1
|
Cheng JY, Shan GY, Wan H, Zhang YX, Gao ZC, Shi YP, Liu F, Yan WQ, Li HJ. MIF/CD74 axis in hepatic stellate cells mediates HBV-related liver fibrosis. Int Immunopharmacol 2025; 147:113929. [PMID: 39752755 DOI: 10.1016/j.intimp.2024.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/29/2025]
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite advances in understanding HBV-related liver diseases, effective therapeutic strategies remain limited. Macrophage migration inhibitory factor (MIF) has been implicated in various inflammatory and fibrotic conditions, but its role in HBV-induced liver fibrosis has not been fully explored. This study investigates the involvement of MIF in liver fibrosis and evaluates its potential as a therapeutic target. We found that MIF expression was significantly elevated in hepatic stellate cells (HSCs) following stimulation with HBVcc (HBV cell culture) or HBV surface antigen (HBsAg). Through its receptor CD74, MIF enhanced the TGF-β/SMAD signaling pathway, promoting HSC activation and liver fibrosis progression. Histological analysis revealed higher MIF and CD74 expression in HBsAg-positive individuals compared to HBsAg-negative controls. Moreover, MIF expression correlated with the activation of fibrosis markers, including α-SMA and TGF-β-related proteins. Inhibition of MIF with the specific inhibitor ISO-1 attenuated fibrosis progression, suggesting that targeting MIF could offer a promising approach for treating HBV-related liver fibrosis. Our findings underscore the critical role of the MIF/CD74 axis in liver fibrosis and provide a basis for future therapeutic strategies targeting MIF in chronic liver diseases.
Collapse
Affiliation(s)
- Jun-Ya Cheng
- Department of Bioengineering, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin Province 130021, China; Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Guan-Yue Shan
- Department of Bioengineering, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin Province 130021, China; Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Hui Wan
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Yu-Xin Zhang
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Zhi-Cheng Gao
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Yun-Peng Shi
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fei Liu
- Department of Obstetrics, The First Hospital of Jilin University, Changchun 130061, China.
| | - Wei-Qun Yan
- Department of Bioengineering, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin Province 130021, China.
| | - Hai-Jun Li
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China.
| |
Collapse
|
2
|
Karpouzas GA, Papotti B, Ormseth SR, Palumbo M, Hernandez E, Adorni MP, Zimetti F, Ronda N. Changes in serum cholesterol loading capacity are linked to coronary atherosclerosis progression in rheumatoid arthritis. RMD Open 2024; 10:e004991. [PMID: 39719397 PMCID: PMC11683967 DOI: 10.1136/rmdopen-2024-004991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/19/2024] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVE Excess cholesterol loading on arterial macrophages is linked to foam cell formation, atherosclerosis and cardiovascular risk in rheumatoid arthritis (RA). However, the effect of changes in cholesterol loading on coronary plaque trajectory and the impact of RA therapies on this relationship are unknown. We investigated the association between variations in cholesterol loading capacity (CLC) over time and atherosclerosis progression. METHODS In a prospective observational cohort study, coronary CT angiography evaluated atherosclerosis (non-calcified, partially calcified or fully calcified plaques and coronary artery calcium (CAC) score) in 100 patients with RA without cardiovascular disease at baseline and 6.9±0.4 years later. The presence of ≥5 plaques and lesions rendering >50% stenosis was considered an extensive and obstructive disease, respectively. Serum CLC was measured on human THP-1 monocyte-derived macrophages with a fluorometric assay. RESULTS Mean CLC change (follow-up CLC-baseline CLC) was 1.54 (SD 3.69) μg cholesterol/mg protein. In models adjusting for atherosclerotic cardiovascular disease risk score, baseline plaque and other relevant covariates, CLC change (per SD unit increase) is associated with a higher likelihood of progression of non-calcified (OR 2.55, 95% CI 1.22 to 5.35), fully calcified plaque (OR 3.10, 95% CI 1.67 to 5.76), CAC (OR 1.80, 95% CI 1.18 to 2.74) and new extensive or obstructive disease (OR 2.43, 95% CI 1.11 to 5.34). Exposure to prednisone unfavourably influenced, while biologics and statins favourably affected the relationship between CLC change and atherosclerosis progression (all p-for-interactions ≤0.048). CONCLUSION CLC change is associated with atherosclerosis progression in a dose-dependent manner, including lipid-rich non-calcified plaques and extensive or obstructive disease that yield the greatest cardiovascular risk.
Collapse
Affiliation(s)
- George Athanasios Karpouzas
- Internal Medicine- Rheumatology, The Lundquist Institute, Torrance, California, USA
- Department of Rheumatology, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
3
|
Zhang F, Meng T, Feng R, Jin C, Zhang S, Meng J, Zhang M, Liang C. MIF aggravates experimental autoimmune prostatitis through activation of the NLRP3 inflammasome via the PI3K/AKT pathway. Int Immunopharmacol 2024; 141:112891. [PMID: 39153310 DOI: 10.1016/j.intimp.2024.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
In our investigation, we investigated the role of macrophage migration inhibitory factor (MIF), a key cytokine, in chronic nonbacterial prostatitis (CNP), an underexplored pathology. Elevated MIF expression was observed in the serum of individuals with chronic prostatitis-like symptoms (CP-LS) as well as in serum and tissue samples from experimental autoimmune prostatitis (EAP) mouse model. Treatment with ISO-1, a specific MIF antagonist, effectively mitigated prostatic inflammation and macrophage infiltration, thereby emphasizing the critical role of MIF in orchestrating immune responses within the prostate microenvironment. Further analyses revealed that MIF stimulates the PI3K/AKT and NLRP3 inflammasome pathways, which are integral to inflammation and cellular immunity. Pharmacological inhibition of the PI3K/AKT pathway by LY294002 substantially reduced prostatic inflammation and macrophage infiltration, potentially by inhibiting NLRP3 inflammasome activation. These findings collectively suggest that MIF is a potential diagnostic marker for CNP and suggest that targeting MIF or its downstream signalling pathways, PI3K/AKT and NLRP3, might represent a novel therapeutic strategy for this condition.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Rui Feng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China; Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Chen Jin
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Song Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Jialin Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Meng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China.
| |
Collapse
|
4
|
Zhao M, Cheng Y, Gao J, Zhou F. Single-cell mass cytometry in immunological skin diseases. Front Immunol 2024; 15:1401102. [PMID: 39081313 PMCID: PMC11286489 DOI: 10.3389/fimmu.2024.1401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Immune-related skin diseases represent a collective of dermatological disorders intricately linked to dysfunctional immune system processes. These conditions are primarily characterized by an immoderate activation of the immune system or deviant immune responses, involving diverse immune components including immune cells, antibodies, and inflammatory mediators. However, the precise molecular dysregulation underlying numerous individual cases of these diseases and unique subsets respond under disease conditions remains elusive. Comprehending the mechanisms and determinants governing the homeostasis and functionality of diseases could offer potential therapeutic opportunities for intervention. Mass cytometry enables precise and high-throughput quantitative measurement of proteins within individual cells by utilizing antibodies labeled with rare heavy metal isotopes. Imaging mass cytometry employs mass spectrometry to obtain spatial information on cell-to-cell interactions within tissue sections, simultaneously utilizing more than 40 markers. The application of single-cell mass cytometry presents a unique opportunity to conduct highly multiplexed analysis at the single-cell level, thereby revolutionizing our understanding of cell population heterogeneity and hierarchy, cellular states, multiplexed signaling pathways, proteolysis products, and mRNA transcripts specifically in the context of many autoimmune diseases. This information holds the potential to offer novel approaches for the diagnosis, prognostic assessment, and monitoring responses to treatment, thereby enriching our strategies in managing the respective conditions. This review summarizes the present-day utilization of single-cell mass cytometry in studying immune-related skin diseases, highlighting its advantages and limitations. This technique will become increasingly prevalent in conducting extensive investigations into these disorders, ultimately yielding significant contributions to their accurate diagnosis and efficacious therapeutic interventions.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yuqi Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
5
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
6
|
Zerpa-Hernández DA, García-Chagollán M, Sánchez-Zuno GA, García-Arellano S, Hernández-Bello J, Hernández-Palma LA, Cerpa-Cruz S, Martinez-Bonilla G, Nicoletti F, Muñoz-Valle JF. Expression of Transcriptional Factors of T Helper Differentiation (T-bet, GATA-3, RORγt, and FOXP3), MIF Receptors (CD44, CD74, CXCR2, 4, 7), and Th1, Th2, and Th17 Cytokines in PBMC from Control Subjects and Rheumatoid Arthritis Patients. Curr Mol Med 2024; 24:1169-1182. [PMID: 37807647 DOI: 10.2174/0115665240260976230925095330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION The macrophage migration inhibitory factor (MIF) plays a pivotal role in the development of rheumatoid arthritis (RA). Previous research indicates that MIF can trigger the expression of cytokine profiles associated with Th1, Th2, and Th17 responses in peripheral blood mononuclear cells (PBMC) from both RA patients and control subjects (CS). Despite these, few studies to date precisely elucidate the molecular mechanisms involved. The present study aimed to associate the expression of Th differentiation TF (T-bet, GATA-3, RORγt) with MIF receptors (CD44, CD74, CXCR2, 4, 7) and Th1, Th2, and Th17 cytokines in PBMC from CS and RA patients. METHOD PBMC from both groups was cultured for 24 h. The expression of the canonical and non-canonical MIF receptors and the TF was determined by flow cytometry. Additionally, multiplex bead analysis was employed to assess the levels of cytokines in the culture supernatants. The findings revealed that T CD4+ lymphocytes in the CS group exhibited a heightened expression of CD74 (p<0.05), whereas RA patients displayed an elevated expression of CXCR7 (p<0.001). Furthermore, T CD4+ lymphocytes from RA patients exhibited greater expression of GATA3, RORγt, and FOXP3, along with elevated levels of pro-inflammatory cytokines compared to the CS group (p<0.001). RESULT These results indicate that CD74 is more prominently expressed in PBMC from the CS group, whereas CXCR7 is more expressed in PBMC from RA patients. CONCLUSION We also noted an increased secretion of Th17 profile cytokines in RA, potentially influenced by the activation of FOXP3 via CD74 and RORγt through CXCR7 using the endocytic pathway.
