1
|
Lindahl E, Friedman R. Exploring the Impact of Protein Chain Selection in Binding Energy Calculations with DFT. Chemphyschem 2024; 25:e202400119. [PMID: 39188152 PMCID: PMC11648830 DOI: 10.1002/cphc.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Calculation of binding free energies between a protein and a ligand are highly desired for computer-aided drug design. Here we approximate the binding energies of ABL1, an enzyme which is the target for drugs used in the treatment of chronic myeloid leukaemia, with minimal models and density functional theory (DFT). Starting from the crystal structures of protein-drug complexes, we estimated the binding free energies having used all available individual molecules (protein chains) within each structure, not only a single one as commonly used, in order to see if the choice of the protein chain is important in such calculations. Differences were observed between chains in the same file. Energy decomposition analysis (EDA) revealed that the most important factors for binding were exchange, repulsion and electrostatics. The desolvation term varied dramatically between the inhibitors (between 4.2 and 92.3 kcal/mol). All functionals showed similar patterns in the EDA and in discriminating between the ligands. Non-covalent interactions (NCI) analysis was used to further explain the differences between protein chains and functionals. Overall, it is shown that small minimal models of a drug binding site can be useful to infer on the suitability of an initial crystal structure for further analysis such as EDA.
Collapse
Affiliation(s)
- Erik Lindahl
- Department of Chemistry and Biomedical SciencesLinnæus UniversityKalmarSE-391 82Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical SciencesLinnæus UniversityKalmarSE-391 82Sweden
| |
Collapse
|
2
|
Nagaraj A, Srinivasa Raghavan S, Niraikulam A, Gautham N, Gunasekaran K. Sanggenol B, a plant bioactive, as a safer alternative to tackle cancer by antagonising human FGFR. J Biomol Struct Dyn 2024; 42:8331-8342. [PMID: 37551114 DOI: 10.1080/07391102.2023.2245047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Fibroblast Growth Receptor Factor (FGFR) are a family of proteins which are, in addition to their biological role, are involved in various pathological functions, such as cancer cellular proliferation, and metastasis. Deregulation of FGFRs at various points could result in malignancy. A conformational transition of the DFG (Asp-Phe-Gly) motif can switch the enzyme from a catalytically active (DFG-in) to an inactive (DFG-out) state. There are a few FDFR inhibitors which have received approval from the FDA, but these have adverse side effects. Hence, there is a demand for safer alternatives. With this aim, Ligand and Structure based virtual screening was carried to identify suitable lead molecule. In this process, Four Featured atom-based 3D Pharmacophore with quantitative structure-activity relationship analysis (3D-QSAR) was developed. The External validation of the hypothesis was carried invoking criteria such as Area under the ROC curve. Natural plant compound databases such as the Traditional Chinese medicine, NPACT and the ZINC Natural databases were chosen for pharmacophore filtering, which was followed by virtual screening against FGFR isoforms. The compound Sanggenol B was identified as the most suitable lead molecule. Structural stability of the protein-ligand complex and interactions of the ligand (Sanggenol B & the reference compound Ponatinib) with FGFR were analysed for 1000 ns (triplicate) by means of molecular simulation and the binding free energy was calculated using MMGBSA. Sanggenol B (PubChem CID: 15233694) binds effectively at the active site with favourable energies and is proposed as a safe alternative from a natural source.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Achyuta Nagaraj
- Department of Crystallography and Biophysics, University of Madras, Chennai, India
| | - Sriram Srinivasa Raghavan
- Department of Crystallography and Biophysics, University of Madras, Chennai, India
- RIKEN Centre for Computational Science, Kobe, Japan
| | - Ayyadurai Niraikulam
- Division of Biotechnology, Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI), Chennai, India
| | - Namasivayam Gautham
- Department of Crystallography and Biophysics, University of Madras, Chennai, India
| | | |
Collapse
|
3
|
Olivieri C, Wang Y, Walker C, Subrahmanian MV, Ha KN, Bernlohr D, Gao J, Camilloni C, Vendruscolo M, Taylor SS, Veglia G. The αC-β4 loop controls the allosteric cooperativity between nucleotide and substrate in the catalytic subunit of protein kinase A. eLife 2024; 12:RP91506. [PMID: 38913408 PMCID: PMC11196109 DOI: 10.7554/elife.91506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Allosteric cooperativity between ATP and substrates is a prominent characteristic of the cAMP-dependent catalytic subunit of protein kinase A (PKA-C). This long-range synergistic action is involved in substrate recognition and fidelity, and it may also regulate PKA's association with regulatory subunits and other binding partners. To date, a complete understanding of this intramolecular mechanism is still lacking. Here, we integrated NMR(Nuclear Magnetic Resonance)-restrained molecular dynamics simulations and a Markov State Model to characterize the free energy landscape and conformational transitions of PKA-C. We found that the apoenzyme populates a broad free energy basin featuring a conformational ensemble of the active state of PKA-C (ground state) and other basins with lower populations (excited states). The first excited state corresponds to a previously characterized inactive state of PKA-C with the αC helix swinging outward. The second excited state displays a disrupted hydrophobic packing around the regulatory (R) spine, with a flipped configuration of the F100 and F102 residues at the αC-β4 loop. We validated the second excited state by analyzing the F100A mutant of PKA-C, assessing its structural response to ATP and substrate binding. While PKA-CF100A preserves its catalytic efficiency with Kemptide, this mutation rearranges the αC-β4 loop conformation, interrupting the coupling of the two lobes and abolishing the allosteric binding cooperativity. The highly conserved αC-β4 loop emerges as a pivotal element to control the synergistic binding of nucleotide and substrate, explaining how mutations or insertions near or within this motif affect the function and drug sensitivity in homologous kinases.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Yingjie Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | | | - Kim N Ha
- Department of Chemistry and Biochemistry, St. Catherine UniversityMinneapolisUnited States
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| | - Carlo Camilloni
- Department of Chemistry, University of CambridgeCambridgeUnited Kingdom
| | | | - Susan S Taylor
- Department of Pharmacology, University of California at San DiegoSan DiegoUnited States
- Department of Chemistry and Biochemistry, University of California at San DiegoSan DiegoUnited States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry and Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
4
|
Ismail NZ, Khairuddean M, Alidmat MM, Abubakar S, Arsad H. Investigating the potential of mono-chalcone compounds in targeting breast cancer receptors through network pharmacology, molecular docking, molecular dynamics simulation, antiproliferative effects, and gene expressions. 3 Biotech 2024; 14:151. [PMID: 38737798 PMCID: PMC11087420 DOI: 10.1007/s13205-024-03991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
The study aims to investigate various aspects of synthesized mono-chalcone compounds 5 and 8 concerning breast cancer, including network pharmacology, molecular docking, molecular dynamics (MD) simulations, antiproliferative effects, and gene expressions. Initially, the compounds underwent a network pharmacology analysis targeting breast cancer-related targets, with MalaCards, SwissTargetPrediction, and PharmMapper identifying 70 breast cancer target receptors. Subsequently, protein-protein interaction (PPI) network analysis revealed two distinct target gene clusters. Survival analysis identified seven significant target genes following Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and Gene Ontology (GO) evaluation. Molecular docking and MD simulations were conducted on these seven target genes (AKT2, BRAF, ESR1, FGFR1, IGF1, IGF1R, and KIT), revealing that compound 8 exhibited the highest binding affinities, as well as better stability and compactness when interacting with the targeted proteins. Next, the compounds underwent cell viability assay and gene expression analysis to validate the in silico findings. Both compounds demonstrated the ability to suppress breast cancer proliferation, with compound 8 showing increased selectivity in targeting breast cancer cells while causing minimal harm to normal breast cells. The suppression of breast cancer cell proliferation was attributed to decreased expression levels of AKT2, BRAF, FGFR1, IGF1, IGF1R, KIT, and ESR1. Hence, the results provide insights into the molecular interaction responsible for the anti-breast cancer capabilities of mono-chalcone compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03991-y.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Sadiq Abubakar
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Department of Pure and Industrial Chemistry, Bayero University Kano, Kano, 3011 Nigeria
