1
|
Taciak B, Bialasek M, Kubiak M, Marszalek I, Gorczak M, Osadchuk O, Kurpiel D, Strzemecki D, Barwik K, Skorzynski M, Nowakowska J, Lipiński W, Kiraga Ł, Brancewicz J, Klopfleisch R, Krzemiński Ł, Gorka E, Smolarska A, Padzinska-Pruszynska I, Siemińska M, Guzek J, Kutner J, Kisiala M, Wozniak K, Parisi G, Piacentini R, Cassetta L, Forrester LM, Bodnar L, Weiss T, Boffi A, Kucharzewska P, Rygiel TP, Krol M. Harnessing macrophage-drug conjugates for allogeneic cell-based therapy of solid tumors via the TRAIN mechanism. Nat Commun 2025; 16:1327. [PMID: 39900573 PMCID: PMC11790938 DOI: 10.1038/s41467-025-56637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/27/2025] [Indexed: 02/05/2025] Open
Abstract
Treatment of solid tumors remains challenging and therapeutic strategies require continuous development. Tumor-infiltrating macrophages play a pivotal role in tumor dynamics. Here, we present a Macrophage-Drug Conjugate (MDC) platform technology that enables loading macrophages with ferritin-drug complexes. We first show that macrophages actively take up human heavy chain ferritin (HFt) in vitro via macrophage scavenger receptor 1 (MSR1). We further manifest that drug-loaded macrophages transfer ferritin to adjacent cancer cells through a process termed 'TRAnsfer of Iron-binding protein' (TRAIN). The TRAIN process requires direct cell-to-cell contact and an immune synapse-like structure. At last, MDCs with various anti-cancer drugs are formulated with their safety and anti-tumor efficacy validated in multiple syngeneic mice and orthotopic human tumor models via different routes of administration. Importantly, MDCs can be prepared in advance and used as thawed products, supporting their clinical applicability. This MDC approach thus represents a promising advancement in the therapeutic landscape for solid tumors.
Collapse
Affiliation(s)
- Bartlomiej Taciak
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Maciej Bialasek
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malgorzata Kubiak
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Malgorzata Gorczak
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | | | | | | | | | - Marcin Skorzynski
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Julia Nowakowska
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Łukasz Kiraga
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University of Berlin, Berlin, Germany
| | | | - Emilia Gorka
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Smolarska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | | | | | - Jakub Guzek
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jan Kutner
- The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Marlena Kisiala
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Krzysztof Wozniak
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Giacomo Parisi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Rome, Italy
| | - Roberta Piacentini
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Rome, Italy
| | - Luca Cassetta
- MRC Centre for Reproductive Health, Queen Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Lesley M Forrester
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Lubomir Bodnar
- Cellis AG, Zurich, Switzerland
- Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Alberto Boffi
- Cellis AG, Zurich, Switzerland
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Rome, Italy
| | - Paulina Kucharzewska
- Cellis AG, Zurich, Switzerland.
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Tomasz P Rygiel
- Cellis AG, Zurich, Switzerland.
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Magdalena Krol
- Cellis AG, Zurich, Switzerland.
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Li R, Huang J, Wei Y, Wang Y, Lu C, Liu J, Ma X. Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools. Int J Nanomedicine 2024; 19:13615-13651. [PMID: 39717515 PMCID: PMC11665441 DOI: 10.2147/ijn.s491573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Macrophage is an important component in the tumor immune microenvironment, which exerts significant influence on tumor development and metastasis. Due to their dual nature of promoting and suppressing inflammation, macrophages can serve as both targets for tumor immunotherapy and tools for treating malignancies. However, the abundant infiltration of tumor-associated macrophages dominated by an immunosuppressive phenotype maintains a pro-tumor microenvironment, and engineering macrophages using nanotechnology to manipulate the tumor immune microenvironment represent a feasible approach for cancer immunotherapy. Additionally, considering the phagocytic and specifically tumor-targeting capabilities of M1 macrophages, macrophages manipulated through cellular engineering and nanotechnology, as well as macrophage-derived exosomes and macrophage membranes, can also become effective tools for cancer treatment. In conclusion, nanotherapeutics targeting macrophages remains immense potential for the development of macrophage-mediated tumor treatment methods and will further enhance our understanding, diagnosis, and treatment of various malignants.
Collapse
Affiliation(s)
- Renwei Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yuhao Wei
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yusha Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
3
|
Haripriyaa M, Suthindhiran K. Investigation of pharmacokinetics and immunogenicity of magnetosomes. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:69-83. [PMID: 38214676 DOI: 10.1080/21691401.2023.2289367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Magnetosomes are iron oxide or iron sulphide nano-sized particles surrounded by a lipid bilayer synthesised by a group of bacteria known as magnetotactic bacteria (MTB). Magnetosomes have become a promising candidate for biomedical applications and could be potentially used as a drug-carrier. However, pharmacokinetics and immunogenicity of the magnetosomes have not been understood yet which preclude its clinical applications. Herein, we investigated the pharmacokinetics of magnetosomes including Absorption, Distribution, Metabolism, and Elimination (ADME) along with its immunogenicity in vitro and in vivo. The magnetosomes were conjugated with fluorescein isothiocyanate (Mag-FITC) and their conjugation was confirmed through fluorescence microscopy and its absorption in HeLa cell lines was evaluated using flow cytometry analysis. The results revealed a maximum cell uptake of 97% at 200 µg/mL concentration. Further, the biodistribution of Mag-FITC was investigated in vivo by a bioimaging system using BALB/c mice as a subject at different time intervals. The Mag-FITC neither induced death nor physical distress and the same was eliminated post 36 h of injection with meagre intensities left behind. The metabolism and elimination analysis were assessed to detect the iron overload which revealed that magnetosomes were entirely metabolised within 48-h interval. Furthermore, the histopathology and serum analysis reveal no histological damage with the absence of any abnormal biochemical parameters. The results support our study that magnetosomes were completely removed from the blood circulation within 48-h time interval. Moreover, the immunogenicity analysis has shown that magnetosomes do not induce any inflammation as indicated by reduced peaks of immune markers such as IL 1β, IL 2, IL 6, IL8, IFN γ, and TNF α estimated through Indirect ELISA. The normal behaviour of animals with the absence of acute or chronic toxicities in any organs declares that magnetosomes are safe to be injected. This shows that magnetosomes are benign for biological systems enrouting towards beneficial biomedical applications. Therefore, this study will advance the understanding and application of magnetosomes for clinical purposes.
Collapse
Affiliation(s)
- M Haripriyaa
- Marine Biotechnology and Bioproducts lab, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - K Suthindhiran
- Marine Biotechnology and Bioproducts lab, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
4
|
Zhang Y, Shi X, Shen Y, Dong X, He R, Chen G, Zhang Y, Tan H, Zhang K. Nanoengineering-armed oncolytic viruses drive antitumor response: progress and challenges. MedComm (Beijing) 2024; 5:e755. [PMID: 39399642 PMCID: PMC11467370 DOI: 10.1002/mco2.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a powerful tool in cancer therapy. Characterized with the unique abilities to selectively target and lyse tumor cells, OVs can expedite the induction of cell death, thereby facilitating effective tumor eradication. Nanoengineering-derived OVs overcome traditional OV therapy limitations by enhancing the stability of viral circulation, and tumor targeting, promising improved clinical safety and efficacy and so on. This review provides a comprehensive analysis of the multifaceted mechanisms through which engineered OVs can suppress tumor progression. It initiates with a concise delineation on the fundamental attributes of existing OVs, followed by the exploration of their mechanisms of the antitumor response. Amid rapid advancements in nanomedicine, this review presents an extensive overview of the latest developments in the synergy between nanomaterials, nanotechnologies, and OVs, highlighting the unique characteristics and properties of the nanomaterials employed and their potential to spur innovation in novel virus design. Additionally, it delves into the current challenges in this emerging field and proposes strategies to overcome these obstacles, aiming to spur innovation in the design and application of next-generation OVs.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyu Shi
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yifan Shen
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiulin Dong
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ruiqing He
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guo Chen
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yan Zhang
- Department of Medical UltrasoundRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Honghong Tan
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
5
|
Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. Application of magnetic nanoparticles in adoptive cell therapy of cancer; training, guiding and imaging cells. Nanomedicine (Lond) 2024; 19:2315-2329. [PMID: 39258568 PMCID: PMC11488091 DOI: 10.1080/17435889.2024.2395239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
Adoptive cell therapy (ACT) is on the horizon as a thrilling therapeutic plan for cancer. However, widespread application of ACT is often restricted by several challenges, including complexity of priming tumor-specific T cells and poor trafficking in solid tumors. The convergence of nanotechnology and cancer immunotherapy is coming of age and could address the limitations of ACT. Recent studies have provided evidence on the application of magnetic nanoparticles (MNPs) to generate smart immune cells and to bypass problems associated with conventional ACT. Herein, we review current progress in the application of MNPs to improve preparing, guiding and tracking immune cells in cancer ACT. Besides, we comment on the challenges ahead and strategies to optimize MNPs for clinical settings.
Collapse
Affiliation(s)
- Vahid Mohammadi
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Dogan NO, Suadiye E, Wrede P, Lazovic J, Dayan CB, Soon RH, Aghakhani A, Richter G, Sitti M. Immune Cell-Based Microrobots for Remote Magnetic Actuation, Antitumor Activity, and Medical Imaging. Adv Healthc Mater 2024; 13:e2400711. [PMID: 38885528 DOI: 10.1002/adhm.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Translating medical microrobots into clinics requires tracking, localization, and performing assigned medical tasks at target locations, which can only happen when appropriate design, actuation mechanisms, and medical imaging systems are integrated into a single microrobot. Despite this, these parameters are not fully considered when designing macrophage-based microrobots. This study presents living macrophage-based microrobots that combine macrophages with magnetic Janus particles coated with FePt nanofilm for magnetic steering and medical imaging and bacterial lipopolysaccharides for stimulating macrophages in a tumor-killing state. The macrophage-based microrobots combine wireless magnetic actuation, tracking with medical imaging techniques, and antitumor abilities. These microrobots are imaged under magnetic resonance imaging and optoacoustic imaging in soft-tissue-mimicking phantoms and ex vivo conditions. Magnetic actuation and real-time imaging of microrobots are demonstrated under static and physiologically relevant flow conditions using optoacoustic imaging. Further, macrophage-based microrobots are magnetically steered toward urinary bladder tumor spheroids and imaged with a handheld optoacoustic device, where the microrobots significantly reduce the viability of tumor spheroids. The proposed approach demonstrates the proof-of-concept feasibility of integrating macrophage-based microrobots into clinic imaging modalities for cancer targeting and intervention, and can also be implemented for various other medical applications.
