1
|
Chen Y, Zhuo R, Sun L, Tao Y, Li G, Zhu F, Xu Y, Wang J, Li Z, Yu J, Yin H, Wu D, Li X, Fang F, Xie Y, Hu Y, Wang H, Yang C, Shi L, Wang X, Zhang Z, Pan J. Super-enhancer-driven IRF2BP2 enhances ALK activity and promotes neuroblastoma cell proliferation. Neuro Oncol 2024; 26:1878-1894. [PMID: 38864832 PMCID: PMC11449008 DOI: 10.1093/neuonc/noae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Super-enhancers (SEs) typically govern the expression of critical oncogenes and play a fundamental role in the initiation and progression of cancer. Focusing on genes that are abnormally regulated by SE in cancer may be a new strategy for understanding pathogenesis. In the context of this investigation, we have identified a previously unreported SE-driven gene IRF2BP2 in neuroblastoma (NB). METHODS The expression and prognostic value of IRF2BP2 were detected in public databases and clinical samples. The effect of IRF2BP2 on NB cell growth and apoptosis was evaluated through in vivo and in vitro functional loss experiments. The molecular mechanism of IRF2BP2 was investigated by the study of chromatin regulatory regions and transcriptome sequencing. RESULTS The sustained high expression of IRF2BP2 results from the activation of a novel SE established by NB master transcription factors MYCN, MEIS2, and HAND2, and they form a new complex that regulates the gene network associated with the proliferation of NB cell populations. We also observed a significant enrichment of the AP-1 family at the binding sites of IRF2BP2. Remarkably, within NB cells, AP-1 plays a pivotal role in shaping the chromatin accessibility landscape, thereby exposing the binding site for IRF2BP2. This orchestrated action enables AP-1 and IRF2BP2 to collaboratively stimulate the expression of the NB susceptibility gene ALK, thereby upholding the highly proliferative phenotype characteristic of NB. CONCLUSIONS Our findings indicate that SE-driven IRF2BP2 can bind to AP-1 to maintain the survival of tumor cells via regulating chromatin accessibility of the NB susceptibility gene ALK.
Collapse
Affiliation(s)
- Yanling Chen
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Lichao Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Frank Zhu
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yunyun Xu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Juanjuan Yu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Hongli Yin
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Di Wu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yi Xie
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hairong Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Chun Yang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Lei Shi
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaodong Wang
- Department of Orthopedics, Children’s Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Lu Y, Ma WB, Ren GM, Li YT, Wang T, Zhan YQ, Xiang SS, Chen H, Gao HY, Zhao K, Yu M, Li CY, Yang XM, Yin RH. GPS2 promotes erythroid differentiation in K562 erythroleukemia cells primarily via NCOR1. Int J Hematol 2024; 120:157-166. [PMID: 38814500 DOI: 10.1007/s12185-024-03797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.
Collapse
Affiliation(s)
- Ying Lu
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen-Bing Ma
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Guang-Ming Ren
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ya-Ting Li
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ting Wang
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shen-Si Xiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Miao Yu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiao-Ming Yang
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
3
|
Kim J, Diaz LF, Miller MJ, Leadem B, Krivega I, Dean A. An enhancer RNA recruits KMT2A to regulate transcription of Myb. Cell Rep 2024; 43:114378. [PMID: 38889007 PMCID: PMC11369905 DOI: 10.1016/j.celrep.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81-kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR-Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expressions were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the KMT2A/MLL1 complex. Myrlin CRISPRi compromised KMT2A occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting KMT2A.
Collapse
Affiliation(s)
- Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Luis F Diaz
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Matthew J Miller
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; University of Iowa Medical School, Iowa City, IA 52242, USA
| | - Benjamin Leadem
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; GeneDx, Gaithersburg, MD 20877, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Sonothera, South San Francisco, CA 94080, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Fischer S, Weber LM, Stielow B, Frech M, Simon C, Geller M, Könnecke J, Finkernagel F, Forné I, Nist A, Bauer UM, Stiewe T, Neubauer A, Liefke R. IRF2BP2 counteracts the ATF7/JDP2 AP-1 heterodimer to prevent inflammatory overactivation in acute myeloid leukemia (AML) cells. Nucleic Acids Res 2024; 52:7590-7609. [PMID: 38801077 PMCID: PMC11260449 DOI: 10.1093/nar/gkae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by abnormal proliferation and accumulation of immature myeloid cells in the bone marrow. Inflammation plays a crucial role in AML progression, but excessive activation of cell-intrinsic inflammatory pathways can also trigger cell death. IRF2BP2 is a chromatin regulator implicated in AML pathogenesis, although its precise role in this disease is not fully understood. In this study, we demonstrate that IRF2BP2 interacts with the AP-1 heterodimer ATF7/JDP2, which is involved in activating inflammatory pathways in AML cells. We show that IRF2BP2 is recruited by the ATF7/JDP2 dimer to chromatin and counteracts its gene-activating function. Loss of IRF2BP2 leads to overactivation of inflammatory pathways, resulting in strongly reduced proliferation. Our research indicates that a precise equilibrium between activating and repressive transcriptional mechanisms creates a pro-oncogenic inflammatory environment in AML cells. The ATF7/JDP2-IRF2BP2 regulatory axis is likely a key regulator of this process and may, therefore, represent a promising therapeutic vulnerability for AML. Thus, our study provides new insights into the molecular mechanisms underlying AML pathogenesis and identifies a potential therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Miriam Frech
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Merle Geller
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Julie Könnecke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Florian Finkernagel
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University of Marburg, Marburg 35043, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Martinsried 82152, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| |
Collapse
|
5
|
Deleuze V, Soler E, Andrieu-Soler C. Protocol for efficient CRISPR-Cas9-mediated fluorescent tag knockin in hard-to-transfect erythroid cell lines. STAR Protoc 2024; 5:103016. [PMID: 38640065 PMCID: PMC11044133 DOI: 10.1016/j.xpro.2024.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024] Open
Abstract
Precise insertion of fluorescent tags by CRISPR-Cas9-mediated homologous recombination (HR) in mammalian genes is a powerful tool allowing to study gene function and protein gene products. Here, we present a protocol for efficient HR-mediated targeted insertion of fluorescent markers in the genome of hard-to-transfect erythroid cell lines MEL (mouse erythroleukemic) and MEDEP (mouse ES cell-derived erythroid progenitor line). We describe steps for plasmid construction, electroporation, amplification, and verification of genome editing. We then detail procedures for isolating positive clones and validating knockin clones. For complete details on the use and execution of this protocol, please refer to Deleuze et al.1.
Collapse
Affiliation(s)
- Virginie Deleuze
- IGMM University Montpellier, CNRS, Montpellier, France; Laboratory of Excellence GR-Ex, Université' de Paris, Paris, France
| | - Eric Soler
- IGMM University Montpellier, CNRS, Montpellier, France; Laboratory of Excellence GR-Ex, Université' de Paris, Paris, France.
| | - Charlotte Andrieu-Soler
- IGMM University Montpellier, CNRS, Montpellier, France; Laboratory of Excellence GR-Ex, Université' de Paris, Paris, France.
| |
Collapse
|
6
|
Wang C, Hu M, Yu K, Liu W, Hu A, Kuang Y, Huang L, Gajendran B, Zacksenhaus E, Xiao X, Ben-David Y. An intricate regulatory circuit between FLI1 and GATA1/GATA2/LDB1/ERG dictates erythroid vs. megakaryocytic differentiation. Mol Med Rep 2024; 29:107. [PMID: 38695236 PMCID: PMC11082641 DOI: 10.3892/mmr.2024.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
During hematopoiesis, megakaryocytic erythroid progenitors (MEPs) differentiate into megakaryocytic or erythroid lineages in response to specific transcriptional factors, yet the regulatory mechanism remains to be elucidated. Using the MEP‑like cell line HEL western blotting, RT‑qPCR, lentivirus‑mediated downregulation, flow cytometry as well as chromatin immunoprecipitation (ChIp) assay demonstrated that the E26 transformation‑specific (ETS) transcription factor friend leukemia integration factor 1 (Fli‑1) inhibits erythroid differentiation. The present study using these methods showed that while FLI1‑mediated downregulation of GATA binding protein 1 (GATA1) suppresses erythropoiesis, its direct transcriptional induction of GATA2 promotes megakaryocytic differentiation. GATA1 is also involved in megakaryocytic differentiation through regulation of GATA2. By contrast to FLI1, the ETS member erythroblast transformation‑specific‑related gene (ERG) negatively controls GATA2 and its overexpression through exogenous transfection blocks megakaryocytic differentiation. In addition, FLI1 regulates expression of LIM Domain Binding 1 (LDB1) during erythroid and megakaryocytic commitment, whereas shRNA‑mediated depletion of LDB1 downregulates FLI1 and GATA2 but increases GATA1 expression. In agreement, LDB1 ablation using shRNA lentivirus expression blocks megakaryocytic differentiation and modestly suppresses erythroid maturation. These results suggested that a certain threshold level of LDB1 expression enables FLI1 to block erythroid differentiation. Overall, FLI1 controlled the commitment of MEP to either erythroid or megakaryocytic lineage through an intricate regulation of GATA1/GATA2, LDB1 and ERG, exposing multiple targets for cell fate commitment and therapeutic intervention.
Collapse
Affiliation(s)
- Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Maoting Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Kunlin Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Lei Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, Ontario M5S3H2, Canada
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G1L7, Canada
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| |
Collapse
|
7
|
Fagnan A, Aid Z, Baille M, Drakul A, Robert E, Lopez CK, Thirant C, Lecluse Y, Rivière J, Ignacimouttou C, Salmoiraghi S, Anguita E, Naimo A, Marzac C, Pflumio F, Malinge S, Wichmann C, Huang Y, Lobry C, Chaumeil J, Soler E, Bourquin J, Nerlov C, Bernard OA, Schwaller J, Mercher T. The ETO2 transcriptional cofactor maintains acute leukemia by driving a MYB/EP300-dependent stemness program. Hemasphere 2024; 8:e90. [PMID: 38903535 PMCID: PMC11187848 DOI: 10.1002/hem3.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024] Open
Abstract
Transcriptional cofactors of the ETO family are recurrent fusion partners in acute leukemia. We characterized the ETO2 regulome by integrating transcriptomic and chromatin binding analyses in human erythroleukemia xenografts and controlled ETO2 depletion models. We demonstrate that beyond its well-established repressive activity, ETO2 directly activates transcription of MYB, among other genes. The ETO2-activated signature is associated with a poorer prognosis in erythroleukemia but also in other acute myeloid and lymphoid leukemia subtypes. Mechanistically, ETO2 colocalizes with EP300 and MYB at enhancers supporting the existence of an ETO2/MYB feedforward transcription activation loop (e.g., on MYB itself). Both small-molecule and PROTAC-mediated inhibition of EP300 acetyltransferases strongly reduced ETO2 protein, chromatin binding, and ETO2-activated transcripts. Taken together, our data show that ETO2 positively enforces a leukemia maintenance program that is mediated in part by the MYB transcription factor and that relies on acetyltransferase cofactors to stabilize ETO2 scaffolding activity.