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang Malaysia
| |
Collapse
|
5
|
Mahapatra S, Jonniya NA, Koirala S, Kar P. Molecular dynamics simulations reveal phosphorylation-induced conformational dynamics of the fibroblast growth factor receptor 1 kinase. J Biomol Struct Dyn 2024; 42:2929-2941. [PMID: 37160693 DOI: 10.1080/07391102.2023.2209189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
The Fibroblast Growth Factor Receptor1 (FGFR1) kinase wields exquisite control on cell fate, proliferation, differentiation, and homeostasis. An imbalance of FGFR1 signaling leads to several pathogeneses of diseases ranging from multiple cancers to allergic and neurodegenerative disorders. In this study, we investigated the phosphorylation-induced conformational dynamics of FGFR1 in apo and ATP-bound states via all-atom molecular dynamics simulations. All simulations were performed for 2 × 2 µs. We have also investigated the energetics of the binding of ATP to FGFR1 using the molecular mechanics Poisson-Boltzmann scheme. Our study reveals that the FGFR1 kinase can reach a fully active configuration through phosphorylation and ATP binding. A 3-10 helix formation in the activation loop signifies its rearrangement leading to stability upon ATP binding. The interaction of phosphorylated tyrosine (pTyr654) with positively charged residues forms strong salt-bridge interactions, driving the compactness of the structure. The dynamic cross-correlation map reveals phosphorylation enhances correlated motions and reduces anti-correlated motions between different domains. We believe that the mechanistic understanding of large-conformational changes upon the activation of the FGFR1 kinase will aid the development of novel targeted therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
6
|
Narjes F, Edfeldt F, Petersen J, Öster L, Hamblet C, Bird J, Bold P, Rae R, Bäck E, Stomilovic S, Zlatoidsky P, Svensson T, Hidestål L, Kunalingam L, Shamovsky I, De Maria L, Gordon E, Lewis RJ, Watcham S, van Rietschoten K, Mudd GE, Harrison H, Chen L, Skynner MJ. Discovery and Characterization of a Bicyclic Peptide (Bicycle) Binder to Thymic Stromal Lymphopoietin. J Med Chem 2024; 67:2220-2235. [PMID: 38284169 DOI: 10.1021/acs.jmedchem.3c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pro-inflammatory cytokine involved in the development of asthma and other atopic diseases. We used Bicycle Therapeutics' proprietary phage display platform to identify bicyclic peptides (Bicycles) with high affinity for TSLP, a target that is difficult to drug with conventional small molecules due to the extended protein-protein interactions it forms with both receptors. The hit series was shown to bind to TSLP in a hotspot, that is also used by IL-7Rα. Guided by the first X-ray crystal structure of a small peptide binding to TSLP and the identification of key metabolites, we were able to improve the proteolytic stability of this series in lung S9 fractions without sacrificing binding affinity. This resulted in the potent Bicycle 46 with nanomolar affinity to TSLP (KD = 13 nM), low plasma clearance of 6.4 mL/min/kg, and an effective half-life of 46 min after intravenous dosing to rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sophie Watcham
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| | | | - Gemma E Mudd
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| | - Helen Harrison
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| | - Liuhong Chen
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| | - Michael J Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| |
Collapse
|
7
|
Ismail NZ, Khairuddean M, Abubakar S, Arsad H. Network pharmacology, molecular docking and molecular dynamics simulation of chalcone scaffold-based compounds targeting breast cancer receptors. J Biomol Struct Dyn 2023:1-16. [PMID: 38149857 DOI: 10.1080/07391102.2023.2296606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Compounds with a chalcone scaffold-based structure have demonstrated promising anticancer biological activity. However, the molecular interactions between chalcone scaffold-based compounds and breast cancer-associated proteins remain unclear. Through network pharmacology, molecular docking, and molecular dynamics (MD) simulation analyses, compounds with a chalcone scaffold-based structure were evaluated for their interaction with potential breast cancer targets. The compounds were retrieved from the ASINEX database, resulting in 575,302 compounds. A total of 342 compounds with chalcone scaffold-based structures were discovered. From the 342 compounds that was analysed, ten were chosen due to their adherence to Lipinski's rule, having an appropriate range of lipophilicity (LOGP), and topological polar surface area (TPSA), and absence of any toxicity. Based on target intersection, 50 target genes were found and subjected to protein-protein interaction (PPI), gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Four target genes were found to be involved in the breast cancer pathway. Consequently, molecular docking was utilised to analyse the molecular interactions between the compounds and four target protein receptors. Compound 211 exhibited the highest binding affinities for the epidermal growth factor receptor (EGFR), fibroblast growth factor receptor 1 (FGFR1), oestrogen receptor (ESR1), and cyclin dependent kinase 6 (CDK6) with values of -8.95 kcal/mol, -8.60 kcal/mol, -10.33 kcal/mol, and -9.90 kcal/mol, respectively. During MD simulation, compound 211 and its respective proteins were stable, compact, and had minimal flexibility. The findings provide foundations for future studies into the interaction underlying the anti-breast cancer potential of compounds with chalcone-based scaffold structures.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Sadiq Abubakar
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Pure and Industrial Chemistry, Bayero University Kano, Kano, Nigeria
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
8
|
Li H, Zhang R, Min Y, Ma D, Zhao D, Zeng J. A knowledge-guided pre-training framework for improving molecular representation learning. Nat Commun 2023; 14:7568. [PMID: 37989998 PMCID: PMC10663446 DOI: 10.1038/s41467-023-43214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
Learning effective molecular feature representation to facilitate molecular property prediction is of great significance for drug discovery. Recently, there has been a surge of interest in pre-training graph neural networks (GNNs) via self-supervised learning techniques to overcome the challenge of data scarcity in molecular property prediction. However, current self-supervised learning-based methods suffer from two main obstacles: the lack of a well-defined self-supervised learning strategy and the limited capacity of GNNs. Here, we propose Knowledge-guided Pre-training of Graph Transformer (KPGT), a self-supervised learning framework to alleviate the aforementioned issues and provide generalizable and robust molecular representations. The KPGT framework integrates a graph transformer specifically designed for molecular graphs and a knowledge-guided pre-training strategy, to fully capture both structural and semantic knowledge of molecules. Through extensive computational tests on 63 datasets, KPGT exhibits superior performance in predicting molecular properties across various domains. Moreover, the practical applicability of KPGT in drug discovery has been validated by identifying potential inhibitors of two antitumor targets: hematopoietic progenitor kinase 1 (HPK1) and fibroblast growth factor receptor 1 (FGFR1). Overall, KPGT can provide a powerful and useful tool for advancing the artificial intelligence (AI)-aided drug discovery process.
Collapse
Affiliation(s)
- Han Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Ruotian Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Yaosen Min
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Dacheng Ma
- Research Center for Biological Computation, Zhejiang Province, Zhejiang Laboratory, 311100, Hangzhou, China
| | - Dan Zhao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China.
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China.
- School of Engineering, Westlake University, Zhejiang Province, 310030, Hangzhou, China.
| |
Collapse
|
9
|
Meyer SM, Tanaka T, Taghavi A, Baisden JT, Grefe M, Disney MD. Optimization of a Protein-Targeted Medicine into an RNA-Specific Small Molecule. ACS Chem Biol 2023; 18:2336-2342. [PMID: 37870980 PMCID: PMC10825933 DOI: 10.1021/acschembio.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein-targeted small molecule medicines often bind RNAs and affect RNA-mediated pathways in cells. Historically, small molecule engagement and modulation of RNA have not been considered in medicine development; however, RNA should be considered both a potential on- and off-target. Kinase inhibitors have emecrged as common RNA binders with dovitinib, a classic receptor tyrosine kinase (RTK) inhibitor, inhibiting RTKs and the biogenesis of oncogenic microRNA-21 through direct engagement. In this study, we use knowledge of the molecular recognition of both protein and RNA targets by dovitinib to design molecules that specifically inhibit the RNA target but lack activity against canonical protein targets in cells. As it is now becoming apparent that RNA can be both an on- and off-target for small molecule medicines, this study lays a foundation to use design principles to maximize desired compound activity while minimizing off-target effects.