Collapse
Affiliation(s)
- Nihal Olcay Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Eylül Suadiye
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Paul Wrede
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Jelena Lazovic
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Cem Balda Dayan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Ren Hao Soon
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569, Stuttgart, Germany
| | - Gunther Richter
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
7
|
Hájek M, Flögel U, S Tavares AA, Nichelli L, Kennerley A, Kahn T, Futterer JJ, Firsiori A, Grüll H, Saha N, Couñago F, Aydogan DB, Caligiuri ME, Faber C, Bell LC, Figueiredo P, Vilanova JC, Santini F, Mekle R, Waiczies S. MR beyond diagnostics at the ESMRMB annual meeting: MR theranostics and intervention. MAGMA (NEW YORK, N.Y.) 2024; 37:323-328. [PMID: 38865057 PMCID: PMC11316697 DOI: 10.1007/s10334-024-01176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Affiliation(s)
- Milan Hájek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adriana A S Tavares
- Centre for Cardiovascular Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Lucia Nichelli
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France
- Department of Neuroradiology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Aneurin Kennerley
- Department of Sports and Exercise Science, Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Biology, University of York, York, UK
| | - Thomas Kahn
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Jurgen J Futterer
- Minimally Invasive Image-Guided Intervention Center (MAGIC), Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Aikaterini Firsiori
- Unit of Diagnostic and Interventional Neuroradiology, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Nandita Saha
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010, Madrid, Spain
| | - Dogu Baran Aydogan
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Università Degli Studi "Magna Graecia", Catanzaro, Italy
| | - Cornelius Faber
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Münster, Germany
| | - Laura C Bell
- Early Clinical Development, Genentech Inc., South San Francisco, USA
| | - Patrícia Figueiredo
- Institute for Systems and Robotics, ISR-Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging (IDI) Girona, University of Girona, 17004, Girona, Spain
| | - Francesco Santini
- Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Ralf Mekle
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the MDC, Berlin, Germany.
| |
Collapse
|
8
|
Zhu J, Ma J, Huang M, Deng H, Shi G. Emerging delivery strategy for oncolytic virotherapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200809. [PMID: 38845744 PMCID: PMC11153257 DOI: 10.1016/j.omton.2024.200809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Oncolytic virotherapy represents a promising approach in cancer immunotherapy. The primary delivery method for oncolytic viruses (OVs) is intratumoral injection, which apparently limits their clinical application. For patients with advanced cancer with disseminated metastasis, systemic administration is considered the optimal approach. However, the direct delivery of naked viruses through intravenous injection presents challenges, including rapid clearance by the immune system, inadequate accumulation in tumors, and significant side effects. Consequently, the development of drug delivery strategies has led to the emergence of various bio-materials serving as viral vectors, thereby improving the anti-tumor efficacy of oncolytic virotherapy. This review provides an overview of innovative strategies for delivering OVs, with a focus on nanoparticle-based or cell-based delivery systems. Recent pre-clinical and clinical studies are examined to highlight the enhanced efficacy of systemic delivery using these novel platforms. In addition, prevalent challenges in current research are briefly discussed, and potential solutions are proposed.
Collapse
Affiliation(s)
- Jiao Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhu Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
López-Martín R, Aranda-Sobrino N, De Enciso-Campos N, Sánchez EH, Castañeda-Peñalvo G, Lee SS, Binns C, Ballesteros-Yáñez I, De Toro JA, Castillo-Sarmiento CA. Toxicity and magnetometry evaluation of the uptake of core-shell maghemite-silica nanoparticles by neuroblastoma cells. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231839. [PMID: 39100165 PMCID: PMC11296074 DOI: 10.1098/rsos.231839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 04/26/2024] [Indexed: 08/06/2024]
Abstract
Nanoparticle uptake by cells is a key parameter in their performance in biomedical applications. However, the use of quantitative, non-destructive techniques to obtain the amount of nanoparticles internalized by cells is still uncommon. We have studied the cellular uptake and the toxicity of core-shell maghemite-silica magnetic nanoparticles (MNPs), with a core diameter of 9 nm and a shell thickness of 3 nm. The internalization of the nanoparticles by mouse neuroblastoma 2a cells was evaluated by sensitive and non-destructive Superconducting Quantum Interference Device (SQUID) magnetometry and corroborated by graphite furnace atomic absorption spectroscopy. We were thus able to study the toxicity of the nanoparticles for well-quantified MNP uptake in terms of nanoparticle density within the cell. No significant variation in cell viability or growth rate was detected for any tested exposure. Yet, an increase in both the amount of mitochondrial superoxide and in the lysosomal activity was detected for the highest concentration (100 μg ml-1) and incubation time (24 h), suggesting the onset of a disruption in ROS homeostasis, which may lead to an impairment in antioxidant responses. Our results validate SQUID magnetometry as a sensitive technique to quantify MNP uptake and demonstrate the non-toxic nature of these core-shell MNPs under our culture conditions.
Collapse
Affiliation(s)
- Raúl López-Martín
- Departamento de Física Aplicada, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real13071, Spain
| | - Nieves Aranda-Sobrino
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Medicine, University of Castilla-La Mancha, Ciudad Real13071, Spain
| | - Nerea De Enciso-Campos
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Medicine, University of Castilla-La Mancha, Ciudad Real13071, Spain
| | - Elena H. Sánchez
- Departamento de Física Aplicada, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real13071, Spain
| | - Gregorio Castañeda-Peñalvo
- Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla-La Mancha, Ciudad Real13071, Spain
| | - Su Seong Lee
- NanoBio Lab, Institute of Materials Research and Engineering, 31 Biopolis Way, #09-01, The Nanos, Singapore138669, Singapore
| | - Chris Binns
- Departamento de Física Aplicada, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real13071, Spain
| | - Inmaculada Ballesteros-Yáñez
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Medicine, University of Castilla-La Mancha, Ciudad Real13071, Spain
- BIomedicine Institute, Universidad de Castilla-La Mancha, Albacete02008, Spain
| | - Jose A. De Toro
- Departamento de Física Aplicada, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real13071, Spain
| | - Carlos A. Castillo-Sarmiento
- BIomedicine Institute, Universidad de Castilla-La Mancha, Albacete02008, Spain
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Physiotherapy and Nursing, University of Castilla-La Mancha, Toledo45071, Spain
| |
Collapse
|
10
|
Nguyen KT, Kee H, Go G, Kim S, Choi E, Park J, Park S, Kim J. Field‐Free Region Scanning‐Based Magnetic Microcarrier Targeting in Multibifurcation Vessels. ADVANCED INTELLIGENT SYSTEMS 2024; 6. [DOI: 10.1002/aisy.202300700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Indexed: 01/05/2025]
Abstract
Navigation of microcarriers in complex environments as a vascular network remains an open challenge due to limited solutions for effective targeting strategy. Simultaneous real‐time visualization and manipulation of microcarriers at any depth in the human body is far to be achieved even though one of each task has been successfully proven. Herein, a novel targeting strategy is proposed that employs field‐free region (FFR) scanning to guide microcarriers through multiple bifurcations within a predefined vessel network. The main challenge of this method lies on how, where, and when to activate FFR to steer a particle to a desired direction, regardless of its spatial feedback. To achieve it, first, a mathematical model of particle motion in a vessel network is developed to predict particle behaviors and positions. Subsequently, an optimization algorithm is formulated to place FFR well‐coordinated around each bifurcation at a designated moment. The established solution for targeting a magnetic microcarrier is preemptively evaluated through finite element simulations and then successfully implemented in in vitro multibranched vessels.
Collapse
Affiliation(s)
- Kim Tien Nguyen
- Korea Institute of Medical Microrobotics Gwangju 61011 Korea
| | - Hyeonwoo Kee
- Department of Robotics and Mechatronics Engineering Daegu Gyeongbuk Institute of Science & Technology (DGIST) Daegu 42988 Korea
| | - Gwangjun Go
- Department of Mechanical Engineering Chosun University Gwangju 61452 Korea
| | - Seok‐Jae Kim
- Korea Institute of Medical Microrobotics Gwangju 61011 Korea
| | - Eunpyo Choi
- School of Mechanical Engineering Chonnam National University Gwangju 61186 Korea
| | - Jong‐Oh Park
- Korea Institute of Medical Microrobotics Gwangju 61011 Korea
| | - Sukho Park
- Department of Robotics and Mechatronics Engineering Daegu Gyeongbuk Institute of Science & Technology (DGIST) Daegu 42988 Korea
| | - Jayoung Kim
- Korea Institute of Medical Microrobotics Gwangju 61011 Korea
- Department of Biosystems Engineering Chungbuk National University Cheongju 28644 Korea
| |
Collapse
|
11
|
Xu S, Zhang G, Zhang J, Liu W, Wang Y, Fu X. Advances in Brain Tumor Therapy Based on the Magnetic Nanoparticles. Int J Nanomedicine 2023; 18:7803-7823. [PMID: 38144513 PMCID: PMC10749175 DOI: 10.2147/ijn.s444319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023] Open
Abstract
Brain tumors, including primary gliomas and brain metastases, are one of the deadliest tumors because effective macromolecular antitumor drugs cannot easily penetrate the blood-brain barrier (BBB) and blood-brain tumor barrier (BTB). Magnetic nanoparticles (MNPs) are considered the most suitable nanocarriers for the delivery of brain tumor drugs because of their unique properties compared to other nanoparticles. Numerous preclinical and clinical studies have demonstrated the potential of these nanoparticles in magnetic targeting, nuclear magnetic resonance, magnetic thermal therapy, and ultrasonic hyperthermia. To further develop and optimize MNPs for the diagnosis and treatment of brain tumors, we attempt to outline recent advances in the use of MNPs to deliver drugs, with a particular focus on their efficacy in the delivery of anti-brain tumor drugs based on magnetic targeting and low-intensity focused ultrasound, magnetic resonance imaging for surgical real-time guidance, and magnetothermal and ultrasonic hyperthermia therapy. Furthermore, we summarize recent findings on the clinical application of MNPs and the research limitations that need to be addressed in clinical translation.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Guangxin Zhang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiaomei Zhang
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Wei Liu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yicun Wang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiying Fu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
12
|
Wang X, Bai R. Advances in smart delivery of magnetic field-targeted drugs in cardiovascular diseases. Drug Deliv 2023; 30:2256495. [PMID: 37702067 PMCID: PMC10501169 DOI: 10.1080/10717544.2023.2256495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
Magnetic Drug Targeting (MDT) is of particular interest to researchers because of its good loading efficiency, targeting accuracy, and versatile use in vivo. Cardiovascular Disease (CVD) is a global chronic disease with a high mortality rate, and the development of more precise and effective treatments is imminent. A growing number of studies have begun to explore the feasibility of MDT in CVD, but an up-to-date systematic summary is still lacking. This review discusses the current research status of MDT from guiding magnetic fields, magnetic nanocarriers, delivery channels, drug release control, and safety assessment. The current application status of MDT in CVD is also critically introduced. On this basis, new insights into the existing problems and future optimization directions of MDT are further highlighted.
Collapse
Affiliation(s)
- Xinyu Wang
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruru Bai
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Nguyen VD, Park JO, Choi E. Macrophage-Based Microrobots for Anticancer Therapy: Recent Progress and Future Perspectives. Biomimetics (Basel) 2023; 8:553. [PMID: 37999194 PMCID: PMC10669771 DOI: 10.3390/biomimetics8070553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Macrophages, which are part of the mononuclear phagocytic system, possess sensory receptors that enable them to target cancer cells. In addition, they are able to engulf large amounts of particles through phagocytosis, suggesting a potential "Trojan horse" drug delivery approach to tumors by facilitating the engulfment of drug-hidden particles by macrophages. Recent research has focused on the development of macrophage-based microrobots for anticancer therapy, showing promising results and potential for clinical applications. In this review, we summarize the recent development of macrophage-based microrobot research for anticancer therapy. First, we discuss the types of macrophage cells used in the development of these microrobots, the common payloads they carry, and various targeting strategies utilized to guide the microrobots to cancer sites, such as biological, chemical, acoustic, and magnetic actuations. Subsequently, we analyze the applications of these microrobots in different cancer treatment modalities, including photothermal therapy, chemotherapy, immunotherapy, and various synergistic combination therapies. Finally, we present future outlooks for the development of macrophage-based microrobots.