Collapse
Affiliation(s)
- Alexandre Fagnan
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Zakia Aid
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Marie Baille
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Aneta Drakul
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Elie Robert
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cécile K. Lopez
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cécile Thirant
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Yann Lecluse
- Gustave Roussy, Plateforme Imagerie et Cytométrie, Université Paris‐Saclay, UMS AMMICA, INSERM US23, CNRS UMS 3655VillejuifFrance
| | - Julie Rivière
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cathy Ignacimouttou
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Silvia Salmoiraghi
- Department of Oncology and HematologyAzienda Socio Sanitaria Territoriale Papa Giovanni XXIII, FROM Research Foundation, Papa Giovanni XXIII HospitalBergamoItaly
| | - Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos (HCSC), IML, IdISSC, Department of MedicineUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Audrey Naimo
- Gustave Roussy, Genomic PlatformUniversité Paris‐Saclay, UMS AMMICA, INSERM US23, CNRS UMS 3655VillejuifFrance
| | - Christophe Marzac
- Department of HematologyLeukemia Interception Program, Personalized Cancer Prevention Center, Gustave RoussyVillejuifFrance
| | - Françoise Pflumio
- Equipe Labellisée Ligue Contre le CancerParisFrance
- Unité de Recherche (UMR)‐E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Université de Paris‐Université Paris‐SaclayFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
| | - Sébastien Malinge
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Telethon Kids Institute, Perth Children's HospitalNedlandsAustralia
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and HaemostasisLudwig‐Maximilians‐University of MunichMunichGermany
| | - Yun Huang
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Camille Lobry
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- INSERM U944, CNRS UMR7212Institut de Recherche Saint Louis and Université de ParisParisFrance
| | - Julie Chaumeil
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Eric Soler
- IGMM, University of Montpellier, CNRS, Montpellier, France & Université de Paris, Laboratory of Excellence GR‐ExParisFrance
| | - Jean‐Pierre Bourquin
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | | | - Juerg Schwaller
- Department of BiomedicineUniversity Children's Hospital Beider Basel (UKBB), University of BaselBaselSwitzerland
| | - Thomas Mercher
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
| |
Collapse
|
8
|
Fechner J, Lausen J. Transcription Factor TAL1 in Erythropoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:243-258. [PMID: 39017847 DOI: 10.1007/978-3-031-62731-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lineage-specific transcription factors (TFs) regulate differentiation of hematopoietic stem cells (HSCs). They are decisive for the establishment and maintenance of lineage-specific gene expression programs during hematopoiesis. For this they create a regulatory network between TFs, epigenetic cofactors, and microRNAs. They activate cell-type specific genes and repress competing gene expression programs. Disturbance of this process leads to impaired lineage fidelity and diseases of the blood system. The TF T-cell acute leukemia 1 (TAL1) is central for erythroid differentiation and contributes to the formation of distinct gene regulatory complexes in progenitor cells and erythroid cells. A TAL1/E47 heterodimer binds to DNA with the TFs GATA-binding factor 1 and 2 (GATA1/2), the cofactors LIM domain only 1 and 2 (LMO1/2), and LIM domain-binding protein 1 (LDB1) to form a core TAL1 complex. Furthermore, cell-type-dependent interactions of TAL1 with other TFs such as with runt-related transcription factor 1 (RUNX1) and Kruppel-like factor 1 (KLF1) are established. Moreover, TAL1 activity is regulated by the formation of TAL1 isoforms, posttranslational modifications (PTMs), and microRNAs. Here, we describe the function of TAL1 in normal hematopoiesis with a focus on erythropoiesis.
Collapse
Affiliation(s)
- Johannes Fechner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Jörn Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
9
|
Kim J, Diaz LF, Miller MJ, Leadem B, Krivega I, Dean A. An enhancer RNA recruits MLL1 to regulate transcription of Myb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559528. [PMID: 37808852 PMCID: PMC10557664 DOI: 10.1101/2023.09.26.559528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81 kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR/Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expression were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the MLL1 complex. Myrlin CRISPRi compromised MLL1 occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting MLL1.
Collapse
Affiliation(s)
- Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis F. Diaz
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Oregon Health and Sciences University, Portland, OR 97239
| | - Matthew J. Miller
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- University of Iowa Medical School, Iowa City, IA 52242
| | - Benjamin Leadem
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- GeneDx, Gaithersburg, MD 20877
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Sonothera, South San Francisco, CA 94080
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Kugler E, Madiwale S, Yong D, Thoms JAI, Birger Y, Sykes DB, Schmoellerl J, Drakul A, Priebe V, Yassin M, Aqaqe N, Rein A, Fishman H, Geron I, Chen CW, Raught B, Liu Q, Ogana H, Liedke E, Bourquin JP, Zuber J, Milyavsky M, Pimanda J, Privé GG, Izraeli S. The NCOR-HDAC3 co-repressive complex modulates the leukemogenic potential of the transcription factor ERG. Nat Commun 2023; 14:5871. [PMID: 37735473 PMCID: PMC10514085 DOI: 10.1038/s41467-023-41067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.
Collapse
Affiliation(s)
- Eitan Kugler
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Shreyas Madiwale
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Darren Yong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Julie A I Thoms
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Yehudit Birger
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA & Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Johannes Schmoellerl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Aneta Drakul
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Valdemar Priebe
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avigail Rein
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hila Fishman
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Ifat Geron
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Qiao Liu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Elisabeth Liedke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - John Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - Shai Izraeli
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| |
Collapse
|
11
|
Deleuze V, Garcia L, Rouaisnel B, Salma M, Kinoo A, Andrieu-Soler C, Soler E. Efficient genome editing in erythroid cells unveils novel MYB target genes and regulatory functions. iScience 2023; 26:107641. [PMID: 37670779 PMCID: PMC10475484 DOI: 10.1016/j.isci.2023.107641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Targeted genome editing holds great promise in biology. However, efficient genome modification, including gene knock-in (KI), remains an unattained goal in multiple cell types and loci due to poor transfection efficiencies and low target genes expression, impeding the positive selection of recombined cells. Here, we describe a genome editing approach to achieve efficient gene targeting using hard to transfect erythroid cell lines. We demonstrate robust fluorescent protein KI efficiency in low expressed transcription factor (TF) genes (e.g., Myb or Zeb1). We further show the ability to target two independent loci in individual cells, exemplified by MYB-GFP and NuMA-Cherry double KI, allowing multicolor labeling of regulatory factors at physiological endogenous levels. Our KI tagging approach allowed us to perform genome-wide TF analysis at increased signal-to-noise ratios, and highlighted previously unidentified MYB target genes and pathways. Overall, we establish a versatile CRISPR-Cas9-based platform, offering attractive opportunities for the dissection of the erythroid differentiation process.
Collapse
Affiliation(s)
| | - Leonor Garcia
- IGMM, University Montpellier, CNRS, Montpellier, France
| | | | - Mohammad Salma
- IGMM, University Montpellier, CNRS, Montpellier, France
- Laboratory of Excellence GR-Ex, Université de Paris, Paris, France
| | - Alexia Kinoo
- IGMM, University Montpellier, CNRS, Montpellier, France
| | - Charlotte Andrieu-Soler
- IGMM, University Montpellier, CNRS, Montpellier, France
- Laboratory of Excellence GR-Ex, Université de Paris, Paris, France
| | - Eric Soler
- IGMM, University Montpellier, CNRS, Montpellier, France
- Laboratory of Excellence GR-Ex, Université de Paris, Paris, France
| |
Collapse
|
12
|
Piqué-Borràs MR, Jevtic Z, Bagger FO, Seguin J, Sivalingam R, Bezerra MF, Louwagie A, Juge S, Nellas I, Ivanek R, Tzankov A, Moll UM, Cantillo O, Schulz-Heddergott R, Fagnan A, Mercher T, Schwaller J. The NFIA-ETO2 fusion blocks erythroid maturation and induces pure erythroid leukemia in cooperation with mutant TP53. Blood 2023; 141:2245-2260. [PMID: 36735909 PMCID: PMC10646783 DOI: 10.1182/blood.2022017273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
The NFIA-ETO2 fusion is the product of a t(1;16)(p31;q24) chromosomal translocation, so far, exclusively found in pediatric patients with pure erythroid leukemia (PEL). To address the role for the pathogenesis of the disease, we facilitated the expression of the NFIA-ETO2 fusion in murine erythroblasts (EBs). We observed that NFIA-ETO2 significantly increased proliferation and impaired erythroid differentiation of murine erythroleukemia cells and of primary fetal liver-derived EBs. However, NFIA-ETO2-expressing EBs acquired neither aberrant in vitro clonogenic activity nor disease-inducing potential upon transplantation into irradiated syngenic mice. In contrast, in the presence of 1 of the most prevalent erythroleukemia-associated mutations, TP53R248Q, expression of NFIA-ETO2 resulted in aberrant clonogenic activity and induced a fully penetrant transplantable PEL-like disease in mice. Molecular studies support that NFIA-ETO2 interferes with erythroid differentiation by preferentially binding and repressing erythroid genes that contain NFI binding sites and/or are decorated by ETO2, resulting in a activity shift from GATA- to ETS-motif-containing target genes. In contrast, TP53R248Q does not affect erythroid differentiation but provides self-renewal and survival potential, mostly via downregulation of known TP53 targets. Collectively, our work indicates that NFIA-ETO2 initiates PEL by suppressing gene expression programs of terminal erythroid differentiation and cooperates with TP53 mutation to induce erythroleukemia.
Collapse
Affiliation(s)
- Maria-Riera Piqué-Borràs
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Zivojin Jevtic
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Frederik Otzen Bagger
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Seguin
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Rathick Sivalingam
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Matheus Filgueira Bezerra
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amber Louwagie
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sabine Juge
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ioannis Nellas
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - Ute M. Moll
- Institute of Molecular Oncology, University of Göttingen, Göttingen, Germany
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | - Oriano Cantillo
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Alexandre Fagnan
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Cancer Center, Université Paris Diderot, Université Paris-Sud, OPALE Carnot Institute, PEDIAC Program, Villejuif, France
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Cancer Center, Université Paris Diderot, Université Paris-Sud, OPALE Carnot Institute, PEDIAC Program, Villejuif, France
| | - Juerg Schwaller
- University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Qiao X, Wang S, Zong Y, Gu X, Jin Y, Li Y, Wei Z, Wang L, Song L. An IRF2BP member (CgIRF2BP) involved in negative regulation of CgIFNLP expression in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108576. [PMID: 36775182 DOI: 10.1016/j.fsi.2023.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The IRF2BP family of transcription regulators act as corepressor molecules by inhibiting both enhancer-activated and basal transcription involving in many biological contexts. In the present study, an IRF2BP homologue (CgIRF2BP) was identified from oyster C. gigas. Its open reading frame is of 1809 bp encoding a polypeptide of 602 amino acids, which contains an IRF-2BP1_2 domain and a RING domain. The mRNA transcripts of CgIRF2BP were detected in all tested tissues with highest level in haemocytes (28.99-fold of that in mantle, p < 0.05). After poly (I:C) stimulation, the expression level of CgIRF2BP was significantly down-regulated at 3 h (0.50-fold of that in control group, p < 0.001) and gradually increased from 6 h to 48 h (2.69-fold of that in control group, p < 0.01). The recombinant protein of CgIRF2BP (rCgIRF2BP) showed high affinity to both rCgIRF1 and rCgIRF8 with Kd value of 1.02 × 10-7 and 2.09 × 10-7, respectively. In CgIRF2BP-RNAi oysters, the mRNA expression of CgIFNLP, CgMx1, CgViperin and CgIFI44L were significantly increased after poly (I:C) stimulation, which were 2.88 (p < 0.01), 1.83 (p < 0.05), 2.47 (p < 0.05), and 1.99-fold (p < 0.01) of that in EGFP group, respectively. These findings suggested that CgIRF2BP negatively regulated CgIFNLP expression by binding with CgIRF1 and CgIRF8.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhuorui Wei
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
14
|
Asgarian Z, Oliveira MG, Stryjewska A, Maragkos I, Rubin AN, Magno L, Pachnis V, Ghorbani M, Hiebert SW, Denaxa M, Kessaris N. MTG8 interacts with LHX6 to specify cortical interneuron subtype identity. Nat Commun 2022; 13:5217. [PMID: 36064547 PMCID: PMC9445035 DOI: 10.1038/s41467-022-32898-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Cortical interneurons originating in the embryonic medial ganglionic eminence (MGE) diverge into a range of different subtypes found in the adult mouse cerebral cortex. The mechanisms underlying this divergence and the timing when subtype identity is set up remain unclear. We identify the highly conserved transcriptional co-factor MTG8 as being pivotal in the development of a large subset of MGE cortical interneurons that co-expresses Somatostatin (SST) and Neuropeptide Y (NPY). MTG8 interacts with the pan-MGE transcription factor LHX6 and together the two factors are sufficient to promote expression of critical cortical interneuron subtype identity genes. The SST-NPY cortical interneuron fate is initiated early, well before interneurons migrate into the cortex, demonstrating an early onset specification program. Our findings suggest that transcriptional co-factors and modifiers of generic lineage specification programs may hold the key to the emergence of cortical interneuron heterogeneity from the embryonic telencephalic germinal zones. There is a large diversity of inhibitory interneurons in the mammalian cerebral cortex. How this emerges during embryogenesis remains unclear. Here, the authors identify MTG8 as a co-factor of LHX6 and a new regulator of cortical interneuron development.