Collapse
Affiliation(s)
- Samantha M. Meyer
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Toru Tanaka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Amirhossein Taghavi
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Jared T. Baisden
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Maison Grefe
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Matthew D. Disney
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology and The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| |
Collapse
|
10
|
Olivieri C, Wang Y, Walker C, Subrahmanian MV, Ha KN, Bernlohr DA, Gao J, Camilloni C, Vendruscolo M, Taylor SS, Veglia G. The αC-β4 loop controls the allosteric cooperativity between nucleotide and substrate in the catalytic subunit of protein kinase A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557419. [PMID: 37745542 PMCID: PMC10515842 DOI: 10.1101/2023.09.12.557419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Allosteric cooperativity between ATP and substrates is a prominent characteristic of the cAMP-dependent catalytic (C) subunit of protein kinase A (PKA). Not only this long-range synergistic action is involved in substrate recognition and fidelity, but it is likely to regulate PKA association with regulatory subunits and other binding partners. To date, a complete understanding of the molecular determinants for this intramolecular mechanism is still lacking. Here, we used an integrated NMR-restrained molecular dynamics simulations and a Markov Model to characterize the free energy landscape and conformational transitions of the catalytic subunit of protein kinase A (PKA-C). We found that the apo-enzyme populates a broad free energy basin featuring a conformational ensemble of the active state of PKA-C (ground state) and other basins with lower populations (excited states). The first excited state corresponds to a previously characterized inactive state of PKA-C with the αC helix swinging outward. The second excited state displays a disrupted hydrophobic packing around the regulatory (R) spine, with a flipped configuration of the F100 and F102 residues at the tip of the αC-β4 loop. To experimentally validate the second excited state, we mutated F100 into alanine and used NMR spectroscopy to characterize the binding thermodynamics and structural response of ATP and a prototypical peptide substrate. While the activity of PKA-CF100A toward a prototypical peptide substrate is unaltered and the enzyme retains its affinity for ATP and substrate, this mutation rearranges the αC-β4 loop conformation interrupting the allosteric coupling between nucleotide and substrate. The highly conserved αC-β4 loop emerges as a pivotal element able to modulate the synergistic binding between nucleotide and substrate and may affect PKA signalosome. These results may explain how insertion mutations within this motif affect drug sensitivity in other homologous kinases.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
| | - Yingjie Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
- Department of Chemistry and Supercomputing Institute, University of Minnesota, MN 55455, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
| | - Manu V. Subrahmanian
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
| | - Kim N. Ha
- Departmenf of Chemistry and Biochemistry, St. Catherine University, MN 55105, USA
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, MN 55455, USA
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Susan S. Taylor
- Department of Pharmacology, University of California at San Diego, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California at San Diego, CA 92093, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
- Department of Chemistry and Supercomputing Institute, University of Minnesota, MN 55455, USA
| |
Collapse
|
11
|
Gao Y, Ding Y, Tai XR, Zhang C, Wang D. Ponatinib: An update on its drug targets, therapeutic potential and safety. Biochim Biophys Acta Rev Cancer 2023; 1878:188949. [PMID: 37399979 DOI: 10.1016/j.bbcan.2023.188949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Leukemia is a malignancy of the hematopoietic system, and as its pathogenesis has become better understood, three generations of tyrosine kinase inhibitors (TKIs) have been developed. Ponatinib is the third-generation breakpoint cluster region (BCR) and Abelson (ABL) TKI, which has been influential in the leukemia therapy for a decade. Moreover, ponatinib is a potent multi-target kinase inhibitor that acts on various kinases, such as KIT, RET, and Src, making it a promising treatment option for triple-negative breast cancer (TNBC), lung cancer, myeloproliferative syndrome, and other diseases. The drug's significant cardiovascular toxicity poses a significant challenge to its clinical use, requiring the development of strategies to minimize its toxicity and side effects. In this article, the pharmacokinetics, targets, therapeutic potential, toxicity and production mechanism of ponatinib will be reviewed. Furthermore, we will discuss methods to reduce the drug's toxicity, providing new avenues for research to improve its safety in clinical use.
Collapse
MESH Headings
- Humans
- Fusion Proteins, bcr-abl/pharmacology
- Fusion Proteins, bcr-abl/therapeutic use
- Drug Resistance, Neoplasm
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/chemically induced
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yue Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xin-Ran Tai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
12
|
Mahapatra S, Jonniya NA, Koirala S, Ursal KD, Kar P. The FGF/FGFR signalling mediated anti-cancer drug resistance and therapeutic intervention. J Biomol Struct Dyn 2023; 41:13509-13533. [PMID: 36995019 DOI: 10.1080/07391102.2023.2191721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 03/31/2023]
Abstract
ABSTRACT Fibroblast Growth Factor (FGF) ligands and their receptors are crucial factors driving chemoresistance in several malignancies, challenging the efficacy of currently available anti-cancer drugs. The Fibroblast growth factor/receptor (FGF/FGFR) signalling malfunctions in tumor cells, resulting in a range of molecular pathways that may impact its drug effectiveness. Deregulation of cell signalling is critical since it can enhance tumor growth and metastasis. Overexpression and mutation of FGF/FGFR induce regulatory changes in the signalling pathways. Chromosomal translocation facilitating FGFR fusion production aggravates drug resistance. Apoptosis is inhibited by FGFR-activated signalling pathways, reducing multiple anti-cancer medications' destructive impacts. Angiogenesis and epithelial-mesenchymal transition (EMT) are facilitated by FGFRs-dependent signalling, which correlates with drug resistance and enhances metastasis. Further, lysosome-mediated drug sequestration is another prominent method of resistance. Inhibition of FGF/FGFR by following a plethora of therapeutic approaches such as covalent and multitarget inhibitors, ligand traps, monoclonal antibodies, recombinant FGFs, combination therapy, and targeting lysosomes and micro RNAs would be helpful. As a result, FGF/FGFR suppression treatment options are evolving nowadays. To increase positive impacts, the processes underpinning the FGF/FGFR axis' role in developing drug resistance need to be clarified, emphasizing the need for more studies to develop novel therapeutic options to address this significant problem. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Kapil Dattatray Ursal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
13
|
Kish M, Smith V, Lethbridge N, Cole L, Bond NJ, Phillips JJ. Online Fully Automated System for Hydrogen/Deuterium-Exchange Mass Spectrometry with Millisecond Time Resolution. Anal Chem 2023; 95:5000-5008. [PMID: 36896500 PMCID: PMC10034745 DOI: 10.1021/acs.analchem.2c05310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Amide hydrogen/deuterium-exchange mass spectrometry (HDX-MS) is a powerful tool for analyzing the conformational dynamics of proteins in a solution. Current conventional methods have a measurement limit starting from several seconds and are solely reliant on the speed of manual pipetting or a liquid handling robot. Weakly protected regions of polypeptides, such as in short peptides, exposed loops and intrinsically disordered the protein exchange on the millisecond timescale. Typical HDX methods often cannot resolve the structural dynamics and stability in these cases. Numerous academic laboratories have demonstrated the considerable utility of acquiring HDX-MS data in the sub-second regimes. Here, we describe the development of a fully automated HDX-MS apparatus to resolve amide exchange on the millisecond timescale. Like conventional systems, this instrument boasts automated sample injection with software selection of labeling times, online flow mixing and quenching, while being fully integrated with a liquid chromatography-MS system for existing standard "bottom-up" workflows. HDX-MS's rapid exchange kinetics of several peptides demonstrate the repeatability, reproducibility, back-exchange, and mixing kinetics achieved with the system. Comparably, peptide coverage of 96.4% with 273 peptides was achieved, supporting the equivalence of the system to standard robotics. Additionally, time windows of 50 ms-300 s allowed full kinetic transitions to be observed for many amide groups; especially important are short time points (50-150 ms) for regions that are likely highly dynamic and solvent- exposed. We demonstrate that information on structural dynamics and stability can be measured for stretches of weakly stable polypeptides in small peptides and in local regions of a large enzyme, glycogen phosphorylase.
Collapse
Affiliation(s)
- Monika Kish
- Living Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K
| | | | | | - Lindsay Cole
- Applied Photophysics Ltd, Leatherhead KT227BA, U.K
| | - Nicholas J Bond
- Analytical Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Milstein Building, Granta Park, Cambridge CB21 6GH, U.K
| | - Jonathan J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K
- Alan Turing Institute, British Library, London NW1 2DB, U.K
| |
Collapse
|
14
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
15
|
Pereira WA, Nascimento ÉCM, Martins JBL. Electronic and structural study of T315I mutated form in DFG-out conformation of BCR-ABL inhibitors. J Biomol Struct Dyn 2022; 40:9774-9788. [PMID: 34121617 DOI: 10.1080/07391102.2021.1935320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, the four main drugs for the treatment of chronic myeloid leukemia were analyzed, being imatinib, dasatinib, nilotinib and ponatinib followed by four derivative molecules of nilotinib and ponatinib. For these derivative molecules, the fluorine atoms were replaced by hydrogen and chlorine atoms in order to shade light to the structural effects on this set of inhibitors. Electronic studies were performed at density functional theory level with the B3LYP functional and 6-311+G(d,p) basis set. The frontier molecular orbitals, gap HOMO-LUMO, and NBO were analyzed and compared to docking studies for mutant T315I tyrosine kinase protein structure code 3IK3, in the DFG-out conformation. Structural similarities were pointed out, such as the presence of groups common to all inhibitors and modifications raised up on new generations of imatinib-based inhibitors. One of them is the trifluoromethyl group present in nilotinib and later included in ponatinib, in addition to the 1-methylpiperazin-1-ium group that is present in imatinib and ponatinib. The frontier molecular orbitals of imatinib and ponatinib are contributing to the same amino acid residues, and the ineffectiveness of imatinib against the T315I mutation was discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Washington A Pereira
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - Érica C M Nascimento
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - João B L Martins
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
16
|
Zhu H, Chen Z, Chen Y, Zhu JJ. Affinities and Kinetics Detection of Protein-Small Molecule Interactions with a Monolayer MoS 2 -Based Optical Imaging Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202622. [PMID: 35726050 DOI: 10.1002/smll.202202622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Quantifying the binding kinetics and affinities of protein-small molecule interactions is critical for biomarker validation, drug discovery, and deep understanding of various biological processes at the molecular-scale. Novel approaches are demanded as most common label-free techniques are mass-sensitive, which are not suitable for the detection of small molecule interactions. Here, an optical imaging platform is developed to measure the binding kinetics of both protein-small molecules and protein-ions based on monolayer MoS2 , an ultra-thin 2D material whose optical absorption is extremely sensitive to charge. A model is established to calibrate the optical response due to the charged analyte binding and it is applied to quantify the interactions between abl1 kinase and different small-molecule inhibitors. Such a presented method is capable of distinguishing different inhibitors binding to a wild or mutated kinase, which provides guidance for drug evaluation and drug mechanism exploration. The binding kinetics of calcium ions to calmodulin is also measured, further broadening the application field of the method. In addition, the imaging capability allows mapping the local binding kinetics of the molecular interactions with a high resolution, which reveals visible spatial variability and offers a promising tool for studying heterogeneous local interfacial interactions.