Collapse
Affiliation(s)
- Van Du Nguyen
- Robot Research Initiative, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea
| | - Eunpyo Choi
- Robot Research Initiative, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
14
|
Pfister F, Dörrie J, Schaft N, Buchele V, Unterweger H, Carnell LR, Schreier P, Stein R, Kubánková M, Guck J, Hackstein H, Alexiou C, Janko C. Human T cells loaded with superparamagnetic iron oxide nanoparticles retain antigen-specific TCR functionality. Front Immunol 2023; 14:1223695. [PMID: 37662937 PMCID: PMC10470061 DOI: 10.3389/fimmu.2023.1223695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Background Immunotherapy of cancer is an emerging field with the potential to improve long-term survival. Thus far, adoptive transfer of tumor-specific T cells represents an effective treatment option for tumors of the hematological system such as lymphoma, leukemia or myeloma. However, in solid tumors, treatment efficacy is low owing to the immunosuppressive microenvironment, on-target/off-tumor toxicity, limited extravasation out of the blood vessel, or ineffective trafficking of T cells into the tumor region. Superparamagnetic iron oxide nanoparticles (SPIONs) can make cells magnetically controllable for the site-specific enrichment. Methods In this study, we investigated the influence of SPION-loading on primary human T cells for the magnetically targeted adoptive T cell therapy. For this, we analyzed cellular mechanics and the T cell response after stimulation via an exogenous T cell receptor (TCR) specific for the melanoma antigen MelanA or the endogenous TCR specific for the cytomegalovirus antigen pp65 and compared them to T cells that had not received SPIONs. Results SPION-loading of human T cells showed no influence on cellular mechanics, therefore retaining their ability to deform to external pressure. Additionally, SPION-loading did not impair the T cell proliferation, expression of activation markers, cytokine secretion, and tumor cell killing after antigen-specific activation mediated by the TCR. Conclusion In summary, we demonstrated that SPION-loading of T cells did not affect cellular mechanics or the functionality of the endogenous or an exogenous TCR, which allows future approaches using SPIONs for the magnetically enrichment of T cells in solid tumors.
Collapse
Affiliation(s)
- Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Vera Buchele
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Lucas R. Carnell
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
- Organic Chemisty Laboratory, Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Patrick Schreier
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
- Faculty of Applied Natural Sciences and Health, Hochschule Coburg, Coburg, Germany
| | - Rene Stein
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Markéta Kubánková
- Max-Planck-Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Jochen Guck
- Max-Planck-Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
15
|
Gundersen RA, Chu T, Abolfathi K, Dogan SG, Blair PE, Nago N, Hamblin M, Brooke GN, Zwacka RM, Hoshiar AK, Mohr A. Generation of magnetic biohybrid microrobots based on MSC.sTRAIL for targeted stem cell delivery and treatment of cancer. Cancer Nanotechnol 2023; 14:54. [PMID: 37869575 PMCID: PMC7615227 DOI: 10.1186/s12645-023-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 10/24/2023] Open
Abstract
Background Combining the power of magnetic guidance and the biological activities of stem cells transformed into biohybrid microrobots holds great promise for the treatment of several diseases including cancer. Results We found that human MSCs can be readily loaded with magnetic particles and that the resulting biohybrid microrobots could be guided by a rotating magnetic field. Rotating magnetic fields have the potential to be applied in the human setting and steer therapeutic stem cells to the desired sites of action in the body. We could demonstrate that the required loading of magnetic particles into stem cells is compatible with their biological activities. We examined this issue with a particular focus on the expression and functionality of therapeutic genes inside of human MSC-based biohybrid microrobots. The loading with magnetic particles did not cause a loss of viability or apoptosis in the human MSCs nor did it impact on the therapeutic gene expression from the cells. Furthermore, the therapeutic effect of the gene products was not affected, and the cells also did not lose their migration potential. Conclusion These results demonstrate that the fabrication of guidable MSC-based biohybrid microrobots is compatible with their biological and therapeutic functions. Thus, MSC-based biohybrid microrobots represent a novel way of delivering gene therapies to tumours as well as in the context of other diseases.
Collapse
Affiliation(s)
- Rebekah Anamarie Gundersen
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Tianyuan Chu
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Kiana Abolfathi
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Serap Gokcen Dogan
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Phoebe Elizabeth Blair
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Nyasha Nago
- Haematology Unit, East Suffolk and North Essex NHS Foundation Trust, Colchester CO4 5JL, UK
| | - Michael Hamblin
- Haematology Unit, East Suffolk and North Essex NHS Foundation Trust, Colchester CO4 5JL, UK
| | - Greg Nicholas Brooke
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Molecular Oncology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Ralf Michael Zwacka
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| | - Ali Kafash Hoshiar
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Andrea Mohr
- School of Life Sciences, Protein Structure and Mechanism of Disease Group, Cancer and Stem Cell Biology Laboratory, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
16
|
Brady RV, Thamm DH. Tumor-associated macrophages: Prognostic and therapeutic targets for cancer in humans and dogs. Front Immunol 2023; 14:1176807. [PMID: 37090720 PMCID: PMC10113558 DOI: 10.3389/fimmu.2023.1176807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Macrophages are ancient, phagocytic immune cells thought to have their origins 500 million years ago in metazoan phylogeny. The understanding of macrophages has evolved to encompass their foundational roles in development, homeostasis, tissue repair, inflammation, and immunity. Notably, macrophages display high plasticity in response to environmental cues, capable of a strikingly wide variety of dynamic gene signatures and phenotypes. Macrophages are also involved in many pathological states including neural disease, asthma, liver disease, heart disease, cancer, and others. In cancer, most tumor-associated immune cells are macrophages, coined tumor-associated macrophages (TAMs). While some TAMs can display anti-tumor properties such as phagocytizing tumor cells and orchestrating an immune response, most macrophages in the tumor microenvironment are immunosuppressive and pro-tumorigenic. Macrophages have been implicated in all stages of cancer. Therefore, interest in manipulating macrophages as a therapeutic strategy against cancer developed as early as the 1970s. Companion dogs are a strong comparative immuno-oncology model for people due to documented similarities in the immune system and spontaneous cancers between the species. Data from clinical trials in humans and dogs can be leveraged to further scientific advancements that benefit both species. This review aims to provide a summary of the current state of knowledge on macrophages in general, and an in-depth review of macrophages as a therapeutic strategy against cancer in humans and companion dogs.
Collapse
Affiliation(s)
- Rachel V. Brady
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Douglas H. Thamm
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
17
|
Non-pyrogenic highly pure magnetosomes for efficient hyperthermia treatment of prostate cancer. Appl Microbiol Biotechnol 2023; 107:1159-1176. [PMID: 36633624 DOI: 10.1007/s00253-022-12247-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 01/13/2023]
Abstract
We report the fabrication of highly pure magnetosomes that are synthesized by magnetotactic bacteria (MTB) using pharmaceutically compatible growth media, i.e., without compounds of animal origin (yeast extracts), carcinogenic, mutagenic, or toxic for reproduction (CMR) products, and other heavy metals than iron. To enable magnetosome medical applications, these growth media are reduced and amended compared with media commonly used to grow these bacteria. Furthermore, magnetosomes are made non-pyrogenic by being extracted from these micro-organisms and heated above 400 °C to remove and denature bacterial organic material and produce inorganic magnetosome minerals. To be stabilized, these minerals are further coated with citric acid to yield M-CA, leading to fully reconstructed chains of magnetosomes. The heating properties and anti-tumor activity of highly pure M-CA are then studied by bringing M-CA into contact with PC3-Luc tumor cells and by exposing such assembly to an alternating magnetic field (AMF) of 42 mT and 195 kHz during 30 min. While in the absence of AMF, M-CA are observed to be non-cytotoxic, they result in a 35% decrease in cell viability following AMF application. The treatment efficacy can be associated with a specific absorption rate (SAR) value of M-CA, which is relatively high in cellular environment, i.e., SARcell = 253 ± 11 W/gFe, while being lower than the M-CA SAR value measured in water, i.e., SARwater = 1025 ± 194 W/gFe, highlighting that a reduction in the Brownian contribution to the SAR value in cellular environment does not prevent efficient tumor cell destruction with these nanoparticles. KEY POINTS : • Highly pure magnetosomes were produced in pharmaceutically compatible growth media • Non-pyrogenic and stable magnetosomes were prepared for human injection • Magnetosomes efficiently destroyed prostate tumor cells in magnetic hyperthermia.
Collapse
|
18
|
Bryan MT. Assessing the Challenges of Nanotechnology-Driven Targeted Therapies: Development of Magnetically Directed Vectors for Targeted Cancer Therapies and Beyond. Methods Mol Biol 2023; 2575:105-123. [PMID: 36301473 DOI: 10.1007/978-1-0716-2716-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Targeted delivery, in which therapeutic agents are preferentially concentrated at the diseased site, has the potential to improve therapeutic outcomes by minimizing off-target interactions in healthy tissue. Both passive and active methods of targeting delivery have been proposed, often with particular emphasis on cancer treatment. Passive methods rely on the overexpression of a biomarker in diseased tissue that can then be used to target the therapy. Active techniques involve physically guiding therapeutic agents toward the target region. Since the motion of magnetic particles can be remotely controlled by external magnetic fields, magnetic technologies have the potential to drive and hold drugs or other cargo at the required therapeutic site, increasing the localized dose while minimizing overall exposure. Directed motion may be generated either by simple magnetic attraction or by causing the particles to perform swimming strokes to produce propulsion. This chapter will compare the different strategies using magnetic nanotechnology to produce directed motion compatible with that required for targeted cargo delivery and magnetically assisted therapies and assess their potential to meet the challenges of operating within the human body.