Collapse
Affiliation(s)
- Zeinab Asgarian
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marcio Guiomar Oliveira
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Agata Stryjewska
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ioannis Maragkos
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Anna Noren Rubin
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lorenza Magno
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Mohammadmersad Ghorbani
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.,Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Scott Wayne Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Myrto Denaxa
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Hendrikse LD, Haldipur P, Saulnier O, Millman J, Sjoboen AH, Erickson AW, Ong W, Gordon V, Coudière-Morrison L, Mercier AL, Shokouhian M, Suárez RA, Ly M, Borlase S, Scott DS, Vladoiu MC, Farooq H, Sirbu O, Nakashima T, Nambu S, Funakoshi Y, Bahcheli A, Diaz-Mejia JJ, Golser J, Bach K, Phuong-Bao T, Skowron P, Wang EY, Kumar SA, Balin P, Visvanathan A, Lee JJY, Ayoub R, Chen X, Chen X, Mungall KL, Luu B, Bérubé P, Wang YC, Pfister SM, Kim SK, Delattre O, Bourdeaut F, Doz F, Masliah-Planchon J, Grajkowska WA, Loukides J, Dirks P, Fèvre-Montange M, Jouvet A, French PJ, Kros JM, Zitterbart K, Bailey SD, Eberhart CG, Rao AAN, Giannini C, Olson JM, Garami M, Hauser P, Phillips JJ, Ra YS, de Torres C, Mora J, Li KKW, Ng HK, Poon WS, Pollack IF, López-Aguilar E, Gillespie GY, Van Meter TE, Shofuda T, Vibhakar R, Thompson RC, Cooper MK, Rubin JB, Kumabe T, Jung S, Lach B, Iolascon A, Ferrucci V, de Antonellis P, Zollo M, Cinalli G, Robinson S, Stearns DS, Van Meir EG, Porrati P, Finocchiaro G, Massimino M, Carlotti CG, Faria CC, Roussel MF, Boop F, Chan JA, Aldinger KA, Razavi F, Silvestri E, McLendon RE, Thompson EM, Ansari M, Garre ML, Chico F, Eguía P, Pérezpeña M, Morrissy AS, Cavalli FMG, Wu X, Daniels C, Rich JN, Jones SJM, Moore RA, Marra MA, Huang X, Reimand J, Sorensen PH, Wechsler-Reya RJ, Weiss WA, Pugh TJ, Garzia L, Kleinman CL, Stein LD, Jabado N, Malkin D, Ayrault O, Golden JA, Ellison DW, Doble B, Ramaswamy V, Werbowetski-Ogilvie TE, Suzuki H, Millen KJ, Taylor MD. Failure of human rhombic lip differentiation underlies medulloblastoma formation. Nature 2022; 609:1021-1028. [PMID: 36131014 PMCID: PMC10026724 DOI: 10.1038/s41586-022-05215-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/09/2022] [Indexed: 02/08/2023]
Abstract
Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.
Collapse
Affiliation(s)
- Liam D Hendrikse
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jake Millman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Alexandria H Sjoboen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Anders W Erickson
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Winnie Ong
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Victor Gordon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Audrey L Mercier
- PSL Research University, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Institut Curie, Orsay, France
| | - Mohammad Shokouhian
- Department of Pediatrics and Child Health and Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Raúl A Suárez
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Ly
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Borlase
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David S Scott
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maria C Vladoiu
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hamza Farooq
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Olga Sirbu
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Shohei Nambu
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Funakoshi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Alec Bahcheli
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - J Javier Diaz-Mejia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Joseph Golser
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kathleen Bach
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Tram Phuong-Bao
- Department of Pediatrics and Child Health and Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patryk Skowron
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Evan Y Wang
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sachin A Kumar
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Polina Balin
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Abhirami Visvanathan
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John J Y Lee
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ramy Ayoub
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Xin Chen
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaodi Chen
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Betty Luu
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pierre Bérubé
- McGill University Genome Centre, McGill University, Montreal, Quebec, Canada
| | - Yu C Wang
- McGill University Genome Centre, McGill University, Montreal, Quebec, Canada
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Seung-Ki Kim
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, South Korea
| | - Olivier Delattre
- SIREDO Oncology Center (Pediatric, Adolescent and Young Adults Oncology), Institut Curie, Paris, France
- INSERM U830, Institut Curie, Paris, France
| | - Franck Bourdeaut
- SIREDO Oncology Center (Pediatric, Adolescent and Young Adults Oncology), Institut Curie, Paris, France
- INSERM U830, Institut Curie, Paris, France
| | - François Doz
- SIREDO Oncology Center (Pediatric, Adolescent and Young Adults Oncology), Institut Curie, Paris, France
- Université Paris Cité, Paris, France
| | | | | | - James Loukides
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Dirks
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Fèvre-Montange
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences, Université de Lyon, Lyon, France
- Centre de Pathologie EST, Groupement Hospitalier EST, Université de Lyon, Bron, France
| | - Anne Jouvet
- Centre de Pathologie EST, Groupement Hospitalier EST, Université de Lyon, Bron, France
| | - Pim J French
- Department of Neurology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Karel Zitterbart
- Department of Pediatric Oncology, Masaryk University School of Medicine, Brno, Czech Republic
| | - Swneke D Bailey
- Department of Surgery, Division of Thoracic and Upper Gastrointestinal Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Charles G Eberhart
- Departments of Pathology, Ophthalmology and Oncology, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amulya A N Rao
- Division of Pediatric Hematology/Oncology, Mayo Clinic, Rochester, MN, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Miklós Garami
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Peter Hauser
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Young S Ra
- Department of Neurosurgery, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Kay K W Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wai S Poon
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enrique López-Aguilar
- Division of Pediatric Hematology/Oncology, Hospital Pediatría Centro Médico Nacional century XXI, Mexico City, Mexico
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy E Van Meter
- Pediatrics, Virginia Commonwealthy University, School of Medicine, Richmond, VA, USA
| | - Tomoko Shofuda
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, Osaka, Japan
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt Medical Center, Nashville, TN, USA
| | - Michael K Cooper
- Department of Neurology, Vanderbilt Medical Center, Nashville, TN, USA
| | - Joshua B Rubin
- Departments of Neuroscience, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Hwasun-gun, South Korea
| | - Boleslaw Lach
- Department of Pathology and Molecular Medicine, Division of Anatomical Pathology, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Hamilton General Hospital, Hamilton, Ontario, Canada
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Veronica Ferrucci
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Pasqualino de Antonellis
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Massimo Zollo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Giuseppe Cinalli
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Case Western Reserve, Cleveland, OH, USA
| | - Duncan S Stearns
- Department of Pediatrics-Hematology and Oncology, Case Western Reserve, Cleveland, OH, USA
| | - Erwin G Van Meir
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Paola Porrati
- Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | | | - Carlos G Carlotti
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Claudia C Faria
- Division of Neurosurgery, Centro Hospitalar Lisboa Norte (CHULN), Hospital de Santa Maria, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Martine F Roussel
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Frederick Boop
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer A Chan
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Ferechte Razavi
- Assistance Publique Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Evelina Silvestri
- Surgical Pathology Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Roger E McLendon
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Eric M Thompson
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Maria L Garre
- U.O. Neurochirurgia, Istituto Giannina Gaslini, Genova, Italy
| | - Fernando Chico
- Department of Neurosurgery, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Pilar Eguía
- Department of Neurosurgery, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Mario Pérezpeña
- Instituto Nacional De Pediatría de México, Mexico City, Mexico
| | - A Sorana Morrissy
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Florence M G Cavalli
- INSERM U900, Institut Curie, Paris, France
- PSL Research University, Institut Curie, Paris, France
- CBIO-Centre for Computational Biology, PSL Research University, MINES ParisTech, Paris, France
| | - Xiaochong Wu
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Craig Daniels
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xi Huang
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jüri Reimand
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - William A Weiss
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Livia Garzia
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Adaptive Oncology, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Nada Jabado
- Departments of Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
- The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olivier Ayrault
- PSL Research University, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Institut Curie, Orsay, France
| | - Jeffrey A Golden
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brad Doble
- Department of Pediatrics and Child Health and Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tamra E Werbowetski-Ogilvie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Ellegast JM, Alexe G, Hamze A, Lin S, Uckelmann HJ, Rauch PJ, Pimkin M, Ross LS, Dharia NV, Robichaud AL, Conway AS, Khalid D, Perry JA, Wunderlich M, Benajiba L, Pikman Y, Nabet B, Gray NS, Orkin SH, Stegmaier K. Unleashing Cell-Intrinsic Inflammation as a Strategy to Kill AML Blasts. Cancer Discov 2022; 12:1760-1781. [PMID: 35405016 PMCID: PMC9308469 DOI: 10.1158/2159-8290.cd-21-0956] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
Leukemic blasts are immune cells gone awry. We hypothesized that dysregulation of inflammatory pathways contributes to the maintenance of their leukemic state and can be exploited as cell-intrinsic, self-directed immunotherapy. To this end, we applied genome-wide screens to discover genetic vulnerabilities in acute myeloid leukemia (AML) cells implicated in inflammatory pathways. We identified the immune modulator IRF2BP2 as a selective AML dependency. We validated AML cell dependency on IRF2BP2 with genetic and protein degradation approaches in vitro and genetically in vivo. Chromatin and global gene-expression studies demonstrated that IRF2BP2 represses IL1β/TNFα signaling via NFκB, and IRF2BP2 perturbation results in an acute inflammatory state leading to AML cell death. These findings elucidate a hitherto unexplored AML dependency, reveal cell-intrinsic inflammatory signaling as a mechanism priming leukemic blasts for regulated cell death, and establish IRF2BP2-mediated transcriptional repression as a mechanism for blast survival. SIGNIFICANCE This study exploits inflammatory programs inherent to AML blasts to identify genetic vulnerabilities in this disease. In doing so, we determined that AML cells are dependent on the transcriptional repressive activity of IRF2BP2 for their survival, revealing cell-intrinsic inflammation as a mechanism priming leukemic blasts for regulated cell death. See related commentary by Puissant and Medyouf, p. 1617. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Jana M Ellegast
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Amanda Hamze
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hannah J Uckelmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Philipp J Rauch
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Maxim Pimkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda S Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amanda L Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Delan Khalid
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lina Benajiba
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,Université de Paris, INSERM U944 and CNRS 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, Paris, France
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Corresponding author: Dr. Kimberly Stegmaier (), Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston MA, 02215. Phone: 617-632-4438
| |
Collapse
|
17
|
Vilmundarson RO, Heydarikhorneh N, Duong A, Ho T, Keyhanian K, Soheili F, Chen HH, Stewart AFR. Savior Siblings Might Rescue Fetal Lethality But Not Adult Lymphoma in Irf2bp2-Null Mice. Front Immunol 2022; 13:868053. [PMID: 35865523 PMCID: PMC9295810 DOI: 10.3389/fimmu.2022.868053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interferon regulatory factor 2 binding protein 2 (Irf2bp2), a co-repressor of Irf2, is required for fetal hepatic erythropoiesis through the expansion of erythromyeloid progenitors. Mice with germline ablation of the entire Irf2bp2 transcript produced no viable Irf2bp2-null pups in first litters. In subsequent litters, fewer than 1/3 of the expected Irf2bp2-null pups were born and half survived to adulthood. As in humans with somatic mutations in IRF2BP2, adult Irf2bp2-null mice developed lymphoma. Transcriptome profiling of liver, heart, and skeletal muscle from Irf2bp2-null adult mice revealed a predominant upregulation of interferon-responsive genes. Of interest, hematopoietic stem cell-enriched transcription factors (Etv6, Fli1, Ikzf1, and Runx1) were also elevated in Irf2bp2-null livers. Intriguingly, Irf2bp2-positive mwfi 2yeloid (but not lymphoid) cells were detected in the livers of adult Irf2bp2-null mice. In female Irf2bp2-null mice, these cells carried a Y chromosome while in male Irf2bp2-null livers, no cells with Barr bodies (inactivated X chromosomes) were detected, indicating that Irf2bp2-positive erythromyeloid cells might be acquired only from male siblings of prior litters by transmaternal microchimerism. These cells likely rescue the deficit in fetal erythropoiesis, but not adult-onset lymphomagenesis, caused by Irfb2p2 ablation.
