activation of cdc42 and β1-integrin.
Collapse
Affiliation(s)
- Ziyan Yuan
- Experimental Animal Center, Naval Medical University, Shanghai, People's Republic of China
| | - Wei Wei
- Clinical Research Center, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Farran B, Nagaraju GP. Exosomes as therapeutic solutions for pancreatic cancer. Drug Discov Today 2020; 25:2245-2256. [DOI: 10.1016/j.drudis.2020.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
|
18
|
Huxham J, Tabariès S, Siegel PM. Afadin (AF6) in cancer progression: A multidomain scaffold protein with complex and contradictory roles. Bioessays 2020; 43:e2000221. [PMID: 33165933 DOI: 10.1002/bies.202000221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022]
Abstract
Adherens (AJ) and tight junctions (TJ) maintain cell-cell adhesions and cellular polarity in normal tissues. Afadin, a multi-domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal-modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro-metastatic functions. In this review, we will explore the dichotomous roles that afadin plays during cancer progression.
Collapse
Affiliation(s)
- Jennifer Huxham
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada.,Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada.,Department of Oncology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
19
|
Guo Y, Tong Y, Zhu H, Xiao Y, Guo H, Shang L, Zheng W, Ma S, Liu X, Bai Y. Quercetin suppresses pancreatic ductal adenocarcinoma progression via inhibition of SHH and TGF-β/Smad signaling pathways. Cell Biol Toxicol 2020; 37:479-496. [PMID: 33070227 DOI: 10.1007/s10565-020-09562-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive type of malignant tumor with a poor prognosis and high mortality. Aberrant activation of hedgehog signaling plays a crucial role in the maintenance and progression of PDA. Here, we report that the dietary bioflavonoid quercetin has therapeutic potential for PDA by targeting sonic hedgehog (SHH) signaling. The effects of quercetin on the proliferation, apoptosis, migration, and invasion of pancreatic cancer cells (PCCs) and tumor growth and metastasis in PDA xenograft mouse models were evaluated. Additionally, SHH signaling activity was determined. Quercetin significantly inhibited PCC proliferation by downregulating c-Myc expression. In addition, quercetin suppressed epithelial-mesenchymal transition (EMT) by reducing TGF-β1 level, which resulted in inhibition of PCC migration and invasion. Moreover, quercetin induced PCC apoptosis through mitochondrial and death receptor pathways. In nude mouse models, PDA growth and metastasis were reduced by quercetin treatment. Mechanically, quercetin exerts its therapeutic effects on PDA by decreasing SHH activity. Interestingly, quercetin-induced SHH inactivation is mainly dependent on Gli2, but not Gli1. Enhance SHH activity by recombinant Shh protein abolished the quercetin-mediated inhibition of PCC proliferation, migration, and invasion. Furthermore, Shh activated TGF-β1/Smad2/3 signaling and promoted EMT by inducing the expression of Zeb2 and Snail1 that eventually resulted in a partial reversal of quercetin-mediated inhibition of PCC migration and invasion. We conclude that quercetin inhibited the growth, migration, and invasion and induced apoptosis of PCCs by antagonizing SHH and TGF-β/Smad signaling pathways. Thus, quercetin may be a potential candidate for PDA treatment.
Collapse
Affiliation(s)
- Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Tong
- Department of Laboratory Medicine, People's Hospital of Wenzhou City, Wenzhou, 325000, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lumeng Shang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Laboratory Medicine, People's Hospital of Wenzhou City, Wenzhou, 325000, China
| | - Wenjing Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Laboratory Medicine, People's Hospital of Wenzhou City, Wenzhou, 325000, China
| | - Shumei Ma
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China.,Center for Health Assessment, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaodong Liu
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China. .,Center for Health Assessment, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Center for Health Assessment, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
20
|
Guo C, Peng X, Song L, Ying M, Wu Y, Chang R, Li J, Feng D, Zhan L, Zhan X. Autophagy promotes malignant migration and invasion via miR-224-5p/BCL2 in pancreatic mucinous cystadenocarcinoma MCC1 cells. Oncol Lett 2020; 20:276. [PMID: 33029204 PMCID: PMC7530886 DOI: 10.3892/ol.2020.12139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
The prognosis of invasive pancreatic mucinous cystadenocarcinoma (MCC) is poor, and the molecular mechanism underlying its development remains unclear. The present study aimed to explore the potential role of autophagy in pancreatic MCC. The results demonstrated an increase in autophagy signaling in pancreatic MCC tissues and the MCC1 cell line compared with adjacent tissues and normal human pancreatic ductal epithelium (HPDE) cells. In addition, abnormal autophagy activation facilitated the migration and invasion of MCC1 cells. MicroRNA (miR)-224-5p expression levels were significantly higher in MCC1 cells compared with those in HPDE cells. Treatment with rapamycin further demonstrated that high levels of autophagy elevated miR-224-5p expression in MCC1 cells in a time-dependent manner. BCL2 was identified as a downstream target gene of miR-224-5p, which binds to the 3′-untranslated region of BCL2. In addition, the results of the present study demonstrated that BCL2 knockdown reversed the inhibition of autophagy mediated by the miR-224-5p inhibitor. To the best of our knowledge, this is the first study to evaluate the role of autophagy in pancreatic MCC. Thus, these results suggested that autophagy may be hyperactivated in pancreatic MCC. In addition, the present study identified a positive feedback loop between autophagy signaling and miR-224-5p, which may promote the aggressive migration and invasion of MCC1. These results may provide a new insight into the relationship between autophagy and tumor metastasis in pancreatic MCC.
Collapse
Affiliation(s)
- Chengtao Guo
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaobo Peng
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Lele Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Mingzhen Ying
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yanjun Wu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Renxu Chang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Jie Li
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Lixing Zhan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
21
|
Wang L, Peng Q, Sai B, Zheng L, Xu J, Yin N, Feng X, Xiang J. Ligand-independent EphB1 signaling mediates TGF-β-activated CDH2 and promotes lung cancer cell invasion and migration. J Cancer 2020; 11:4123-4131. [PMID: 32368295 PMCID: PMC7196256 DOI: 10.7150/jca.44576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: The initial step of cancer metastasis is that cancer cells acquire the capability to migrate and invade. Eph receptors comprise the largest family of receptor tyrosine and display dual role in tumor progression due to unique ephrin cis- or trans- signaling. The roles of EphB1 and its phosphorylation signaling in lung cancer remain to be elucidated. Patients and Methods: We analyzed the expression of EphB1 in both publicly available database and 60 cases of NSCLC patients with or without metastasis. The migration and invasion of lung cancer cells were assessed by a transwell assay. The activation of EphB1 signaling was assessed by western blot and real-time PCR. The EphB1 mutant was used to evaluate the effect of phosphorylation of EphB1. Results: Here, we showed that increased expression of EphB1 was detected in Non-Small-Cell Lung Cancer (NSCLC) biopies compared to non-cancer controls. Significant higher expression of EphB1 in lung biopsies were found in patients with metastasis compared to non-metastatic NSCLC patients. Higher EphB1 expression was correlated with poor patient survival in lung cancer. Overexpression of EphB1 promoted the migration and invasion of lung cancer cells. On the contrast, Ephrin-B2, a transmembrane ligand for EphB1 forward signaling, inhibited migration and invasion of lung cancer cells. TGF-β-activated Smad2 transcriptionally upregulated the endogenous expression of EphB1. Ligand-independent EphB1 promoted Epithelial-mesenchymal transition (EMT) through upregulating CDH2. Conclusion: Our results showed that the effect of EphB1 on the migration and invasion was context-specific and was dependent on EphB1 phosphorylation.