Collapse
Affiliation(s)
- Matthew T Bryan
- Department of Electronic Engineering, Royal Holloway, University of London, Egham, UK.
| |
Collapse
|
19
|
Goodburn RJ, Philippens MEP, Lefebvre TL, Khalifa A, Bruijnen T, Freedman JN, Waddington DEJ, Younus E, Aliotta E, Meliadò G, Stanescu T, Bano W, Fatemi‐Ardekani A, Wetscherek A, Oelfke U, van den Berg N, Mason RP, van Houdt PJ, Balter JM, Gurney‐Champion OJ. The future of MRI in radiation therapy: Challenges and opportunities for the MR community. Magn Reson Med 2022; 88:2592-2608. [PMID: 36128894 PMCID: PMC9529952 DOI: 10.1002/mrm.29450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023]
Abstract
Radiation therapy is a major component of cancer treatment pathways worldwide. The main aim of this treatment is to achieve tumor control through the delivery of ionizing radiation while preserving healthy tissues for minimal radiation toxicity. Because radiation therapy relies on accurate localization of the target and surrounding tissues, imaging plays a crucial role throughout the treatment chain. In the treatment planning phase, radiological images are essential for defining target volumes and organs-at-risk, as well as providing elemental composition (e.g., electron density) information for radiation dose calculations. At treatment, onboard imaging informs patient setup and could be used to guide radiation dose placement for sites affected by motion. Imaging is also an important tool for treatment response assessment and treatment plan adaptation. MRI, with its excellent soft tissue contrast and capacity to probe functional tissue properties, holds great untapped potential for transforming treatment paradigms in radiation therapy. The MR in Radiation Therapy ISMRM Study Group was established to provide a forum within the MR community to discuss the unmet needs and fuel opportunities for further advancement of MRI for radiation therapy applications. During the summer of 2021, the study group organized its first virtual workshop, attended by a diverse international group of clinicians, scientists, and clinical physicists, to explore our predictions for the future of MRI in radiation therapy for the next 25 years. This article reviews the main findings from the event and considers the opportunities and challenges of reaching our vision for the future in this expanding field.
Collapse
Affiliation(s)
- Rosie J. Goodburn
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | | | - Thierry L. Lefebvre
- Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Cancer Research UK Cambridge Research InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Aly Khalifa
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Tom Bruijnen
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtNetherlands
| | | | - David E. J. Waddington
- Faculty of Medicine and Health, Sydney School of Health Sciences, ACRF Image X InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Eyesha Younus
- Department of Medical Physics, Odette Cancer CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Eric Aliotta
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Gabriele Meliadò
- Unità Operativa Complessa di Fisica SanitariaAzienda Ospedaliera Universitaria Integrata VeronaVeronaItaly
| | - Teo Stanescu
- Department of Radiation Oncology, University of Toronto and Medical Physics, Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | - Wajiha Bano
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Ali Fatemi‐Ardekani
- Department of PhysicsJackson State University (JSU)JacksonMississippiUSA
- SpinTecxJacksonMississippiUSA
- Department of Radiation OncologyCommunity Health Systems (CHS) Cancer NetworkJacksonMississippiUSA
| | - Andreas Wetscherek
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Uwe Oelfke
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Nico van den Berg
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtNetherlands
| | - Ralph P. Mason
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Petra J. van Houdt
- Department of Radiation OncologyNetherlands Cancer InstituteAmsterdamNetherlands
| | - James M. Balter
- Department of Radiation OncologyUniversity of MichiganAnn ArborMichiganUSA
| | - Oliver J. Gurney‐Champion
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam UMCUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
20
|
Liu H, Sun R, Wang L, Chen X, Li G, Cheng Y, Zhai G, Bay BH, Yang F, Gu N, Guo Y, Fan H. Biocompatible Iron Oxide Nanoring-Labeled Mesenchymal Stem Cells: An Innovative Magnetothermal Approach for Cell Tracking and Targeted Stroke Therapy. ACS NANO 2022; 16:18806-18821. [PMID: 36278899 DOI: 10.1021/acsnano.2c07581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Labeling stem cells with magnetic nanoparticles is a promising technique for in vivo tracking and magnetic targeting of transplanted stem cells, which is critical for improving the therapeutic efficacy of cell therapy. However, conventional endocytic labeling with relatively poor labeling efficiency and a short labeling lifetime has hindered the implementation of these innovative enhancements in stem-cell-mediated regenerative medicine. Herein, we describe an advanced magnetothermal approach to label mesenchymal stem cells (MSCs) efficiently by local induction of heat-enhanced membrane permeability for magnetic resonance imaging (MRI) tracking and targeted therapy of stroke, where biocompatible γ-phase, ferrimagnetic vortex-domain iron oxide nanorings (γ-FVIOs) with superior magnetoresponsive properties were used as a tracer. This approach facilitates a safe and efficient labeling of γ-FVIOs as high as 150 pg of Fe per cell without affecting the MSCs proliferation and differentiation, which is 3.44-fold higher than that by endocytosis labeling. Such a high labeling efficiency not only enables the ultrasensitive magnetic resonance imaging (MRI) detection of sub-10 cells and long-term tracking of transplanted MSCs over 10 weeks but also endows transplanted MSCs with a magnetic manipulation ability in vivo. A proof-of-concept study using a rat stroke model showed that the labeled MSCs facilitated MRI tracking and magnetic targeting for efficient replacement therapy with a significantly reduced dosage of 5 × 104 transplanted cells. The findings in this study have demonstrated the great potential of the magnetothermal approach as an efficient labeling technique for future clinical usage.
Collapse
Affiliation(s)
- Hanrui Liu
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Ran Sun
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu610041, China
| | - Xiaoyong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Galong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
- School of Medicine, Northwest University, Xi'an710069, China
| | - Yu Cheng
- Institute for Regenerative Medicine, The Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai200092, China
| | - Gaohong Zhai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, 117594, Singapore
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210009, China
| | - Yingkun Guo
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
- School of Medicine, Northwest University, Xi'an710069, China
| |
Collapse
|
21
|
Dechsupa N, Kosintarajit P, Kamkan K, Khanjina T, Sirikul C, Innuan P, Suwan A, Anukul N, Kantapan J. Iron(III)-Quercetin Complexes' Safety for MRI Cell Tracking in Cell Therapy Applications: Cytotoxic and Genotoxic Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2776. [PMID: 36014641 PMCID: PMC9414527 DOI: 10.3390/nano12162776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The theranostic agent iron-quercetin complex (IronQ) provides a T1-positive magnetic resonance imaging (MRI) contrast agent. The magnetically IronQ-labeled cells can be used for cell tracking and have active biological applications in promoting cell and tissue regeneration. However, a detailed investigation of IronQ's cytotoxicity and genotoxicity is necessary. Thus, this study aimed to evaluate the possibility of IronQ inducing cytotoxicity and genotoxicity in peripheral blood mononuclear cells (PBMCs). We evaluated the vitality of cells, the production of reactive oxygen species (ROS), the level of antioxidant enzymes, and the stability of the genetic material in PBMCs treated with IronQ. The results show that IronQ had a negligible impact on toxicological parameters such as ROS production and lipid peroxidation, indicating that it is not harmful. IronQ-labeled PMBCs experienced an insignificant depletion of antioxidant enzyme levels at the highest concentration of IronQ. There is no evident genotoxicity in the magnetically IronQ-labeled PBMCs. The results show that IronQ does not potentiate the cytotoxicity and genotoxicity effects of the labeled PMBCs and might be safe for therapeutic and cell tracking purposes. These results could provide a reference guideline for the toxicological analysis of IronQ in in vivo studies.
Collapse
Affiliation(s)
- Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Radiation Research and Medical Imaging, Faculty of Associated Medical Sciences, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panida Kosintarajit
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanyapak Kamkan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanyalak Khanjina
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chonticha Sirikul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phattarawadee Innuan
- Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Authaphinya Suwan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nampeung Anukul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Radiation Research and Medical Imaging, Faculty of Associated Medical Sciences, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
22
|
Scanlan H, Coffman Z, Bettencourt J, Shipley T, Bramblett DE. Herpes simplex virus 1 as an oncolytic viral therapy for refractory cancers. Front Oncol 2022; 12:940019. [PMID: 35965554 PMCID: PMC9364694 DOI: 10.3389/fonc.2022.940019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
The need for efficacious and non-toxic cancer therapies is paramount. Oncolytic viruses (OVs) are showing great promise and are introducing new possibilities in cancer treatment with their ability to selectively infect tumor cells and trigger antitumor immune responses. Herpes Simplex Virus 1 (HSV-1) is a commonly selected OV candidate due to its large genome, relative safety profile, and ability to infect a variety of cell types. Talimogene laherparevec (T-VEC) is an HSV-1-derived OV variant and the first and only OV therapy currently approved for clinical use by the United States Food and Drug Administration (FDA). This review provides a concise description of HSV-1 as an OV candidate and the genomic organization of T-VEC. Furthermore, this review focuses on the advantages and limitations in the use of T-VEC compared to other HSV-1 OV variants currently in clinical trials. In addition, approaches for future directions of HSV-1 OVs as cancer therapy is discussed.
Collapse
Affiliation(s)
- Hayle Scanlan
- Rowan School of Medicine, RowanSOM-Jefferson Health-Virtua Our Lady of Lourdes Hospital, Stratford, NJ, United States
| | - Zachary Coffman
- Monroe Clinic Rural Family Medicine Program, The University of Illinois College of Medicine Rockford, Monroe, WI, United States
| | - Jeffrey Bettencourt
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Timothy Shipley
- Department of Biomedical Sciences, A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, United States
| | - Debra E. Bramblett
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
- *Correspondence: Debra E. Bramblett,
| |
Collapse
|
23
|
Howard F, Conner J, Danson S, Muthana M. Inconsistencies in Modeling the Efficacy of the Oncolytic Virus HSV1716 Reveal Potential Predictive Biomarkers for Tolerability. Front Mol Biosci 2022; 9:889395. [PMID: 35782876 PMCID: PMC9240779 DOI: 10.3389/fmolb.2022.889395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 12/26/2022] Open
Abstract
Treatment with HSV1716 via intralesional administration has proven successful for melanoma patients with the hope that oncolytic virotherapy would become another weapon in the systemic anticancer therapy (SACT) arsenal. In addition to challenges surrounding the systemic delivery of oncolytic viruses (OVs), problems associated with its in vivo modeling have resulted in low predictive power, contributing to the observed disappointing clinical efficacy. As OV's efficacy is elicited through interaction with the immune system, syngeneic orthotopic mouse models offer the opportunity to study these with high reproducibility and at a lower cost; however, inbred animals display specific immune characteristics which may confound results. The systemic delivery of HSV1716 was, therefore, assessed in multiple murine models of breast cancer. Tolerability to the virus was strain-dependent with C57/Bl6, the most tolerant and Balb/c experiencing lethal side effects, when delivered intravenously. Maximum tolerated doses were not enough to demonstrate efficacy against tumor growth rates or survival of Balb/c and FVB mouse models; therefore; the most susceptible strain (Balb/c mice) was treated with immunomodulators prior to virus administration in an attempt to reduce side effects. These studies demonstrate the number of variables to consider when modeling the efficacy of OVs and the complexities involved in their interpretation for translational purposes. By reporting these observations, we have potentially revealed a role for T-cell helper polarization in viral tolerability. Importantly, these findings were translated to human studies, whereby a Th1 cytokine profile was expressed in pleural effusions of patients that responded to HSV1716 treatment for malignant pleural mesothelioma with minimal side effects, warranting further investigation as a biomarker for predictive response.