Collapse
Affiliation(s)
- Ragnar O. Vilmundarson
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Niloufar Heydarikhorneh
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - An Duong
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Tiffany Ho
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Kianoosh Keyhanian
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Institute, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Neuroscience Division, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Fariborz Soheili
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Hsiao-Huei Chen
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Institute, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Neuroscience Division, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- *Correspondence: Hsiao-Huei Chen, ; Alexandre F. R. Stewart,
| | - Alexandre F. R. Stewart
- Laboratory of Translational Genomics, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Hsiao-Huei Chen, ; Alexandre F. R. Stewart,
| |
Collapse
|
18
|
Yan L, Gao S, Zhu J, Zhou J. Irf2bp2a regulates liver development via stabilizing P53 protein in zebrafish. Biochim Biophys Acta Gen Subj 2022; 1866:130186. [DOI: 10.1016/j.bbagen.2022.130186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
|
19
|
Andrieu-Soler C, Soler E. Erythroid Cell Research: 3D Chromatin, Transcription Factors and Beyond. Int J Mol Sci 2022; 23:6149. [PMID: 35682828 PMCID: PMC9181152 DOI: 10.3390/ijms23116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Studies of the regulatory networks and signals controlling erythropoiesis have brought important insights in several research fields of biology and have been a rich source of discoveries with far-reaching implications beyond erythroid cells biology. The aim of this review is to highlight key recent discoveries and show how studies of erythroid cells bring forward novel concepts and refine current models related to genome and 3D chromatin organization, signaling and disease, with broad interest in life sciences.
Collapse
Affiliation(s)
| | - Eric Soler
- IGMM, Université Montpellier, CNRS, 34093 Montpellier, France;
- Laboratory of Excellence GR-Ex, Université de Paris, 75015 Paris, France
| |
Collapse
|
20
|
Hemogen /BRG1 cooperativity modulates promoter and enhancer activation during erythropoiesis. Blood 2022; 139:3532-3545. [PMID: 35297980 DOI: 10.1182/blood.2021014308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Hemogen, also known as EDAG, is a hematopoietic tissue-specific gene that regulates the proliferation and differentiation of hematopoietic cells. However, the mechanism underlying hemogen function in erythropoiesis is unknown. We found that depletion of hemogen in human CD34+ erythroid progenitor cells and HUDEP2 cells significantly reduced the expression of genes associated with heme and hemoglobin synthesis, supporting a positive role of hemogen in erythroid maturation. In human K562 cells, hemogen antagonized the occupancy of co-repressors NuRD complex and facilitated LDB1 complex-mediated chromatin looping. Hemogen recruited SWI/SNF complex ATPase BRG1 as a co-activator to regulate nucleosome accessibility and H3K27ac enrichment for promoter and enhancer activity. To ask if hemogen/BRG1 cooperativity is conserved in mammalian systems, we generated hemogen KO/KI mice and investigated hemogen/BRG1 function in murine erythropoiesis. Loss of hemogen in E12.5-E16.5 fetal liver cells impeded erythroid differentiation through reducing the production of mature erythroblasts. ChIP-seq in WT and hemogen KO animal revealed BRG1 is largely dependent on hemogen to regulate chromatin accessibility at erythroid gene promoters and enhancers. In summary, hemogen/BRG1 interaction in mammals is essential for fetal erythroid maturation and hemoglobin production through its active role in promoter and enhancer activity and chromatin organization.
Collapse
|
21
|
Vilmundarson RO, Duong A, Soheili F, Chen HH, Stewart AFR. IRF2BP2 3'UTR Polymorphism Increases Coronary Artery Calcification in Men. Front Cardiovasc Med 2021; 8:687645. [PMID: 34760935 PMCID: PMC8573268 DOI: 10.3389/fcvm.2021.687645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Interferon regulatory factor 2 binding protein 2 (IRF2BP2) suppresses the innate inflammatory response of macrophages. A 9-nucleotide deletion (rs3045215) in the 3' untranslated region (3'-UTR) of human IRF2BP2 mRNA confers risk of coronary artery disease (CAD) in the Ottawa Heart Genomics Study (OHGS). Here, we sought to identify regulatory mechanisms that may contribute to this risk. We tested how lipopolysaccharides (LPS) affects IRF2BP2 expression in human THP-1 macrophages and primary aortic smooth muscle cells (HAoSMC) genotyped for the deletion allele. Both cell types are implicated in coronary atherosclerosis. We also examined how the deletion affects interaction with RNA binding proteins (RBPs) to regulate IRF2BP2 expression. LPS altered allele-specific binding of RBPs in RNA gel shift assays with the THP-1 macrophage protein extracts. The RBP ELAVL1 suppressed the expression of a luciferase reporter carrying the 3'UTR of IRF2BP2 with the deletion allele. Other RBPs AUF1 or KHSRP did not confer such allele specific regulation. Since it is co-inherited with a risk variant for osteoporosis, a condition tied to arterial calcification, we examined the association of the deletion allele with coronary artery calcification in individuals who had undergone computed tomography angiography in the OHGS. In 323 individuals with a minimal burden of atherosclerosis (<30% coronary stenosis) and 138 CAD cases (>50% stenosis), Mendelian randomization revealed that the rs3045215 deletion allele significantly increased coronary artery calcification in men with minimal coronary stenosis. Thus, not only does the rs3045215 deletion allele predict atherosclerosis, but it also predisposes to early-onset calcification in men.
Collapse
Affiliation(s)
- Ragnar O Vilmundarson
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Laboratory of Translational Genomics, John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - An Duong
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Laboratory of Translational Genomics, John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Fariborz Soheili
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Laboratory of Translational Genomics, John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hsiao-Huei Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Alexandre F R Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Laboratory of Translational Genomics, John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
22
|
Palmroth M, Viskari H, Seppänen MRJ, Keskitalo S, Virtanen A, Varjosalo M, Silvennoinen O, Isomäki P. IRF2BP2 Mutation Is Associated with Increased STAT1 and STAT5 Activation in Two Family Members with Inflammatory Conditions and Lymphopenia. Pharmaceuticals (Basel) 2021; 14:ph14080797. [PMID: 34451894 PMCID: PMC8402006 DOI: 10.3390/ph14080797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Interferon regulatory factor 2 binding protein 2 (IRF2BP2) is a transcriptional coregulator that has an important role in the regulation of the immune response. IRF2BP2 has been associated with the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway, but its exact role remains elusive. Here, we identified a novel clinical variant, IRF2BP2 c.625_665del, from two members of a family with inflammatory conditions and investigated the function of IRF2BP2 and c.625_665del mutation in JAK-STAT pathway activation and inflammatory signaling. The levels of constitutive and cytokine-induced phosphorylation of STATs and total STAT1 in peripheral blood monocytes, T cells, and B cells from the patients and four healthy controls were measured by flow cytometry. Inflammation-related gene expression was studied in peripheral blood mononuclear cells using direct digital detection of mRNA (NanoString). Finally, we studied the relationship between IRF2BP2 and STAT1 activation using a luciferase reporter system in a cell model. Our results show that patients having the IRF2BP2 c.625_665del mutation presented overexpression of STAT1 protein and increased constitutive activation of STAT1. In addition, interferon-induced JAK-STAT signaling was upregulated, and several interferon-inducible genes were overexpressed. Constitutive phosphorylation of STAT5 was also found to be upregulated in CD4+ T cells from the patients. Using a cell model, we show that IRF2BP2 was needed to attenuate STAT1 transcriptional activity and that IRF2BP2 c.625_665del mutation failed in this. We conclude that IRF2BP2 has an important role in suppressing immune responses elicited by STAT1 and STAT5 and suggest that aberrations in IRF2BP2 can lead to abnormal function of intrinsic immunity.
Collapse
Affiliation(s)
- Maaria Palmroth
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.P.); (A.V.); (O.S.)
| | - Hanna Viskari
- Department of Internal Medicines, Tampere University Hospital, 33520 Tampere, Finland;
- Faculty of Medicine and Life Sciences, Tampere University, 33520 Tampere, Finland
| | - Mikko R. J. Seppänen
- Rare Disease and Pediatric Research Centers, Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland;
| | - Salla Keskitalo
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; (S.K.); (M.V.)
| | - Anniina Virtanen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.P.); (A.V.); (O.S.)
| | - Markku Varjosalo
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; (S.K.); (M.V.)
| | - Olli Silvennoinen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.P.); (A.V.); (O.S.)
- Fimlab Laboratories, Pirkanmaa Hospital District, 33520 Tampere, Finland
- HiLIFE Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Pia Isomäki
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.P.); (A.V.); (O.S.)
- Centre for Rheumatic Diseases, Tampere University Hospital, 33520 Tampere, Finland
- Correspondence:
| |
Collapse
|
23
|
Identification of the transcription factor MAZ as a regulator of erythropoiesis. Blood Adv 2021; 5:3002-3015. [PMID: 34351390 DOI: 10.1182/bloodadvances.2021004609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/11/2021] [Indexed: 12/28/2022] Open
Abstract
Erythropoiesis requires a combination of ubiquitous and tissue-specific transcription factors (TFs). Here, through DNA affinity purification followed by mass spectrometry, we have identified the widely expressed protein MAZ (Myc-associated zinc finger) as a TF that binds to the promoter of the erythroid-specific human α-globin gene. Genome-wide mapping in primary human erythroid cells revealed that MAZ also occupies active promoters as well as GATA1-bound enhancer elements of key erythroid genes. Consistent with an important role during erythropoiesis, knockdown of MAZ reduces α-globin expression in K562 cells and impairs differentiation in primary human erythroid cells. Genetic variants in the MAZ locus are associated with changes in clinically important human erythroid traits. Taken together, these findings reveal the zinc-finger TF MAZ to be a previously unrecognized regulator of the erythroid differentiation program.