Collapse
Affiliation(s)
| | - Mariel García-Chagollán
- Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco 44340, México
| | | | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco 44340, México
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco 44340, México
| | - Luis Alexis Hernández-Palma
- Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco 44340, México
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Universidad de Guadalajara, Jalisco 49000, Mexico
| | - Sergio Cerpa-Cruz
- Servicio de Reumatología, O.P.D. Hospital Civil de Guadalajara "Fray Antonio Alcalde", Jalisco 44280, Mexico
| | - Gloria Martinez-Bonilla
- Servicio de Reumatología, O.P.D. Hospital Civil de Guadalajara "Fray Antonio Alcalde", Jalisco 44280, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | |
Collapse
|
7
|
Zan C, Yang B, Brandhofer M, El Bounkari O, Bernhagen J. D-dopachrome tautomerase in cardiovascular and inflammatory diseases-A new kid on the block or just another MIF? FASEB J 2022; 36:e22601. [PMID: 36269019 DOI: 10.1096/fj.202201213r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) as well as its more recently described structural homolog D-dopachrome tautomerase (D-DT), now also termed MIF-2, are atypical cytokines and chemokines with key roles in host immunity. They also have an important pathogenic role in acute and chronic inflammatory conditions, cardiovascular diseases, lung diseases, adipose tissue inflammation, and cancer. Although our mechanistic understanding of MIF-2 is relatively limited compared to the extensive body of evidence available for MIF, emerging data suggests that MIF-2 is not only a functional phenocopy of MIF, but may have differential or even oppositional activities, depending on the disease and context. In this review, we summarize and discuss the similarities and differences between MIF and MIF-2, with a focus on their structures, receptors, signaling pathways, and their roles in diseases. While mainly covering the roles of the MIF homologs in cardiovascular, inflammatory, autoimmune, and metabolic diseases, we also discuss their involvement in cancer, sepsis, and chronic obstructive lung disease (COPD). A particular emphasis is laid upon potential mechanistic explanations for synergistic or cooperative activities of the MIF homologs in cancer, myocardial diseases, and COPD as opposed to emerging disparate or antagonistic activities in adipose tissue inflammation, metabolic diseases, and atherosclerosis. Lastly, we discuss potential future opportunities of jointly targeting MIF and MIF-2 in certain diseases, whereas precision targeting of only one homolog might be preferable in other conditions. Together, this article provides an update of the mechanisms and future therapeutic avenues of human MIF proteins with a focus on their emerging, surprisingly disparate activities, suggesting that MIF-2 displays a variety of activities that are distinct from those of MIF.
Collapse
Affiliation(s)
- Chunfang Zan
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Bishan Yang
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Markus Brandhofer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany.,Deutsches Zentrum für Herz-Kreislauferkrankungen (DZHK), Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
8
|
Hong J, Zhang M, He Y, Jin Y, He Q, Zhang Y, Shi X, Tian W, Wen C, Chen J. Qinghao-Biejia Herb Pair Alleviates Pristane-Induced Lupus-Like Disease and Associated Renal and Aortic Lesions in ApoE−/− Mice. Front Pharmacol 2022; 13:897669. [PMID: 35571092 PMCID: PMC9100684 DOI: 10.3389/fphar.2022.897669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Backgroud: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multiple systems with a high prevalence of nephritis and atherosclerosis. Jieduquyuziyin prescription is a famous prescription with immune modulating and inflammation controlling effects, which is efficacious in the treatment of SLE. The most critical herbs in this prescription are Qinghao and Biejia. The aim of this study was to evaluate the therapeutic effect of Qinghao-Biejia herb hair (QB) on mice with SLE combined with atherosclerosis.Materials and Methods: The effect of QB (identification using UPLC-TOF-MS) was assessed in female ApoE−/− mice intraperitoneally injected with 0.5 ml of pristane. Serum autoantibodies and lipid metabolic parameters were tested every 4 weeks, and spleen index, serum inflammatory biomarkers, renal injury, and aortic injury were observed after 16 weeks. The expression of signaling pathway in kidney tissues was observed by RT-qPCR and Western blot.Results: The mice of QB-treated group exhibited a significant reduced serum autoantibodies level, urine protein, and renal immune complex deposition. QB treatment reduced the levels of inflammatory cytokines and improved the renal pathological changes. In addition, there was a reduction in aortic atheromatous plaque and some improvement in dyslipidemia. Moreover, QB suppressed the expression of HMGB1, TLR4, and MyD88 to some extent.Conclusion: The present study implied that QB has clear efficacy for the treatment of SLE combined with atherosclerosis, and that inhibition of the HMGB1/TLR4 signaling pathway may be one of the therapeutic targets of QB for SLE combined with atherosclerosis.
Collapse
Affiliation(s)
- Jiaze Hong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Miao Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanfang He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Jin
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaoqi He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Shi
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weiyu Tian
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Juan Chen, ; Chengping Wen,
| | - Juan Chen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Juan Chen, ; Chengping Wen,
| |
Collapse
|
9
|
Yiu G, Rasmussen TK, Tsai BL, Diep VK, Haddon DJ, Tsoi J, Miller GD, Comin-Anduix B, Deleuran B, Crooks GM, Utz PJ. High Interferon Signature Leads to Increased STAT1/3/5 Phosphorylation in PBMCs From SLE Patients by Single Cell Mass Cytometry. Front Immunol 2022; 13:833636. [PMID: 35185925 PMCID: PMC8851522 DOI: 10.3389/fimmu.2022.833636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
The establishment of an “interferon (IFN) signature” to subset SLE patients on disease severity has led to therapeutics targeting IFNα. Here, we investigate IFN signaling in SLE using multiplexed protein arrays and single cell cytometry by time of flight (CyTOF). First, the IFN signature for SLE patients (n=81) from the Stanford Lupus Registry is determined using fluidigm qPCR measuring 44 previously determined IFN-inducible transcripts. IFN-high (IFN-H) patients have increased SLE criteria and renal/CNS/immunologic involvement, and increased autoantibody reactivity against spliceosome-associated antigens. CyTOF analysis is performed on non-stimulated and stimulated (IFNα, IFNγ, IL-21) PBMCs from SLE patients (n=25) and HCs (n=9) in a panel identifying changes in phosphorylation of intracellular signaling proteins (pTOF). Another panel is utilized to detect changes in intracellular cytokine (ICTOF) production in non-stimulated and stimulated (PMA/ionomycin) PBMCs from SLE patients (n=31) and HCs (n=17). Bioinformatic analysis by MetaCyto and OMIQ reveal phenotypic changes in immune cell subsets between IFN-H and IFN-low (IFN-L) patients. Most notably, IFN-H patients exhibit increased STAT1/3/5 phosphorylation downstream of cytokine stimulation and increased phosphorylation of non-canonical STAT proteins. These results suggest that IFN signaling in SLE modulates STAT phosphorylation, potentially uncovering possible targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Gloria Yiu
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States.,Department of Rheumatology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tue Kruse Rasmussen
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Brandon L Tsai
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Vivian K Diep
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States
| | - David J Haddon
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States
| | - Jennifer Tsoi
- Department of Surgery David Geffen School of Medicine, Johnson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gopika D Miller
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States
| | - Begoña Comin-Anduix
- Department of Surgery David Geffen School of Medicine, Johnson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Gay M Crooks
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.,Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Eli and Edythe Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States.,Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
10
|
Zhang JY, Zhao Q, Liu F, Li DY, Men L, Luo JY, Zhao L, Li XM, Gao XM, Yang YN. Genetic Variation of Migration Inhibitory Factor Gene rs2070766 Is Associated With Acute Coronary Syndromes in Chinese Population. Front Genet 2022; 12:750975. [PMID: 35046995 PMCID: PMC8762351 DOI: 10.3389/fgene.2021.750975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic variation of macrophage migration inhibitory factor (MIF) gene has been linked to coronary artery disease. We investigated an association between the polymorphism of MIF gene rs2070766 and acute coronary syndromes (ACS) and the predictive value of MIF gene variation in clinical outcomes. This study involved in 963 ACS patients and 932 control subjects from a Chinese population. All participants were genotyped for the single nucleotide polymorphism (SNP) of MIF gene rs2070766 using SNPscan™. A nomogram model using MIF genetic variation and clinical variables was established to predict risk of ACS. Major adverse cardiovascular events (MACE) were monitored during a follow-up period. The frequency of rs2070766 GG genotype was higher in ACS patients than in control subjects (6.2 vs 3.8%, p = 0.034). Multivariate logistic regression analysis revealed that individuals with mutant GG genotype had a 1.7-fold higher risk of ACS compared with individuals with CC or CG genotypes. Using MIF rs2070766 genotypes and clinical factors, we developed a nomogram model to predict risk of ACS. The nomogram model had a good discrimination with an area under the curve of 0.781 (95% CI: 0.759-0.804), concordance index of 0.784 (95% CI: 0.762-0.806) and well-fitted calibration. During the follow-up period of 25 months, Kaplan-Meier curves demonstrated that ACS patients carrying GG phenotype developed more MACE compared to CC or CG carriers (p < 0.05). GG genotype of MIF gene rs2070766 was associated with a higher risk of ACS in a Chinese population. The GG genotype carriers in ACS patients had worse clinical outcomes compared with those carrying CC or CG genotype. Together with rs2070766 genetic variant of MIF gene, we established a novel nomogram model that can provide individualized prediction for ACS.
Collapse
Affiliation(s)
- Jin-Yu Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Rehabilitation Department of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qian Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - De-Yang Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Men
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jun-Yi Luo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Xiao-Mei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China.,Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Yi-Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China.,People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
11
|
Immune cell and TCR/BCR repertoire profiling in systemic lupus erythematosus patients by single-cell sequencing. Aging (Albany NY) 2021; 13:24432-24448. [PMID: 34772824 PMCID: PMC8610142 DOI: 10.18632/aging.203695] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022]
Abstract
The immune cells and the repertoire of T cells and B cells play an important role in the pathogenesis of systemic lupus erythematosus (SLE). Exploring their expression and distribution in SLE can help us better understand this lethal autoimmune disease. In this study, we used a single-cell 5’ RNA sequence and single-cell T cell receptor (TCR)/B cell receptor (BCR) to study the immune cells and the repertoire from ten SLE patients and the paired normal controls (NC). The results showed that 9732 cells correspondence to 12 cluster immune cell types were identified in NC, whereas 11042 cells correspondence to 16 cluster immune cell types were identified in SLE. The results demonstrated that neutrophil, macrophage, and dendritic cells were accumulated in SLE by annotating the immune cell types. Besides, the bioinformatics analysis of differentially expressed genes (DEGs) in these cell types indicates their role in inflammation response. In addition, patients with SLE showed increased TCR and BCR clonotypes compared with the healthy controls. Furthermore, patients with SLE showed biased usage of TCR and BCR V(D)J genes. Taken together, we characterized the transcriptome and TCR/BCR immune repertoire profiles of SLE patients, which may provide a new avenue for the diagnosis and treatment of SLE.
Collapse
|
12
|
Cruz AM, Beall C. Extracellular ATP Increases Glucose Metabolism in Skeletal Muscle Cells in a P2 Receptor Dependent Manner but Does Not Contribute to Palmitate-Induced Insulin Resistance. Front Physiol 2020; 11:567378. [PMID: 33101053 PMCID: PMC7545032 DOI: 10.3389/fphys.2020.567378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
Saturated fatty acids such as palmitate contribute to the development of Type 2 Diabetes by reducing insulin sensitivity, increasing inflammation and potentially contributing to anabolic resistance. We hypothesized that palmitate-induced ATP release from skeletal muscle cells may increase inflammatory cytokine production and contribute to insulin/anabolic resistance in an autocrine/paracrine manner. In C2C12 myotubes differentiated at physiological glucose concentrations (5.5 mM), palmitate treatment (16 h) at concentrations greater than 250 μM increased release of ATP and inflammatory cytokines IL-6 and MIF, significantly blunted insulin and amino acid-induced signaling and reduced mitochondrial function. In contrast to our hypothesis, degradation of extracellular ATP using apyrase, did not alter palmitate-induced insulin resistance nor alter release of cytokines. Moreover, treatment with ATPγS (16 h), a non-hydrolysable ATP analog, in the absence of palmitate, did not diminish insulin sensitivity. Acute treatment with ATPγS produced insulin mimetic roles; increased phosphorylation of PKB (aka AKT), S6K1 and ERK and enhanced GLUT4-mediated glucose uptake in the absence of exogenous insulin. The increases in PKB and S6K1 phosphorylation were completely prevented by pre-incubation with broad spectrum purinergic receptor (P2R) blockers PPADs and suramin but not by P2 × 4 or P2 × 7 blockers 5-BDBD or A-438079, respectively. Moreover, ATPγS increased IL-6 yet decreased MIF release, similar to the cytokine profile produced by exercise. Acute and chronic treatment with ATPγS increased glycolytic rate in a manner that was differentially inhibited by PPADs and suramin, suggesting heterogeneous P2R activation in the control of cellular metabolism. In summary, our data suggest that the palmitate-induced increase in ATP does not contribute to insulin/anabolic resistance in a cell autonomous manner.