Collapse
Affiliation(s)
- Lujuan Wang
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Qiu Peng
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Buqing Sai
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Leliang Zheng
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Jiaqi Xu
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Na Yin
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Xiang Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Juanjuan Xiang
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| |
Collapse
|
22
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
23
|
Morillo-Bernal J, Fernández LP, Santisteban P. FOXE1 regulates migration and invasion in thyroid cancer cells and targets ZEB1. Endocr Relat Cancer 2020; 27:137-151. [PMID: 31846430 PMCID: PMC6993207 DOI: 10.1530/erc-19-0156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
FOXE1 is a thyroid-specific transcription factor essential for thyroid gland development and maintenance of the differentiated state. Interestingly, a strong association has been recently described between FOXE1 expression and susceptibility to thyroid cancer, but little is known about the mechanisms underlying FOXE1-induced thyroid tumorigenesis. Here, we used a panel of human thyroid cancer-derived cell lines covering the spectrum of thyroid cancer phenotypes to examine FOXE1 expression and to test for correlations between FOXE1 expression, the allele frequency of two SNPs and a length polymorphism in or near the FOXE1 locus associated with cancer susceptibility, and the migration ability of thyroid cancer cell lines. Results showed that FOXE1 expression correlated with differentiation status according to histological sub-type, but not with SNP genotype or cell migration ability. However, loss-and-gain-of-function experiments revealed that FOXE1 modulates cell migration, suggesting a role in epithelial-to-mesenchymal transition (EMT). Our previous genome-wide expression analysis identified Zeb1, a major EMT inducer, as a putative Foxe1 target gene. Indeed, gene silencing of FOXE1 decreased ZEB1 expression, whereas its overexpression increased ZEB1 transcriptional activity. FOXE1 was found to directly interact with the ZEB1 promoter. Lastly, ZEB1 silencing decreased the ability of thyroid tumoral cells to migrate and invade, pointing to its importance in thyroid tumor mestastases. In conclusion, we have identified ZEB1 as a bona fide target of FOXE1 in thyroid cancer cells, which provides new insights into the role of FOXE1 in regulating cell migration and invasion in thyroid cancer.
Collapse
Affiliation(s)
- Jesús Morillo-Bernal
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Lara P Fernández
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Correspondence should be addressed to P Santisteban:
| |
Collapse
|
24
|
Wang N, Song L, Xu Y, Zhang L, Wu Y, Guo J, Ji W, Li L, Zhao J, Zhang X, Zhan L. Loss of Scribble confers cisplatin resistance during NSCLC chemotherapy via Nox2/ROS and Nrf2/PD-L1 signaling. EBioMedicine 2019; 47:65-77. [PMID: 31495720 PMCID: PMC6796531 DOI: 10.1016/j.ebiom.2019.08.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/26/2022] Open
Abstract
Background Cisplatin resistance remains a major clinical obstacle to the successful treatment of non-small cell lung cancer (NSCLC). Scribble contributes to ROS-induced inflammation and cisplatin-elevated toxic reactive oxygen species (ROS) promotes cell death. However, it is unknown whether and how Scribble is involved in the cisplatin-related cell death and the underlying mechanism of Scribble in response to chemotherapies and in the process of oxidative stress in NSCLC. Methods We used two independent cohorts of NSCLC samples derived from patients treated with platinum-containing chemotherapy and xenograft modeling in vivo. We analyzed the correlation between Scribble and Nox2 or Nrf2/PD-L1 both in vivo and in vitro, and explored the role of Scribble in cisplatin-induced ROS and apoptosis. Findings Clinical analysis revealed that Scribble expression positively correlated with clinical outcomes and chemotherapeutic sensitivity in NSCLC patients. Scribble protected Nox2 protein from proteasomal degradation. Scribble knockdown induced cisplatin resistance by blocking Nox2/ROS and apoptosis in LRR domain-dependent manner. In addition, low levels of Scribble correlated with high levels of PD-L1 via activation of Nrf2 transcription in vivo and in vitro. Interpretations Our study revealed that polarity protein Scribble increased cisplatin-induced ROS generation and is beneficial to chemotherapeutic outcomes in NSCLC. Although Scribble deficiency tends to lead to cisplatin resistance by Nox2/ROS and Nrf2/PD-L1, it is still possible that Scribble deficiency-induced PD-L1 may yield benefits in immunotherapy. Fund National Key R&D Program of China, Strategic Priority Research Program of the Chinese Academy of Sciences, National Natural Science Foundation of China, China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Na Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lele Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Yi Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Longfu Zhang
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingyu Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiwei Ji
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Li
- Department of Biology, Chemistry and Environmental Studies, Molloy College, New York 11571, USA
| | - Jingya Zhao
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Zhang
- Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
25
|
Dai C, Wang X, Wu Y, Xu Y, Zhuo S, Qi M, Ji W, Zhan L. Polarity Protein AF6 Controls Hepatic Glucose Homeostasis and Insulin Sensitivity by Modulating IRS1/AKT Insulin Pathway in an SHP2-Dependent Manner. Diabetes 2019; 68:1577-1590. [PMID: 31127058 DOI: 10.2337/db18-0695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/21/2019] [Indexed: 11/13/2022]
Abstract
Insulin resistance is a major contributing factor in the development of metabolic disease. Although numerous functions of the polarity protein AF6 (afadin and MLLT4) have been identified, a direct effect on insulin sensitivity has not been previously described. We show that AF6 is elevated in the liver tissues of dietary and genetic mouse models of diabetes. We generated liver-specific AF6 knockout mice and show that these animals exhibit enhanced insulin sensitivity and liver glycogen storage, whereas overexpression of AF6 in wild-type mice by adenovirus-expressing AF6 led to the opposite phenotype. Similar observations were obtained from in vitro studies. In addition, we discovered that AF6 directly regulates IRS1/AKT kinase-mediated insulin signaling through its interaction with Src homology 2 domain-containing phosphatase 2 (SHP2) and its regulation of SHP2's tyrosine phosphatase activity. Finally, we show that knockdown of hepatic AF6 ameliorates hyperglycemia and insulin resistance in high-fat diet-fed or db/db diabetic mice. These results demonstrate a novel function for hepatic AF6 in the regulation of insulin sensitivity, providing important insights about the metabolic role of AF6.