Collapse
Affiliation(s)
- Hao Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, P. R. China
| |
Collapse
|
17
|
Wu X, Liu Z, Gan C, Wei W, Zhang Q, Liu H, Que H, Su X, Yue L, He H, Ouyang L, Ye T. Design, synthesis and biological evaluation of a series of novel pyrrolo[2,3-d]pyrimidin/pyrazolo[3,4-d]pyrimidin-4-amine derivatives as FGFRs-dominant multi-target receptor tyrosine kinase inhibitors for the treatment of gastric cancer. Bioorg Chem 2022; 127:105965. [PMID: 35759882 DOI: 10.1016/j.bioorg.2022.105965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023]
Abstract
Gastric cancer is the second most lethal cancer across the world. With the progress in therapeutic approaches, the 5-year survival rate of early gastric cancer can reach > 95%. However, the prognosis and survival time of advanced gastric cancer is still somber. Therefore, more effective targeted therapies for gastric cancer treatment are urgently needed. FGFR, VEGFR and other receptor tyrosine kinases have recently been suggested as potential targets for gastric cancer treatment. We herein report the discovery of pyrrolo[2,3-d]pyrimidin/pyrazolo[3,4-d]pyrimidin-4-amine derivatives as a new class of FGFRs-dominant multi-target receptor tyrosine kinase inhibitors. SAR assessment identified the most active compounds 8f and 8k, which showed excellent inhibitory activity against a variety of receptor tyrosine kinases. Moreover, 8f and 8k displayed excellent potency in the SNU-16 gastric cancer cell line. Furthermore, 8f and 8k could inhibit FGFR1 phosphorylation and downstream signaling pathways as well as induce cell apoptosis. In vivo, 8f and 8k suppress tumor growth in the SNU-16 xenograft model without inducing obvious toxicity. These findings raise the possibility that compounds 8f and 8k might serve as potential agents for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xiuli Wu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihao Liu
- Laboratory of Emergency Medicine, Department of Emergency Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cailin Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Wei
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianyu Zhang
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hanyun Que
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualong He
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
18
|
Reduced Cardiotoxicity of Ponatinib-Loaded PLGA-PEG-PLGA Nanoparticles in Zebrafish Xenograft Model. MATERIALS 2022; 15:ma15113960. [PMID: 35683259 PMCID: PMC9182153 DOI: 10.3390/ma15113960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are the new generation of anti-cancer drugs with high potential against cancer cells’ proliferation and growth. However, TKIs are associated with severe cardiotoxicity, limiting their clinical value. One TKI that has been developed recently but not explored much is Ponatinib. The use of nanoparticles (NPs) as a better therapeutic agent to deliver anti-cancer drugs and reduce their cardiotoxicity has been recently considered. In this study, with the aim to reduce Ponatinib cardiotoxicity, Poly(D,L-lactide-co-glycolide)-b-poly(ethyleneoxide)-b-poly(D,L-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymer was used to synthesize Ponatinib in loaded PLGA-PEG-PLGA NPs for chronic myeloid leukemia (CML) treatment. In addition to physicochemical NPs characterization (NPs shape, size, size distribution, surface charge, dissolution rate, drug content, and efficacy of encapsulation) the efficacy and safety of these drug-delivery systems were assessed in vivo using zebrafish. Zebrafish are a powerful animal model for investigating the cardiotoxicity associated with anti-cancer drugs such as TKIs, to determine the optimum concentration of smart NPs with the least side effects, and to generate a xenograft model of several cancer types. Therefore, the cardiotoxicity of unloaded and drug-loaded PLGA-PEG-PLGA NPs was studied using the zebrafish model by measuring the survival rate and cardiac function parameters, and therapeutic concentration for in vivo efficacy studies was optimized in an in vivo setting. Further, the efficacy of drug-loaded PLGA-PEG-PLGA NPs was tested on the zebrafish cancer xenograft model, in which human myelogenous leukemia cell line K562 was transplanted into zebrafish embryos. Our results demonstrated that the Ponatinib-loaded PLGA-PEG-PLGA NPs at a concentration of 0.001 mg/mL are non-toxic/non-cardio-toxic in the studied zebrafish xenograft model.
Collapse
|
19
|
Turner LD, Trinh CH, Hubball RA, Orritt KM, Lin CC, Burns JE, Knowles MA, Fishwick CWG. From Fragment to Lead: De Novo Design and Development toward a Selective FGFR2 Inhibitor. J Med Chem 2021; 65:1481-1504. [PMID: 34780700 DOI: 10.1021/acs.jmedchem.1c01163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) are implicated in a range of cancers with several pan-kinase and selective-FGFR inhibitors currently being evaluated in clinical trials. Pan-FGFR inhibitors often cause toxic side effects and few examples of subtype-selective inhibitors exist. Herein, we describe a structure-guided approach toward the development of a selective FGFR2 inhibitor. De novo design was carried out on an existing fragment series to yield compounds predicted to improve potency against the FGFRs. Subsequent iterative rounds of synthesis and biological evaluation led to an inhibitor with nanomolar potency that exhibited moderate selectivity for FGFR2 over FGFR1/3. Subtle changes to the lead inhibitor resulted in a complete loss of selectivity for FGFR2. X-ray crystallographic studies revealed inhibitor-specific morphological differences in the P-loop which were posited to be fundamental to the selectivity of these compounds. Additional docking studies have predicted an FGFR2-selective H-bond which could be utilized to design more selective FGFR2 inhibitors.
Collapse
Affiliation(s)
- Lewis D Turner
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Ryan A Hubball
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| | - Kyle M Orritt
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| | - Chi-Chuan Lin
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Julie E Burns
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, U.K
| | - Margaret A Knowles
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, U.K
| | | |
Collapse
|
20
|
DNA repair glycosylase hNEIL1 triages damaged bases via competing interaction modes. Nat Commun 2021; 12:4108. [PMID: 34226550 PMCID: PMC8257757 DOI: 10.1038/s41467-021-24431-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/14/2021] [Indexed: 12/31/2022] Open
Abstract
DNA glycosylases must distinguish the sparse damaged sites from the vast expanse of normal DNA bases. However, our understanding of the nature of nucleobase interrogation is still limited. Here, we show that hNEIL1 (human endonuclease VIII-like 1) captures base lesions via two competing states of interaction: an activated state that commits catalysis and base excision repair, and a quarantine state that temporarily separates and protects the flipped base via auto-inhibition. The relative dominance of the two states depends on key residues of hNEIL1 and chemical properties (e.g. aromaticity and hydrophilicity) of flipped bases. Such a DNA repair mechanism allows hNEIL1 to recognize a broad spectrum of DNA damage while keeps potential gratuitous repair in check. We further reveal the molecular basis of hNEIL1 activity regulation mediated by post-transcriptional modifications and provide an example of how exquisite structural dynamics serves for orchestrated enzyme functions. hNEIL1 (human endonuclease VIII-like 1) is a broadly specific DNA glycosylase for base excision repair. Here, the authors show that hNEIL1 can assume activated or triage conformations: the structural basis for the mechanism that enables broad specificity and reduces futile repair of normal bases.