Collapse
Affiliation(s)
- Ana Miguel Cruz
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Craig Beall
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
13
|
Structural and functional insights into macrophage migration inhibitory factor from Oncomelania hupensis, the intermediate host of Schistosoma japonicum. Biochem J 2020; 477:2133-2151. [PMID: 32484230 DOI: 10.1042/bcj20200068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Oncomelania hupensis is the unique intermediate host of Schistosoma japonicum. As an irreplaceable prerequisite in the transmission and prevalence of schistosomiasis japonica, an in-depth study of this obligate host-parasite interaction can provide glimpse into the molecular events in the competition between schistosome infectivity and snail immune resistance. In previous studies, we identified a macrophage migration inhibitory factor (MIF) from O. hupensis (OhMIF), and showed that it was involved in the snail host immune response to the parasite S. japonicum. Here, we determined the crystal structure of OhMIF and revealed that there were distinct structural differences between the mammalian and O. hupensis MIFs. Noticeably, there was a projecting and structured C-terminus in OhMIF, which not only regulated the MIF's thermostability but was also critical in the activation of its tautomerase activity. Comparative studies between OhMIF and human MIF (hMIF) by analyzing the tautomerase activity, oxidoreductase activity, thermostability, interaction with the receptor CD74 and activation of the ERK signaling pathway demonstrated the functional differences between hMIF and OhMIF. Our data shed a species-specific light on structural, functional, and immunological characteristics of OhMIF and enrich the knowledge on the MIF family.
Collapse
|
14
|
Diaz-Jimenez D, Petrillo MG, Busada JT, Hermoso MA, Cidlowski JA. Glucocorticoids mobilize macrophages by transcriptionally up-regulating the exopeptidase DPP4. J Biol Chem 2020; 295:3213-3227. [PMID: 31988243 DOI: 10.1074/jbc.ra119.010894] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoids are potent endogenous anti-inflammatory molecules, and their cognate receptor, glucocorticoid receptor (GR), is expressed in nearly all immune cells. Macrophages are heterogeneous immune cells having a central role in both tissue homeostasis and inflammation and also play a role in the pathogenesis of some inflammatory diseases. Paradoxically, glucocorticoids have only a limited efficacy in controlling the resolution of these macrophage-related diseases. Here, we report that the transcriptomes of monocyte-like THP-1 cells and macrophage-like THP-1 cells (THP1-MΦ) have largely conserved gene expression patterns. In contrast, the differentiation to THP1-MΦ significantly altered the sensitivity of gene transcription to glucocorticoids. Among glucocorticoid-regulated genes, we identified the exopeptidase dipeptidyl peptidase-4 (DPP4) as a critical glucocorticoid-responsive gene in THP1-MΦ. We found that GR directly induces DPP4 gene expression by binding to two glucocorticoid-responsive elements (GREs) within the DPP4 promoter. Additionally, we show that glucocorticoid-induced DPP4 expression is blocked by the GR antagonist RU-486 and by GR siRNA transfection and that DPP4 enzyme activity is reduced by DPP4 inhibitors. Of note, glucocorticoids highly stimulated macrophage mobility; unexpectedly, DPP4 mediated the glucocorticoid-induced macrophage migration, and siRNA-mediated knockdowns of GR and DPP4 blocked dexamethasone-induced THP1-MΦ migration. Moreover, glucocorticoid-induced DPP4 activation was also observed in proinflammatory M1-polarized murine macrophages, as well as peritoneal macrophages, and was associated with increased macrophage migration. Our results indicate that glucocorticoids directly up-regulate DPP4 expression and thereby induce migration in macrophages, potentially explaining why glucocorticoid therapy is less effective in controlling macrophage-dominated inflammatory disorders.
Collapse
Affiliation(s)
- David Diaz-Jimenez
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709; Laboratory of Innate Immunity, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Maria Grazia Petrillo
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Jonathan T Busada
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
| |
Collapse
|
15
|
Xuan J, Xiong Y, Shi L, Aramini B, Wang H. Do lncRNAs and circRNAs expression profiles influence discoid lupus erythematosus progression?-a comprehensive analysis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:728. [PMID: 32042744 DOI: 10.21037/atm.2019.12.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs)are involved in the progression of discoid lupus erythematosus (DLE), but an understanding of their underlying mechanisms remains elusive. To explore the expression profiles of lncRNAs and circRNAs in DLE, we surveyed the lncRNA/circRNA and mRNA expression profiles in the epithelia of oral DLE and adjacent normal tissues. Methods The lesional and non-lesional lower lips of three DLE patients were analysed by RNA-sequencing (RNA-seq). The principal functions of the significantly deregulated genes were identified using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. And the correlated expression networks (coding-noncoding co-expression and lncRNAs-transcription factor-mRNA) were evaluated as well. Results Hundreds of significantly changed lncRNAs and mRNAs and dozens of significantly changed circRNAs were identified. lncRNA lnc-MIPOL1-6 and IncRNA IncDDX47-3 expressions were correlated with immune response-related genes, including IL19, CXCL1, CXCL11, and TNFSF15. Up-regulated IncRNA-TF network consists of 8 TFs and 74 related lncRNAs. The lncRNA-TF-gene trans-regulation consisting of 204 lncRNAs,39 TFs, and correlated 3 genes. Conclusions These results demonstrate that lncRNAs and circRNAs can influence the progression of DLE. Certain mRNAs/lncRNAs/circRNAs may have substantial value in DLE diagnosis and therapy.
Collapse
Affiliation(s)
- Jing Xuan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yaoyang Xiong
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Linjun Shi
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China.,Department of Oral Mucosa Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Haiyan Wang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China.,Department of Oral Mucosa Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
16
|
Using Intravital Microscopy to Study the Role of MIF in Leukocyte Trafficking In Vivo. Methods Mol Biol 2019. [PMID: 31745868 DOI: 10.1007/978-1-4939-9936-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In vivo visualization of the microvasculature of the mouse cremaster muscle has been fruitful in the evaluation of the role of macrophage migration inhibitory factor in promotion of leukocyte trafficking. Here we explain how to undertake this preparation, including details on mouse anesthesia, securing intravenous access, and cremaster muscle exteriorization. We also provide information on the various microscopy modalities now available for imaging microvascular preparations of this nature.
Collapse
|
17
|
Vincent FB, Lang T, Kandane-Rathnayake R, Downie-Doyle S, Morand EF, Rischmueller M. Serum and urinary macrophage migration inhibitory factor (MIF) in primary Sjögren's syndrome. Joint Bone Spine 2019; 86:393-395. [DOI: 10.1016/j.jbspin.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|
18
|
Shin MS, Kang Y, Wahl ER, Park HJ, Lazova R, Leng L, Mamula M, Krishnaswamy S, Bucala R, Kang I. Macrophage Migration Inhibitory Factor Regulates U1 Small Nuclear RNP Immune Complex-Mediated Activation of the NLRP3 Inflammasome. Arthritis Rheumatol 2018; 71:109-120. [PMID: 30009530 DOI: 10.1002/art.40672] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE High-expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE). The U1 small nuclear RNP (snRNP) immune complex containing U1 snRNP and anti-U1 snRNP antibodies, which are found in patients with SLE, activates the NLRP3 inflammasome, comprising NLRP3, ASC, and procaspase 1, in human monocytes, leading to the production of interleukin-1β (IL-1β). This study was undertaken to investigate the role of the snRNP immune complex in up-regulating the expression of MIF and its interface with the NLRP3 inflammasome. METHODS MIF, IL-1β, NLRP3, caspase 1, ASC, and MIF receptors were analyzed by enzyme-linked immunosorbent assay, Western blotting, quantitative polymerase chain reaction, and cytometry by time-of-flight mass spectrometry (CytoF) in human monocytes incubated with or without the snRNP immune complex. MIF pathway responses were probed with the novel small molecule antagonist MIF098. RESULTS The snRNP immune complex induced the production of MIF and IL-1β from human monocytes. High-dimensional, single-cell CytoF analysis established that MIF regulates activation of the NLRP3 inflammasome, including findings of a quantitative relationship between MIF and its receptors and IL-1β levels in the monocytes. MIF098, which blocks MIF binding to its cognate receptor, suppressed the production of IL-1β, the up-regulation of NLRP3, which is a rate-limiting step in NLRP3 inflammasome activation, and the activation of caspase 1 in snRNP immune complex-stimulated human monocytes. CONCLUSION The U1 snRNP immune complex is a specific stimulus of MIF production in human monocytes, with MIF having an upstream role in defining the inflammatory characteristics of activated monocytes by regulating NLRP3 inflammasome activation and downstream IL-1β production. These findings provide mechanistic insight and a therapeutic rationale for targeting MIF in subgroups of lupus patients, such as those classified as high genotypic MIF expressers or those with anti-snRNP antibodies.
Collapse
Affiliation(s)
- Min Sun Shin
- Yale University School of Medicine, New Haven, Connecticut
| | - Youna Kang
- Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth R Wahl
- Yale University School of Medicine, New Haven, Connecticut, and University of Washington, Seattle
| | - Hong-Jai Park
- Yale University School of Medicine, New Haven, Connecticut
| | - Rossitza Lazova
- Yale University School of Medicine, New Haven, Connecticut, and California Skin Institute, San Jose
| | - Lin Leng
- Yale University School of Medicine, New Haven, Connecticut
| | - Mark Mamula
- Yale University School of Medicine, New Haven, Connecticut
| | | | - Richard Bucala
- Yale University School of Medicine, New Haven, Connecticut
| | - Insoo Kang
- Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
19
|
Vincent FB, Slavin L, Hoi AY, Kitching AR, Mackay F, Harris J, Kandane-Rathnayake R, Morand EF. Analysis of urinary macrophage migration inhibitory factor in systemic lupus erythematosus. Lupus Sci Med 2018; 5:e000277. [PMID: 30397495 PMCID: PMC6203042 DOI: 10.1136/lupus-2018-000277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 01/02/2023]
Abstract
Objective To characterise the clinical relevance of urinary macrophage migration inhibitory factor (uMIF) concentrations in patients with systemic lupus erythematosus (SLE). Methods MIF, adjusted for urine creatinine, was quantified by ELISA in urine samples from 64 prospectively recruited patients with SLE. Serum MIF and urinary monocyte chemoattractant protein 1 (uMCP-1) were quantified by ELISA in a subset of patients (n = 39). Disease activity was assessed using the SLE Disease Activity Index-2000 (SLEDAI-2K) score. Results uMIF was detectable in all patients with SLE. uMIF was positively correlated with overall SLEDAI-2K, was significantly higher in patients with SLE with high disease activity (SLEDAI-2K≥10) compared with those with inactive disease (SLEDAI-2K<4), and this association remained significant after adjusting for ethnicity, flare and use of immunosuppressants. uMIF was also significantly higher in SLE patients with flare of disease, although not confirmed in multivariable analysis. No significant differences in uMIF levels were observed according to the presence of renal disease activity, as assessed by renal SLEDAI-2K or biopsy-confirmed lupus nephritis. In contrast, uMCP-1 was significantly higher in SLE patients with active renal disease. uMIF expression was not associated with irreversible organ damage accrual or glucocorticoid use. Conclusions These data suggest uMIF as a potential overall but not renal-specific SLE biomarker, whereas uMCP-1 is a renal-specific SLE biomarker.