Collapse
|
24
|
Gao S, Wang Z, Wang L, Wang H, Yuan H, Liu X, Chen S, Chen Z, de Thé H, Zhang W, Zhang Y, Zhu J, Zhou J. Irf2bp2a regulates terminal granulopoiesis through proteasomal degradation of Gfi1aa in zebrafish. PLoS Genet 2021; 17:e1009693. [PMID: 34351909 PMCID: PMC8370619 DOI: 10.1371/journal.pgen.1009693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/17/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022] Open
Abstract
The ubiquitin-proteasome system plays important roles in various biological processes as it degrades the majority of cellular proteins. Adequate proteasomal degradation of crucial transcription regulators ensures the proper development of neutrophils. The ubiquitin E3 ligase of Growth factor independent 1 (GFI1), a key transcription repressor governing terminal granulopoiesis, remains obscure. Here we report that the deficiency of the ring finger protein Interferon regulatory factor 2 binding protein 2a (Irf2bp2a) leads to an impairment of neutrophils differentiation in zebrafish. Mechanistically, Irf2bp2a functions as a ubiquitin E3 ligase targeting Gfi1aa for proteasomal degradation. Moreover, irf2bp2a gene is repressed by Gfi1aa, thus forming a negative feedback loop between Irf2bp2a and Gfi1aa during neutrophils maturation. Different levels of GFI1 may turn it into a tumor suppressor or an oncogene in malignant myelopoiesis. Therefore, discovery of certain drug targets GFI1 for proteasomal degradation by IRF2BP2 might be an effective anti-cancer strategy.
Collapse
Affiliation(s)
- Shuo Gao
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zixuan Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Luxiang Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Department of hematology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Haihong Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hao Yuan
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaohui Liu
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Saijuan Chen
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zhu Chen
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hugues de Thé
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P.R. China
- * E-mail: (YZ); (JZ); (JZ)
| | - Jun Zhu
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
- * E-mail: (YZ); (JZ); (JZ)
| | - Jun Zhou
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- * E-mail: (YZ); (JZ); (JZ)
| |
Collapse
|
25
|
Pastor TP, Peixoto BC, Viola JPB. The Transcriptional Co-factor IRF2BP2: A New Player in Tumor Development and Microenvironment. Front Cell Dev Biol 2021; 9:655307. [PMID: 33996817 PMCID: PMC8116537 DOI: 10.3389/fcell.2021.655307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon regulatory factor 2-binding protein 2 (IRF2BP2) encodes a member of the IRF2BP family of transcriptional regulators, which includes IRF2BP1, IRF2BP2, and IRF2BPL (EAP1). IRF2BP2 was initially identified as a transcriptional corepressor that was dependent on Interferon regulatory factor-2 (IRF-2). The IRF2BP2 protein is found in different organisms and has been described as ubiquitously expressed in normal and tumor cells and tissues, indicating a possible role for this transcriptional cofactor in different cell signaling pathways. Recent data suggest the involvement of IRF2BP2 in the regulation of several cellular functions, such as the cell cycle, cell death, angiogenesis, inflammation and immune response, thereby contributing to physiological cell homeostasis. However, an imbalance in IRF2BP2 function may be related to the pathophysiology of cancer. Some studies have shown the association of IRF2BP2 expression in hematopoietic and solid tumors through mechanisms based on gene fusion and point mutations in gene coding sequences, and although the biological functions of these types of hybrid and mutant proteins are not yet known, they are thought to be involved in an increase in the likelihood of tumor development. In this review, we address the possible involvement of IRF2BP2 in tumorigenesis through its regulation of important pathways involved in tumor development.
Collapse
Affiliation(s)
- Tatiane P Pastor
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Barbara C Peixoto
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - João P B Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
26
|
p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood 2021; 137:89-102. [PMID: 32818241 DOI: 10.1182/blood.2019003439] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
The role of ribosome biogenesis in erythroid development is supported by the recognition of erythroid defects in ribosomopathies in both Diamond-Blackfan anemia and 5q- syndrome. Whether ribosome biogenesis exerts a regulatory function on normal erythroid development is still unknown. In the present study, a detailed characterization of ribosome biogenesis dynamics during human and murine erythropoiesis showed that ribosome biogenesis is abruptly interrupted by the decline in ribosomal DNA transcription and the collapse of ribosomal protein neosynthesis. Its premature arrest by the RNA Pol I inhibitor CX-5461 targeted the proliferation of immature erythroblasts. p53 was activated spontaneously or in response to CX-5461, concomitant to ribosome biogenesis arrest, and drove a transcriptional program in which genes involved in cell cycle-arrested, negative regulation of apoptosis, and DNA damage response were upregulated. RNA Pol I transcriptional stress resulted in nucleolar disruption and activation of the ATR-CHK1-p53 pathway. Our results imply that the timing of ribosome biogenesis extinction and p53 activation is crucial for erythroid development. In ribosomopathies in which ribosome availability is altered by unbalanced production of ribosomal proteins, the threshold downregulation of ribosome biogenesis could be prematurely reached and, together with pathological p53 activation, prevents a normal expansion of erythroid progenitors.
Collapse
|
27
|
Jakobczyk H, Debaize L, Soubise B, Avner S, Rouger-Gaudichon J, Commet S, Jiang Y, Sérandour AA, Rio AG, Carroll JS, Wichmann C, Lie-A-Ling M, Lacaud G, Corcos L, Salbert G, Galibert MD, Gandemer V, Troadec MB. Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia. J Hematol Oncol 2021; 14:47. [PMID: 33743795 PMCID: PMC7981807 DOI: 10.1186/s13045-021-01051-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) is the most common pediatric cancer. Identifying key players involved in proliferation of BCP-ALL cells is crucial to propose new therapeutic targets. Runt Related Transcription Factor 1 (RUNX1) and Core-Binding Factor Runt Domain Alpha Subunit 2 Translocated To 3 (CBFA2T3, ETO2, MTG16) are master regulators of hematopoiesis and are implicated in leukemia. Methods We worked with BCP-ALL mononuclear bone marrow patients’ cells and BCP-ALL cell lines, and performed Chromatin Immunoprecipitations followed by Sequencing (ChIP-Seq), co-immunoprecipitations (co-IP), proximity ligation assays (PLA), luciferase reporter assays and mouse xenograft models. Results We demonstrated that CBFA2T3 transcript levels correlate with RUNX1 expression in the pediatric t(12;21) ETV6-RUNX1 BCP-ALL. By ChIP-Seq in BCP-ALL patients’ cells and cell lines, we found that RUNX1 is recruited on its promoter and on an enhancer of CBFA2T3 located − 2 kb upstream CBFA2T3 promoter and that, subsequently, the transcription factor RUNX1 drives both RUNX1 and CBFA2T3 expression. We demonstrated that, mechanistically, RUNX1 and CBFA2T3 can be part of the same complex allowing CBFA2T3 to strongly potentiate the activity of the transcription factor RUNX1. Finally, we characterized a CBFA2T3-mimicking peptide that inhibits the interaction between RUNX1 and CBFA2T3, abrogating the activity of this transcription complex and reducing BCP-ALL lymphoblast proliferation. Conclusions Altogether, our findings reveal a novel and important activation loop between the transcription regulator CBFA2T3 and the transcription factor RUNX1 that promotes BCP-ALL proliferation, supporting the development of an innovative therapeutic approach based on the NHR2 subdomain of CBFA2T3 protein. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01051-z.
Collapse
Affiliation(s)
- Hélène Jakobczyk
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Lydie Debaize
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Benoit Soubise
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
| | - Stéphane Avner
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Jérémie Rouger-Gaudichon
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Département d'onco-hematologie pediatrique, Centre Hospitalier Universitaire de Caen Normandie, Caen, France
| | - Séverine Commet
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
| | - Yan Jiang
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.,Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | | | - Anne-Gaëlle Rio
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Haemostasis, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Michael Lie-A-Ling
- Cancer Research UK Manchester Institute, University of Manchester, Aderley Park, Macclesfield, SK10 4TG, UK
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, University of Manchester, Aderley Park, Macclesfield, SK10 4TG, UK
| | - Laurent Corcos
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
| | - Gilles Salbert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Service de Génétique et Génomique Moléculaire, Centre Hospitalier Universitaire de Rennes (CHU-Rennes), 35033, Rennes, France
| | - Virginie Gandemer
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Department of Pediatric Hemato-Oncology, Centre Hospitalier Universitaire de Rennes (CHU-Rennes), 35203, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France. .,Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France. .,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France.
| |
Collapse
|
28
|
Jiang Y, Shen Q. IRF2BP2 prevents ox-LDL-induced inflammation and EMT in endothelial cells via regulation of KLF2. Exp Ther Med 2021; 21:481. [PMID: 33767776 PMCID: PMC7976449 DOI: 10.3892/etm.2021.9912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial dysfunction contributes to the progression of atherosclerosis. Interferon regulatory factor 2-binding protein 2 (IRF2BP2) attenuates macrophage-mediated inflammation and susceptibility to atherosclerosis. However, the effects of IRF2BP2 on vascular endothelial cells in atherosclerosis have not been fully elucidated. In the present study, the effects of IRF2BP2 on cell viability, inflammation and endothelial-to-mesenchymal transition (EMT) of human umbilical vein endothelial cells (HUVECs) were assessed using Cell Counting Kit-8 (CCK-8) assays, ELISA kits and western blot analysis, respectively. In addition, the expression levels of Krüppel-like factor 2 (KLF2) were determined by reverse transcription-quantitative PCR and immunofluorescence assays. A Nitrate/Nitrite assay kit was utilized to detect the production of nitric oxide (NO). The results demonstrated that ox-LDL induced inflammation and EMT of HUVECs, and decreased the NO levels. Furthermore, IRF2BP2 overexpression protected HUVECs against ox-LDL-induced inflammation, EMT and endothelial dysfunction, and resulted in upregulated expression of KLF2. Additionally, IRF2BP2 was shown to bind to KLF2, and KLF2 knockdown reversed the protective effects of IRF2BP2 on ox-LDL-exposed HUVECs. These findings indicated that IRF2BP2 may prevent ox-LDL-induced endothelial damage via upregulating KLF2 expression.
Collapse
Affiliation(s)
- Yongri Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qiuling Shen
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
29
|
GPS2 promotes erythroid differentiation by control of the stability of EKLF protein. Blood 2021; 135:2302-2315. [PMID: 32384137 DOI: 10.1182/blood.2019003867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Erythropoiesis is a complex multistage process that involves differentiation of early erythroid progenitors to enucleated mature red blood cells, in which lineage-specific transcription factors play essential roles. Erythroid Krüppel-like factor (EKLF/KLF1) is a pleiotropic erythroid transcription factor that is required for the proper maturation of the erythroid cells, whose expression and activation are tightly controlled in a temporal and differentiation stage-specific manner. Here, we uncover a novel role of G-protein pathway suppressor 2 (GPS2), a subunit of the nuclear receptor corepressor/silencing mediator of retinoic acid and thyroid hormone receptor corepressor complex, in erythrocyte differentiation. Our study demonstrates that knockdown of GPS2 significantly suppresses erythroid differentiation of human CD34+ cells cultured in vitro and xenotransplanted in nonobese diabetic/severe combined immunodeficiency/interleukin-2 receptor γ-chain null mice. Moreover, global deletion of GPS2 in mice causes impaired erythropoiesis in the fetal liver and leads to severe anemia. Flow cytometric analysis and Wright-Giemsa staining show a defective differentiation at late stages of erythropoiesis in Gps2-/- embryos. Mechanistically, GPS2 interacts with EKLF and prevents proteasome-mediated degradation of EKLF, thereby increasing EKLF stability and transcriptional activity. Moreover, we identify the amino acids 191-230 region in EKLF protein, responsible for GPS2 binding, that is highly conserved in mammals and essential for EKLF protein stability. Collectively, our study uncovers a previously unknown role of GPS2 as a posttranslational regulator that enhances the stability of EKLF protein and thereby promotes erythroid differentiation.