Collapse
Affiliation(s)
- Cheng Dai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu Zhuo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiyan Qi
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Ji
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Lundh M, Petersen PSS, Isidor MS, Kazoka‐Sørensen DNM, Plucińska K, Shamsi F, Ørskov C, Tozzi M, Brown EL, Andersen E, Ma T, Müller U, Barrès R, Kristiansen VB, Gerhart‐Hines Z, Tseng Y, Emanuelli B. Afadin is a scaffold protein repressing insulin action via HDAC6 in adipose tissue. EMBO Rep 2019; 20:e48216. [PMID: 31264358 PMCID: PMC6680131 DOI: 10.15252/embr.201948216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin orchestrates metabolic homeostasis through a complex signaling network for which the precise mechanisms controlling its fine-tuning are not completely understood. Here, we report that Afadin, a scaffold protein, is phosphorylated on S1795 (S1718 in humans) in response to insulin in adipocytes, and this phosphorylation is impaired with obesity and insulin resistance. In turn, loss of Afadin enhances the response to insulin in adipose tissues via upregulation of the insulin receptor protein levels. This happens in a cell-autonomous and phosphorylation-dependent manner. Insulin-stimulated Afadin-S1795 phosphorylation modulates Afadin binding with interaction partners in adipocytes, among which HDAC6 preferentially interacts with phosphorylated Afadin and acts as a key intermediate to suppress insulin receptor protein levels. Adipose tissue-specific Afadin depletion protects against insulin resistance and improves glucose homeostasis in diet-induced obese mice, independently of adiposity. Altogether, we uncover a novel insulin-induced cellular feedback mechanism governed by the interaction of Afadin with HDAC6 to negatively control insulin action in adipocytes, which may offer new strategies to alleviate insulin resistance.
Collapse
Affiliation(s)
- Morten Lundh
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
- Joslin Diabetes CenterHarvard Medical SchoolBostonMAUSA
| | - Patricia SS Petersen
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Marie S Isidor
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Dolly NM Kazoka‐Sørensen
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Kaja Plucińska
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Farnaz Shamsi
- Joslin Diabetes CenterHarvard Medical SchoolBostonMAUSA
| | - Cathrine Ørskov
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Marco Tozzi
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Erin L Brown
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Emil Andersen
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Tao Ma
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ulrich Müller
- Department of Molecular and Cellular NeuroscienceDorris Neuroscience CenterThe Scripps Research InstituteLa JollaCAUSA
| | - Romain Barrès
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | | | - Zachary Gerhart‐Hines
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Yu‐Hua Tseng
- Joslin Diabetes CenterHarvard Medical SchoolBostonMAUSA
| | - Brice Emanuelli
- Faculty of Health and Medical SciencesNovo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
27
|
Snail-Overexpression Induces Epithelial-mesenchymal Transition and Metabolic Reprogramming in Human Pancreatic Ductal Adenocarcinoma and Non-tumorigenic Ductal Cells. J Clin Med 2019; 8:jcm8060822. [PMID: 31181802 PMCID: PMC6617272 DOI: 10.3390/jcm8060822] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
The zinc finger transcription factor Snail is a known effector of epithelial-to-mesenchymal transition (EMT), a process that underlies the enhanced invasiveness and chemoresistance of common to cancerous cells. Induction of Snail-driven EMT has also been shown to drive a range of pro-survival metabolic adaptations in different cancers. In the present study, we sought to determine the specific role that Snail has in driving EMT and adaptive metabolic programming in pancreatic ductal adenocarcinoma (PDAC) by overexpressing Snail in a PDAC cell line, Panc1, and in immortalized, non-tumorigenic human pancreatic ductal epithelial (HPDE) cells. Snail overexpression was able to induce EMT in both pancreatic cell lines through suppression of epithelial markers and upregulation of mesenchymal markers alongside changes in cell morphology and enhanced migratory capacity. Snail-overexpressed pancreatic cells additionally displayed increased glucose uptake and lactate production with concomitant reduction in oxidative metabolism measurements. Snail overexpression reduced maximal respiration in both Panc1 and HPDE cells, with further reductions seen in ATP production, spare respiratory capacity and non-mitochondrial respiration in Snail overexpressing Panc1 cells. Accordingly, lower expression of mitochondrial electron transport chain proteins was observed with Snail overexpression, particularly within Panc1 cells. Modelling of 13C metabolite flux within both cell lines revealed decreased carbon flux from glucose in the TCA cycle in snai1-overexpressing Panc1 cells only. This work further highlights the role that Snail plays in EMT and demonstrates its specific effects on metabolic reprogramming of glucose metabolism in PDAC.
Collapse
|
28
|
Hu W, Wang Z, Zhang S, Lu X, Wu J, Yu K, Ji A, Lu W, Wang Z, Wu J, Jiang C. IQGAP1 promotes pancreatic cancer progression and epithelial-mesenchymal transition (EMT) through Wnt/β-catenin signaling. Sci Rep 2019; 9:7539. [PMID: 31101875 PMCID: PMC6525164 DOI: 10.1038/s41598-019-44048-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a scaffold protein that participates in several cellular functions, including cytoskeletal regulation, cell adhesion, gene transcription and cell polarization. IQGAP1 has been implicated in the tumorigenesis and progression of several human cancers. However, the role of IQGAP1 in pancreatic ductal adenocarcinoma (PDAC) is still unknown. We found that IQGAP1 expression was an independent prognostic factor for PDAC. IQGAP1 upregulation significantly promoted cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), whereas IQGAP1 downregulation impaired its oncogenic functions. Overexpression of IQGAP1 increased the protein level of Dishevelled2 (DVL2) and enhanced canonical Wnt signaling as evidenced by increased DVL2 level, β-catenin transcriptional activity, β-catenin nuclear translocation and expression of the direct target genes of β-catenin (cyclin D1 and c-myc). In contrast, knockdown of IQGAP1 decreased the level of DVL2 and attenuated Wnt/β-catenin signaling. In vivo results revealed that IQGAP1 promoted tumor growth and metastasis. Co-immunoprecipitation studies demonstrated that IQGAP1 interacted with both DVL2 and β-catenin. Moreover, knockdown of DVL2 reversed IQGAP1-induced EMT. Our findings thus confirmed that IQGAP1 could be used as a potential target for PDAC treatment.
Collapse
Affiliation(s)
- Wei Hu
- Department of Hepatobiliary Surgery, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222001, Jiangsu, China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Zhongxia Wang
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Shan Zhang
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Xian Lu
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Junyi Wu
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Kuanyong Yu
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Anlai Ji
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Wei Lu
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Zhong Wang
- Department of Hepatobiliary Surgery, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222001, Jiangsu, China.