Collapse
Affiliation(s)
- Fabien B Vincent
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Laura Slavin
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Alberta Y Hoi
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Arthur Richard Kitching
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Fabienne Mackay
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - James Harris
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Rangi Kandane-Rathnayake
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Bezdek S, Leng L, Busch H, Mousavi S, Rades D, Dahlke M, Zillikens D, Bucala R, Sadik CD. Macrophage Migration Inhibitory Factor (MIF) Drives Murine Psoriasiform Dermatitis. Front Immunol 2018; 9:2262. [PMID: 30333830 PMCID: PMC6176003 DOI: 10.3389/fimmu.2018.02262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/11/2018] [Indexed: 01/31/2023] Open
Abstract
The immunomodulator Macrophage Migration Inhibitory Factor (MIF) exerts pleiotropic immunomodulatory activities and has been implicated in the pathogenesis of diverse inflammatory diseases. Expression levels of MIF are also significantly elevated in the skin and serum of psoriasis patients, but the pathogenic significance of MIF in psoriasis is unknown. We have therefore addressed the role of MIF in two mouse models of psoriasis, namely in the imiquimod-induced psoriasiform dermatitis (IIPD) and the IL-23-induced dermatitis model. Daily treatment with Aldara™ cream, containing imiquimod, markedly increased the abundance of MIF in the skin and generated a cellular skin expression pattern of MIF closely resembling that in human plaque psoriasis. Deficiency in MIF significantly alleviated IIPD. On the clinical level, all hallmarks of psoriasiform dermatitis, including erythema, skin infiltration, and desquamation were reduced in Mif−/− mice. On the histopathological level, MIF deficiency decreased keratinocyte hyperproliferation, inflammatory cell infiltration, specifically with respect to monocyte-derived cells, and dermal angiogenesis, suggesting that MIF may be involved in the pathogenesis of psoriasiform dermatitis through several mechanisms. Similarly, MIF deficiency also significantly reduced disease in the IL-23-induced dermatitis model, suggesting that MIF is involved in the pathogenic pathways activated by IL-23 and required to achieve full-blown psoriasiform dermatitis. Collectively, our results lend support to a possible disease-promoting role of MIF in psoriasis, which should be further investigated.
Collapse
Affiliation(s)
- Siegfried Bezdek
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Lin Leng
- Departments of Medicine and Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Hauke Busch
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Sadegh Mousavi
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany
| | - Markus Dahlke
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Richard Bucala
- Departments of Medicine and Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
MIF-Mediated Hemodilution Promotes Pathogenic Anemia in Experimental African Trypanosomosis. PLoS Pathog 2016; 12:e1005862. [PMID: 27632207 PMCID: PMC5025191 DOI: 10.1371/journal.ppat.1005862] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/11/2016] [Indexed: 12/31/2022] Open
Abstract
Animal African trypanosomosis is a major threat to the economic development and human health in sub-Saharan Africa. Trypanosoma congolense infections represent the major constraint in livestock production, with anemia as the major pathogenic lethal feature. The mechanisms underlying anemia development are ill defined, which hampers the development of an effective therapy. Here, the contribution of the erythropoietic and erythrophagocytic potential as well as of hemodilution to the development of T. congolense-induced anemia were addressed in a mouse model of low virulence relevant for bovine trypanosomosis. We show that in infected mice, splenic extramedullary erythropoiesis could compensate for the chronic low-grade type I inflammation-induced phagocytosis of senescent red blood cells (RBCs) in spleen and liver myeloid cells, as well as for the impaired maturation of RBCs occurring in the bone marrow and spleen. Rather, anemia resulted from hemodilution. Our data also suggest that the heme catabolism subsequent to sustained erythrophagocytosis resulted in iron accumulation in tissue and hyperbilirubinemia. Moreover, hypoalbuminemia, potentially resulting from hemodilution and liver injury in infected mice, impaired the elimination of toxic circulating molecules like bilirubin. Hemodilutional thrombocytopenia also coincided with impaired coagulation. Combined, these effects could elicit multiple organ failure and uncontrolled bleeding thus reduce the survival of infected mice. MIF (macrophage migrating inhibitory factor), a potential pathogenic molecule in African trypanosomosis, was found herein to promote erythrophagocytosis, to block extramedullary erythropoiesis and RBC maturation, and to trigger hemodilution. Hence, these data prompt considering MIF as a potential target for treatment of natural bovine trypanosomosis. Bovine African trypanosomosis is a parasitic disease of veterinary importance that adversely affects the public health and economic development of sub-Saharan Africa. Anemia is a major cause of death associated with this disease. Yet, the mechanisms underlying anemia development are not elucidated, which hampers the design of effective therapeutic strategies. We show here that in a Trypanosoma congolense infection mouse model relevant for bovine trypanosomosis, red blood cells (RBCs) are generated in the spleen. This compensates for the impaired maturation of RBCs occurring in the bone marrow, the normal site of RBC generation, and for the destruction of RBCs taking place in the liver and the spleen. Instead, anemia results from an increase in blood volume (hemodilution). The immune molecule Macrophage Migration Inhibitory Factor (MIF) was found to drive RBC destruction, to block RBC maturation, as well as to trigger hemodilution. Iron accumulation in tissue due to sustained RBC destruction and hemodilution causes tissue damage, which culminates in the release of toxic molecules like bilirubin, in impaired production of blood detoxifying molecules like albumin, and in defective coagulation. Combined, these effects initiate multiple organ failure that can reduce the survival of infected mice. Given the unmet medical need for this parasite infection, our findings offer promise for improved treatment protocols in the field.
Collapse
|
22
|
Nenke MA, Lewis JG, Rankin W, McWilliams L, Metcalf RG, Proudman SM, Torpy DJ. Reduced corticosteroid-binding globulin cleavage in active rheumatoid arthritis. Clin Endocrinol (Oxf) 2016; 85:369-77. [PMID: 27061835 DOI: 10.1111/cen.13081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/23/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Corticosteroid-binding globulin (CBG), the cortisol transport protein, is cleaved from high-affinity (haCBG) to low-affinity (laCBG) CBG at sites of inflammation releasing bioavailable, anti-inflammatory cortisol. Rheumatoid arthritis (RA) is a glucocorticoid-responsive disorder, with paradoxically normal cortisol levels despite elevated inflammatory mediators. Our objective was to determine whether CBG cleavage relates to RA disease activity. We hypothesized that impaired CBG cleavage may limit delivery of free cortisol to inflamed joints in RA. DESIGN Prospective, cross-sectional observational study. SETTING AND PARTICIPANTS Fifty-three patients with RA recruited from a Rheumatology outpatient clinic at a tertiary referral centre in Adelaide, Australia, and 73 healthy controls. MEASUREMENTS Total CBG, haCBG and laCBG, total, free and salivary cortisol, inflammatory markers including interleukin-6 soluble receptor (IL-6sR) and macrophage migration inhibitory factor and clinical measures of disease activity. RESULTS Among patients with RA, a wide range of disease activity scores was observed (DAS28: range 1·2-6·4). laCBG was lower in patients with RA (mean ± SEM); 153 ± 9, compared with healthy controls; 191 ± 8 nmol/l, P = 0·003. Levels of total and haCBG were higher in patients with more severe RA disease activity. Free and total cortisol, free cortisol:IL-6sR ratio and total cortisol:IL-6sR ratio correlated negatively with disease activity. CONCLUSIONS These results suggest that patients with RA have reduced CBG cleavage compared to healthy controls and that cleavage is reduced further with higher RA disease activity. Hence, impaired CBG-mediated delivery of endogenous cortisol may perpetuate chronic inflammation in RA.
Collapse
Affiliation(s)
- Marni A Nenke
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - John G Lewis
- Steroid & Immunobiochemistry Laboratory, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Wayne Rankin
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
- Chemical Pathology Directorate, SA Pathology, Adelaide, SA, Australia
| | - Leah McWilliams
- Rheumatology Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Robert G Metcalf
- Rheumatology Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Susanna M Proudman
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
- Rheumatology Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
23
|
Connelly KL, Kandane-Rathnayake R, Hoi A, Nikpour M, Morand EF. Association of MIF, but not type I interferon-induced chemokines, with increased disease activity in Asian patients with systemic lupus erythematosus. Sci Rep 2016; 6:29909. [PMID: 27453287 PMCID: PMC4958969 DOI: 10.1038/srep29909] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022] Open
Abstract
Ethnicity is a key factor impacting on disease severity in SLE, but molecular mechanisms of these associations are unknown. Type I IFN and MIF have each been associated with SLE pathogenesis. We investigated whether increased SLE severity in Asian patients is associated with either MIF or Type I IFN. SLE patients (n = 151) had prospective recording of disease variables. Serum MIF, and a validated composite score of three Type I IFN-inducible chemokines (IFNCK:CCL2, CXCL10, CCL19) were measured. Associations of MIF and IFNCK score with disease activity were assessed, with persistent active disease (PAD) used as a marker of high disease activity over a median 2.6 years follow up. In univariable analysis, MIF, IFNCK score and Asian ethnicity were significantly associated with PAD. Asian ethnicity was associated with higher MIF but not IFNCK score. In multivariable logistic regression analysis, MIF (OR3.62 (95% CI 1.14,11.5), p = 0.03) and Asian ethnicity (OR3.00 (95% CI 1.39,6.46), p < 0.01) but not IFNCK were significantly associated with PAD. These results potentially support an effect of MIF, but not Type I IFN, in heightened SLE disease severity in Asian SLE. The associations of MIF and Asian ethnicity with PAD are at least partly independent.