Collapse
Affiliation(s)
- Faith Howard
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Joe Conner
- Virtuu Biologics/Sorrento Therapeutics, Biocity Scotland, Newhouse, United Kingdom
| | - Sarah Danson
- Sheffield Experimental Cancer Medicine Centre and Weston Park Cancer Centre, Weston Park Hospital, University of Sheffield, Sheffield, United Kingdom
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
24
|
Hofstetter LW, Hadley JR, Merrill R, Pham H, Fine GC, Parker DL. MRI-compatible electromagnetic servomotor for image-guided medical robotics. COMMUNICATIONS ENGINEERING 2022; 1:4. [PMID: 36700241 PMCID: PMC9873480 DOI: 10.1038/s44172-022-00001-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/22/2022] [Indexed: 02/01/2023]
Abstract
The soft-tissue imaging capabilities of magnetic resonance imaging (MRI) combined with high precision robotics has the potential to improve the precision and safety of a wide range of image-guided medical procedures. However, functional MRI-compatible robotics have not yet been realized in part because conventional electromagnetic servomotors can become dangerous projectiles near the strong magnetic field of an MRI scanner. Here we report an electromagnetic servomotor constructed from non-magnetic components, where high-torque and controlled rotary actuation is produced via interaction between electrical current in the servomotor armature and the magnetic field generated by the superconducting magnet of the MRI scanner itself. Using this servomotor design, we then build and test an MRI-compatible robot which can achieve the linear forces required to insert a large-diameter biopsy instrument in tissue during simultaneous MRI. Our electromagnetic servomotor can be safely operated (while imaging) in the patient area of a 3 Tesla clinical MRI scanner.
Collapse
Affiliation(s)
- Lorne W. Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, 30 North 1900 East #1A071, Salt Lake City, UT 84132 USA
| | - J. Rock Hadley
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, 30 North 1900 East #1A071, Salt Lake City, UT 84132 USA
| | - Robb Merrill
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, 30 North 1900 East #1A071, Salt Lake City, UT 84132 USA
| | - Huy Pham
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, 30 North 1900 East #1A071, Salt Lake City, UT 84132 USA
| | - Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, 30 North 1900 East #1A071, Salt Lake City, UT 84132 USA
| | - Dennis L. Parker
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, 30 North 1900 East #1A071, Salt Lake City, UT 84132 USA
| |
Collapse
|
25
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
26
|
Dai Y, Jia L, Wang L, Sun H, Ji Y, Wang C, Song L, Liang S, Chen D, Feng Y, Bai X, Zhang D, Arai F, Chen H, Feng L. Magnetically Actuated Cell-Robot System: Precise Control, Manipulation, and Multimode Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105414. [PMID: 35233944 DOI: 10.1002/smll.202105414] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Border-nearing microrobots with self-propelling and navigating capabilities have promising applications in micromanipulation and bioengineering, because they can stimulate the surrounding fluid flow for object transportation. However, ensuring the biosafety of microrobots is a concurrent challenge in bioengineering applications. Here, macrophage template-based microrobots (cell robots) that can be controlled individually or in chain-like swarms are proposed, which can transport various objects. The cell robots are constructed using the phagocytic ability of macrophages to load nanomagnetic particles while maintaining their viability. The robots exhibit high position control accuracy and generate a flow field that can be used to transport microspheres and sperm when exposed to an external magnetic field near a wall. The cell robots can also form chain-like swarms to transport a large object (more than 100 times the volume). This new insight into the manipulation of macrophage-based cell robots provides a new concept by converting other biological cells into microrobots for micromanipulation in biomedical applications.
Collapse
Affiliation(s)
- Yuguo Dai
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Lina Jia
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Luyao Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Hongyan Sun
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Yiming Ji
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Chutian Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Li Song
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Shuzhang Liang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Dixiao Chen
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Yanmin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Xue Bai
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Fumihito Arai
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Huawei Chen
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
27
|
Baker RR, Payne C, Yu Y, Mohseni M, Connell JJ, Lin F, Harrison IF, Southern P, Rudrapatna US, Stuckey DJ, Kalber TL, Siow B, Thorne L, Punwani S, Jones DK, Emberton M, Pankhurst QA, Lythgoe MF. Image-Guided Magnetic Thermoseed Navigation and Tumor Ablation Using a Magnetic Resonance Imaging System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105333. [PMID: 35106965 PMCID: PMC9036015 DOI: 10.1002/advs.202105333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Medical therapies achieve their control at expense to the patient in the form of a range of toxicities, which incur costs and diminish quality of life. Magnetic resonance navigation is an emergent technique that enables image-guided remote-control of magnetically labeled therapies and devices in the body, using a magnetic resonance imaging (MRI) system. Minimally INvasive IMage-guided Ablation (MINIMA), a novel, minimally invasive, MRI-guided ablation technique, which has the potential to avoid traditional toxicities, is presented. It comprises a thermoseed navigated to a target site using magnetic propulsion gradients generated by an MRI scanner, before inducing localized cell death using an MR-compatible thermoablative device. The authors demonstrate precise thermoseed imaging and navigation through brain tissue using an MRI system (0.3 mm), and they perform thermoablation in vitro and in vivo within subcutaneous tumors, with the focal ablation volume finely controlled by heating duration. MINIMA is a novel theranostic platform, combining imaging, navigation, and heating to deliver diagnosis and therapy in a single device.
Collapse
Affiliation(s)
- Rebecca R Baker
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Christopher Payne
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Yichao Yu
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Matin Mohseni
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - John J Connell
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Fangyu Lin
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Paul Southern
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
| | - Umesh S Rudrapatna
- Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Bernard Siow
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Lewis Thorne
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7JN, UK
| | - Quentin A Pankhurst
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
- UCL Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London, W1S 4BS, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
28
|
Howard FHN, Al-Janabi H, Patel P, Cox K, Smith E, Vadakekolathu J, Pockley AG, Conner J, Nohl JF, Allwood DA, Collado-Rojas C, Kennerley A, Staniland S, Muthana M. Nanobugs as Drugs: Bacterial Derived Nanomagnets Enhance Tumor Targeting and Oncolytic Activity of HSV-1 Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104763. [PMID: 35076148 DOI: 10.1002/smll.202104763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The survival strategies of infectious organisms have inspired many therapeutics over the years. Indeed the advent of oncolytic viruses (OVs) exploits the uncontrolled replication of cancer cells for production of their progeny resulting in a cancer-targeting treatment that leaves healthy cells unharmed. Their success against inaccessible tumors however, is highly variable due to inadequate tumor targeting following systemic administration. Coassembling herpes simplex virus (HSV1716) with biocompatible magnetic nanoparticles derived from magnetotactic bacteria enables tumor targeting from circulation with magnetic guidance, protects the virus against neutralizing antibodies and thereby enhances viral replication within tumors. This approach additionally enhances the intratumoral recruitment of activated immune cells, promotes antitumor immunity and immune cell death, thereby inducing tumor shrinkage and increasing survival in a syngeneic mouse model of breast cancer by 50%. Exploiting the properties of such a nanocarrier, rather than tropism of the virus, for active tumor targeting offers an exciting, novel approach for enhancing the bioavailability and treatment efficacy of tumor immunotherapies for disseminated neoplasms.
Collapse
Affiliation(s)
- Faith H N Howard
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Haider Al-Janabi
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Priya Patel
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Katie Cox
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Emily Smith
- NMRC, School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - A Graham Pockley
- John van Geest Cancer Research Centre, Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Joe Conner
- Invizius Ltd, BioCity, Bo'ness road, Newhouse, ML1 5UH, UK
| | - James F Nohl
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Dan A Allwood
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Cristal Collado-Rojas
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Aneurin Kennerley
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Sarah Staniland
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Munitta Muthana
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
29
|
Sun Z, Hou Y. Micro/nanorobots as Active Delivery Systems for Biomedicine: From Self‐propulsion to Controllable Navigation. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhaoli Sun
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL‐MMD) Beijing Innovation Centre for Engineering Science and Advanced Technology (BIC‐ESAT) School of Materials Science and Engineering Peking University Beijing 100871 China
- School of Life Sciences Peking University Beijing 100871 China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL‐MMD) Beijing Innovation Centre for Engineering Science and Advanced Technology (BIC‐ESAT) School of Materials Science and Engineering Peking University Beijing 100871 China
| |
Collapse
|
30
|
Abstract
In conventional classification, soft robots feature mechanical compliance as the main distinguishing factor from traditional robots made of rigid materials. Recent advances in functional soft materials have facilitated the emergence of a new class of soft robots capable of tether-free actuation in response to external stimuli such as heat, light, solvent, or electric or magnetic field. Among the various types of stimuli-responsive materials, magnetic soft materials have shown remarkable progress in their design and fabrication, leading to the development of magnetic soft robots with unique advantages and potential for many important applications. However, the field of magnetic soft robots is still in its infancy and requires further advancements in terms of design principles, fabrication methods, control mechanisms, and sensing modalities. Successful future development of magnetic soft robots would require a comprehensive understanding of the fundamental principle of magnetic actuation, as well as the physical properties and behavior of magnetic soft materials. In this review, we discuss recent progress in the design and fabrication, modeling and simulation, and actuation and control of magnetic soft materials and robots. We then give a set of design guidelines for optimal actuation performance of magnetic soft materials. Lastly, we summarize potential biomedical applications of magnetic soft robots and provide our perspectives on next-generation magnetic soft robots.
Collapse
Affiliation(s)
- Yoonho Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Filippi M, Garello F, Yasa O, Kasamkattil J, Scherberich A, Katzschmann RK. Engineered Magnetic Nanocomposites to Modulate Cellular Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104079. [PMID: 34741417 DOI: 10.1002/smll.202104079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Magnetic nanoparticles (MNPs) have various applications in biomedicine, including imaging, drug delivery and release, genetic modification, cell guidance, and patterning. By combining MNPs with polymers, magnetic nanocomposites (MNCs) with diverse morphologies (core-shell particles, matrix-dispersed particles, microspheres, etc.) can be generated. These MNCs retain the ability of MNPs to be controlled remotely using external magnetic fields. While the effects of these biomaterials on the cell biology are still poorly understood, such information can help the biophysical modulation of various cellular functions, including proliferation, adhesion, and differentiation. After recalling the basic properties of MNPs and polymers, and describing their coassembly into nanocomposites, this review focuses on how polymeric MNCs can be used in several ways to affect cell behavior. A special emphasis is given to 3D cell culture models and transplantable grafts, which are used for regenerative medicine, underlining the impact of MNCs in regulating stem cell differentiation and engineering living tissues. Recent advances in the use of MNCs for tissue regeneration are critically discussed, particularly with regard to their prospective involvement in human therapy and in the construction of advanced functional materials such as magnetically operated biomedical robots.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jesil Kasamkattil
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
32
|
Yu Y, Payne C, Marina N, Korsak A, Southern P, García‐Prieto A, Christie IN, Baker RR, Fisher EMC, Wells JA, Kalber TL, Pankhurst QA, Gourine AV, Lythgoe MF. Remote and Selective Control of Astrocytes by Magnetomechanical Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104194. [PMID: 34927381 PMCID: PMC8867145 DOI: 10.1002/advs.202104194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Indexed: 05/06/2023]
Abstract
Astrocytes play crucial and diverse roles in brain health and disease. The ability to selectively control astrocytes provides a valuable tool for understanding their function and has the therapeutic potential to correct dysfunction. Existing technologies such as optogenetics and chemogenetics require the introduction of foreign proteins, which adds a layer of complication and hinders their clinical translation. A novel technique, magnetomechanical stimulation (MMS), that enables remote and selective control of astrocytes without genetic modification is described here. MMS exploits the mechanosensitivity of astrocytes and triggers mechanogated Ca2+ and adenosine triphosphate (ATP) signaling by applying a magnetic field to antibody-functionalized magnetic particles that are targeted to astrocytes. Using purpose-built magnetic devices, the mechanosensory threshold of astrocytes is determined, a sub-micrometer particle for effective MMS is identified, the in vivo fate of the particles is established, and cardiovascular responses are induced in rats after particles are delivered to specific brainstem astrocytes. By eliminating the need for device implantation and genetic modification, MMS is a method for controlling astroglial activity with an improved prospect for clinical application than existing technologies.