Collapse
|
21
|
Vásquez AF, González Barrios AF. Classical MD and metadynamics simulations on back-pocket binders of CDK2 and VEGFR2: a guidepost to design novel small-molecule dual inhibitors. J Biomol Struct Dyn 2021; 40:9030-9041. [PMID: 33949282 DOI: 10.1080/07391102.2021.1922311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclin-Dependent Kinase 2 (CDK2) and Vascular-Endothelial Growth Factor Receptor 2 (VEGFR2) are promising targets for the design of novel inhibitors in anticancer therapeutics. In a recent work, our group designed a set of potential dual inhibitors predicted to occupy an allosteric back pocket near the active site of both enzymes, but their dynamic and unbinding behavior was unclear. Here, we used molecular dynamics (MD) and metadynamics (meta-D) simulations to study two of these virtual candidates (herein called IQ2 and IQ3). Their binding mode was predicted to be similar to that observed in LQ5 and BAX, well-known back-pocket binders of CDK2 and VEGFR2, respectively, including H-bonding with critical residues such as Leu83/Cys113 and Asp145/Asp190 (but excepting H-bonding with Glu51/Glu111) in CDK2/VEGFR2, correspondingly. Likewise, while LQ5 and BAX unbound through the allosteric channel as expected for type-IIA inhibitors, IQ2 and IQ3 unbound via the ATP channel (except for CDK2-IQ2) as expected for type-I½A inhibitors. Interestingly, a C-C single/double bond difference between IQ2/IQ3, respectively, resulted associated with differences in the AS/T loop flexibility observed for CDK2. These insights will help developing scaffold modifications during an optimization stage, serving as a starting point to develop dual kinase inhibitors in challenging biological targets with a promising anticancer potential.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Andrés Felipe Vásquez
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, Colombia
| | | |
Collapse
|
22
|
Zarnecka J, Lukac I, Messham SJ, Hussin A, Coppola F, Enoch SJ, Dossetter AG, Griffen EJ, Leach AG. Mapping Ligand-Shape Space for Protein-Ligand Systems: Distinguishing Key-in-Lock and Hand-in-Glove Proteins. J Chem Inf Model 2021; 61:1859-1874. [PMID: 33755448 DOI: 10.1021/acs.jcim.1c00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many of the recently developed methods to study the shape of molecules permit one conformation of one molecule to be compared to another conformation of the same or a different molecule: a relative shape. Other methods provide an absolute description of the shape of a conformation that does not rely on comparisons or overlays. Any absolute description of shape can be used to generate a self-organizing map (shape map) that places all molecular shapes relative to one another; in the studies reported here, the shape fingerprint and ultrafast shape recognition methods are employed to create such maps. In the shape maps, molecules that are near one another have similar shapes, and the maps for the 102 targets in the DUD-E set have been generated. By examining the distribution of actives in comparison with their physical-property-matched decoys, we show that the proteins of key-in-lock type (relatively rigid receptor and ligand) can be distinguished from those that are more of a hand-in-glove type (more flexible receptor and ligand). These are linked to known differences in protein flexibility and binding-site size.
Collapse
Affiliation(s)
- Joanna Zarnecka
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Iva Lukac
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Stephen J Messham
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Alhusein Hussin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Francesco Coppola
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Steven J Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | | | - Edward J Griffen
- MedChemica Limited, Biohub, Mereside, Alderley Park, Macclesfield SK10 4TG, U.K
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K.,MedChemica Limited, Biohub, Mereside, Alderley Park, Macclesfield SK10 4TG, U.K.,Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| |
Collapse
|
23
|
Chen Y, Zheng Y, Fong P, Mao S, Wang Q. The application of the MM/GBSA method in the binding pose prediction of FGFR inhibitors. Phys Chem Chem Phys 2020; 22:9656-9663. [PMID: 32328599 DOI: 10.1039/d0cp00831a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The success of a structure-based drug is highly dependent on a known binding pose of the protein-ligand system. However, this is not always available. In this study, we set out to explore the applicability of the popular and easy-to-use MD-based MM/GBSA method to determine the binding poses of known FGFR inhibitors. It was found that MM/GBSA combined with 100 ns of MD simulation significantly improved the success rate of docking methods from 30-40% to 70%. This work demonstrates a way that the MM/GBSA method can be more accurate than it is in ligand ranking, filling a gap in structure-based drug discovery when the binding pose is unknown.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yongxiang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pedro Fong
- School of Health Sciences and Sports, Macao Polytechnic Institute, Rua de Luís Gonzaga Gomes, Macao, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
The structure of human GCN2 reveals a parallel, back-to-back kinase dimer with a plastic DFG activation loop motif. Biochem J 2020; 477:275-284. [PMID: 31868900 DOI: 10.1042/bcj20190196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 11/17/2022]
Abstract
When activated by amino acid starvation, the stress sensing protein kinase GCN2 phosphorylates the eukaryotic initiation factor 2 alpha, inhibiting translation to conserve energy and facilitate cell survival. Amino acid starvation, particularly of tryptophan and arginine, affects immune tolerance by suppressing differentiation and proliferation of T-cells via activation of GCN2 kinase. In addition, the GCN2 pathway mediates cancer survival directly within the context of metabolic stress. Here, we report the first crystal structures of the human GCN2 kinase domain (KD) in complex with two inhibitors of different size, shape, and chemical scaffold. Three novel activation loop conformations representative of different activation states of the kinase are described. In addition, a novel dimerization organization for GCN2 is observed. This arrangement is consistent with the hypothesis that the GCN2 KD forms an antiparallel inactive dimer until uncharged tRNA binds to it and triggers conformational changes that shift the equilibrium to the active parallel dimer.
Collapse
|
25
|
Sepp K, Lee M, Bluntzer MTJ, Helgason GV, Hulme AN, Brunton VG. Utilizing Stimulated Raman Scattering Microscopy To Study Intracellular Distribution of Label-Free Ponatinib in Live Cells. J Med Chem 2020; 63:2028-2034. [PMID: 31829628 PMCID: PMC7073915 DOI: 10.1021/acs.jmedchem.9b01546] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 12/20/2022]
Abstract
Stimulated Raman scattering (SRS) microscopy represents a powerful method for imaging label-free drug distribution with high resolution. SRS was applied to image label-free ponatinib with high sensitivity and specificity in live human chronic myeloid leukemia (CML) cell lines. This was achieved at biologically relevant, nanomolar concentrations, allowing determination of ponatinib uptake and sequestration into lysosomes during the development of acquired drug resistance and an improved understanding of target engagement.
Collapse
Affiliation(s)
- Kristel Sepp
- Edinburgh Cancer
Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, U.K.
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Martin Lee
- Edinburgh Cancer
Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, U.K.
| | - Marie T. J. Bluntzer
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - G. Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, U.K.
| | - Alison N. Hulme
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Valerie G. Brunton
- Edinburgh Cancer
Research UK Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
26
|
Liu J, Pei J, Lai L. A combined computational and experimental strategy identifies mutations conferring resistance to drugs targeting the BCR-ABL fusion protein. Commun Biol 2020; 3:18. [PMID: 31925328 PMCID: PMC6952392 DOI: 10.1038/s42003-019-0743-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
Drug resistance is of increasing concern, especially during the treatments of infectious diseases and cancer. To accelerate the drug discovery process in combating issues of drug resistance, here we developed a computational and experimental strategy to predict drug resistance mutations. Using BCR-ABL as a case study, we successfully recaptured the clinically observed mutations that confer resistance imatinib, nilotinib, dasatinib, bosutinib, and ponatinib. We then experimentally tested the predicted mutants in vitro. We found that although all mutants showed weakened binding strength as expected, the binding constants alone were not a good indicator of drug resistance. Instead, the half-maximal inhibitory concentration (IC50) was shown to be a good indicator of the incidence of the predicted mutations, together with change in catalytic efficacy. Our suggested strategy for predicting drug-resistance mutations includes the computational prediction and in vitro selection of mutants with increased IC50 values beyond the drug safety window.
Collapse
Affiliation(s)
- Jinxin Liu
- The PTN Graduate Program, College of Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Jianfeng Pei
- Center for Quantitative Biology, AAIS, Peking University, Beijing, 100871, P. R. China.
| | - Luhua Lai
- Center for Quantitative Biology, AAIS, Peking University, Beijing, 100871, P. R. China.
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
27
|
Roskoski R. The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder. Pharmacol Res 2020; 151:104567. [DOI: 10.1016/j.phrs.2019.104567] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022]
|
28
|
Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE. A Dynamic Switch in Inactive p38γ Leads to an Excited State on the Pathway to an Active Kinase. Biochemistry 2019; 58:5160-5172. [PMID: 31794659 DOI: 10.1021/acs.biochem.9b00932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The inactive state of mitogen-activated protein kinases (MAPKs) adopts an open conformation while the active state exists in a compact form stabilized by phosphorylation. In the active state, eukaryotic kinases undergo breathing motions related to substrate binding and product release that have not previously been detected in the inactive state. However, docking interactions of partner proteins with inactive MAPK kinases exhibit allostery in binding of activating kinases. Interactions at a site distant from the activation loop are coupled to the configuration of the activation loop, suggesting that the inactive state may also undergo concerted dynamics. X-ray crystallographic studies of nonphosphorylated, inactive p38γ reveal differences in domain orientations and active site structure in the two molecules in the asymmetric unit. One molecule resembles an inactive kinase with an open active site. The second molecule has a rotation of the N-lobe that leads to partial compaction of the active site, resulting in a conformation that is intermediate between the inactive open state and the fully closed state of the activated kinase. Although the compact state of apo p38γ displays several of the features of the activated enzyme, it remains catalytically inert. In solution, the kinase fluctuates on a millisecond time scale between the open ground state and a weakly populated excited state that is similar in structure to the compact state observed in the crystal. The nuclear magnetic resonance and crystal structure data imply that interconversion between the open and compact states involves a molecular switch associated with the DFG loop.