Collapse
Affiliation(s)
- K L Connelly
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - R Kandane-Rathnayake
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - A Hoi
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Mandana Nikpour
- Department of Medicine and Rheumatology, The University of Melbourne at St. Vincent's Hospital, Melbourne, Australia
| | - E F Morand
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Acceleration of tumor growth due to dysfunction in M1 macrophages and enhanced angiogenesis in an animal model of autoimmune disease. J Transl Med 2016; 96:468-80. [PMID: 26808709 DOI: 10.1038/labinvest.2015.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/04/2015] [Accepted: 12/16/2015] [Indexed: 01/15/2023] Open
Abstract
Both autoimmunity and tumor immunity are immune responses against self-tissues or cells. However, the precise similarity or difference between them remains unclear. In this study, to understand a novel mechanism of tumor immunity, we performed transplantation experiments with a murine autoimmune model, C57BL/6J (B6)/lpr mice. A melanoma cell line, B16F10 cells, or granulocyte macrophage colony-stimulating factor- overexpressing B16F10 (B16F10/mGM) cells were transplanted into B6 or B6/lpr mice. Tumor growth by transplanted B16F10/mGM cells was significantly accelerated in B6/lpr mice compared with that in B6 mice. The accumulation of M1 macrophages in the tumor tissues of B6/lpr recipient mice was significantly lower compared with that in the control mice. In vitro co-culture experiment showed that impaired differentiation into M1 macrophages was observed in B6/lpr mice. The number of tumor vessels and vascular endothelial growth factor (VEGF) expression were also significantly enhanced in the tumor tissues of B6/lpr mice compared with those in the B6 mice. Moreover, VEGF expression was correlated with the increased expression of hypoxia-inducible factor-1α in the tumor tissues of B6/lpr mice. These results suggest that dysfunctional tumor immunity and enhanced angiogenesis in autoimmunity influence tumor growth.
Collapse
|
25
|
Secondary necrotic neutrophils release interleukin-16C and macrophage migration inhibitory factor from stores in the cytosol. Cell Death Discov 2015; 1:15056. [PMID: 27551482 PMCID: PMC4979515 DOI: 10.1038/cddiscovery.2015.56] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/02/2015] [Accepted: 10/16/2015] [Indexed: 11/08/2022] Open
Abstract
Neutrophils harbor a number of preformed effector proteins that allow for immediate antimicrobial functions without the need for time-consuming de novo synthesis. Evidence indicates that neutrophils also contain preformed cytokines, including interleukin (IL)-1ra, CXCL8 and CXCL2. In the search for additional preformed cytokines, a cytokine array analysis identified IL-16 and macrophage migration inhibitory factor (MIF) as preformed cytokines in lysates from human primary neutrophils. Both IL-16 and MIF are unconventional cytokines because they lack a signal sequence. Using confocal immunofluorescence microscopy as well as western blot analysis of subcellular fractions, IL-16 and MIF were found to be stored in the cytosol rather than in the granules of human neutrophils, which implies an unconventional secretion mechanism for both cytokines. IL-16 is synthesized and stored as a precursor (pre-IL-16). We present evidence that the processing of pre-IL-16 to the biologically active IL-16C is mediated by caspase-3 and occurs during both spontaneous and UV-induced apoptosis of human neutrophils. Although IL-16 processing occurs during apoptosis, IL-16C and MIF release was observed only during secondary necrosis of neutrophils. Screening a panel of microbial substances and proinflammatory cytokines did not identify a stimulus that induced the release of IL-16C and MIF independent of secondary necrosis. The data presented here suggest that IL-16 and MIF are neutrophil-derived inflammatory mediators released under conditions of insufficient clearance of apoptotic neutrophils, as typically occurs at sites of infection and autoimmunity.
Collapse
|
26
|
Pantouris G, Syed MA, Fan C, Rajasekaran D, Cho TY, Rosenberg EM, Bucala R, Bhandari V, Lolis EJ. An Analysis of MIF Structural Features that Control Functional Activation of CD74. ACTA ACUST UNITED AC 2015; 22:1197-205. [PMID: 26364929 DOI: 10.1016/j.chembiol.2015.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/19/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
For more than 15 years, the tautomerase active site of macrophage migration inhibitory factor (MIF) and its catalytic residue Pro1 have been being targeted for the development of therapeutics that block activation of its cell surface receptor, CD74. Neither the biological role of the MIF catalytic site nor the mechanistic details of CD74 activation are well understood. The inherently unstable structure of CD74 remains the biggest obstacle in structural studies with MIF for understanding the basis of CD74 activation. Using a novel approach, we elucidate the mechanistic details that control activation of CD74 by MIF surface residues and identify structural parameters of inhibitors that reduce CD74 biological activation. We also find that N-terminal mutants located deep in the catalytic site affect surface residues immediately outside the catalytic site, which are responsible for reduction of CD74 activation.
Collapse
Affiliation(s)
- Georgios Pantouris
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mansoor Ali Syed
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Chengpeng Fan
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Deepa Rajasekaran
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Thomas Yoonsang Cho
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric M Rosenberg
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Richard Bucala
- Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Vineet Bhandari
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Elias J Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
27
|
Abstract
Australia is a geographically vast but sparsely populated country with many unique factors affecting the practice of rheumatology. With a population comprising minority Indigenous peoples, a historically European-origin majority population, and recent large-scale migration from Asia, the effect of ethnic diversity on the phenotype of rheumatic diseases such as systemic lupus erythematosus (SLE) is a constant of Australian rheumatology practice. Australia has a strong system of universal healthcare and subsidized access to medications, and clinical and research rheumatology are well developed, but inequitable access to specialist care in urban and regional centres, and the complex disconnected structure of the Australian healthcare system, can hinder the management of chronic diseases.
Collapse
|
28
|
Chen S, Yang Y, Feng H, Wang H, Zhao R, Liu H. Baicalein inhibits interleukin-1β-induced proliferation of human rheumatoid arthritis fibroblast-like synoviocytes. Inflammation 2014; 37:163-9. [PMID: 24005900 DOI: 10.1007/s10753-013-9725-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Baicalein shows anti-inflammatory effects in human rheumatoid arthritis fibroblast-like synoviocytes (RAFLS). Considering its anti-proliferatory effects on various cancer cells, we investigated the effects of baicalein on interleukin-1 beta (IL-1β)-induced proliferation of human RAFLS. Cell proliferation was examined by (3)H-thymidine incorporation assay. Western blot analysis was performed to assess the phosphorylation of extracellular regulating kinase (ERK), p38, and c-Jun N-terminal kinase, and nuclear translocation of nuclear factor kappa B (NF-κB) subunit p65. Notably, baicalein significantly suppressed IL-1β-mediated RAFLS proliferation (P < 0.05), along with reduced ERK1/2 and p38 phosphorylation. The IL-1β-induced p65 nuclear translocation and NF-κB DNA binding activity was significantly decreased by baicalein. Additionally, the inhibitory effects of baicalein on IL-1β-induced proliferation of RAFLS were dose-dependently reversed by the addition of recombinant macrophage migration inhibitory factory (MIF). Our results indicate that baicalein inhibits IL-1β-induced RAFLS proliferation, which involves suppression of NF-κB transcriptional activity and MIF-mediated signaling.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Orthopedics, The 97th Hospital of PLA, Xuzhou, 221004, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
29
|
Stijlemans B, Leng L, Brys L, Sparkes A, Vansintjan L, Caljon G, Raes G, Van Den Abbeele J, Van Ginderachter JA, Beschin A, Bucala R, De Baetselier P. MIF contributes to Trypanosoma brucei associated immunopathogenicity development. PLoS Pathog 2014; 10:e1004414. [PMID: 25255103 PMCID: PMC4177988 DOI: 10.1371/journal.ppat.1004414] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 08/21/2014] [Indexed: 12/15/2022] Open
Abstract
African trypanosomiasis is a chronic debilitating disease affecting the health and economic well-being of many people in developing countries. The pathogenicity associated with this disease involves a persistent inflammatory response, whereby M1-type myeloid cells, including Ly6Chigh inflammatory monocytes, are centrally implicated. A comparative gene analysis between trypanosusceptible and trypanotolerant animals identified MIF (macrophage migrating inhibitory factor) as an important pathogenic candidate molecule. Using MIF-deficient mice and anti-MIF antibody treated mice, we show that MIF mediates the pathogenic inflammatory immune response and increases the recruitment of inflammatory monocytes and neutrophils to contribute to liver injury in Trypanosoma brucei infected mice. Moreover, neutrophil-derived MIF contributed more significantly than monocyte-derived MIF to increased pathogenic liver TNF production and liver injury during trypanosome infection. MIF deficient animals also featured limited anemia, coinciding with increased iron bio-availability, improved erythropoiesis and reduced RBC clearance during the chronic phase of infection. Our data suggest that MIF promotes the most prominent pathological features of experimental trypanosome infections (i.e. anemia and liver injury), and prompt considering MIF as a novel target for treatment of trypanosomiasis-associated immunopathogenicity. Uncontrolled inflammation is a major contributor to pathogenicity development during many chronic parasitic infections, including African trypanosome infections. Hence, therapies should aim at re-establishing the balance between pro- and anti-inflammatory responses to reduce tissue damage. Our experiments uncovered that macrophage migration inhibitory factor (MIF) plays a pivotal role in trypanosomiasis-associated pathogenicity development. Hereby, MIF-deficient and neutralizing anti-MIF antibody-treated wild type (WT) T. brucei-infected mice exhibited decreased inflammatory responses, reduced liver damage and anemia (i.e. the most prominent pathogenicity features) compared to WT control mice. The reduced tissue damage coincided with reduced infiltration of pathogenic monocytic cells and neutrophils, whereby neutrophil-derived MIF contributed more significantly than monocyte-derived MIF to tissue damage. MIF also promoted anemia development by suppressing red blood cell production and enhancing their clearance. The clinical significance of these findings follows from human genetic data indicating that low-expression (protective) MIF alleles are enriched in Africans. The current findings therefore offer promise for human translation and open the possibility of assessing MIF levels or MIF genotype as an indication of an individual's risk for severe trypanosomiasis. Furthermore, given the unmet medical need of African trypanosomiasis affecting millions of people, these findings highlight MIF as a potential new therapeutic target for treatment of trypanosomiasis-associated pathogenicity.
Collapse
Affiliation(s)
- Benoît Stijlemans
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- * E-mail:
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lea Brys
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Amanda Sparkes
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Liese Vansintjan
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Guy Caljon
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Geert Raes
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jo A. Van Ginderachter
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Alain Beschin
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Patrick De Baetselier
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| |
Collapse
|
30
|
Macrophage migration inhibitory factor: a potential biomarker for cardiovascular disease in persons with HIV? AIDS 2014; 28:1693-4. [PMID: 25232902 DOI: 10.1097/qad.0000000000000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Valdés-Alvarado E, Muñoz-Valle JF, Valle Y, Sandoval-Pinto E, García-González IJ, Valdez-Haro A, De la Cruz-Mosso U, Flores-Salinas HE, Padilla-Gutiérrez JR. Association between the -794 (CATT)5-8 MIF gene polymorphism and susceptibility to acute coronary syndrome in a western Mexican population. J Immunol Res 2014; 2014:704854. [PMID: 25105152 PMCID: PMC4106097 DOI: 10.1155/2014/704854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 12/19/2022] Open
Abstract
The macrophage migration inhibitory factor (MIF) is related to the progression of atherosclerosis, which, in turn, is a key factor in the development of acute coronary syndrome (ACS). MIF has a CATT short tandem repeat (STR) at position -794 that might be involved in its expression rate. The aim of this study was to investigate the association between the -794 (CATT)5-8 MIF gene polymorphism and susceptibility to ACS in a western Mexican population. This research included 200 ACS patients classified according to the criteria of the American College of Cardiology (ACC) and 200 healthy subjects (HS). The -794 (CATT)5-8 MIF gene polymorphism was analyzed using a conventional polymerase chain reaction (PCR) technique. The 6 allele was the most frequent in both groups (ACS: 54% and HS: 57%). The most common genotypes in ACS patients and HS were 6/7 and 6/6, respectively, and a significant association was found between the 6/7 genotype and susceptibility to ACS (68% versus 47% in ACS and HS, resp., P = 0.03). We conclude that the 6/7 genotype of the MIF -794 (CATT)5-8 polymorphism is associated with susceptibility to ACS in a western Mexican population.