Collapse
|
30
|
Barysch SV, Stankovic-Valentin N, Miedema T, Karaca S, Doppel J, Nait Achour T, Vasudeva A, Wolf L, Sticht C, Urlaub H, Melchior F. Transient deSUMOylation of IRF2BP proteins controls early transcription in EGFR signaling. EMBO Rep 2021; 22:e49651. [PMID: 33480129 PMCID: PMC7926235 DOI: 10.15252/embr.201949651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Molecular switches are essential modules in signaling networks and transcriptional reprogramming. Here, we describe a role for small ubiquitin‐related modifier SUMO as a molecular switch in epidermal growth factor receptor (EGFR) signaling. Using quantitative mass spectrometry, we compare the endogenous SUMO proteomes of HeLa cells before and after EGF stimulation. Thereby, we identify a small group of transcriptional coregulators including IRF2BP1, IRF2BP2, and IRF2BPL as novel players in EGFR signaling. Comparison of cells expressing wild type or SUMOylation‐deficient IRF2BP1 indicates that transient deSUMOylation of IRF2BP proteins is important for appropriate expression of immediate early genes including dual specificity phosphatase 1 (DUSP1, MKP‐1) and the transcription factor ATF3. We find that IRF2BP1 is a repressor, whose transient deSUMOylation on the DUSP1 promoter allows—and whose timely reSUMOylation restricts—DUSP1 transcription. Our work thus provides a paradigm how comparative SUMO proteome analyses serve to reveal novel regulators in signal transduction and transcription.
Collapse
Affiliation(s)
- Sina V Barysch
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Tim Miedema
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Samir Karaca
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Judith Doppel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Thiziri Nait Achour
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Aarushi Vasudeva
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics, Heidelberg, Germany.,BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Center of Medical Research, Bioinformatic and Statistic, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
31
|
Guo X, Plank-Bazinet J, Krivega I, Dale RK, Dean A. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Res 2020; 48:10226-10240. [PMID: 32960220 DOI: 10.1093/nar/gkaa736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
The underlying mechanism of transcriptional co-repressor ETO2 during early erythropoiesis and hemoglobin switching is unclear. We find that absence of ETO2 in mice interferes with down-regulation of PU.1 and GATA2 in the fetal liver, impeding a key step required for commitment to erythroid maturation. In human β-globin transgenic Eto2 null mice and in human CD34+ erythroid progenitor cells with reduced ETO2, loss of ETO2 results in ineffective silencing of embryonic/fetal globin gene expression, impeding hemoglobin switching during erythroid differentiation. ETO2 occupancy genome-wide occurs virtually exclusively at LDB1-complex binding sites in enhancers and ETO2 loss leads to increased enhancer activity and expression of target genes. ETO2 recruits the NuRD nucleosome remodeling and deacetylation complex to regulate histone acetylation and nucleosome occupancy in the β-globin locus control region and γ-globin gene. Loss of ETO2 elevates LDB1, MED1 and Pol II in the locus and facilitates fetal γ-globin/LCR looping and γ-globin transcription. Absence of the ETO2 hydrophobic heptad repeat region impairs ETO2-NuRD interaction and function in antagonizing γ-globin/LCR looping. Our results reveal a pivotal role for ETO2 in erythropoiesis and globin gene switching through its repressive role in the LDB1 complex, affecting the transcription factor and epigenetic environment and ultimately restructuring chromatin organization.
Collapse
Affiliation(s)
- Xiang Guo
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Jennifer Plank-Bazinet
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Singbrant S, Mattebo A, Sigvardsson M, Strid T, Flygare J. Prospective isolation of radiation induced erythroid stress progenitors reveals unique transcriptomic and epigenetic signatures enabling increased erythroid output. Haematologica 2020; 105:2561-2571. [PMID: 33131245 PMCID: PMC7604643 DOI: 10.3324/haematol.2019.234542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/02/2020] [Indexed: 11/09/2022] Open
Abstract
Massive expansion of erythroid progenitor cells is essential for surviving anemic stress. Research towards understanding this critical process, referred to as stress-erythropoiesis, has been hampered due to lack of specific marker-combinations enabling analysis of the distinct stress-progenitor cells capable of providing radioprotection and enhanced red blood cell production. Here we present a method for precise identification and in vivo validation of progenitor cells contributing to both steady-state and stress-erythropoiesis, enabling for the first time in-depth molecular characterization of these cells. Differential expression of surface markers CD150, CD9 and Sca1 defines a hierarchy of splenic stress-progenitors during irradiation-induced stress recovery in mice, and provides high-purity isolation of the functional stress-BFU-Es with a 100-fold improved enrichment compared to state-of-the-art. By transplanting purified stress-progenitors expressing the fluorescent protein Kusabira Orange, we determined their kinetics in vivo and demonstrated that CD150+CD9+Sca1- stress-BFU-Es provide a massive but transient radioprotective erythroid wave, followed by multi-lineage reconstitution from CD150+CD9+Sca1+ multi-potent stem/progenitor cells. Whole genome transcriptional analysis revealed that stress-BFU-Es express gene signatures more associated with erythropoiesis and proliferation compared to steady-state BFU-Es, and are BMP-responsive. Evaluation of chromatin accessibility through ATAC sequencing reveals enhanced and differential accessibility to binding sites of the chromatin-looping transcription factor CTCF in stress-BFU-Es compared to steady-state BFU-Es. Our findings offer molecular insight to the unique capacity of stress-BFU-Es to rapidly form erythroid cells in response to anemia and constitute an important step towards identifying novel erythropoiesis stimulating agents.
Collapse
Affiliation(s)
- Sofie Singbrant
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Alexander Mattebo
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Tobias Strid
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Flygare
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| |
Collapse
|
33
|
Affiliation(s)
- Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL,USA.
| |
Collapse
|
34
|
Li HF, Wu YL, Tseng TL, Chao SW, Lin H, Chen HH. Inhibition of miR-155 potentially protects against lipopolysaccharide-induced acute lung injury through the IRF2BP2-NFAT1 pathway. Am J Physiol Cell Physiol 2020; 319:C1070-C1081. [PMID: 33052070 DOI: 10.1152/ajpcell.00116.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sepsis-induced lung injury is a lethal complication with no effective treatment options, affecting millions of people worldwide. Oroxylin A (OroA) is a natural flavonoid with potent anticancer effects, but its modulating effect on inflammation through microRNAs (miRs) is not apparent. In this report, we investigated the target genes of the miR pathway mediated by OroA and assessed the potential for novel treatments of septic lung injury. An miR array screening and quantitative polymerase chain reaction identified that miR-155-5p could be a candidate regulated by OroA. Bioinformatics analysis indicated that interferon regulatory factor-2-binding protein-2 (IRF2BP2) might be a target of miR-155-5p, and this hypothesis was verified through reporter assays. In addition, an immunoprecipitation assay demonstrated that OroA increased the binding activity of IRF2BP2 to the nuclear factor of activated T-cells 1 (NFAT1), causing inducible nitric oxide synthase to cause an inflammatory reaction. Finally, the direct injection of short hairpin RNA (shRNA)-miR-155-5p into the bone marrow of mice ameliorated LPS-induced acute lung injury and inflammation in mice. Our results provide new mechanistic insights into the role of the OroA-induced miR-155-5p-IRF2BP2-NFAT1 axis in sepsis, demonstrating that direct bone marrow injection of lentivirus containing shRNA-155-5p could prove to be a potential future clinical application in alleviating sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Hsiao-Fen Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Tzu-Ling Tseng
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Shih-Wei Chao
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
35
|
Kolovos P, Nishimura K, Sankar A, Sidoli S, Cloos PA, Helin K, Christensen J. PR-DUB maintains the expression of critical genes through FOXK1/2- and ASXL1/2/3-dependent recruitment to chromatin and H2AK119ub1 deubiquitination. Genome Res 2020; 30:1119-1130. [PMID: 32747411 PMCID: PMC7462075 DOI: 10.1101/gr.261016.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Polycomb group proteins are important for maintaining gene expression patterns and cell identity in metazoans. The mammalian Polycomb repressive deubiquitinase (PR-DUB) complexes catalyze removal of monoubiquitination on lysine 119 of histone H2A (H2AK119ub1) through a multiprotein core comprised of BAP1, HCFC1, FOXK1/2, and OGT in combination with either of ASXL1, 2, or 3. Mutations in PR-DUB components are frequent in cancer. However, mechanistic understanding of PR-DUB function in gene regulation is limited. Here, we show that BAP1 is dependent on the ASXL proteins and FOXK1/2 in facilitating gene activation across the genome. Although PR-DUB was previously shown to cooperate with PRC2, we observed minimal overlap and functional interaction between BAP1 and PRC2 in embryonic stem cells. Collectively, these results demonstrate that PR-DUB, by counteracting accumulation of H2AK119ub1, maintains chromatin in an optimal configuration ensuring expression of genes important for general functions such as cell metabolism and homeostasis.
Collapse
Affiliation(s)
- Petros Kolovos
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, 68100, Alexandroupolis, Greece
| | - Koutarou Nishimura
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York 10065, USA
| | - Aditya Sankar
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Paul A Cloos
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York 10065, USA
| | - Jesper Christensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
36
|
Vissers JHA, Dent LG, House CM, Kondo S, Harvey KF. Pits and CtBP Control Tissue Growth in Drosophila melanogaster with the Hippo Pathway Transcription Repressor Tgi. Genetics 2020; 215:117-128. [PMID: 32122936 PMCID: PMC7198276 DOI: 10.1534/genetics.120.303147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved signaling network that regulates organ size, cell fate, and tumorigenesis. In the context of organ size control, the pathway incorporates a large variety of cellular cues, such as cell polarity and adhesion, into an integrated transcriptional response. The central Hippo signaling effector is the transcriptional coactivator Yorkie, which controls gene expression in partnership with different transcription factors, most notably Scalloped. When it is not activated by Yorkie, Scalloped can act as a repressor of transcription, at least in part due to its interaction with the corepressor protein Tgi. The mechanism by which Tgi represses transcription is incompletely understood, and therefore we sought to identify proteins that potentially operate together with Tgi. Using an affinity purification and mass-spectrometry approach we identified Pits and CtBP as Tgi-interacting proteins, both of which have been linked to transcriptional repression. Both Pits and CtBP were required for Tgi to suppress the growth of the Drosophila melanogaster eye and CtBP loss suppressed the undergrowth of yorkie mutant eye tissue. Furthermore, as reported previously for Tgi, overexpression of Pits repressed transcription of Hippo pathway target genes. These findings suggest that Tgi might operate together with Pits and CtBP to repress transcription of genes that normally promote tissue growth. The human orthologs of Tgi, CtBP, and Pits (VGLL4, CTBP2, and IRF2BP2) have previously been shown to physically and functionally interact to control transcription, implying that the mechanism by which these proteins control transcriptional repression is conserved throughout evolution.