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
29
|
Wu H, Chen X, Ji J, Zhou R, Liu J, Ni W, Qu L, Ni H, Ni R, Bao B, Xiao M. Progress of Exosomes in the Diagnosis and Treatment of Pancreatic Cancer. Genet Test Mol Biomarkers 2019; 23:215-222. [PMID: 30793953 DOI: 10.1089/gtmb.2018.0235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is a digestive system tumor that is highly malignant, with an increasing incidence rate, poor prognosis, and a low 5-year survival rate. The overwhelming majority of patients with PC are in an advanced stage at the time of diagnosis and have lost the opportunity for radical surgery. The efficacy of radiotherapy and chemotherapy for PC is very poor. Therefore, it is of great significance to explore the mechanisms of PC development and new therapeutic targets. Exosomes are extracellular vesicles that mediate the exchange of substances and information between cells. In recent years, exosomes have been shown to play a key role in the development and progression of PC and might be useful for both its diagnosis and treatment. This article reviews the composition and function of exosomes and their roles in the development, diagnosis, and treatment of PC.
Collapse
Affiliation(s)
- Hongpei Wu
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China.,2 Medical College, Nantong University, Nantong, P.R. China
| | - Xiaojun Chen
- 3 Office of Infection Management, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Jie Ji
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China.,2 Medical College, Nantong University, Nantong, P.R. China
| | - Rui Zhou
- 2 Medical College, Nantong University, Nantong, P.R. China
| | - Jinxia Liu
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Wenkai Ni
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Lishuai Qu
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Hongbing Ni
- 4 Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Runzhou Ni
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Baijun Bao
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Mingbing Xiao
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China.,5 Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, P.R. China
| |
Collapse
|
30
|
Tabariès S, McNulty A, Ouellet V, Annis MG, Dessureault M, Vinette M, Hachem Y, Lavoie B, Omeroglu A, Simon HG, Walsh LA, Kimbung S, Hedenfalk I, Siegel PM. Afadin cooperates with Claudin-2 to promote breast cancer metastasis. Genes Dev 2019; 33:180-193. [PMID: 30692208 PMCID: PMC6362814 DOI: 10.1101/gad.319194.118] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023]
Abstract
Tabariès et al. show that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that the PDZ-binding motif of Claudin-2 is necessary for anchorage-independent growth of cancer cells and is required for liver metastasis. Several PDZ domain-containing proteins were identified that interact with the PDZ-binding motif of Claudin-2 in liver metastatic breast cancer cells, including Afadin, Arhgap21, Pdlim2, Pdlim7, Rims2, Scrib, and ZO-1. We specifically examined the role of Afadin as a potential Claudin-2-interacting partner that promotes breast cancer liver metastasis. Afadin associates with Claudin-2, an interaction that requires the PDZ-binding motif of Claudin-2. Loss of Afadin also impairs the ability of breast cancer cells to form colonies in soft agar and metastasize to the lungs or liver. Immunohistochemical analysis of Claudin-2 and/or Afadin expression in 206 metastatic breast cancer tumors revealed that high levels of both Claudin-2 and Afadin in primary tumors were associated with poor disease-specific survival, relapse-free survival, lung-specific relapse, and liver-specific relapse. Our findings indicate that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Moreover, combining Claudin-2 and Afadin as prognostic markers better predicts the potential of breast cancer to metastasize to soft tissues.
Collapse
Affiliation(s)
- Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Alexander McNulty
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Véronique Ouellet
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Mireille Dessureault
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Maude Vinette
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Yasmina Hachem
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Brennan Lavoie
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Atilla Omeroglu
- Department of Pathology, McGill University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Hans-Georg Simon
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614, USA.,Stanley Manne Children's Research Institute, Chicago, Illinois 60614, USA
| | - Logan A Walsh
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Human Genetics, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Siker Kimbung
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund SE 221 00, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund SE 221 00, Sweden
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
| |
Collapse
|
31
|
Marques MS, Melo J, Cavadas B, Mendes N, Pereira L, Carneiro F, Figueiredo C, Leite M. Afadin Downregulation by Helicobacter pylori Induces Epithelial to Mesenchymal Transition in Gastric Cells. Front Microbiol 2018; 9:2712. [PMID: 30473688 PMCID: PMC6237830 DOI: 10.3389/fmicb.2018.02712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022] Open
Abstract
Afadin is a cytoplasmic protein of the adherens junctions, which regulates the formation and stabilization of both the adherens and the tight junctions. Aberrant expression of Afadin has been shown in cancer and its loss has been associated with epithelial-to-mesenchymal transition (EMT). EMT is characterized by the change from an epithelial to a mesenchymal phenotype, with modifications on the expression of adhesion molecules and acquisition of a migratory and invasive cell behavior. While it is known that Helicobacter pylori disrupts the tight and the adherens junctions and induces EMT, the effect of the bacteria on Afadin is still unknown. The aim of this study was to disclose the effect of H. pylori on Afadin and its impact in the induction of an EMT phenotype in gastric cells. Using two different cell lines, we observed that H. pylori infection decreased Afadin protein levels, independently of CagA, T4SS, and VacA virulence factors. H. pylori infection of cell lines recapitulated several EMT features, displacing and downregulating multiple proteins from cell–cell junctions, and increasing the expression of ZEB1, Vimentin, Slug, N-cadherin, and Snail. Silencing of Afadin by RNAi promoted delocalization of junctional proteins from the cell–cell contacts, increased paracellular permeability, and decreased transepithelial electrical resistance, all compatible with impaired junctional integrity. Afadin silencing also led to increased expression of the EMT marker Snail, and to the formation of actin stress fibers, together with increased cell motility and invasion. Finally, and in line with our in vitro data, the gastric mucosa of individuals infected with H. pylori showed decrease/loss of Afadin membrane staining at cell–cell contacts significantly more frequently than uninfected individuals. In conclusion, Afadin is downregulated by H. pylori infection in vitro and in vivo, and its downregulation leads to the emergence of EMT and to the acquisition of an aggressive phenotype in gastric cells, which can contribute to gastric carcinogenesis.
Collapse
Affiliation(s)
- Miguel Sardinha Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joana Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Nuno Mendes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Luísa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fátima Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marina Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Ma Z, Li P, Hu X, Song H. Polarity protein Canoe mediates overproliferation via modulation of JNK, Ras-MAPK and Hippo signalling. Cell Prolif 2018; 52:e12529. [PMID: 30328653 PMCID: PMC6430484 DOI: 10.1111/cpr.12529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives Over the past decade an intriguing connection between cell polarity and tumorigenesis has emerged. Multiple core components of the junction complexes that help to form and maintain cell polarity display both pro‐ and anti‐tumorigenic functions in a context‐dependent manner, with the underlying mechanisms poorly understood. Materials and Methods With transgenic fly lines that overexpress or knock down specific signalling components, we perform genetic analysis to investigate the precise role of the polarity protein Canoe (Cno) in tumorigenesis and the downstream pathways. Results We show that overexpression of cno simultaneously activates JNK and Ras‐MEK‐ERK signalling, resulting in mixed phenotypes of both overproliferation and cell death in the Drosophila wing disc. Moderate alleviation of JNK activation eliminates the effect of Cno on cell death, leading to organ overgrowth and cell migration that mimic the formation and invasion of tumours. In addition, we find that the Hippo pathway acts downstream of JNK and Ras signalling to mediate the effect of Cno on cell proliferation. Conclusions Our work reveals an oncogenic role of Cno and creates a new type of Drosophila tumour model for cancer research.