Collapse
Affiliation(s)
- Emmanuel Valdés-Alvarado
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Edificio Q, Primer Piso, Colonia Independencia, 44350 Guadalajara, JAL, Mexico
- Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Sierra Mojada 950, Colonia Independencia, 44350 Guadalajara, JAL, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Edificio Q, Primer Piso, Colonia Independencia, 44350 Guadalajara, JAL, Mexico
| | - Yeminia Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Edificio Q, Primer Piso, Colonia Independencia, 44350 Guadalajara, JAL, Mexico
| | - Elena Sandoval-Pinto
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Edificio Q, Primer Piso, Colonia Independencia, 44350 Guadalajara, JAL, Mexico
- Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Sierra Mojada 950, Colonia Independencia, 44350 Guadalajara, JAL, Mexico
| | - Ilian Janet García-González
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Edificio Q, Primer Piso, Colonia Independencia, 44350 Guadalajara, JAL, Mexico
- Doctorado en Genética Humana, Universidad de Guadalajara, Sierra Mojada 950, Colonia Independencia,
44350 Guadalajara, JAL, Mexico
| | - Angélica Valdez-Haro
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Edificio Q, Primer Piso, Colonia Independencia, 44350 Guadalajara, JAL, Mexico
- Doctorado en Genética Humana, Universidad de Guadalajara, Sierra Mojada 950, Colonia Independencia,
44350 Guadalajara, JAL, Mexico
| | - Ulises De la Cruz-Mosso
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Edificio Q, Primer Piso, Colonia Independencia, 44350 Guadalajara, JAL, Mexico
- Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Sierra Mojada 950, Colonia Independencia, 44350 Guadalajara, JAL, Mexico
| | - Héctor Enrique Flores-Salinas
- IMSS, Centro Medico Nacional de Occidente, Belisario Dominguez 1000, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
| | - Jorgé Ramón Padilla-Gutiérrez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Edificio Q, Primer Piso, Colonia Independencia, 44350 Guadalajara, JAL, Mexico
| |
Collapse
|
32
|
Nagarajan P, Tober KL, Riggenbach JA, Kusewitt DF, Lehman AM, Sielecki T, Pruitt J, Satoskar AR, Oberyszyn TM. MIF antagonist (CPSI-1306) protects against UVB-induced squamous cell carcinoma. Mol Cancer Res 2014; 12:1292-302. [PMID: 24850900 DOI: 10.1158/1541-7786.mcr-14-0255-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED Macrophage migration inhibitory factor (MIF) is a homotrimeric proinflammatory cytokine implicated in chronic inflammatory diseases and malignancies, including cutaneous squamous cell carcinomas (SCC). To determine whether MIF inhibition could reduce UVB light-induced inflammation and squamous carcinogenesis, a small-molecule MIF inhibitor (CPSI-1306) was utilized that disrupts homotrimerization. To examine the effect of CPSI-1306 on acute UVB-induced skin changes, Skh-1 hairless mice were systemically treated with CPSI-1306 for 5 days before UVB exposure. In addition to decreasing skin thickness and myeloperoxidase (MPO) activity, CPSI-1306 pretreatment increased keratinocyte apoptosis and p53 expression, decreased proliferation and phosphohistone variant H2AX (γ-H2AX), and enhanced repair of cyclobutane pyrimidine dimers. To examine the effect of CPSI-1306 on squamous carcinogenesis, mice were exposed to UVB for 10 weeks, followed by CPSI-1306 treatment for 8 weeks. CPSI-1306 dramatically decreased the density of UVB-associated p53 foci in non-tumor-bearing skin while simultaneously decreasing the epidermal Ki67 proliferation index. In addition to slowing the rate of tumor development, CPSI-1306 decreased the average tumor burden per mouse. Although CPSI-1306-treated mice developed only papillomas, nearly a third of papillomas in vehicle-treated mice progressed to microinvasive SCC. Thus, MIF inhibition is a promising strategy for prevention of the deleterious cutaneous effects of acute and chronic UVB exposure. IMPLICATIONS Macrophage migration inhibitory factor is a viable target for the prevention of UVB-induced cutaneous SSCs.
Collapse
Affiliation(s)
| | - Kathleen L Tober
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Judith A Riggenbach
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Donna F Kusewitt
- Department of Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - James Pruitt
- Cytokine PharmaSciences, King of Prussia, Pennsylvania
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tatiana M Oberyszyn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
33
|
Quax RA, Manenschijn L, Koper JW, Hazes JM, Lamberts SWJ, van Rossum EFC, Feelders RA. Glucocorticoid sensitivity in health and disease. Nat Rev Endocrinol 2013; 9:670-86. [PMID: 24080732 DOI: 10.1038/nrendo.2013.183] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids regulate many physiological processes and have an essential role in the systemic response to stress. For example, gene transcription is modulated by the glucocorticoid-glucocorticoid receptor complex via several mechanisms. The ultimate biologic responses to glucocorticoids are determined by not only the concentration of glucocorticoids but also the differences between individuals in glucocorticoid sensitivity, which is influenced by multiple factors. Differences in sensitivity to glucocorticoids in healthy individuals are partly genetically determined by functional polymorphisms of the gene that encodes the glucocorticoid receptor. Hereditary syndromes have also been identified that are associated with increased and decreased sensitivity to glucocorticoids. As a result of their anti-inflammatory properties, glucocorticoids are widely used in the treatment of allergic, inflammatory and haematological disorders. The variety in clinical responses to treatment with glucocorticoids reflects the considerable variation in glucocorticoid sensitivity between individuals. In immune-mediated disorders, proinflammatory cytokines can induce localized resistance to glucocorticoids via several mechanisms. Individual differences in how tissues respond to glucocorticoids might also be involved in the predisposition for and pathogenesis of the metabolic syndrome and mood disorders. In this Review, we summarize the mechanisms that influence glucocorticoid sensitivity in health and disease and discuss possible strategies to modulate glucocorticoid responsiveness.
Collapse
Affiliation(s)
- Rogier A Quax
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 's-Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Sun Y, Wang Y, Li JH, Zhu SH, Tang HT, Xia ZF. Macrophage migration inhibitory factor counter-regulates dexamethasone-induced annexin 1 expression and influences the release of eicosanoids in murine macrophages. Immunology 2013; 140:250-8. [PMID: 23777345 DOI: 10.1111/imm.12135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/27/2013] [Accepted: 06/06/2013] [Indexed: 02/04/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine and glucocorticoid (GC) counter-regulator, has emerged as an important modulator of inflammatory responses. However, the molecular mechanisms of MIF counter-regulation of GC still remain incomplete. In the present study, we investigated whether MIF mediated the counter-regulation of the anti-inflammatory effect of GC by affecting annexin 1 in RAW 264.7 macrophages. We found that stimulation of RAW 264.7 macrophages with lipopolysaccharide (LPS) resulted in down-regulation of annexin 1, while GC dexamethasone (Dex) or Dex plus LPS led to significant up-regulation of annexin 1 expression. RNA interference-mediated knockdown of intracellular MIF increased annexin 1 expression with or without incubation of Dex, whereas Dex-induced annexin 1 expression was counter-regulated by the exogenous application of recombinant MIF. Moreover, recombinant MIF counter-regulated, in a dose-dependent manner, inhibition of cytosolic phospholipase A2α (cPLA2α) activation and prostaglandin E2 (PGE2 ) and leukotriene B4 (LTB4 ) release by Dex in RAW 264.7 macrophages stimulated with LPS. Endogenous depletion of MIF enhanced the effects of Dex, reflected by further decease of cPLA2α expression and lower PGE2 and LTB4 release in RAW 264.7 macrophages. Based on these data, we suggest that MIF counter-regulates Dex-induced annexin 1 expression, further influencing the activation of cPLA2α and the release of eicosanoids. These findings will add new insights into the mechanisms of MIF counter-regulation of GC.
Collapse
Affiliation(s)
- Yu Sun
- Burns Institute of Chinese PLA and Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
35
|
Nich C, Takakubo Y, Pajarinen J, Ainola M, Salem A, Sillat T, Rao AJ, Raska M, Tamaki Y, Takagi M, Konttinen YT, Goodman SB, Gallo J. Macrophages-Key cells in the response to wear debris from joint replacements. J Biomed Mater Res A 2013; 101:3033-45. [PMID: 23568608 PMCID: PMC3775910 DOI: 10.1002/jbm.a.34599] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/16/2012] [Accepted: 01/12/2013] [Indexed: 12/14/2022]
Abstract
The generation of wear debris is an inevitable result of normal usage of joint replacements. Wear debris particles stimulate local and systemic biological reactions resulting in chronic inflammation, periprosthetic bone destruction, and eventually, implant loosening, and revision surgery. The latter may be indicated in up to 15% patients in the decade following the arthroplasty using conventional polyethylene. Macrophages play multiple roles in both inflammation and in maintaining tissue homeostasis. As sentinels of the innate immune system, they are central to the initiation of this inflammatory cascade, characterized by the release of proinflammatory and pro-osteoclastic factors. Similar to the response to pathogens, wear particles elicit a macrophage response, based on the unique properties of the cells belonging to this lineage, including sensing, chemotaxis, phagocytosis, and adaptive stimulation. The biological processes involved are complex, redundant, both local and systemic, and highly adaptive. Cells of the monocyte/macrophage lineage are implicated in this phenomenon, ultimately resulting in differentiation and activation of bone resorbing osteoclasts. Simultaneously, other distinct macrophage populations inhibit inflammation and protect the bone-implant interface from osteolysis. Here, the current knowledge about the physiology of monocyte/macrophage lineage cells is reviewed. In addition, the pattern and consequences of their interaction with wear debris and the recent developments in this field are presented.