Collapse
|
29
|
Liu J, Zhu L, Zhang X, Wu B, Zhu P, Zhao H, Wang J. Peptide-based NTA(Ni)-nanodiscs for studying membrane enhanced FGFR1 kinase activities. PeerJ 2019; 7:e7234. [PMID: 31372315 PMCID: PMC6659669 DOI: 10.7717/peerj.7234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/02/2019] [Indexed: 11/20/2022] Open
Abstract
Tyrosine autophosphorylation plays a crucial regulatory role in the kinase activities of fibroblast growth factor receptors (FGFRs), and in the recruitment and activation of downstream intracellular signaling pathways. Biophysical and biochemical investigations of FGFR kinase domains in membrane environments offer key insights into phosphorylation mechanisms. Hence, we constructed nickel chelating nanodiscs based on a 22-residue peptide. The spontaneous anchoring of N-terminal His6-tagged FGFR1c kinase domain (FGFR1K) onto peptide nanodiscs grants FGFR1K orientations occurring on native plasma membranes. Following membrane incorporation, the autophosphorylation of FGFR1K, as exemplified by Y653 and Y654 in the A-loop and the total tyrosine phosphorylation, increase significantly. This in vitro reconstitution system may be applicable to studies of other membrane associated phenomena.
Collapse
Affiliation(s)
- Juanjuan Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Zhu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xueli Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| |
Collapse
|
30
|
Arcon JP, Defelipe LA, Lopez ED, Burastero O, Modenutti CP, Barril X, Marti MA, Turjanski AG. Cosolvent-Based Protein Pharmacophore for Ligand Enrichment in Virtual Screening. J Chem Inf Model 2019; 59:3572-3583. [DOI: 10.1021/acs.jcim.9b00371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | | | | | - Xavier Barril
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
- Faculty of Pharmacy and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain
| | | | | |
Collapse
|
31
|
Application of a Substrate-Mediated Selection with c-Src Tyrosine Kinase to a DNA-Encoded Chemical Library. Molecules 2019; 24:molecules24152764. [PMID: 31366048 PMCID: PMC6695731 DOI: 10.3390/molecules24152764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
As aberrant activity of protein kinases is observed in many disease states, these enzymes are common targets for therapeutics and detection of activity levels. The development of non-natural protein kinase substrates offers an approach to protein substrate competitive inhibitors, a class of kinase inhibitors with promise for improved specificity. Also, kinase activity detection approaches would benefit from substrates with improved activity and specificity. Here, we apply a substrate-mediated selection to a peptidomimetic DNA-encoded chemical library for enrichment of molecules that can be phosphorylated by the protein tyrosine kinase, c-Src. Several substrates were identified and characterized for activity. A lead compound (SrcDEL10) showed both the ability to serve as a substrate and to promote ATP hydrolysis by the kinase. In inhibition assays, compounds displayed IC50's ranging from of 8-100 µM. NMR analysis of SrcDEL10 bound to the c-Src:ATP complex was conducted to characterize the binding mode. An ester derivative of the lead compound demonstrated cellular activity with inhibition of Src-dependent signaling in cell culture. Together, the results show the potential for substrate-mediated selections of DNA-encoded libraries to discover molecules with functions other than simple protein binding and offer a new discovery method for development of synthetic tyrosine kinase substrates.
Collapse
|
32
|
Dai S, Zhou Z, Chen Z, Xu G, Chen Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and Small Molecule Inhibitors. Cells 2019; 8:E614. [PMID: 31216761 PMCID: PMC6627960 DOI: 10.3390/cells8060614] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/05/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases expressed on the cell membrane that play crucial roles in both developmental and adult cells. Dysregulation of FGFRs has been implicated in a wide variety of cancers, such as urothelial carcinoma, hepatocellular carcinoma, ovarian cancer and lung adenocarcinoma. Due to their functional importance, FGFRs have been considered as promising drug targets for the therapy of various cancers. Multiple small molecule inhibitors targeting this family of kinases have been developed, and some of them are in clinical trials. Furthermore, the pan-FGFR inhibitor erdafitinib (JNJ-42756493) has recently been approved by the U.S. Food and Drug Administration (FDA) for the treatment of metastatic or unresectable urothelial carcinoma (mUC). This review summarizes the structure of FGFR, especially its kinase domain, and the development of small molecule FGFR inhibitors.
Collapse
Affiliation(s)
- Shuyan Dai
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Zhan Zhou
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Zhuchu Chen
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Yongheng Chen
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
33
|
Sowley H, Liu Z, Davies J, Peach R, Guo R, Sim S, Long F, Holdgate G, Willison K, Zhuang W, Klug DR. Detection of Drug Binding to a Target Protein Using EVV 2DIR Spectroscopy. J Phys Chem B 2019; 123:3598-3606. [PMID: 30848913 DOI: 10.1021/acs.jpcb.9b00501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We demonstrate that electron-vibration-vibration two-dimensional infrared spectroscopy (EVV 2DIR) can be used to detect the binding of a drug to a target protein-active site. The EVV 2DIR spectrum of the FGFR1 kinase target protein is found to have ∼200 detectable cross-peaks in the spectral region 1250-1750 cm-1/2600-3400 cm-1, with additional 63 peaks caused by the addition of a drug, SU5402. Of these 63 new peaks, it is shown that only six are due to protein-drug interactions, with the other 57 being due to vibrational coupling within the drug itself. Quantum mechanical calculations employing density functional theory are used to support assignment of the six binding-dependent peaks, with one being assigned to a known interaction between the drug and a backbone carbonyl group which forms part of the binding site. None of the 57 intramolecular coupling peaks associated with the drug molecule change substantially in either intensity or frequency when the drug binds to the target protein. This strongly suggests that the structure of the drug in the target binding site is essentially identical to that when it is not bound.
Collapse
Affiliation(s)
| | - ZhiQiang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matters , CAS , Fuzhou 350002 , P. R. China
| | | | | | | | | | - FengQin Long
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matters , CAS , Fuzhou 350002 , P. R. China
| | - Geoffrey Holdgate
- Hit Discovery, Discovery Sciences, IMED Biotech Unit , AstraZeneca , Macclesfield SK10 2NA , U.K
| | | | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matters , CAS , Fuzhou 350002 , P. R. China
| | | |
Collapse
|
34
|
A class of highly selective inhibitors bind to an active state of PI3Kγ. Nat Chem Biol 2019; 15:348-357. [DOI: 10.1038/s41589-018-0215-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
|
35
|
Farrell B, Breeze AL. Structure, activation and dysregulation of fibroblast growth factor receptor kinases: perspectives for clinical targeting. Biochem Soc Trans 2018; 46:1753-1770. [PMID: 30545934 PMCID: PMC6299260 DOI: 10.1042/bst20180004] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 01/22/2023]
Abstract
The receptor tyrosine kinase family of fibroblast growth factor receptors (FGFRs) play crucial roles in embryonic development, metabolism, tissue homeostasis and wound repair via stimulation of intracellular signalling cascades. As a consequence of FGFRs' influence on cell growth, proliferation and differentiation, FGFR signalling is frequently dysregulated in a host of human cancers, variously by means of overexpression, somatic point mutations and gene fusion events. Dysregulation of FGFRs is also the underlying cause of many developmental dysplasias such as hypochondroplasia and achondroplasia. Accordingly, FGFRs are attractive pharmaceutical targets, and multiple clinical trials are in progress for the treatment of various FGFR aberrations. To effectively target dysregulated receptors, a structural and mechanistic understanding of FGFR activation and regulation is required. Here, we review some of the key research findings from the last couple of decades and summarise the strategies being explored for therapeutic intervention.
Collapse
Affiliation(s)
- Brendan Farrell
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
36
|
Sanfelice D, Koss H, Bunney TD, Thompson GS, Farrell B, Katan M, Breeze AL. NMR backbone assignments of the tyrosine kinase domain of human fibroblast growth factor receptor 3 in apo state and in complex with inhibitor PD173074. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:231-235. [PMID: 29582384 PMCID: PMC6132846 DOI: 10.1007/s12104-018-9814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/20/2018] [Indexed: 05/03/2023]
Abstract
Fibroblast growth factors receptors (FGFR) are transmembrane protein tyrosine kinases involved in many cellular process, including growth, differentiation and angiogenesis. Dysregulation of FGFR enzymatic activity is associated with developmental disorders and cancers; therefore FGFRs have become attractive targets for drug discovery, with a number of agents in late-stage clinical trials. Here, we present the backbone resonance assignments of FGFR3 tyrosine kinase domain in the ligand-free form and in complex with the canonical FGFR kinase inhibitor PD173074. Analysis of chemical shift changes upon inhibitor binding highlights a characteristic pattern of allosteric network perturbations that is of relevance for future drug discovery activities aimed at development of conformationally-selective FGFR inhibitors.