Collapse
Affiliation(s)
- Yichao Yu
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Christopher Payne
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Paul Southern
- Healthcare Biomagnetics LaboratoryUniversity College London21 Albemarle StreetLondonW1S 4BSUK
| | - Ana García‐Prieto
- Healthcare Biomagnetics LaboratoryUniversity College London21 Albemarle StreetLondonW1S 4BSUK
- Departamento Física Aplicada IUniversidad del País VascoBilbao48013Spain
| | - Isabel N. Christie
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Rebecca R. Baker
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular DiseasesQueen Square Institute of NeurologyUniversity College LondonQueen SquareLondonWC1N 3BGUK
| | - Jack A. Wells
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Tammy L. Kalber
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Quentin A. Pankhurst
- Healthcare Biomagnetics LaboratoryUniversity College London21 Albemarle StreetLondonW1S 4BSUK
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| |
Collapse
|
33
|
Ding X, Sun X, Cai H, Wu L, Liu Y, Zhao Y, Zhou D, Yu G, Zhou X. Engineering Macrophages via Nanotechnology and Genetic Manipulation for Cancer Therapy. Front Oncol 2022; 11:786913. [PMID: 35070992 PMCID: PMC8770285 DOI: 10.3389/fonc.2021.786913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages play critical roles in tumor progression. In the tumor microenvironment, macrophages display highly diverse phenotypes and may perform antitumorigenic or protumorigenic functions in a context-dependent manner. Recent studies have shown that macrophages can be engineered to transport drug nanoparticles (NPs) to tumor sites in a targeted manner, thereby exerting significant anticancer effects. In addition, macrophages engineered to express chimeric antigen receptors (CARs) were shown to actively migrate to tumor sites and eliminate tumor cells through phagocytosis. Importantly, after reaching tumor sites, these engineered macrophages can significantly change the otherwise immune-suppressive tumor microenvironment and thereby enhance T cell-mediated anticancer immune responses. In this review, we first introduce the multifaceted activities of macrophages and the principles of nanotechnology in cancer therapy and then elaborate on macrophage engineering via nanotechnology or genetic approaches and discuss the effects, mechanisms, and limitations of such engineered macrophages, with a focus on using live macrophages as carriers to actively deliver NP drugs to tumor sites. Several new directions in macrophage engineering are reviewed, such as transporting NP drugs through macrophage cell membranes or extracellular vesicles, reprogramming tumor-associated macrophages (TAMs) by nanotechnology, and engineering macrophages with CARs. Finally, we discuss the possibility of combining engineered macrophages and other treatments to improve outcomes in cancer therapy.
Collapse
Affiliation(s)
- Xiaoling Ding
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xinchen Sun
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Clinical Laboratory, Taizhou Peoples' Hospital, Taizhou, China
| | - Huihui Cai
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Clinical Laboratory, The Sixth Nantong People's Hospital, Nantong, China
| | - Lei Wu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Ying Liu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yu Zhao
- Department of Immunology, Southeast University, School of Medicine, Nanjing, China
| | - Dingjingyu Zhou
- Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
34
|
Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, Conolly SM. Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers (Basel) 2021; 13:5285. [PMID: 34771448 PMCID: PMC8582440 DOI: 10.3390/cancers13215285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION's MPS spectral changes within the nanocarrier. CONCLUSION MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Benjamin D. Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Irati Rodrigo Arrizabalaga
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Elaine Yu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Malini Olivo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Steven M. Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| |
Collapse
|
35
|
Bassetto M, Ajoy D, Poulhes F, Obringer C, Walter A, Messadeq N, Sadeghi A, Puranen J, Ruponen M, Kettunen M, Toropainen E, Urtti A, Dollfus H, Zelphati O, Marion V. Magnetically Assisted Drug Delivery of Topical Eye Drops Maintains Retinal Function In Vivo in Mice. Pharmaceutics 2021; 13:pharmaceutics13101650. [PMID: 34683941 PMCID: PMC8540400 DOI: 10.3390/pharmaceutics13101650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023] Open
Abstract
Barded-Biedl syndrome (BBS) is a rare genetic disorder with an unmet medical need for retinal degeneration. Small-molecule drugs were previously identified to slow down the apoptosis of photoreceptors in BBS mouse models. Clinical translation was not practical due to the necessity of repetitive invasive intravitreal injections for pediatric populations. Non-invasive methods of retinal drug targeting are a prerequisite for acceptable adaptation to the targeted pediatric patient population. Here, we present the development and functional testing of a non-invasive, topical, magnetically assisted delivery system, harnessing the ability of magnetic nanoparticles (MNPs) to cargo two drugs (guanabenz and valproic acid) with anti-unfolded protein response (UPR) properties towards the retina. Using magnetic resonance imaging (MRI), we showed the MNPs' presence in the retina of Bbs wild-type mice, and their photoreceptor localization was validated using transmission electron microscopy (TEM). Subsequent electroretinogram recordings (ERGs) demonstrated that we achieved beneficial biological effects with the magnetically assisted treatment translating the maintained light detection in Bbs-/- mice (KO). To our knowledge, this is the first demonstration of efficient magnetic drug targeting in the photoreceptors in vivo after topical administration. This non-invasive, needle-free technology expands the application of SMDs for the treatment of a vast spectrum of retinal degenerations and other ocular diseases.
Collapse
Affiliation(s)
- Marco Bassetto
- OZ Biosciences, Parc Scientifique de Luminy, Case 922, Zone Entreprise, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (A.W.)
| | - Daniel Ajoy
- INSERM, Ciliopathies Modeling and Associated Therapies Group, Laboratoire de Génétique Médicale, UMRS_U1112, Fédération de Médicine Translationelle de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France; (D.A.); (C.O.); (H.D.)
| | - Florent Poulhes
- OZ Biosciences, Parc Scientifique de Luminy, Case 922, Zone Entreprise, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (A.W.)
| | - Cathy Obringer
- INSERM, Ciliopathies Modeling and Associated Therapies Group, Laboratoire de Génétique Médicale, UMRS_U1112, Fédération de Médicine Translationelle de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France; (D.A.); (C.O.); (H.D.)
| | - Aurelie Walter
- OZ Biosciences, Parc Scientifique de Luminy, Case 922, Zone Entreprise, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (A.W.)
| | - Nadia Messadeq
- INSERM, Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67640 Illkrich-Graffenstaden, France;
| | - Amir Sadeghi
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (M.R.); (E.T.); (A.U.)
| | - Jooseppi Puranen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (M.R.); (E.T.); (A.U.)
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (M.R.); (E.T.); (A.U.)
| | - Mikko Kettunen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70150 Kuopio, Finland;
| | - Elisa Toropainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (M.R.); (E.T.); (A.U.)
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (M.R.); (E.T.); (A.U.)
| | - Hélène Dollfus
- INSERM, Ciliopathies Modeling and Associated Therapies Group, Laboratoire de Génétique Médicale, UMRS_U1112, Fédération de Médicine Translationelle de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France; (D.A.); (C.O.); (H.D.)
- Laboratoire de Génétique Médicale, UMRS_U1112, Institut de Génétique Médicale d’Alsace, Fédération de Médicine Translationelle de Strasbourg, Hopiaux Universitaires de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France
| | - Olivier Zelphati
- OZ Biosciences, Parc Scientifique de Luminy, Case 922, Zone Entreprise, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (A.W.)
- Correspondence: (O.Z.); or (V.M.)
| | - Vincent Marion
- INSERM, Ciliopathies Modeling and Associated Therapies Group, Laboratoire de Génétique Médicale, UMRS_U1112, Fédération de Médicine Translationelle de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France; (D.A.); (C.O.); (H.D.)
- ALMS Therapeutics, Parc d’Innovation, 650 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
- Correspondence: (O.Z.); or (V.M.)
| |
Collapse
|
36
|
Van Durme R, Crevecoeur G, Dupré L, Coene A. Model-based optimized steering and focusing of local magnetic particle concentrations for targeted drug delivery. Drug Deliv 2021; 28:63-76. [PMID: 33342319 PMCID: PMC7751415 DOI: 10.1080/10717544.2020.1853281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Magnetic drug targeting (MDT) is an application in the field of targeted drug delivery in which magnetic (nano)particles act as drug carriers. The particles can be steered toward specific regions in the human body by adapting the currents of external (electro)magnets. Accurate models of particle movement and control algorithms for the electromagnet currents are two of the many requirements to ensure effective drug targeting. In this work, a control approach for the currents is presented, based on an underlying physical model that describes the dynamics of particles in a liquid in terms of their concentration in each point in space. Using this model, the control algorithm determines the currents generating the magnetic fields that maximize the particle concentration in spots of interest over a period of time. Such an approach is computationally only feasible thanks to our innovative combination of model order reduction with the method of direct multiple shooting. Simulation results of an in-vitro targeting setup demonstrated that a particle collection can be successfully guided toward the targeted spot with limited dispersion through a surrounding liquid. As now present and future particle behavior can be taken into account, and non-stationary surrounding liquids can be dealt with, a more precise and flexible targeting is achieved compared to existing MDT methods. This proves that the presented methodology can bring MDT closer to its clinical application. Moreover, the developed model is compatible with state-of-the-art imaging methods, paving the way for theranostic platforms that combine both therapy as well as diagnostics.
Collapse
Affiliation(s)
- Rikkert Van Durme
- Department of Electromechanical, Systems and Metal Engineering, Ghent University, Gent, Belgium
| | - Guillaume Crevecoeur
- Department of Electromechanical, Systems and Metal Engineering, Ghent University, Gent, Belgium.,EEDT Decision & Control, Core Lab Flanders Make, Ghent, Belgium
| | - Luc Dupré
- Department of Electromechanical, Systems and Metal Engineering, Ghent University, Gent, Belgium
| | | |
Collapse
|
37
|
Future Advances in Diagnosis and Drug Delivery in Interventional Radiology Using MR Imaging-Steered Theranostic Iron Oxide Nanoparticles. J Vasc Interv Radiol 2021; 32:1292-1295.e1. [PMID: 34462079 DOI: 10.1016/j.jvir.2021.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
|
38
|
Boosz P, Pfister F, Stein R, Friedrich B, Fester L, Band J, Mühlberger M, Schreiber E, Lyer S, Dudziak D, Alexiou C, Janko C. Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles Enable a Stable Non-Spilling Loading of T Cells and Their Magnetic Accumulation. Cancers (Basel) 2021; 13:4143. [PMID: 34439296 PMCID: PMC8394404 DOI: 10.3390/cancers13164143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
T cell infiltration into a tumor is associated with a good clinical prognosis of the patient and adoptive T cell therapy can increase anti-tumor immune responses. However, immune cells are often excluded from tumor infiltration and can lack activation due to the immune-suppressive tumor microenvironment. To make T cells controllable by external forces, we loaded primary human CD3+ T cells with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONs). Since the efficacy of magnetic targeting depends on the amount of SPION loading, we investigated how experimental conditions influence nanoparticle uptake and viability of cells. We found that loading in the presence of serum improved both the colloidal stability of SPIONs and viability of T cells, whereas stimulation with CD3/CD28/CD2 and IL-2 did not influence nanoparticle uptake. Furthermore, SPION loading did not impair cytokine secretion after polyclonal stimulation. We finally achieved 1.4 pg iron loading per cell, which was both located intracellularly in vesicles and bound to the plasma membrane. Importantly, nanoparticles did not spill over to non-loaded cells. Since SPION-loading enabled efficient magnetic accumulation of T cells in vitro under dynamic conditions, we conclude that this might be a good starting point for the investigation of in vivo delivery of immune cells.