Collapse
Affiliation(s)
- Joseph H A Vissers
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
| | - Lucas G Dent
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
| | - Colin M House
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia 3000
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3010
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia 3800
| |
Collapse
|
37
|
Fang J, Ji YX, Zhang P, Cheng L, Chen Y, Chen J, Su Y, Cheng X, Zhang Y, Li T, Zhu X, Zhang XJ, Wei X. Hepatic IRF2BP2 Mitigates Nonalcoholic Fatty Liver Disease by Directly Repressing the Transcription of ATF3. Hepatology 2020; 71:1592-1608. [PMID: 31529495 DOI: 10.1002/hep.30950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Although knowledge regarding the pathogenesis of nonalcoholic fatty liver disease (NAFLD) has profoundly grown in recent decades, the internal restrictive mechanisms remain largely unknown. We have recently reported that the transcription repressor interferon regulatory factor-2 binding protein 2 (IRF2BP2) is enriched in cardiomyocytes and inhibits pathological cardiac hypertrophy in mice. Notably, IRF2BP2 is abundantly expressed in hepatocytes and dramatically down-regulated in steatotic livers, whereas the role of IRF2BP2 in NAFLD is unknown. APPROACH AND RESULTS Herein, using gain-of-function and loss-of-function approaches in mice, we demonstrated that while hepatocyte-specific Irf2bp2 knockout exacerbated high-fat diet-induced hepatic steatosis, insulin resistance and inflammation, hepatic Irf2bp2 overexpression protected mice from these metabolic disorders. Moreover, the inhibitory role of IRF2BP2 on hepatosteatosis is conserved in a human hepatic cell line in vitro. Combinational analysis of digital gene expression and chromatin immunoprecipitation sequencing identified activating transcription factor 3 (ATF3) to be negatively regulated by IRF2BP2 in NAFLD. Chromatin immunoprecipitation and luciferase assay substantiated the fact that IRF2BP2 is a bona fide transcription repressor of ATF3 gene expression via binding to its promoter region. Functional studies revealed that ATF3 knockdown significantly relieved IRF2BP2 knockout-exaggerated hepatosteatosis in vitro. CONCLUSION IRF2BP2 is an integrative restrainer in controlling hepatic steatosis, insulin resistance, and inflammation in NAFLD through transcriptionally repressing ATF3 gene expression.
Collapse
Affiliation(s)
- Jing Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Xiao Ji
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China
| | - Lin Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfang Su
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuehai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Zou L, Li H, Han X, Qin J, Song G. Runx1t1 promotes the neuronal differentiation in rat hippocampus. Stem Cell Res Ther 2020; 11:160. [PMID: 32321587 PMCID: PMC7178948 DOI: 10.1186/s13287-020-01667-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Background Runt-related transcription factor 1 translocated to 1 (Runx1t1) is one of the members of the myeloid translocation gene family. Our previous work showed that Runx1t1 induced the neuronal differentiation of radial glia cells in vitro. Methods To better uncover the role of Runx1t1 in hippocampal neurogenesis, in this study, we further explore its localization and function during the hippocampal neurogenesis. Results Our results showed that insufficient expression of Runx1t1 reduced the neuronal differentiation, and overexpression of Runx1t1 promoted the neuronal differentiation in vitro. We also found that Runx1t1 localized in neurons but not astrocytes both in vivo and in vitro. Furthermore, we found that Runx1t1 overexpression elevated the number of newborn neurons in the hippocampal dentate gyrus. Conclusions Taken together, our results further proved that Runx1t1 could be worked as a regulator in the process of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Linqing Zou
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.,Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Haoming Li
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Xiao Han
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jianbing Qin
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China. .,Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
39
|
Wang L, Gao S, Wang H, Xue C, Liu X, Yuan H, Wang Z, Chen S, Chen Z, de Thé H, Zhang Y, Zhang W, Zhu J, Zhou J. Interferon regulatory factor 2 binding protein 2b regulates neutrophil versus macrophage fate during zebrafish definitive myelopoiesis. Haematologica 2020; 105:325-337. [PMID: 31123027 PMCID: PMC7012491 DOI: 10.3324/haematol.2019.217596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Aproper choice of neutrophil-macrophage progenitor cell fate is essential for the generation of adequate myeloid subpopulations during embryonic development and in adulthood. The network governing neutrophil-macrophage progenitor cell fate has several key determinants, such as myeloid master regulators CCAAT enhancer binding protein alpha (C/EBPα) and spleen focus forming virus proviral integration oncogene (PU.1). Nevertheless, more regulators remain to be identified and characterized. To ensure balanced commitment of neutrophil-macrophage progenitors toward each lineage, the interplay among these determinants is not only synergistic, but also antagonistic. Depletion of interferon regulatory factor 2 binding protein 2b (Irf2bp2b), a well-known negative transcription regulator, results in a bias in neutrophil-macrophage progenitor cell fate in favor of macrophages at the expense of neutrophils during the stage of definitive myelopoiesis in zebrafish embryos. Mechanistic studies indicate that Irf2bp2b acts as a downstream target of C/EBPα, repressing PU.1 expression, and that SUMOylation confers the repressive function of Irf2bp2b. Thus, Irf2bp2b is a novel determinant in the choice of fate of neutrophil-macrophage progenitor cells.
Collapse
Affiliation(s)
- Luxiang Wang
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Gao
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihong Wang
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Xue
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Liu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yuan
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixuan Wang
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saijuan Chen
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hugues de Thé
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jun Zhu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
| | - Jun Zhou
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Wang Y, Liu X, Xie B, Yuan H, Zhang Y, Zhu J. The NOTCH1-dependent HIF1α/VGLL4/IRF2BP2 oxygen sensing pathway triggers erythropoiesis terminal differentiation. Redox Biol 2020; 28:101313. [PMID: 31539803 PMCID: PMC6812007 DOI: 10.1016/j.redox.2019.101313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is widely considered as a limiting factor in vertebrate embryonic development, which requires adequate oxygen delivery for efficient energy metabolism, while nowadays some researches have revealed that hypoxia can induce stem cells so as to improve embryonic development. Erythroid differentiation is the oxygen delivery method employed by vertebrates at the very early step of embryo development, however, the mechanism how erythroid progenitor cell was triggered into mature erythrocyte is still not clear. In this study, after detecting the upregulation of vgll4b in response to oxygen levels, we generated vgll4b mutant zebrafish using CRISPR/Cas9, and verified the resulting impaired heme and dysfunctional erythroid terminal differentiation phenotype. Neither the vgll4b-deficient nor the γ-secretase inhibitor IX (DAPT)-adapted zebrafish were able to mediate HIF1α-induced heme generation. In addition, we showed that vgll4b mutant zebrafish were associated with an impaired erythroid phenotype, induced by the downregulation of alas2, which could be rescued by irf2bp2 depletion. Further mechanistic studies revealed that zebrafish VGLL4 sequesters IRF2BP2, thereby inhibiting its repression of alas2 expression and heme biosynthesis. These processes occur primarily via the VGLL4 TDU1 and IRF2BP2 ring finger domains. Our study also indicates that VGLL4 is a key player in the mediation of NOTCH1-dependent HIF1α-regulated erythropoiesis and can be sensitively regulated by oxygen concentrations. On the other hand, VGLL4 is a pivotal regulator of heme biosynthesis and erythroid terminal differentiation, which collectively improve oxygen metabolism.
Collapse
Affiliation(s)
- Yiqin Wang
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaohui Liu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Baoshu Xie
- Department of Neurosurgery, The First Affliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hao Yuan
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Jun Zhu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France.
| |
Collapse
|
41
|
Yu X, Martella A, Kolovos P, Stevens M, Stadhouders R, Grosveld FG, Andrieu-Soler C. The dynamic emergence of GATA1 complexes identified in in vitro embryonic stem cell differentiation and in vivo mouse fetal liver. Haematologica 2019; 105:1802-1812. [PMID: 31582556 PMCID: PMC7327653 DOI: 10.3324/haematol.2019.216010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/03/2019] [Indexed: 01/20/2023] Open
Abstract
GATA1 is an essential transcriptional regulator of myeloid hematopoietic differentiation towards red blood cells. During erythroid differentiation, GATA1 forms different complexes with other transcription factors such as LDB1, TAL1, E2A and LMO2 ("the LDB1 complex") or with FOG1. The functions of GATA1 complexes have been studied extensively in definitive erythroid differentiation; however, the temporal and spatial formation of these complexes during erythroid development is unknown. We applied proximity ligation assay (PLA) to detect, localize and quantify individual interactions during embryonic stem cell differentiation and in mouse fetal liver (FL) tissue. We show that GATA1/LDB1 interactions appear before the proerythroblast stage and increase in a subset of the CD71+/TER119- cells to activate the terminal erythroid differentiation program in 12.5 day FL. Using Ldb1 and Gata1 knockdown FL cells, we studied the functional contribution of the GATA1/LDB1 complex during differentiation. This shows that the active LDB1 complex appears quite late at the proerythroblast stage of differentiation and confirms the power of PLA in studying the dynamic interaction of proteins in cell differentiation at the single cell level. We provide dynamic insight into the temporal and spatial formation of the GATA1 and LDB1 transcription factor complexes during hematopoietic development and differentiation.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,Current address: Department of Medical Microbiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Andrea Martella
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,AstraZeneca, R&D Innovative Medicines, Cambridge Science Park, Milton Road, Cambridge, UK
| | - Petros Kolovos
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Mary Stevens
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Ralph Stadhouders
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Charlotte Andrieu-Soler
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands .,Institut de Génétique Moléculaire Montpellier, Université de Montpellier, CNRS, Montpellier, France.,Université de Paris, Laboratoire d'excellence (LabEx) du globule rouge GR-Ex, Paris, France
| |
Collapse
|
42
|
Manjur ABMK, Lempiäinen JK, Malinen M, Palvimo JJ, Niskanen EA. IRF2BP2 modulates the crosstalk between glucocorticoid and TNF signaling. J Steroid Biochem Mol Biol 2019; 192:105382. [PMID: 31145973 DOI: 10.1016/j.jsbmb.2019.105382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IRF2BP2 (interferon regulatory factor-2 binding protein-2) is an uncharacterized interaction partner of glucocorticoid (GC) receptor (GR), an anti-inflammatory and metabolic transcription factor. Here, we show that GC changes the chromatin binding of IRF2BP2 in natural chromatin milieu. The GC-induced IRF2BP2-binding sites co-occur with GR binding sites and are associated with GC-induced genes. Moreover, the depletion of IRF2BP2 modulates transcription of GC-regulated genes, represses cell proliferation and increases cell movement in HEK293 cells. In A549 cells, the depletion extensively alters the responses to GC and tumor necrosis factor α (TNF), including metabolic and inflammatory pathways. Taken together, our data support the role of IRF2BP2 as a coregulator of both GR and NF-κB, potentially modulating the crosstalk between GC and TNF signaling.