Collapse
Affiliation(s)
- Domenico Sanfelice
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London, WC1E 6BT, UK.
| | - Hans Koss
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Gary S Thompson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Trust Biomolecular NMR Facility, School of Biosciences, University of Kent, Canterbury, CT2 7NZ, UK
| | - Brendan Farrell
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
37
|
Altered conformational landscape and dimerization dependency underpins the activation of EGFR by αC- β4 loop insertion mutations. Proc Natl Acad Sci U S A 2018; 115:E8162-E8171. [PMID: 30104348 DOI: 10.1073/pnas.1803152115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutational activation of epidermal growth factor receptor (EGFR) in human cancers involves both point mutations and complex mutations (insertions and deletions). In particular, short in-frame insertion mutations within a conserved αC-β4 loop in the EGFR kinase domain are frequently observed in tumor samples and patients harboring these mutations are insensitive to first-generation EGFR inhibitors. Despite the prevalence and clinical relevance of insertion mutations, the mechanisms by which these mutations regulate EGFR activity and contribute to drug sensitivity are poorly understood. Using cell-based mutation screening, we find that the precise location, length, and sequence of the inserted segment are critical for ligand-independent EGFR activation and downstream signaling. We identify three insertion mutations (N771_P772insN, D770_N771insG, and D770>GY) that activate EGFR in a unique way by relying more on the "acceptor" interface for kinase activation. Our drug inhibition studies indicate that these activating insertion mutations respond more favorably to osimertinib, a recently Food and Drug Administration-approved EGFR inhibitor for T790M-positive patients with lung cancer. Molecular dynamics simulations and umbrella sampling of WT and mutant EGFR suggest a model in which activating insertion mutations increase catalytic activity by relieving key autoinhibitory interactions associated with αC-helix movement and by lowering the transition free energy ([Formula: see text]) between active and inactive states. Our studies also identify a transition state sampled by activating insertion mutations that can be exploited in the design of mutant-selective EGFR inhibitors.
Collapse
|
38
|
Schuetz DA, Richter L, Amaral M, Grandits M, Grädler U, Musil D, Buchstaller HP, Eggenweiler HM, Frech M, Ecker GF. Ligand Desolvation Steers On-Rate and Impacts Drug Residence Time of Heat Shock Protein 90 (Hsp90) Inhibitors. J Med Chem 2018; 61:4397-4411. [DOI: 10.1021/acs.jmedchem.8b00080] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Doris A. Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Marta Amaral
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Melanie Grandits
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Ulrich Grädler
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Djordje Musil
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | | | | | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
39
|
Bunney TD, Inglis AJ, Sanfelice D, Farrell B, Kerr CJ, Thompson GS, Masson GR, Thiyagarajan N, Svergun DI, Williams RL, Breeze AL, Katan M. Disease Variants of FGFR3 Reveal Molecular Basis for the Recognition and Additional Roles for Cdc37 in Hsp90 Chaperone System. Structure 2018; 26:446-458.e8. [PMID: 29478821 PMCID: PMC5846801 DOI: 10.1016/j.str.2018.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/06/2017] [Accepted: 01/26/2018] [Indexed: 11/21/2022]
Abstract
Receptor tyrosine kinase FGFR3 is involved in many signaling networks and is frequently mutated in developmental disorders and cancer. The Hsp90/Cdc37 chaperone system is essential for function of normal and neoplastic cells. Here we uncover the mechanistic inter-relationships between these proteins by combining approaches including NMR, HDX-MS, and SAXS. We show that several disease-linked mutations convert FGFR3 to a stronger client, where the determinant underpinning client strength involves an allosteric network through the N-lobe and at the lobe interface. We determine the architecture of the client kinase/Cdc37 complex and demonstrate, together with site-specific information, that binding of Cdc37 to unrelated kinases induces a common, extensive conformational remodeling of the kinase N-lobe, beyond localized changes and interactions within the binary complex. As further shown for FGFR3, this processing by Cdc37 deactivates the kinase and presents it, in a specific orientation established in the complex, for direct recognition by Hsp90.
Collapse
Affiliation(s)
- Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK.
| | - Alison J Inglis
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Domenico Sanfelice
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Brendan Farrell
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, Leeds LS2 9JT, UK
| | - Christopher J Kerr
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, DESY, Hamburg, Germany
| | - Gary S Thompson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, Leeds LS2 9JT, UK
| | - Glenn R Masson
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Nethaji Thiyagarajan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, DESY, Hamburg, Germany
| | - Roger L Williams
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, Leeds LS2 9JT, UK.
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK.
| |
Collapse
|
40
|
Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat Commun 2017; 8:2276. [PMID: 29273709 PMCID: PMC5741624 DOI: 10.1038/s41467-017-02258-w] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Structure-based drug design has often been restricted by the rather static picture of protein-ligand complexes presented by crystal structures, despite the widely accepted importance of protein flexibility in biomolecular recognition. Here we report a detailed experimental and computational study of the drug target, human heat shock protein 90, to explore the contribution of protein dynamics to the binding thermodynamics and kinetics of drug-like compounds. We observe that their binding properties depend on whether the protein has a loop or a helical conformation in the binding site of the ligand-bound state. Compounds bound to the helical conformation display slow association and dissociation rates, high-affinity and high cellular efficacy, and predominantly entropically driven binding. An important entropic contribution comes from the greater flexibility of the helical relative to the loop conformation in the ligand-bound state. This unusual mechanism suggests increasing target flexibility in the bound state by ligand design as a new strategy for drug discovery.
Collapse
|
41
|
Jafari B, Hamzeh-Mivehroud M, Alizadeh AA, Sharifi M, Dastmalchi S. An Alignment-Independent 3D-QSAR Study of FGFR2 Tyrosine Kinase Inhibitors. Adv Pharm Bull 2017; 7:409-418. [PMID: 29071223 PMCID: PMC5651062 DOI: 10.15171/apb.2017.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 01/09/2023] Open
Abstract
Purpose: Receptor tyrosine kinase (RTK) inhibitors are widely used pharmaceuticals in cancer therapy. Fibroblast growth factor receptors (FGFRs) are members of RTK superfamily which are highly expressed on the surface of carcinoma associate fibroblasts (CAFs). The involvement of FGFRs in different types of cancer makes them promising target in cancer therapy and hence, the identification of novel FGFR inhibitors is of great interest. In the current study we aimed to develop an alignment independent three dimensional quantitative structure-activity relationship (3D-QSAR) model for a set of 26 FGFR2 kinase inhibitors allowing the prediction of activity and identification of important structural features for these inhibitors. Methods: Pentacle software was used to calculate grid independent descriptors (GRIND) for the active conformers generated by docking followed by the selection of significant variables using fractional factorial design (FFD). The partial least squares (PLS) model generated based on the remaining descriptors was assessed by internal and external validation methods. Results: Six variables were identified as the most important probes-interacting descriptors with high impact on the biological activity of the compounds. Internal and external validations were lead to good statistical parameters (r2 values of 0.93 and 0.665, respectively). Conclusion: The results showed that the model has good predictive power and may be used for designing novel FGFR2 inhibitors.
Collapse
Affiliation(s)
- Behzad Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sharifi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Toledo RA. Genetics of Pheochromocytomas and Paragangliomas: An Overview on the Recently Implicated Genes MERTK, MET, Fibroblast Growth Factor Receptor 1, and H3F3A. Endocrinol Metab Clin North Am 2017; 46:459-489. [PMID: 28476232 DOI: 10.1016/j.ecl.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic studies conducted by different centers have uncovered various new genes mutated in pheochromocytomas and paragangliomas (PPGLs) at germline, mosaic, and/or somatic levels, greatly expanding our knowledge of the genetic events occurring in these tumors. The current review focuses on very new findings and discusses the previously not recognized role of MERTK, MET, fibroblast growth factor receptor 1, and H3F3A genes in syndromic and nonsyndromic PPGLs. These 4 new genes were selected because although their association with PPGLs is very recent, mounting evidence was generated that rapidly consolidated the prominence of these genes in the molecular pathogenesis of PPGLs.
Collapse
Affiliation(s)
- Rodrigo Almeida Toledo
- Division of Hematology and Medical Oncology, Department of Medicine, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Dr, San Antonio, TX 78229, USA; Clinical Research Program, Spanish National Cancer Research Centre, CNIO, Calle de Melchor Fernández Almagro, 3, Madrid 28029, Spain.
| |
Collapse
|
43
|
Schuetz DA, de Witte WEA, Wong YC, Knasmueller B, Richter L, Kokh DB, Sadiq SK, Bosma R, Nederpelt I, Heitman LH, Segala E, Amaral M, Guo D, Andres D, Georgi V, Stoddart LA, Hill S, Cooke RM, De Graaf C, Leurs R, Frech M, Wade RC, de Lange ECM, IJzerman AP, Müller-Fahrnow A, Ecker GF. Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discov Today 2017; 22:896-911. [PMID: 28412474 DOI: 10.1016/j.drudis.2017.02.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 01/05/2023]
Abstract
A considerable number of approved drugs show non-equilibrium binding characteristics, emphasizing the potential role of drug residence times for in vivo efficacy. Therefore, a detailed understanding of the kinetics of association and dissociation of a target-ligand complex might provide crucial insight into the molecular mechanism-of-action of a compound. This deeper understanding will help to improve decision making in drug discovery, thus leading to a better selection of interesting compounds to be profiled further. In this review, we highlight the contributions of the Kinetics for Drug Discovery (K4DD) Consortium, which targets major open questions related to binding kinetics in an industry-driven public-private partnership.