Collapse
Affiliation(s)
- Christophe Nich
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California; Laboratoire de Biomécanique et Biomatériaux Ostéo-Articulaires-UMR CNRS 7052, Faculté de Médecine-Université Paris 7, Paris, France; Department of Orthopaedic Surgery, European Teaching Hospital, Assistance Publique-Hôpitaux de Paris-Université Paris 5, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Inflammatory synovial fluid microenvironment drives primary human chondrocytes to actively take part in inflammatory joint diseases. Immunol Res 2012; 52:169-75. [PMID: 21979468 DOI: 10.1007/s12026-011-8247-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The role of human chondrocytes in the pathogenesis of cartilage degradation in rheumatic joint diseases has presently gained increasing interest. An active chondrocyte participation in local inflammation may play a role in the initiation and progression of inflammatory joint diseases and in a disruption of cartilage repair mechanisms resulting in cartilage degradation. In the present study, we hypothesized that inflammatory synovial fluid triggers human chondrocytes to actively take part in inflammatory processes in rheumatic joint diseases. Primary human chondrocytes were incubated in synovial fluids gained from patients with rheumatoid arthritis, psoriasis arthritis and reactive arthritis. The detection of vital cell numbers was determined by using Casy Cell Counter System. Apoptosis was measured by Annexin-V and 7AAD staining. Cytokine and chemokine secretion was determined by a multiplex suspension array. Detection of vital cells showed a highly significant decrease in chondrocyte numbers. Flow cytometry demonstrated a significant increase in apoptotic chondrocytes after the incubation. An active secretion of cytokines such as MCP-1 and MIF by chondrocytes was observed. The inflammatory synovial fluid microenvironment mediates apoptosis and cell death of chondrocytes. Moreover, in terms of cytokine secretion, it also induces an active participation of chondrocytes in ongoing inflammation.
Collapse
|
37
|
Barnes PJ. Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol 2012; 129:48-59. [PMID: 22196524 DOI: 10.1016/j.jaci.2011.11.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022]
Abstract
Effective treatment of severe asthma is a major unmet need because patients' symptoms are not controlled on maximum treatment with inhaled therapy. Asthma symptoms can be poorly controlled because of poor adherence to controller therapy, and this might be addressed by using combination inhalers that contain a corticosteroid and long-acting β(2)-agonist as reliever therapy in addition to maintenance treatment. New bronchodilators with a longer duration of action are in development, and recent studies have demonstrated the benefit of a long-acting anticholinergic bronchodilator in addition to β(2)-agonists in patients with severe asthma. Anti-IgE therapy is beneficial in selected patients with severe asthma. Several new blockers of specific mediators, including prostaglandin D(2), IL-5, IL-9, and IL-13, are also in clinical trials and might benefit patients with subtypes of severe asthma. Several broad-spectrum anti-inflammatory therapies that target neutrophilic inflammation are in clinical development for the treatment of severe asthma, but adverse effects after oral administration might necessitate inhaled delivery. Macrolides might benefit some patients with infection by atypical bacteria, but recent results are not encouraging, although there could be an effect in patients with predominant neutrophilic asthma. Corticosteroid resistance is a major problem in patients with severe asthma, and several molecular mechanisms have been described that might lead to novel therapeutic approaches, including drugs that could reverse this resistance, such as theophylline and nortriptyline. In selected patients with severe asthma, bronchial thermoplasty might be beneficial, but thus far, clinical studies have not been encouraging. Finally, several subtypes of severe asthma are now recognized, and in the future, it will be necessary to find biomarkers that predict responses to specific forms of therapy.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom.
| |
Collapse
|
38
|
Abstract
Glucocorticoids are the most effective anti-inflammatory therapy for asthma yet are relatively ineffective in chronic obstructive pulmonary disease. Glucocorticoids suppress inflammation via several molecular mechanisms. Glucocorticoids suppress the multiple inflammatory genes that are activated in chronic inflammatory diseases, such as asthma, by reversing histone acetylation of activated inflammatory genes through binding of ligand-bound glucocorticoid receptors (GR) to co-activator molecules and recruitment of histone deacetylase-2 to the activated inflammatory gene transcription complex (trans-repression). At higher concentrations of glucocorticoids GR homodimers interact with DNA recognition sites to activate transcription through increased histone acetylation of anti-inflammatory genes and transcription of several genes linked to glucocorticoid side effects (trans-activation). Glucocorticoids also have post-transcriptional effects and decrease stability of some pro-inflammatory mRNA species. Decreased glucocorticoid responsiveness is found in patients with severe asthma and asthmatics who smoke, as well as in all patients with chronic obstructive pulmonary disease. Several molecular mechanisms of glucocorticoid resistance have now been identified which involve post-translational modifications of GR. Histone deacetylase-2 is markedly reduced in activity and expression as a result of oxidative/nitrative stress so that inflammation becomes resistant to the anti-inflammatory actions of glucocorticoids. Dissociated glucocorticoids and selective GR modulators which show improved trans-repression over trans-activation effects have been developed to reduce side effects, but so far it has been difficult to dissociate anti-inflammatory effects from adverse effects. In patients with glucocorticoid resistance alternative anti-inflammatory treatments are being investigated as well as drugs that may reverse the molecular mechanisms of glucocorticoid resistance.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart & Lung Institute, Imperial College, London, UK.
| |
Collapse
|
39
|
Santos-Oliveira JR, Regis EG, Leal CRB, Cunha RV, Bozza PT, Da-Cruz AM. Evidence that lipopolisaccharide may contribute to the cytokine storm and cellular activation in patients with visceral leishmaniasis. PLoS Negl Trop Dis 2011; 5:e1198. [PMID: 21765960 PMCID: PMC3134430 DOI: 10.1371/journal.pntd.0001198] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 04/11/2011] [Indexed: 12/11/2022] Open
Abstract
Background Visceral leishmaniasis (VL) is characterized by parasite-specific immunosuppression besides an intense pro-inflammatory response. Lipopolisaccharide (LPS) has been implicated in the immune activation of T-cell deficient diseases such as HIV/AIDS and idiopathic lymphocytopenia. The source of LPS is gram-negative bacteria that enter the circulation because of immunological mucosal barrier breakdown. As gut parasitization also occurs in VL, it was hypothesized that LPS may be elevated in leishmaniasis, contributing to cell activation. Methodology/Principal Findings Flow cytometry analysis and immunoassays (ELISA and luminex micro-beads system) were used to quantify T-cells and soluble factors. Higher LPS and soluble CD14 levels were observed in active VL in comparison to healthy subjects, indicating that LPS was bioactive; there was a positive correlation between these molecules (r = 0.61;p<0.05). Interestingly, LPS was negatively correlated with CD4+ (r = −0.71;p<0.01) and CD8+ T-cells (r = −0.65;p<0.05). Moreover, higher levels of activation-associated molecules (HLA-DR, CD38, CD25) were seen on T lymphocytes, which were positively associated with LPS levels. Pro-inflammatory cytokines and macrophage migration inhibitory factor (MIF) were also augmented in VL patients. Consistent with the higher immune activation status, LPS levels were positively correlated with the inflammatory cytokines IL-6 (r = 0.63;p<0.05), IL-8 (r = 0.89;p<0.05), and MIF (r = 0.64;p<0.05). Also, higher plasma intestinal fatty acid binding protein (IFABP) levels were observed in VL patients, which correlated with LPS levels (r = 0.57;p<0.05). Conclusions/Significance Elevated levels of LPS in VL, in correlation with T-cell activation and elevated pro-inflammatory cytokines and MIF indicate that this bacterial product may contribute to the impairment in immune effector function. The cytokine storm and chronic immune hyperactivation status may contribute to the observed T-cell depletion. LPS probably originates from microbial translocation as suggested by IFABP levels and, along with Leishmania antigen-mediated immune suppression, may play a role in the immunopathogenesis of VL. These findings point to possible benefits of antimicrobial prophylaxis in conjunction with anti-Leishmania therapy. Visceral leishmaniasis (VL) affects organs rich in lymphocytes, being characterized by intense Leishmania-induced T-cell depletion and reduction in other hematopoietic cells. In other infectious and non-infectious diseases in which the immune system is affected, such as HIV-AIDS and inflammatory bowel disease, damage to gut-associated lymphocyte tissues occurs, enabling luminal bacteria to enter into the circulation. Lipopolisaccharide (LPS) is a bacterial product that stimulates macrophages, leading to the production of pro-inflammatory cytokines and other soluble factors such as MIF, which in turn activate lymphocytes. Continuous and exaggerated stimulation causes exhaustion of the T-cell compartment, contributing to immunosuppression. Herein, we show that an increment in LPS plasma levels also occurs in VL; the higher the LPS levels, the lower the TCD4+ and TCD8+ cell count in the blood. This T-cell depletion may affect the mucosal immune system, which, along with intestinal parasitization by amastigotes, may contribute to gut barrier damage and consequent microbial translocation. LPS levels were correlated with T-cell activation, pro-inflammatory cytokine plasma levels, MIF, and IFABP, showing that a bacterial molecule, probably from luminal origin, not associated with Leishmania infection can negatively affect the immune system. These findings points to possible benefits of antimicrobial prophylaxis in conjunction with anti-Leishmania therapy.
Collapse
Affiliation(s)
- Joanna R. Santos-Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, Brazil
| | - Eduardo G. Regis
- Laboratório de Pesquisa sobre o Timo, Instituto Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, Brazil
| | - Cássia R. B. Leal
- Departamento de Medicina Veterinária, Universidade Federal do Mato Grosso do Sul (UFMS), Mato Grosso do Sul, Brazil
| | - Rivaldo V. Cunha
- Departamento de Clínica Médica (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Mato Grosso do Sul, Brazil
| | - Patrícia T. Bozza
- Laboratório de Imunofarmacologia, Plataforma Luminex, Instituto Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, Brazil
| | - Alda M. Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
40
|
Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. Proc Natl Acad Sci U S A 2011; 108:12048-53. [PMID: 21730129 DOI: 10.1073/pnas.1101089108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arthrogenic alphaviruses, such as Ross River virus (RRV), chikungunya, Sindbis, mayaro and o'nyong-nyong viruses circulate endemically worldwide, frequently causing outbreaks of polyarthritis. The exact mechanisms of how alphaviruses induce polyarthritis remain ill defined, although macrophages are known to play a key role. Macrophage migration inhibitory factor (MIF) is an important cytokine involved in rheumatoid arthritis pathogenesis. Here, we characterize the role of MIF in alphavirus-induced arthritides using a mouse model of RRV-induced arthritis, which has many characteristics of RRV disease in humans. RRV-infected WT mice developed severe disease associated with up-regulated MIF expression in serum and tissues, which corresponded to severe inflammation and tissue damage. MIF-deficient (MIF(-/-)) mice developed mild disease accompanied by a reduction in inflammatory infiltrates and muscle destruction in the tissues, despite having viral titers similar to WT mice. In addition, reconstitution of MIF into MIF(-/-) mice exacerbated RRV disease and treatment of mice with MIF antagonist ameliorated disease in WT mice. Collectively, these findings suggest that MIF plays a critical role in determining the clinical severity of alphavirus-induced musculoskeletal disease and may provide a target for the development of antiviral pharmaceuticals. The prospect being that early treatment with MIF-blocking pharmaceuticals may curtail the debilitating arthritis associated with alphaviral infections.