Collapse
Affiliation(s)
| | | | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
43
|
Kim MY, Kim JS, Son SH, Lim CS, Eum HY, Ha DH, Park MA, Baek EJ, Ryu BY, Kang HC, Uversky VN, Kim CG. Mbd2-CP2c loop drives adult-type globin gene expression and definitive erythropoiesis. Nucleic Acids Res 2019; 46:4933-4949. [PMID: 29547954 PMCID: PMC6007553 DOI: 10.1093/nar/gky193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/12/2018] [Indexed: 01/18/2023] Open
Abstract
During hematopoiesis, red blood cells originate from the hematopoietic stem cell reservoir. Although the regulation of erythropoiesis and globin expression has been intensively investigated, the underlining mechanisms are not fully understood, including the interplay between transcription factors and epigenetic factors. Here, we uncover that the Mbd2-free NuRD chromatin remodeling complex potentiates erythroid differentiation of proerythroblasts via managing functions of the CP2c complexes. We found that both Mbd2 and Mbd3 expression is downregulated during differentiation of MEL cells in vitro and in normal erythropoiesis in mouse bone marrow, and Mbd2 downregulation is crucial for erythropoiesis. In uninduced MEL cells, the Mbd2-NuRD complex is recruited to the promoter via Gata1/Fog1, and, via direct binding through p66α, it acts as a transcriptional inhibitor of the CP2c complexes, preventing their DNA binding and promoting degradation of the CP2c family proteins to suppress globin gene expression. Conversely, during erythropoiesis in vitro and in vivo, the Mbd2-free NuRD does not dissociate from the chromatin and acts as a transcriptional coactivator aiding the recruitment of the CP2c complexes to chromatin, and thereby leading to the induction of the active hemoglobin synthesis and erythroid differentiation. Our study highlights the regulation of erythroid differentiation by the Mbd2-CP2c loop.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ji Sook Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Seung Han Son
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Chang Su Lim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hea Young Eum
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dae Hyun Ha
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Mi Ae Park
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Eun Jung Baek
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea
| | - Ho Chul Kang
- Department of Physiology and Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Chul Geun Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
44
|
Ferri F, Petit V, Barroca V, Romeo PH. Interplay between FACT subunit SPT16 and TRIM33 can remodel chromatin at macrophage distal regulatory elements. Epigenetics Chromatin 2019; 12:46. [PMID: 31331374 PMCID: PMC6647326 DOI: 10.1186/s13072-019-0288-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cell type-specific use of cis-acting regulatory elements is mediated by the combinatorial activity of transcription factors involved in lineage determination and maintenance of cell identity. In macrophages, specific transcriptional programs are dictated by the transcription factor PU.1 that primes distal regulatory elements for macrophage identities and makes chromatin competent for activity of stimuli-dependent transcription factors. Although the advances in genome-wide approaches have elucidated the functions of these macrophage-specific distal regulatory elements in transcriptional responses, chromatin structures associated with PU.1 priming and the underlying mechanisms of action of these cis-acting sequences are not characterized. RESULTS Here, we show that, in macrophages, FACT subunit SPT16 can bind to positioned nucleosomes directly flanking PU.1-bound sites at previously uncharacterized distal regulatory elements located near genes essential for macrophage development and functions. SPT16 can interact with the transcriptional co-regulator TRIM33 and binds to half of these sites in a TRIM33-dependent manner. Using the Atp1b3 locus as a model, we show that FACT binds to two positioned nucleosomes surrounding a TRIM33/PU.1-bound site in a region, located 35 kb upstream the Atp1b3 TSS, that interact with the Atp1b3 promoter. At this - 35 kb region, TRIM33 deficiency leads to FACT release, loss of the two positioned nucleosomes, RNA Pol II recruitment and bidirectional transcription. These modifications are associated with higher levels of FACT binding at the Atp1b3 promoter, an increase of RNA Pol II recruitment and an increased expression of Atp1b3 in Trim33-/- macrophages. CONCLUSIONS Thus, sequestering of SPT16/FACT by TRIM33 at PU.1-bound distal regions might represent a new regulatory mechanism for RNA Pol II recruitment and transcription output in macrophages.
Collapse
Affiliation(s)
- Federica Ferri
- CEA/DRF/IBFJ/iRCM/LRTS, 92265, Fontenay-aux-Roses Cedex, France. .,Inserm U967, 92265, Fontenay-aux-Roses Cedex, France. .,Université Paris-Diderot, Paris 7, France. .,Université Paris-Sud, Paris 11, France. .,Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Vanessa Petit
- CEA/DRF/IBFJ/iRCM/LRTS, 92265, Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265, Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Paris 7, France.,Université Paris-Sud, Paris 11, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Vilma Barroca
- CEA/DRF/IBFJ/iRCM/LRTS, 92265, Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265, Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Paris 7, France.,Université Paris-Sud, Paris 11, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Paul-Henri Romeo
- CEA/DRF/IBFJ/iRCM/LRTS, 92265, Fontenay-aux-Roses Cedex, France. .,Inserm U967, 92265, Fontenay-aux-Roses Cedex, France. .,Université Paris-Diderot, Paris 7, France. .,Université Paris-Sud, Paris 11, France. .,Equipe labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
45
|
Transcription factors and 3D genome conformation in cell-fate decisions. Nature 2019; 569:345-354. [PMID: 31092938 DOI: 10.1038/s41586-019-1182-7] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/19/2019] [Indexed: 12/31/2022]
Abstract
How cells adopt different identities has long fascinated biologists. Signal transduction in response to environmental cues results in the activation of transcription factors that determine the gene-expression program characteristic of each cell type. Technological advances in the study of 3D chromatin folding are bringing the role of genome conformation in transcriptional regulation to the fore. Characterizing this role of genome architecture has profound implications, not only for differentiation and development but also for diseases including developmental malformations and cancer. Here we review recent studies indicating that the interplay between transcription and genome conformation is a driving force for cell-fate decisions.
Collapse
|
46
|
Ramalho-Oliveira R, Oliveira-Vieira B, Viola JPB. IRF2BP2: A new player in the regulation of cell homeostasis. J Leukoc Biol 2019; 106:717-723. [PMID: 31022319 DOI: 10.1002/jlb.mr1218-507r] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/04/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
The IRF2BP2 (IFN regulatory factor 2 binding protein 2) protein was identified as a nuclear protein that interacts with IFN regulatory factor 2 (IRF-2) and is an IRF-2-dependent transcriptional repressor. IRF2BP2 belongs to the IRF2BP family, which includes IRF2BP1, IRF2BP2, and IRF2BPL (EAP1). Recently, IRF2BP2 has emerged as an important new transcriptional cofactor in different biological systems, acting as a positive and negative regulator of gene expression. IRF2BP2 plays a role in different cellular functions, including apoptosis, survival, and cell differentiation. Additionally, IRF2BP2 may be involved in cancer development. Finally, it has been recently reported that IRF2BP2 may play a role in macrophage regulation and lymphocyte activation, highlighting its function in innate and adaptive immune responses. However, it has become increasingly clear that IRF2BP2 and its isoforms can have specific functions. In this review, we address the possible reasons for these distinct roles of IRF2BP2 and the partner proteins that interact with it. We also discuss the genes regulated by IRF2BP2 during the immune response and in other biological systems.
Collapse
Affiliation(s)
- Renata Ramalho-Oliveira
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Barbara Oliveira-Vieira
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - João P B Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
47
|
SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells. Nat Commun 2018; 9:5375. [PMID: 30560907 PMCID: PMC6299140 DOI: 10.1038/s41467-018-07787-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
During development, it is unclear if lineage-fated cells derive from multilineage-primed progenitors and whether active mechanisms operate to restrict cell fate. Here we investigate how mesoderm specifies into blood-fated cells. We document temporally restricted co-expression of blood (Scl/Tal1), cardiac (Mesp1) and paraxial (Tbx6) lineage-affiliated transcription factors in single cells, at the onset of blood specification, supporting the existence of common progenitors. At the same time-restricted stage, absence of SCL results in expansion of cardiac/paraxial cell populations and increased cardiac/paraxial gene expression, suggesting active suppression of alternative fates. Indeed, SCL normally activates expression of co-repressor ETO2 and Polycomb-PRC1 subunits (RYBP, PCGF5) and maintains levels of Polycomb-associated histone marks (H2AK119ub/H3K27me3). Genome-wide analyses reveal ETO2 and RYBP co-occupy most SCL target genes, including cardiac/paraxial loci. Reduction of Eto2 or Rybp expression mimics Scl-null cardiac phenotype. Therefore, SCL-mediated transcriptional repression prevents mis-specification of blood-fated cells, establishing active repression as central to fate determination processes. Mechanisms that operate during embryonic development to restrict cell fate are currently under investigation. Here the authors characterise the role of SCL/TAL1 at the onset of blood specification in embryonic development using mouse EB differentiation culture as a model system.
Collapse
|
48
|
Epigenome analysis links gene regulatory elements in group 2 innate lymphocytes to asthma susceptibility. J Allergy Clin Immunol 2018; 142:1793-1807. [DOI: 10.1016/j.jaci.2017.12.1006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/19/2022]
|
49
|
Moore C, Richens JL, Hough Y, Ucanok D, Malla S, Sang F, Chen Y, Elworthy S, Wilkinson RN, Gering M. Gfi1aa and Gfi1b set the pace for primitive erythroblast differentiation from hemangioblasts in the zebrafish embryo. Blood Adv 2018; 2:2589-2606. [PMID: 30309860 PMCID: PMC6199651 DOI: 10.1182/bloodadvances.2018020156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
The transcriptional repressors Gfi1(a) and Gfi1b are epigenetic regulators with unique and overlapping roles in hematopoiesis. In different contexts, Gfi1 and Gfi1b restrict or promote cell proliferation, prevent apoptosis, influence cell fate decisions, and are essential for terminal differentiation. Here, we show in primitive red blood cells (prRBCs) that they can also set the pace for cellular differentiation. In zebrafish, prRBCs express 2 of 3 zebrafish Gfi1/1b paralogs, Gfi1aa and Gfi1b. The recently identified zebrafish gfi1aa gene trap allele qmc551 drives erythroid green fluorescent protein (GFP) instead of Gfi1aa expression, yet homozygous carriers have normal prRBCs. prRBCs display a maturation defect only after splice morpholino-mediated knockdown of Gfi1b in gfi1aa qmc551 homozygous embryos. To study the transcriptome of the Gfi1aa/1b double-depleted cells, we performed an RNA-Seq experiment on GFP-positive prRBCs sorted from 20-hour-old embryos that were heterozygous or homozygous for gfi1aa qmc551 , as well as wt or morphant for gfi1b We subsequently confirmed and extended these data in whole-mount in situ hybridization experiments on newly generated single- and double-mutant embryos. Combined, the data showed that in the absence of Gfi1aa, the synchronously developing prRBCs were delayed in activating late erythroid differentiation, as they struggled to suppress early erythroid and endothelial transcription programs. The latter highlighted the bipotent nature of the progenitors from which prRBCs arise. In the absence of Gfi1aa, Gfi1b promoted erythroid differentiation as stepwise loss of wt gfi1b copies progressively delayed Gfi1aa-depleted prRBCs even further, showing that Gfi1aa and Gfi1b together set the pace for prRBC differentiation from hemangioblasts.
Collapse
Affiliation(s)
| | | | | | | | - Sunir Malla
- Deep Seq, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Fei Sang
- Deep Seq, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Yan Chen
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, and
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Stone Elworthy
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, and
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Robert N Wilkinson
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, and
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
50
|
Tran Mau-Them F, Guibaud L, Duplomb L, Keren B, Lindstrom K, Marey I, Mochel F, van den Boogaard MJ, Oegema R, Nava C, Masurel A, Jouan T, Jansen FE, Au M, Chen AH, Cho M, Duffourd Y, Lozier E, Konovalov F, Sharkov A, Korostelev S, Urteaga B, Dickson P, Vera M, Martínez-Agosto JA, Begemann A, Zweier M, Schmitt-Mechelke T, Rauch A, Philippe C, van Gassen K, Nelson S, Graham JM, Friedman J, Faivre L, Lin HJ, Thauvin-Robinet C, Vitobello A. De novo truncating variants in the intronless IRF2BPL are responsible for developmental epileptic encephalopathy. Genet Med 2018; 21:1008-1014. [DOI: 10.1038/s41436-018-0143-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
|