Collapse
Affiliation(s)
- Zhiwei Ma
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingjie Hu
- School of Public Health, Guangzhou Medical University, Guangdong, China
| | - Haiyun Song
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Chang R, Song L, Xu Y, Wu Y, Dai C, Wang X, Sun X, Hou Y, Li W, Zhan X, Zhan L. Loss of Wwox drives metastasis in triple-negative breast cancer by JAK2/STAT3 axis. Nat Commun 2018; 9:3486. [PMID: 30154439 PMCID: PMC6113304 DOI: 10.1038/s41467-018-05852-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
Loss of WW domain-containing oxidoreductase (Wwox) expression has been observed in breast cancer (BC). However, its regulatory effects are largely unknown, especially in triple-negative breast cancer (TNBC). Herein, gene expression profiling revealed that JAK/STAT3 pathway was one of the most differentially modulated pathways in basal-like BC cells. The lower expression of Wwox was significantly correlated with high activation of STAT3 in basal-like cells and TNBC tissues. Overexpression of Wwox markedly inhibited proliferation and metastasis of BC cells by suppressing STAT3 activation, which is to interact with JAK2 to inhibit JAK2 and STAT3 phosphorylation. Furthermore, Wwox limited STAT3 binding to the interleukin-6 promoter, repressing expression of the IL-6 cytokine. Altogether, our data established that Wwox suppresses BC cell metastasis and proliferation by JAK2/STAT3 pathway. Targeting of Wwox with STAT3 could offer a promising therapeutic strategy for TNBC. In breast cancer, the loss of expression of WW domain-containing oxireductase (Wwox) has been observed. Here, the authors illustrate that in triple negative breast cancer models Wwox suppresses metastasis and proliferation via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Renxu Chang
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lele Song
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Xu
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanjun Wu
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Dai
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinyu Wang
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xia Sun
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Li
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, 310020, China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Lixing Zhan
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China. .,Department of Cellular and Genetic Medicine, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
Song L, Guo J, Chang R, Peng X, Li J, Xu X, Zhan X, Zhan L. LKB1 obliterates Snail stability and inhibits pancreatic cancer metastasis in response to metformin treatment. Cancer Sci 2018; 109:1382-1392. [PMID: 29601127 PMCID: PMC5980291 DOI: 10.1111/cas.13591] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Metastasis to distant organs is a particularly ominous feature of malignant cancer. LKB1 (also known as STK11) has been identified as a tumor suppressor in several types of cancers. Here, we show that LKB1 is at low levels and is negatively associated with poor clinical outcomes in pancreatic cancer (PC). LKB1 is inversely correlated with Snail protein in PC, in which the loss of LKB1 facilitates metastasis through elevating Snail protein level. Furthermore, LKB1 boosts Snail's interaction with E3 ligase FBXL14, leading to increasing ubiquitin‐mediated Snail degradation. Notably, metformin could increase Snail protein ubiquitination via augmenting the location of LKB1 at cytoplasm as well as increasing LKB1 expression. Altogether, our data established that LKB1 impedes invasion and metastasis by decreasing the Snail protein level in PC. Targeting the LKB1/FBXL14/Snail axis may represent a promising therapeutic strategy and metformin might be beneficial for PC therapy through activating the LKB1‐mediated Snail ubiquitination pathway.
Collapse
Affiliation(s)
- Lele Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Shanghai, China.,Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jingyu Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Shanghai, China
| | - Renxu Chang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Shanghai, China
| | - Xiaobo Peng
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jie Li
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiaorong Xu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xianbao Zhan
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Lixing Zhan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
35
|
Ma C, Guo Y, Zhang Y, Duo A, Jia Y, Liu C, Li B. PAFAH1B2 is a HIF1a target gene and promotes metastasis in pancreatic cancer. Biochem Biophys Res Commun 2018; 501:654-660. [PMID: 29758199 DOI: 10.1016/j.bbrc.2018.05.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/31/2022]
Abstract
Platelet-activating factor acetylhydrolase IB subunit beta (PAFAH1B2) plays important roles in inflammation and anaphylaxis. However, its primary function in pancreatic cancer remains unclear. In the current study, we report that PAFAH1B2 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and correlated inversely with patient survival. PAFAH1B2 overexpression induced epithelial-mesenchymal transition (EMT), migration and invasion in vitro and metastasis in vivo. Conversely, silencing PAFAH1B2 inhibited these aggressive phenotypes. Moreover, PAFAH1B2 overexpression in PDAC cells was directly mediated by HIF1a. PAFAH1B2 expression in PDAC clinical specimens correlated positively with HIF1a expression. Overall, our results defined PAFAH1B2 as a target gene of HIF1a and a critical driver of PDAC metastatic behaviors.
Collapse
Affiliation(s)
- Can Ma
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Guo
- Department of Oncology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yan Zhang
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Aixia Duo
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yitao Jia
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ci Liu
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Binghui Li
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
36
|
Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers. Nat Commun 2018; 9:1520. [PMID: 29670109 PMCID: PMC5906695 DOI: 10.1038/s41467-018-03828-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/15/2018] [Indexed: 01/06/2023] Open
Abstract
Tissue-specific driver mutations in non-coding genomic regions remain undefined for most cancer types. Here, we unbiasedly analyze 212 gastric cancer (GC) whole genomes to identify recurrently mutated non-coding regions in GC. Applying comprehensive statistical approaches to accurately model background mutational processes, we observe significant enrichment of non-coding indels (insertions/deletions) in three gastric lineage-specific genes. We further identify 34 mutation hotspots, of which 11 overlap CTCF binding sites (CBSs). These CBS hotspots remain significant even after controlling for a genome-wide elevated mutation rate at CBSs. In 3 out of 4 tested CBS hotspots, mutations are nominally associated with expression change of neighboring genes. CBS hotspot mutations are enriched in tumors showing chromosomal instability, co-occur with neighboring chromosomal aberrations, and are common in gastric (25%) and colorectal (19%) tumors but rare in other cancer types. Mutational disruption of specific CBSs may thus represent a tissue-specific mechanism of tumorigenesis conserved across gastrointestinal cancers. The impact of non-coding somatic mutations in gastric cancer is unknown. Here, using whole genome sequencing data from 212 gastric tumors, the authors identify recurring mutations at specific CTCF binding sites that are common across gastrointestinal cancers and associated with chromosomal instability.