Collapse
|
41
|
|
42
|
Prencipe G, Auriti C, Inglese R, Devito R, Ronchetti MP, Seganti G, Ravà L, Orzalesi M, De Benedetti F. A polymorphism in the macrophage migration inhibitory factor promoter is associated with bronchopulmonary dysplasia. Pediatr Res 2011; 69:142-7. [PMID: 21045753 DOI: 10.1203/pdr.0b013e3182042496] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common adverse outcome of prematurity, causing severe morbidity and mortality. The cytokine macrophage migration inhibitory factor (MIF) has been recently shown to favor murine fetal lung development. In this prospective study, we evaluate the expression of MIF in the lung and in the serum of preterm infants (n = 50) and investigate whether the -173 G/C MIF promoter polymorphism is associated with the risk of BPD (n = 103). MIF was highly expressed in lung tissue from preterm infants. Serum MIF levels were measured by ELISA at d 1 after birth. MIF levels were increased [median (interquartile range), 71.01 (44.9-162.3) ng/mL], particularly in those infants with RDS [110.4 (59.4-239.2) ng/mL] compared with healthy adults [2.4 (1.2-5.0) ng/mL], (p < 0.001). The MIF -173*C allele, which predisposes to higher MIF production, was associated with a lower incidence of BPD (OR, 0.2; 95% CI, 0.04-0.93), independently from mechanical ventilation and oxygen exposure (p = 0.03). In conclusion, these data show that MIF expression is increased in lung and serum of preterm infants and suggest that the high producing MIF -173*C allele may be a protective factor for BPD.
Collapse
Affiliation(s)
- Giusi Prencipe
- Department of Neonatology, Bambino Gesù Children's Hospital, Roma 00165, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Das UN. Current and emerging strategies for the treatment and management of systemic lupus erythematosus based on molecular signatures of acute and chronic inflammation. J Inflamm Res 2010; 3:143-70. [PMID: 22096364 PMCID: PMC3218729 DOI: 10.2147/jir.s9425] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lupus is a chronic, systemic inflammatory condition in which eicosanoids, cytokines, nitric oxide (NO), a deranged immune system, and genetics play a significant role. Our studies revealed that an imbalance in the pro- and antioxidants and NO and an alteration in the metabolism of essential fatty acids exist in lupus. The current strategy of management includes administration of nonsteroidal anti-inflammatory drugs such as hydroxychloroquine and immunosuppressive drugs such as corticosteroids. Investigational drugs include the following: 1) belimumab, a fully human monoclonal antibody that specifically recognizes and inhibits the biological activity of B-lymphocyte stimulator, also known as B-cell-activation factor of the TNF family; 2) stem cell transplantation; 3) rituximab, a chimeric monoclonal antibody against CD20, which is primarily found on the surface of B-cells and can therefore destroy B-cells; and 4) IL-27, which has potent anti-inflammatory actions. Our studies showed that a regimen of corticosteroids and cyclophosphamide, and methods designed to enhance endothelial NO synthesis and augment antioxidant defenses, led to induction of long-lasting remission of the disease. These results suggest that methods designed to modulate molecular signatures of the disease process and suppress inflammation could be of significant benefit in lupus. Some of these strategies could be vagal nerve stimulation, glucose-insulin infusion, and administration of lipoxins, resolvins, protectins, and nitrolipids by themselves or their stable synthetic analogs that are known to suppress inflammation and help in the resolution and healing of the inflammation-induced damage. These strategies are likely to be useful not only in lupus but also in other conditions, such as rheumatoid arthritis, scleroderma, ischemia-reperfusion injury to the myocardium, ischemic heart disease, and sepsis.
Collapse
Affiliation(s)
- Undurti N Das
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India; UND Life Sciences, Shaker Heights, OH, USA
| |
Collapse
|
44
|
Thorat S, Daly TM, Bergman LW, Burns JM. Elevated levels of the Plasmodium yoelii homologue of macrophage migration inhibitory factor attenuate blood-stage malaria. Infect Immun 2010; 78:5151-62. [PMID: 20837716 PMCID: PMC2981320 DOI: 10.1128/iai.00277-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/20/2010] [Accepted: 08/31/2010] [Indexed: 01/17/2023] Open
Abstract
The excessive production of proinflammatory cytokines plays a significant role in the pathogenesis of severe malaria. Mammalian macrophage migration inhibitory factor (MIF) (mMIF) is an immune mediator that promotes a sustained proinflammatory response by inhibiting the glucocorticoid-mediated downregulation of inflammation. In addition, Plasmodium parasites also encode a homologue of mammalian MIF that is expressed in asexual-stage parasites. We used the Plasmodium yoelii murine model to study the potential role of parasite-encoded MIF in the pathogenesis of malaria. Antibodies raised against purified, non-epitope-tagged P. yoelii MIF (PyMIF) were used to localize expression in trophozoite- and schizont-stage parasites and demonstrate extracellular release. In vitro, recombinant PyMIF was shown to actively induce the chemotaxis of macrophages but did not induce or enhance tumor necrosis factor alpha (TNF-α) production from peritoneal macrophages. To examine the role of parasite-derived PyMIF in vivo, two transgenic parasite lines that constitutively overexpress PyMIF were generated, one in a nonlethal P. yoelii 17X background [Py17X-MIF(+)] and the other in a lethal P. yoelii 17XL background [Py17XL-MIF(+)]. Challenge studies with transgenic parasites in mice showed that the increased expression of PyMIF resulted in a reduction in disease severity. Mice infected with Py17X-MIF(+) developed lower peak parasitemia levels than controls, while malaria-associated anemia was unaltered. Infection with Py17XL-MIF(+) resulted in a prolonged course of infection and a reduction in the overall mortality rate. Combined, the data indicate that parasite-derived MIF does not contribute significantly to immunopathology but, through its chemotactic ability toward macrophages, may attenuate disease and prolong infection of highly virulent parasite isolates.
Collapse
Affiliation(s)
- Swati Thorat
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Thomas M. Daly
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Lawrence W. Bergman
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - James M. Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
45
|
High plasma levels of macrophage migration inhibitory factor are associated with adverse long-term outcome in patients with stable coronary artery disease and impaired glucose tolerance or type 2 diabetes mellitus. Atherosclerosis 2010; 213:573-8. [DOI: 10.1016/j.atherosclerosis.2010.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/02/2010] [Accepted: 09/06/2010] [Indexed: 11/20/2022]
|
46
|
Full LE, Monaco C. Targeting Inflammation as a Therapeutic Strategy in Accelerated Atherosclerosis in Rheumatoid Arthritis. Cardiovasc Ther 2010; 29:231-42. [DOI: 10.1111/j.1755-5922.2010.00159.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
47
|
Eder L, Chandran V, Ueng J, Bhella S, Lee KA, Rahman P, Pope A, Cook RJ, Gladman DD. Predictors of response to intra-articular steroid injection in psoriatic arthritis. Rheumatology (Oxford) 2010; 49:1367-73. [DOI: 10.1093/rheumatology/keq102] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
48
|
Sanchez-Zamora Y, Terrazas LI, Vilches-Flores A, Leal E, Juárez I, Whitacre C, Kithcart A, Pruitt J, Sielecki T, Satoskar AR, Rodriguez-Sosa M. Macrophage migration inhibitory factor is a therapeutic target in treatment of non-insulin-dependent diabetes mellitus. FASEB J 2010; 24:2583-90. [PMID: 20203087 DOI: 10.1096/fj.09-147066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in the pathogenesis of a variety of autoimmune inflammatory diseases. Here, we investigated the role of MIF in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM) using MIF(-/-) mice and a mouse model of streptozotocin (STZ)-induced NIDDM. Following single injection of STZ, MIF(+/+) BALB/c mice showed a significant increase in blood glucose levels, developed polyuria, and succumbed to disease. In contrast, no such increase in blood glucose was observed in MIF(-/-) BALB/c mice treated with STZ. These mice produced significantly less inflammatory cytokines and resistin as compared with MIF(+/+) mice and failed to develop clinical disease. Finally, oral administration of a small-molecule MIF antagonist, CPSI-1306, to outbred ICR mice following induction of NIDDM significantly lowered blood glucose levels in the majority of animals, which was also associated with a significant reduction in the levels of the proinflammatory cytokines IL-6 and TNF-alpha in the sera. Taken together, these results demonstrate that MIF is involved in the pathogenesis of NIDDM and is a therapeutic target to treat this disease.
Collapse
Affiliation(s)
- Yuriko Sanchez-Zamora
- Department of Pathology, Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mechanisms and resistance in glucocorticoid control of inflammation. J Steroid Biochem Mol Biol 2010; 120:76-85. [PMID: 20188830 DOI: 10.1016/j.jsbmb.2010.02.018] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 12/13/2022]
Abstract
Glucocorticoids are the most effective anti-inflammatory therapy for many chronic inflammatory and immune diseases, such as asthma, but are relatively ineffective in other diseases such as chronic obstructive pulmonary disease (COPD). Glucocorticoids suppress inflammation by several mechanisms. Glucocorticoids suppress the multiple inflammatory genes that are activated in chronic inflammatory diseases, such as asthma, by reversing histone acetylation of activated inflammatory genes through binding of liganded glucocorticoid receptors (GR) to coactivator molecules and recruitment of histone deacetylase-2 (HDAC2) to the activated transcription complex. At higher concentrations of glucocorticoids GR homodimers interact with DNA recognition sites to activate transcription through increased histone acetylation of anti-inflammatory genes and transcription of several genes linked to glucocorticoid side effects. Decreased glucocorticoid responsiveness is found in patients with severe asthma and asthmatics who smoke, as well as in all patients with COPD and cystic fibrosis. Several molecular mechanisms of glucocorticoid resistance have now been identified. HDAC2 is markedly reduced in activity and expression as a result of oxidative/nitrative stress so that inflammation becomes resistant to the anti-inflammatory actions of glucocorticoids. Dissociated glucocorticoids have been developed to reduce side effects but so far it has been difficult to dissociate anti-inflammatory effects from adverse effects. In patients with glucocorticoid resistance alternative anti-inflammatory treatments are being investigated as well as drugs that may reverse the molecular mechanism of glucocorticoid resistance.
Collapse
|
50
|
Wiersinga WJ, Calandra T, Kager LM, van der Windt GJW, Roger T, le Roy D, Florquin S, Peacock SJ, Sweep FCGJ, van der Poll T. Expression and function of macrophage migration inhibitory factor (MIF) in melioidosis. PLoS Negl Trop Dis 2010; 4:e605. [PMID: 20169062 PMCID: PMC2821910 DOI: 10.1371/journal.pntd.0000605] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/22/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) has emerged as a pivotal mediator of innate immunity and has been shown to be an important effector molecule in severe sepsis. Melioidosis, caused by Burkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast-Asia. We aimed to characterize the expression and function of MIF in melioidosis. METHODOLOGY AND PRINCIPAL FINDINGS MIF expression was determined in leukocytes and plasma from 34 melioidosis patients and 32 controls, and in mice infected with B. pseudomallei. MIF function was investigated in experimental murine melioidosis using anti-MIF antibodies and recombinant MIF. Patients demonstrated markedly increased MIF mRNA leukocyte and MIF plasma concentrations. Elevated MIF concentrations were associated with mortality. Mice inoculated intranasally with B. pseudomallei displayed a robust increase in pulmonary and systemic MIF expression. Anti-MIF treated mice showed lower bacterial loads in their lungs upon infection with a low inoculum. Conversely, mice treated with recombinant MIF displayed a modestly impaired clearance of B. pseudomallei. MIF exerted no direct effects on bacterial outgrowth or phagocytosis of B. pseudomallei. CONCLUSIONS MIF concentrations are markedly elevated during clinical melioidosis and correlate with patients' outcomes. In experimental melioidosis MIF impaired antibacterial defense.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Center for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|