Collapse
Affiliation(s)
- Doris A Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Yin Cheong Wong
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bernhard Knasmueller
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - S Kashif Sadiq
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Reggie Bosma
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands
| | - Indira Nederpelt
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Elena Segala
- Heptares Therapeutics,Biopark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Marta Amaral
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany; Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Dong Guo
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Dorothee Andres
- Bayer AG, Drug Discovery, Pharmaceuticals, Lead Discovery Berlin, Müllerstr. 178, 13353 Berlin, Germany
| | - Victoria Georgi
- Bayer AG, Drug Discovery, Pharmaceuticals, Lead Discovery Berlin, Müllerstr. 178, 13353 Berlin, Germany
| | - Leigh A Stoddart
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Steve Hill
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Robert M Cooke
- Heptares Therapeutics,Biopark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Chris De Graaf
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands
| | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Elizabeth Cunera Maria de Lange
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Anke Müller-Fahrnow
- Bayer AG, Drug Discovery, Pharmaceuticals, Lead Discovery Berlin, Müllerstr. 178, 13353 Berlin, Germany
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
44
|
Phillips JJ, Buchanan A, Andrews J, Chodorge M, Sridharan S, Mitchell L, Burmeister N, Kippen AD, Vaughan TJ, Higazi DR, Lowe D. Rate of Asparagine Deamidation in a Monoclonal Antibody Correlating with Hydrogen Exchange Rate at Adjacent Downstream Residues. Anal Chem 2017; 89:2361-2368. [DOI: 10.1021/acs.analchem.6b04158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jonathan J. Phillips
- Department of Chemical
Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, United Kingdom
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Andrew Buchanan
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - John Andrews
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Matthieu Chodorge
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Sudharsan Sridharan
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Laura Mitchell
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Nicole Burmeister
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Alistair D. Kippen
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Tristan J. Vaughan
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Daniel R. Higazi
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - David Lowe
- MedImmune Ltd., Aaron Klug Building,
Granta Park, Cambridge, CB21 6GH, United Kingdom
| |
Collapse
|
45
|
Perdios L, Lowe AR, Saladino G, Bunney TD, Thiyagarajan N, Alexandrov Y, Dunsby C, French PMW, Chin JW, Gervasio FL, Tate EW, Katan M. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET. Sci Rep 2017; 7:39841. [PMID: 28045057 PMCID: PMC5206623 DOI: 10.1038/srep39841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.
Collapse
Affiliation(s)
- Louis Perdios
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
- Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Alan R. Lowe
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
- London Centre for Nanotechnology, 17-19 Gower St, London, WC1H 0AH, UK
- Division of Biosciences, Birkbeck College, Malet St, London, WC1E 7HX, UK
| | - Giorgio Saladino
- Institute of Structural and Molecular Biology, Department of Chemistry, University College London, Gower St, London WC1E 6BT, UK
| | - Tom D. Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Nethaji Thiyagarajan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Yuriy Alexandrov
- Department of Physics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Christopher Dunsby
- Department of Physics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Paul M. W. French
- Department of Physics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Jason W. Chin
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Francesco Luigi Gervasio
- Institute of Structural and Molecular Biology, Department of Chemistry, University College London, Gower St, London WC1E 6BT, UK
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| |
Collapse
|
46
|
Cheng W, Wang M, Tian X, Zhang X. An overview of the binding models of FGFR tyrosine kinases in complex with small molecule inhibitors. Eur J Med Chem 2016; 126:476-490. [PMID: 27914362 DOI: 10.1016/j.ejmech.2016.11.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/19/2016] [Accepted: 11/07/2016] [Indexed: 11/26/2022]
Abstract
The fibroblast growth factor receptor (FGFR) family receptor tyrosine kinase (RTK) includes four structurally related members, termed as FGFR1, FGFR2, FGFR3, and FGFR4. Given its intimate role in the progression of several solid tumors, excessive FGFR signaling provides an opportunity for anticancer therapy. Along with extensive pharmacological studies validating the therapeutic potential of targeting the FGFRs for cancer treatment, co-crystal structures of FGFRs/inhibitors are continuously coming up to study the mechanism of actions and explore new inhibitors. Herein, we review the reported co-crystals of FGFRs in complex with the corresponding inhibitors, main focusing our attention on the binding models and the pharmacological activities of the inhibitors.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mixiang Wang
- Department of Pharmacy, The First Affiliated Hospital of Nanyang Medical College, Nanyang 473000, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
47
|
Yoza K, Himeno R, Amano S, Kobashigawa Y, Amemiya S, Fukuda N, Kumeta H, Morioka H, Inagaki F. Biophysical characterization of drug-resistant mutants of fibroblast growth factor receptor 1. Genes Cells 2016; 21:1049-1058. [PMID: 27558949 DOI: 10.1111/gtc.12405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022]
Abstract
Over-expression and aberrant activation of tyrosine kinases occur frequently in human cancers. Various tyrosine kinase inhibitors (TKIs) are under clinical use, but acquisition of resistance to these drugs is a major problem. Here, we studied the interaction between two drug-resistant mutants of fibroblast growth factor receptor 1 (FGFR1), N546K and V561M, and four ATP-competitive inhibitors, ponatinib, dovitinib, PD173074 and BGJ-398. Among these protein-drug systems, the only marked reduction in affinity was that of PD173074 for the V561M mutant. We also examined the interaction of these FGFR1 variants to AMP-PNP, a nonhydrolyzable analogue of ATP, and showed that N546K showed increased affinity for the ATP analogue as compared with the wild type. These findings will help to clarify the mechanism of drug resistance in mutant tyrosine kinases.
Collapse
Affiliation(s)
- Kaito Yoza
- Department of Analytical and Biophysical Chemistry, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Rika Himeno
- Department of Analytical and Biophysical Chemistry, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Shinjiro Amano
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
| | - Shun Amemiya
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Natsuki Fukuda
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Hiroyuki Kumeta
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Fuyuhiko Inagaki
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
48
|
Patani H, Bunney TD, Thiyagarajan N, Norman RA, Ogg D, Breed J, Ashford P, Potterton A, Edwards M, Williams SV, Thomson GS, Pang CS, Knowles MA, Breeze AL, Orengo C, Phillips C, Katan M. Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in clinical use. Oncotarget 2016; 7:24252-68. [PMID: 26992226 PMCID: PMC5029699 DOI: 10.18632/oncotarget.8132] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/28/2016] [Indexed: 01/09/2023] Open
Abstract
Frequent genetic alterations discovered in FGFRs and evidence implicating some as drivers in diverse tumors has been accompanied by rapid progress in targeting FGFRs for anticancer treatments. Wider assessment of the impact of genetic changes on the activation state and drug responses is needed to better link the genomic data and treatment options. We here apply a direct comparative and comprehensive analysis of FGFR3 kinase domain variants representing the diversity of point-mutations reported in this domain. We reinforce the importance of N540K and K650E and establish that not all highly activating mutations (for example R669G) occur at high-frequency and conversely, that some "hotspots" may not be linked to activation. Further structural characterization consolidates a mechanistic view of FGFR kinase activation and extends insights into drug binding. Importantly, using several inhibitors of particular clinical interest (AZD4547, BGJ-398, TKI258, JNJ42756493 and AP24534), we find that some activating mutations (including different replacements of the same residue) result in distinct changes in their efficacy. Considering that there is no approved inhibitor for anticancer treatments based on FGFR-targeting, this information will be immediately translatable to ongoing clinical trials.
Collapse
Affiliation(s)
- Harshnira Patani
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Tom D. Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Nethaji Thiyagarajan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Richard A. Norman
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Derek Ogg
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Jason Breed
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Paul Ashford
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Andrew Potterton
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Mina Edwards
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Sarah V. Williams
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds LS9 7TF, UK
| | - Gary S. Thomson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Camilla S.M. Pang
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Margaret A. Knowles
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds LS9 7TF, UK
| | - Alexander L. Breeze
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Christine Orengo
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Chris Phillips
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| |
Collapse
|
49
|
Morando MA, Saladino G, D’Amelio N, Pucheta-Martinez E, Lovera S, Lelli M, López-Méndez B, Marenchino M, Campos-Olivas R, Gervasio FL. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase. Sci Rep 2016; 6:24439. [PMID: 27087366 PMCID: PMC4834493 DOI: 10.1038/srep24439] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/29/2016] [Indexed: 01/06/2023] Open
Abstract
Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called "DFG-flip" of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an "in to out" movement resulting in a particular inactive conformation to which "type II" kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.
Collapse
Affiliation(s)
- Maria Agnese Morando
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Giorgio Saladino
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Nicola D’Amelio
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | | | - Silvia Lovera
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Moreno Lelli
- Chemistry Department, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - Blanca López-Méndez
- Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Marco Marenchino
- Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Francesco Luigi Gervasio
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|