Collapse
|
37
|
Song L, Chang R, Dai C, Wu Y, Guo J, Qi M, Zhou W, Zhan L. SORBS1 suppresses tumor metastasis and improves the sensitivity of cancer to chemotherapy drug. Oncotarget 2018; 8:9108-9122. [PMID: 27791200 PMCID: PMC5354718 DOI: 10.18632/oncotarget.12851] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis and invasion are both hallmarks of cancer malignancy and the leading cause of cancer death. Here we show that the adaptor protein SORBS1 (Sorbin and SH3 domain-containing protein 1, also known as CAP/ponsin) is expressed at low levels in clinical cancer samples. In addition, low-level expression of SORBS1 was significantly associated with poor clinical outcomes and the increased tumor cell invasive capacity in breast cancer patients. We demonstrate that depletion of SORBS1 increases protrusions and filopodium-like protrusions (FLPs) formation, as well as the migratory and invasive abilities of cancer cells, via activation of JNK/cJun. Furthermore, silencing of SORBS1 promotes the epithelial-to-mesenchymal transition (EMT) process and attenuates chemical drug sensitivity especially that to cisplatin, by inhibition of p53 in breast cancer cells. Thus, we illustrate that SORBS1 is a potential inhibitor of metastasis in cancer and may be a promising target in chemotherapy.
Collapse
Affiliation(s)
- Lele Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Renxu Chang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Dai
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanjun Wu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingyu Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Meiyan Qi
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wu Zhou
- Department of Medicine, College of Medicine and Health, Lishui University, Lishui 323000, China
| | - Lixing Zhan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
38
|
Mechanosensitive adhesion complexes in epithelial architecture and cancer onset. Curr Opin Cell Biol 2018; 50:42-49. [PMID: 29454273 DOI: 10.1016/j.ceb.2018.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 01/09/2023]
Abstract
Mechanical signals from the extracellular space are paramount to coordinate tissue morphogenesis and homeostasis. Although there is a wide variety of cellular mechanisms involved in transducing extracellular forces, recent literature emphasizes the central role of two main adhesion complexes in epithelial mechanosensitive processes: focal adhesions and adherens junctions. These biomechanical sensors can decode physical signals such as matrix stiffness or intercellular tension into a wide range of coordinated cellular responses, which can impact cell differentiation, migration, and proliferation. Communication between cells and their microenvironment plays a pivotal role both in physiological and pathological conditions. Here we summarize the most recent findings on the biology of these mechanotransduction pathways in epithelial cells, highlighting the extensive amount of biological processes coordinated by cell-matrix and cell-cell adhesion complexes.
Collapse
|
39
|
A new panel of pancreatic cancer biomarkers discovered using a mass spectrometry-based pipeline. Br J Cancer 2017; 117:1846-1854. [PMID: 29123261 PMCID: PMC5729477 DOI: 10.1038/bjc.2017.365] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022] Open
Abstract
Background: Pancreatic carcinoma (PC) is an aggressive malignancy that lacks strategies for early detection. This study aimed to develop a coherent, high-throughput and non-discriminatory pipeline for the novel clinical biomarker discovery of PC. Methods: We combined mass spectrometry (MS)-intensive methods such as isobaric tags for relative and absolute quantitation with two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS), 1D-targeted LC-MS/MS, prime MRM (P-MRM) and stable isotope dilution-based MRM (SID-MRM) to analyse serum samples from healthy people (normal control, NC), patients with benign diseases (BD) and PC patients to identify novel biomarkers of PC. Results: On the basis of the newly developed pipeline, we identified >1000 proteins, verified 142 differentially expressed proteins and finally targeted four proteins for absolute quantitation in 100 serum samples. The novel biomarker panel of apolipoprotein E (APOE), inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3), apolipoprotein A-I (APOA1), apolipoprotein L1 (APOL1), combining with CA19-9, statistically-significantly improved the sensitivity (95%) and specificity (94.1%), outperforming CA19-9 alone, for the diagnosis of PC. Conclusions: We developed a highly efficient pipeline for biomarker discovery, verification and validation, with each step systematically informing the next. A panel of proteins that might be clinically relevant biomarkers for PC was found.
Collapse
|
40
|
Chen H, Zhang Z, Lu Y, Song K, Liu X, Xia F, Sun W. Downregulation of ULK1 by microRNA-372 inhibits the survival of human pancreatic adenocarcinoma cells. Cancer Sci 2017; 108:1811-1819. [PMID: 28677209 PMCID: PMC5581518 DOI: 10.1111/cas.13315] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of microRNA (miRNA) expression in various cancers and their role in cancer progression is well documented. The purpose of this study was to investigate the biological role of miR‐372 in human pancreatic adenocarcinoma (HPAC). We collected 20 pairs of HPAC tissues and adjacent non‐cancerous tissues to detect miR‐372 expression levels. We transfected BXPC‐3 and PANC‐1 cells with miR‐372 inhibitor/mimics to study their effect on cell proliferation, apoptosis, invasion, migration and autophagy. In addition, miR‐372 mimics and a tumor protein UNC51‐like kinase 1 (ULK1) siRNA were co‐transfected into BXPC‐3 and PANC‐1 cells to explore the mechanism of miR‐372 and ULK1 on HPAC tumorigenesis. We found that the expression of miR‐372 was markedly downregulated in HPAC cells compared to adjacent normal tissues. Furthermore, functional assays showed that miR‐372 inhibited cell proliferation, invasion, migration and autophagy in BXPC‐3 and PANC‐1 cells. An inverse correlation between miR‐372 expression and ULK1 expression was observed in HPAC tissues. Downregulation of ULK1 inhibited the overexpression effects of miR‐372, and upregulation of ULK1 reversed the effects of overexpressed miR‐372. Finally, we found that silencing ULK1 or inhibiting autophagy partly rescued the effects of miR‐372 knockdown in HPAC cells, which may explain the influence of miR‐372/ULK1 in HPAC development. Taken together, these results revealed a significant role of the miR‐372/ULK1 axis in suppressing HPAC cell proliferation, migration, invasion and autophagy.
Collapse
Affiliation(s)
- Hongxi Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhipeng Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yebin Lu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kun Song
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiwu Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Weijia Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
41
|
Lai Y, Xu P, Liu J, Li Q, Ren D, Zhang J, Wang J. Decreased expression of the long non-coding RNA MLLT4 antisense RNA 1 is a potential biomarker and an indicator of a poor prognosis for gastric cancer. Oncol Lett 2017; 14:2629-2634. [PMID: 28927028 PMCID: PMC5588117 DOI: 10.3892/ol.2017.6478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/14/2016] [Indexed: 01/16/2023] Open
Abstract
In recent years, the identification of long non-coding RNAs (lncRNAs) led to the analysis of their characteristics in cancer biology. However, the expression of lncRNAs in cancer and their clinical significance remain unclear. In the present study, an investigation of lncRNAs that may be involved in the regulation of metastasis using microarray and polymerase chain reaction analyses resulted in the identification of MLLT4 antisense RNA 1 (MLLT4-AS1) as a significantly downregulated lncRNA in gastric cancer tissue compared with normal adjacent tissue (P=0.006). Furthermore, the downregulation of MLL4-AS1 was significantly associated with advanced Tumor-Node-Metastasis stage (P=0.007) and lymph node metastasis (P=0.008). Cox regression analysis showed that MLLT4-AS1 expression was an independent predictor for overall survival (hazard ratio, 13.136; 95% confidence interval, 5.065–34.068; P<0.001). These data suggest that the decreased expression of MLLT4-AS1 is a potential biomarker and a predictor of a poor prognosis for gastric cancer.