Collapse
Affiliation(s)
- Philipp Boosz
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (P.B.); (F.P.); (R.S.); (B.F.); (J.B.); (M.M.); (E.S.); (S.L.); (C.A.)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (P.B.); (F.P.); (R.S.); (B.F.); (J.B.); (M.M.); (E.S.); (S.L.); (C.A.)
| | - Rene Stein
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (P.B.); (F.P.); (R.S.); (B.F.); (J.B.); (M.M.); (E.S.); (S.L.); (C.A.)
| | - Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (P.B.); (F.P.); (R.S.); (B.F.); (J.B.); (M.M.); (E.S.); (S.L.); (C.A.)
| | - Lars Fester
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (P.B.); (F.P.); (R.S.); (B.F.); (J.B.); (M.M.); (E.S.); (S.L.); (C.A.)
| | - Marina Mühlberger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (P.B.); (F.P.); (R.S.); (B.F.); (J.B.); (M.M.); (E.S.); (S.L.); (C.A.)
| | - Eveline Schreiber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (P.B.); (F.P.); (R.S.); (B.F.); (J.B.); (M.M.); (E.S.); (S.L.); (C.A.)
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (P.B.); (F.P.); (R.S.); (B.F.); (J.B.); (M.M.); (E.S.); (S.L.); (C.A.)
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Medical Immunology Campus Erlangen, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (P.B.); (F.P.); (R.S.); (B.F.); (J.B.); (M.M.); (E.S.); (S.L.); (C.A.)
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (P.B.); (F.P.); (R.S.); (B.F.); (J.B.); (M.M.); (E.S.); (S.L.); (C.A.)
| |
Collapse
|
39
|
Day NB, Wixson WC, Shields CW. Magnetic systems for cancer immunotherapy. Acta Pharm Sin B 2021; 11:2172-2196. [PMID: 34522583 PMCID: PMC8424374 DOI: 10.1016/j.apsb.2021.03.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies. Immune cell modulation through the administration of drugs, proteins, and cells can enhance antitumoral responses through pathways that may be otherwise inhibited in the presence of immunosuppressive tumors. Magnetic systems offer several advantages for improving the performance of immunotherapies, including increased spatiotemporal control over transport, release, and dosing of immunomodulatory drugs within the body, resulting in reduced off-target effects and improved efficacy. Compared to alternative methods for stimulating drug release such as light and pH, magnetic systems enable several distinct methods for programming immune responses. First, we discuss how magnetic hyperthermia can stimulate immune cells and trigger thermoresponsive drug release. Second, we summarize how magnetically targeted delivery of drug carriers can increase the accumulation of drugs in target sites. Third, we review how biomaterials can undergo magnetically driven structural changes to enable remote release of encapsulated drugs. Fourth, we describe the use of magnetic particles for targeted interactions with cellular receptors for promoting antitumor activity. Finally, we discuss translational considerations of these systems, such as toxicity, clinical compatibility, and future opportunities for improving cancer treatment.
Collapse
Key Words
- BW, body weight
- Biomaterials
- CpG, cytosine-phosphate-guanine
- DAMP, damage associated molecular pattern
- Drug delivery
- EPR, enhanced permeability and retention
- FFR, field free region
- HS-TEX, heat-stressed tumor cell exosomes
- HSP, heat shock protein
- ICD, immunogenic cell death
- IVIS, in vivo imaging system
- Immunotherapy
- MICA, MHC class I-related chain A
- MPI, magnetic particle imaging
- Magnetic hyperthermia
- Magnetic nanoparticles
- Microrobotics
- ODNs, oligodeoxynucleotides
- PARP, poly(adenosine diphosphate-ribose) polymerase
- PDMS, polydimethylsiloxane
- PEG, polyethylene glycol
- PLGA, poly(lactic-co-glycolic acid)
- PNIPAM, poly(N-isopropylacrylamide)
- PVA, poly(vinyl alcohol)
- SDF, stromal cell derived-factor
- SID, small implantable device
- SLP, specific loss power
Collapse
Affiliation(s)
- Nicole B Day
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - William C Wixson
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - C Wyatt Shields
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
40
|
Canese R, Vurro F, Marzola P. Iron Oxide Nanoparticles as Theranostic Agents in Cancer Immunotherapy. NANOMATERIALS 2021; 11:nano11081950. [PMID: 34443781 PMCID: PMC8399455 DOI: 10.3390/nano11081950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
Starting from the mid-1990s, several iron oxide nanoparticles (NPs) were developed as MRI contrast agents. Since their sizes fall in the tenths of a nanometer range, after i.v. injection these NPs are preferentially captured by the reticuloendothelial system of the liver. They have therefore been proposed as liver-specific contrast agents. Even though their unfavorable cost/benefit ratio has led to their withdrawal from the market, innovative applications have recently prompted a renewal of interest in these NPs. One important and innovative application is as diagnostic agents in cancer immunotherapy, thanks to their ability to track tumor-associated macrophages (TAMs) in vivo. It is worth noting that iron oxide NPs may also have a therapeutic role, given their ability to alter macrophage polarization. This review is devoted to the most recent advances in applications of iron oxide NPs in tumor diagnosis and therapy. The intrinsic therapeutic effect of these NPs on tumor growth, their capability to alter macrophage polarization and their diagnostic potential are examined. Innovative strategies for NP-based drug delivery in tumors (e.g., magnetic resonance targeting) will also be described. Finally, the review looks at their role as tracers for innovative, and very promising, imaging techniques (magnetic particle imaging-MPI).
Collapse
Affiliation(s)
- Rossella Canese
- MRI Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence: (R.C.); (P.M.)
| | - Federica Vurro
- Department of Computer Science, University of Verona, 37134 Verona, Italy;
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, 37134 Verona, Italy;
- Correspondence: (R.C.); (P.M.)
| |
Collapse
|
41
|
Kwan A, Winder N, Muthana M. Oncolytic Virotherapy Treatment of Breast Cancer: Barriers and Recent Advances. Viruses 2021; 13:1128. [PMID: 34208264 PMCID: PMC8230950 DOI: 10.3390/v13061128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OV) is an emerging class of immunotherapeutic drugs. Their mechanism of action is two-fold: direct cell lysis and unmasking of the cancer through immunogenic cell death, which allows the immune system to recognize and eradicate tumours. Breast cancer is the most common cancer in women and is challenging to treat with immunotherapy modalities because it is classically an immunogenically "cold" tumour type. This provides an attractive niche for OV, given viruses have been shown to turn "cold" tumours "hot," thereby opening a plethora of treatment opportunities. There has been a number of pre-clinical attempts to explore the use of OV in breast cancer; however, these have not led to any meaningful clinical trials. This review considers both the potential and the barriers to OV in breast cancer, namely, the limitations of monotherapy and the scope for combination therapy, improving viral delivery and challenges specific to the breast cancer population (e.g., tumour subtype, menopausal status, age).
Collapse
Affiliation(s)
| | | | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK; (A.K.); (N.W.)
| |
Collapse
|
42
|
Li C, Qi Y, Zhang Y, Chen Y, Feng J, Zhang X. Artificial Engineering of Immune Cells for Improved Immunotherapy. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Chuxin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P.R. China
| | - Yongdan Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P.R. China
| | - Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P.R. China
| | - Yingge Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P.R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P.R. China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P.R. China
| |
Collapse
|
43
|
Buss MT, Ramesh P, English MA, Lee-Gosselin A, Shapiro MG. Spatial Control of Probiotic Bacteria in the Gastrointestinal Tract Assisted by Magnetic Particles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007473. [PMID: 33709508 DOI: 10.1002/adma.202007473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Engineered probiotics have the potential to diagnose and treat a variety of gastrointestinal (GI) diseases. However, these exogenous bacterial agents have limited ability to effectively colonize specific regions of the GI tract due to a lack of external control over their localization and persistence. Magnetic fields are well suited to providing such control, since they freely penetrate biological tissues. However, they are difficult to apply with sufficient strength to directly manipulate magnetically labeled cells in deep tissue such as the GI tract. Here, it is demonstrated that a composite biomagnetic material consisting of microscale magnetic particles and probiotic bacteria, when orally administered and combined with an externally applied magnetic field, enables the trapping and retention of probiotic bacteria within the GI tract of mice. This technology improves the ability of these probiotic agents to accumulate at specific locations and stably colonize without antibiotic treatment. By enhancing the ability of GI-targeted probiotics to be at the right place at the right time, cellular localization assisted by magnetic particles (CLAMP) adds external physical control to an important emerging class of microbial theranostics.
Collapse
Affiliation(s)
- Marjorie T Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Pradeep Ramesh
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Max Atticus English
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
44
|
Taher Z, Legge C, Winder N, Lysyganicz P, Rawlings A, Bryant H, Muthana M, Staniland S. Magnetosomes and Magnetosome Mimics: Preparation, Cancer Cell Uptake and Functionalization for Future Cancer Therapies. Pharmaceutics 2021; 13:367. [PMID: 33802121 PMCID: PMC7998144 DOI: 10.3390/pharmaceutics13030367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Magnetic magnetite nanoparticles (MNP) are heralded as model vehicles for nanomedicine, particularly cancer therapeutics. However, there are many methods of synthesizing different sized and coated MNP, which may affect their performance as nanomedicines. Magnetosomes are naturally occurring, lipid-coated MNP that exhibit exceptional hyperthermic heating, but their properties, cancer cell uptake and toxicity have yet to be compared to other MNP. Magnetosomes can be mimicked by coating MNP in either amphiphilic oleic acid or silica. In this study, magnetosomes are directly compared to control MNP, biomimetic oleic acid and silica coated MNP of varying sizes. MNP are characterized and compared with respect to size, magnetism, and surface properties. Small (8 ± 1.6 nm) and larger (32 ± 9.9 nm) MNP are produced by two different methods and coated with either silica or oleic acid, increasing the size and the size dispersity of the MNP. The coated larger MNP are comparable in size (49 ± 12.5 nm and 61 ± 18.2 nm) to magnetosomes (46 ± 11.8 nm) making good magnetosome mimics. All MNP are assessed and compared for cancer cell uptake in MDA-MB-231 cells and importantly, all are readily taken up with minimal toxic effect. Silica coated MNP show the most uptake with greater than 60% cell uptake at the highest concentration, and magnetosomes showing the least with less than 40% at the highest concentration, while size does not have a significant effect on uptake. Finally, surface functionalization is demonstrated for magnetosomes and silica coated MNP using biotinylation and EDC-NHS, respectively, to conjugate fluorescent probes. The modified particles are visualized in MDA-MB-231 cells and demonstrate how both naturally biosynthesized magnetosomes and biomimetic silica coated MNP can be functionalized and readily up taken by cancer cells for realization as nanomedical vehicles.