Collapse
Affiliation(s)
- Yuexing Lai
- Department of Gastroenterology, Shanghai Songjiang Hospital Affiliated to Nanjing Medical University, Shanghai 201600, P.R. China
| | - Ping Xu
- Department of Gastroenterology, Shanghai Songjiang Hospital Affiliated to Nanjing Medical University, Shanghai 201600, P.R. China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Qinghua Li
- Department of Gastroenterology, Shanghai Songjiang Hospital Affiliated to Nanjing Medical University, Shanghai 201600, P.R. China
| | - Dabin Ren
- Department of Gastroenterology, Shanghai Songjiang Hospital Affiliated to Nanjing Medical University, Shanghai 201600, P.R. China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jing Wang
- Department of Gastroenterology, Shanghai Songjiang Hospital Affiliated to Nanjing Medical University, Shanghai 201600, P.R. China
| |
Collapse
|
42
|
Rives-Quinto N, Franco M, de Torres-Jurado A, Carmena A. Synergism between canoe and scribble mutations causes tumor-like overgrowth via Ras activation in neural stem cells and epithelia. Development 2017; 144:2570-2583. [PMID: 28619817 DOI: 10.1242/dev.148171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/01/2017] [Indexed: 12/31/2022]
Abstract
Over the past decade an intriguing connection between asymmetric cell division, stem cells and tumorigenesis has emerged. Neuroblasts, which are the neural stem cells of the Drosophila central nervous system, divide asymmetrically and constitute an excellent paradigm for investigating this connection further. Here we show that the simultaneous loss of the asymmetric cell division regulators Canoe (afadin in mammals) and Scribble in neuroblast clones leads to tumor-like overgrowth through both a severe disruption of the asymmetric cell division process and canoe loss-mediated Ras-PI3K-Akt activation. Moreover, canoe loss also interacts synergistically with scribble loss to promote overgrowth in epithelial tissues, here just by activating the Ras-Raf-MAPK pathway. discs large 1 and lethal (2) giant larvae, which are functionally related to scribble, contribute to repress the Ras-MAPK signaling cascade in epithelia. Hence, our work uncovers novel cooperative interactions between all these well-conserved tumor suppressors that ensure tight regulation of the Ras signaling pathway.
Collapse
Affiliation(s)
- Noemí Rives-Quinto
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Maribel Franco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Ana de Torres-Jurado
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
43
|
Giovannetti E, van der Borden CL, Frampton AE, Ali A, Firuzi O, Peters GJ. Never let it go: Stopping key mechanisms underlying metastasis to fight pancreatic cancer. Semin Cancer Biol 2017; 44:43-59. [PMID: 28438662 DOI: 10.1016/j.semcancer.2017.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive neoplasm, predicted to become the second leading cause of cancer-related deaths before 2030. This dismal trend is mainly due to lack of effective treatments against its metastatic behavior. Therefore, a better understanding of the key mechanisms underlying metastasis should provide new opportunities for therapeutic purposes. Genomic analyses revealed that aberrations that fuel PDAC tumorigenesis and progression, such as SMAD4 loss, are also implicated in metastasis. Recently, microRNAs have been shown to play a regulatory role in the metastatic behavior of many tumors, including PDAC. In particular, miR-10 and miR-21 have appeared as master regulators of the metastatic program, while members of the miR-200 family are involved in the epithelial-to-mesenchymal switch, favoring cell migration and invasiveness. Several studies have also found a close relationship between cancer stem cells (CSCs) and biological features of metastasis, and the CSC markers ALDH1, ABCG2 and c-Met are expressed at high levels in metastatic PDAC cells. Emerging evidence reveals that exosomes are involved in the modulation of the tumor microenvironment and can initiate PDAC pre-metastatic niche formation in the liver and lungs. In this review, we provide an overview of the role of all these pivotal factors in the metastatic behavior of PDAC, and discuss their potential exploitation in the clinic to improve current therapeutics and identify new drug targets.
Collapse
Affiliation(s)
- E Giovannetti
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - C L van der Borden
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - A E Frampton
- HPB Surgical Unit, Dept. of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - A Ali
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, KP, Pakistan; Institute of Cancer Sciences, University of Glasgow, UK
| | - O Firuzi
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - G J Peters
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Pichler M, Stiegelbauer V, Vychytilova-Faltejskova P, Ivan C, Ling H, Winter E, Zhang X, Goblirsch M, Wulf-Goldenberg A, Ohtsuka M, Haybaeck J, Svoboda M, Okugawa Y, Gerger A, Hoefler G, Goel A, Slaby O, Calin GA. Genome-Wide miRNA Analysis Identifies miR-188-3p as a Novel Prognostic Marker and Molecular Factor Involved in Colorectal Carcinogenesis. Clin Cancer Res 2017; 23:1323-1333. [PMID: 27601590 PMCID: PMC5544252 DOI: 10.1158/1078-0432.ccr-16-0497] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/12/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022]
Abstract
Purpose: Characterization of colorectal cancer transcriptome by high-throughput techniques has enabled the discovery of several differentially expressed genes involving previously unreported miRNA abnormalities. Here, we followed a systematic approach on a global scale to identify miRNAs as clinical outcome predictors and further validated them in the clinical and experimental setting.Experimental Design: Genome-wide miRNA sequencing data of 228 colorectal cancer patients from The Cancer Genome Atlas dataset were analyzed as a screening cohort to identify miRNAs significantly associated with survival according to stringent prespecified criteria. A panel of six miRNAs was further validated for their prognostic utility in a large independent validation cohort (n = 332). In situ hybridization and functional experiments in a panel of colorectal cancer cell lines and xenografts further clarified the role of clinical relevant miRNAs.Results: Six miRNAs (miR-92b-3p, miR-188-3p, miR-221-5p, miR-331-3p, miR-425-3p, and miR-497-5p) were identified as strong predictors of survival in the screening cohort. High miR-188-3p expression proves to be an independent prognostic factor [screening cohort: HR = 4.137; 95% confidence interval (CI), 1.568-10.917; P = 0.004; validation cohort: HR = 1.538; 95% CI, 1.107-2.137; P = 0.010, respectively]. Forced miR-188-3p expression increased migratory behavior of colorectal cancer cells in vitro and metastases formation in vivo (P < 0.05). The promigratory role of miR-188-3p is mediated by direct interaction with MLLT4, a novel identified player involved in colorectal cancer cell migration.Conclusions: miR-188-3p is a novel independent prognostic factor in colorectal cancer patients, which can be partly explained by its effect on MLLT4 expression and migration of cancer cells. Clin Cancer Res; 23(5); 1323-33. ©2016 AACR.
Collapse
Affiliation(s)
- Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Verena Stiegelbauer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Petra Vychytilova-Faltejskova
- Molecular Oncology II - Solid Cancers, Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Center for RNA Interference and Non-coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elke Winter
- Institute of Pathology, Medical University of Graz (MUG), Graz, Austria
| | - Xinna Zhang
- The Center for RNA Interference and Non-coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Matthew Goblirsch
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Masahisa Ohtsuka
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz (MUG), Graz, Austria
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research and Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz (MUG), Graz, Austria
| | - Ajay Goel
- Center for Gastrointestinal Research and Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Ondrej Slaby
- Molecular Oncology II - Solid Cancers, Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- The Center for RNA Interference and Non-coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
45
|
Huang C, Li N, Li Z, Chang A, Chen Y, Zhao T, Li Y, Wang X, Zhang W, Wang Z, Luo L, Shi J, Yang S, Ren H, Hao J. Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression. Nat Commun 2017; 8:14035. [PMID: 28102193 PMCID: PMC5253665 DOI: 10.1038/ncomms14035] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022] Open
Abstract
Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) tissues, and that IL-35 overexpression is associated with poor prognosis in PDAC patients. IL-35 has critical roles in PDAC cell extravasation and metastasis by facilitating the adhesion to endothelial cells and transendothelial extravasation. Mechanistically, IL-35 promotes ICAM1 overexpression through a GP130-STAT1 signalling pathway, which facilitates endothelial adhesion and transendothelial migration via an ICAM1-fibrinogen-ICAM1 bridge. In an orthotopic xenograft model, IL-35 promotes spontaneous pancreatic cancer metastasis in an ICAM1-dependent manner. Together, our results indicate additional functions of IL-35 in promoting PDAC metastasis through mediating ICAM1 expression.
Collapse
Affiliation(s)
- Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Na Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Zengxun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Antao Chang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yanan Chen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yang Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Wei Zhang
- Tianjin Hepingqu Gynaechology and Obstetrics Hospital, Tianjin 300000, China
| | - Zhimin Wang
- Tianjin Hepingqu Gynaechology and Obstetrics Hospital, Tianjin 300000, China
| | - Lin Luo
- Tianjin Hepingqu Gynaechology and Obstetrics Hospital, Tianjin 300000, China
| | - Jingjing Shi
- Department of Tissue Bank, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - He Ren
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
46
|
Luo C, Cheng Y, Liu Y, Chen L, Liu L, Wei N, Xie Z, Wu W, Feng Y. SRSF2 Regulates Alternative Splicing to Drive Hepatocellular Carcinoma Development. Cancer Res 2017; 77:1168-1178. [PMID: 28082404 DOI: 10.1158/0008-5472.can-16-1919] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022]
Abstract
Aberrant RNA splicing is recognized to contribute to cancer pathogenesis, but the underlying mechanisms remain mainly obscure. Here, we report that the splicing factor SRSF2 is upregulated frequently in human hepatocellular carcinoma (HCC), where this event is associated with poor prognosis in patients. RNA-seq and other molecular analyses were used to identify SRSF2-regulated alternative splicing events. SRSF2 binding within an alternative exon was associated with its inclusion in the RNA, whereas SRSF2 binding in a flanking constitutive exon was associated with exclusion of the alternative exon. Notably, cancer-associated splice variants upregulated by SRSF2 in clinical specimens of HCC were found to be crucial for pathogenesis and progression in hepatoma cells, where SRSF2 expression increased cell proliferation and tumorigenic potential by controlling expression of these variants. Our findings identify SRSF2 as a key regulator of RNA splicing dysregulation in cancer, with possible clinical implications as a candidate prognostic factor in patients with HCC. Cancer Res; 77(5); 1168-78. ©2017 AACR.
Collapse
Affiliation(s)
- Chunling Luo
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanming Cheng
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuguo Liu
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Linlin Chen
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lina Liu
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Wei
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqin Xie
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenwu Wu
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China. .,The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Ying Feng
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
47
|
Involvement of Tight Junction Plaque Proteins in Cancer. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
The Contribution of Ig-Superfamily and MARVEL D Tight Junction Proteins to Cancer Pathobiology. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Chiellini F, Puppi D, Piras AM, Morelli A, Bartoli C, Migone C. Modelling of pancreatic ductal adenocarcinoma in vitro with three-dimensional microstructured hydrogels. RSC Adv 2016. [DOI: 10.1039/c6ra08420f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of a novelin vitro3D model of pancreas cancer based on microstructured polyelectrolyte complex (mPEC) hydrogel.
Collapse
Affiliation(s)
- F. Chiellini
- BIOLab Research Group
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- UdR INSTM Pisa
- Pisa
| | - D. Puppi
- BIOLab Research Group
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- UdR INSTM Pisa
- Pisa
| | - A. M. Piras
- BIOLab Research Group
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- UdR INSTM Pisa
- Pisa
| | - A. Morelli
- BIOLab Research Group
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- UdR INSTM Pisa
- Pisa
| | - C. Bartoli
- BIOLab Research Group
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- UdR INSTM Pisa
- Pisa
| | - C. Migone
- BIOLab Research Group
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- UdR INSTM Pisa
- Pisa
| |
Collapse
|
50
|
Wu TC, Feng LS, Li J, Li DX. Expression of AF-6 mRNA in hepatocellular carcinoma: Effect on invasion. Shijie Huaren Xiaohua Zazhi 2015; 23:5045-5049. [DOI: 10.11569/wcjd.v23.i31.5045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of polarity protein AF-6 mRNA in hepatocellular carcinoma (HCC), tumor-adjacent hepatic tissue and cell lines with different invasive abilities, and analyze the clinical significance of AF-6 mRNA expression in different tissues and cell lines.
METHODS: Real-time quantitative PCR was used to detect the expression of AF-6 mRNA in 30 pairs of tumor tissue and adjacent tissues and four cell lines.
RESULTS: The expression of AF-6 mRNA was low in 93.3% (28/30) of HCC specimens. AF-6 mRNA expression was significantly higher in the normal liver cell line L02 than in hepatoma cell lines (P < 0.05). The expression of AF-6 mRNA was significantly lower in MHCC97-H and HCCLM3 cell lines with high invasion and metastasis ability than in HepG2 cell line low invasion and metastasis ability (P < 0.05).
CONCLUSION: The low expression of AF-6 mRNA in HCC may associate with high invasiveness. AF-6 mRNA may become a potential target for the treatment of invasive HCC in the future.
Collapse
|