Collapse
Affiliation(s)
- Zainab Taher
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| | - Christopher Legge
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Natalie Winder
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Pawel Lysyganicz
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Andrea Rawlings
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| | - Helen Bryant
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Sarah Staniland
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| |
Collapse
|
45
|
Bao G. Magnetic Forces Enable Control of Biological Processes In Vivo. JOURNAL OF APPLIED MECHANICS 2021; 88:030801. [PMID: 34168385 PMCID: PMC8208485 DOI: 10.1115/1.4049331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 05/23/2023]
Abstract
Similar to mechanical forces that can induce profound biological effects, magnetic fields can have a broad range of implications to biological systems, from magnetoreception that allows an organism to detect a magnetic field to perceive direction, altitude, or location, to the use of heating induced by magnetic field for altering neuron activity. This review focuses on the application of magnetic forces generated by magnetic iron oxide nanoparticles (MIONs), which can also provide imaging contrast and mechanical/thermal energy in response to an external magnetic field, a special feature that distinguishes MIONs from other nanomaterials. The magnetic properties of MIONs offer unique opportunities for enabling control of biological processes under different magnetic fields. Here, we describe the approaches of utilizing the forces generated by MIONs under an applied magnetic field to control biological processes and functions, including the targeting of drug molecules to a specific tissue, increasing the vessel permeability for improving drug delivery, and activating a particular viral vector for spatial control of genome editing in vivo. The opportunities of using nanomagnets for a broad range of biomedical applications are briefly discussed.
Collapse
Affiliation(s)
- Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030
| |
Collapse
|
46
|
Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel) 2021; 13:cancers13040588. [PMID: 33546172 PMCID: PMC7913179 DOI: 10.3390/cancers13040588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be applied in cancer immunotherapy without in-depth knowledge of tumor antigens. The capability of genetic modification makes OVs exciting therapeutic tools with a high potential for manipulation. Improving efficacy, employing immunostimulatory elements, changing the immunosuppressive tumor microenvironment (TME) to inflammatory TME, optimizing their delivery system, and increasing the safety are the main areas of OVs manipulations. Recently, the reciprocal interaction of OVs and TME has become a hot topic for investigators to enhance the efficacy of OVT with less off-target adverse events. Current investigations suggest that the main application of OVT is to provoke the antitumor immune response in the TME, which synergize the effects of other immunotherapies such as immune-checkpoint blockers and adoptive cell therapy. In this review, we focused on the effects of OVs on the TME and antitumor immune responses. Furthermore, OVT challenges, including its moderate efficiency, safety concerns, and delivery strategies, along with recent achievements to overcome challenges, are thoroughly discussed.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| |
Collapse
|
47
|
Blokpoel Ferreras LA, Chan SY, Vazquez Reina S, Dixon JE. Rapidly Transducing and Spatially Localized Magnetofection Using Peptide-Mediated Non-Viral Gene Delivery Based on Iron Oxide Nanoparticles. ACS APPLIED NANO MATERIALS 2021; 4:167-181. [PMID: 33763629 PMCID: PMC7978400 DOI: 10.1021/acsanm.0c02465] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/06/2020] [Indexed: 05/03/2023]
Abstract
Non-viral delivery systems are generally of low efficiency, which limits their use in gene therapy and editing applications. We previously developed a technology termed glycosaminoglycan (GAG)-binding enhanced transduction (GET) to efficiently deliver a variety of cargos intracellularly; our system employs GAG-binding peptides, which promote cell targeting, and cell penetrating peptides (CPPs), which enhance endocytotic cell internalization. Herein, we describe a further modification by combining gene delivery and magnetic targeting with the GET technology. We associated GET peptides, plasmid (p)DNA, and iron oxide superparamagnetic nanoparticles (MNPs), allowing rapid and targeted GET-mediated uptake by application of static magnetic fields in NIH3T3 cells. This produced effective transfection levels (significantly higher than the control) with seconds to minutes of exposure and localized gene delivery two orders of magnitude higher in targeted over non-targeted cell monolayers using magnetic fields (in 15 min exposure delivering GFP reporter pDNA). More importantly, high cell membrane targeting by GET-DNA and MNP co-complexes and magnetic fields allowed further enhancement to endocytotic uptake, meaning that the nucleic acid cargo was rapidly internalized beyond that of GET complexes alone (GET-DNA). Magnetofection by MNPs combined with GET-mediated delivery allows magnetic field-guided local transfection in vitro and could facilitate focused gene delivery for future regenerative and disease-targeted therapies in vivo.
Collapse
Affiliation(s)
- Lia A. Blokpoel Ferreras
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Sze Yan Chan
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Saul Vazquez Reina
- School
of Veterinary Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - James E. Dixon
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
48
|
Sier VQ, de Vries MR, van der Vorst JR, Vahrmeijer AL, van Kooten C, Cruz LJ, de Geus-Oei LF, Ferreira V, Sier CFM, Alves F, Muthana M. Cell-Based Tracers as Trojan Horses for Image-Guided Surgery. Int J Mol Sci 2021; 22:E755. [PMID: 33451116 PMCID: PMC7828607 DOI: 10.3390/ijms22020755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Surgeons rely almost completely on their own vision and palpation to recognize affected tissues during surgery. Consequently, they are often unable to distinguish between different cells and tissue types. This makes accurate and complete resection cumbersome. Targeted image-guided surgery (IGS) provides a solution by enabling real-time tissue recognition. Most current targeting agents (tracers) consist of antibodies or peptides equipped with a radiolabel for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), magnetic resonance imaging (MRI) labels, or a near-infrared fluorescent (NIRF) dye. These tracers are preoperatively administered to patients, home in on targeted cells or tissues, and are visualized in the operating room via dedicated imaging systems. Instead of using these 'passive' tracers, there are other, more 'active' approaches of probe delivery conceivable by using living cells (macrophages/monocytes, neutrophils, T cells, mesenchymal stromal cells), cell(-derived) fragments (platelets, extracellular vesicles (exosomes)), and microorganisms (bacteria, viruses) or, alternatively, 'humanized' nanoparticles. Compared with current tracers, these active contrast agents might be more efficient for the specific targeting of tumors or other pathological tissues (e.g., atherosclerotic plaques). This review provides an overview of the arsenal of possibilities applicable for the concept of cell-based tracers for IGS.
Collapse
Affiliation(s)
- Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Cornelis van Kooten
- Department of Nephrology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Luis J. Cruz
- Department of Radiology, Translational Nanomaterials and Imaging Group, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Valerie Ferreira
- Department of Research and Development, UniQure, 1100 DA Amsterdam, The Netherlands;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
- Percuros B.V. Leiden, 2333 CL Leiden, The Netherlands
| | - Frauke Alves
- Translational Molecular Imaging, Clinic of Hematology and Medical Oncology, Institute of Diagnostic and Interventional Radiology, University Medicine Center Göttingen and Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany;
| | - Munitta Muthana
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK;
| |
Collapse
|
49
|
Cheng H, Tsao H, Chiang C, Chen S. Advances in Magnetic Nanoparticle-Mediated Cancer Immune-Theranostics. Adv Healthc Mater 2021; 10:e2001451. [PMID: 33135398 DOI: 10.1002/adhm.202001451] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy is a cutting-edge strategy that eliminates cancer cells by amplifying the host's immune system. However, the low response rate and risks of inducing systemic toxicity have raised uncertainty in the treatment. Magnetic nanoparticles (MNPs) as a versatile theranostic tool can be used to target delivery of multiple immunotherapeutics and monitor cell/tissue responses. These capabilities enable the real-time characterization of the factors that contribute to immunoactivity so that future treatments can be optimized. The magnetic properties of MNPs further allow the implementation of magnetic navigation and magnetic hyperthermia for boosting the efficacy of immunotherapy. The multimodal approach opens an avenue to induce robust immune responses, minimize safety issues, and monitor immune activities simultaneously. Thus, the object of this review is to provide an overview of the burgeoning fields and to highlight novel technologies for next-generation immunotherapy. The review further correlates the properties of MNPs with the latest treatment strategies to explore the crosstalk between magnetic nanomaterials and the immune system. This comprehensive review of MNP-derived immunotherapy covers the obstacles and opportunities for future development and clinical translation.
Collapse
Affiliation(s)
- Hung‐Wei Cheng
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
| | - Hsin‐Yi Tsao
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
| | - Chih‐Sheng Chiang
- Cell Therapy Center China Medical University Hospital Taichung 40421 Taiwan
| | - San‐Yuan Chen
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
- Frontier Research Centre on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
- School of Dentistry College of Dental Medicine Kaohsiung Medical University Kaohsiung 807378 Taiwan
- Graduate Institute of Biomedical Science China Medical University Taichung 40421 Taiwan
| |
Collapse
|
50
|
Yang SJ, Huang CH, Wang CH, Shieh MJ, Chen KC. The Synergistic Effect of Hyperthermia and Chemotherapy in Magnetite Nanomedicine-Based Lung Cancer Treatment. Int J Nanomedicine 2020; 15:10331-10347. [PMID: 33376324 PMCID: PMC7755349 DOI: 10.2147/ijn.s281029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer patient death in the world. There are many treatment options for lung cancer, including surgery, radiation therapy, chemotherapy, targeted therapy, and combined therapy. Despite significant progress has been made in the diagnosis and treatment of lung cancer during the past few decades, the prognosis is still unsatisfactory. Purpose To resolve the problem of chemotherapy failure, we developed a magnetite-based nanomedicine for chemotherapy acting synergistically with loco-regional hyperthermia. Methods The targeting carrier consisted of a complex of superparamagnetic iron oxide (SPIO) and poly(sodium styrene sulfonate) (PSS) at the core and a layer-by-layer shell with cisplatin (CDDP), together with methotrexate – human serum albumin conjugate (MTX−HSA conjugate) for lung cancer-specific targeting, referred to hereafter as SPIO@PSS/CDDP/HSA−MTX nanoparticles (NPs). Results SPIO@PSS/CDDP/HSA−MTX NPs had good biocompatibility and stability in physiological solutions. Furthermore, SPIO@PSS/CDDP/HSA−MTX NPs exhibited a higher temperature increase rate than SPIO nanoparticles under irradiation by a radiofrequency (RF) generator. Therefore, SPIO@PSS/CDDP/HSA−MTX NPs could be used as a hyperthermia inducer under RF exposure after nanoparticles preferentially targeted and then accumulated at tumor sites. In addition, SPIO@PSS/CDDP/HSA−MTX NPs were developed to be used during combined chemotherapy and hyperthermia therapy, exhibiting a synergistic anticancer effect better than the effect of monotherapy. Conclusion Both in vitro and in vivo results suggest that the designed SPIO@PSS/CDDP/HSA−MTX NPs are a powerful candidate nanoplatform for future antitumor treatment strategies.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | | | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|