1
|
Locher BN, Löwe P, Christen F, Damm F. Detection and Characterization of Clonal Hematopoiesis. Methods Mol Biol 2025; 2865:449-474. [PMID: 39424737 DOI: 10.1007/978-1-0716-4188-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Clonal hematopoiesis (CH) is the age-related expansion of hematopoietic stem cell clones resulting from the acquisition of somatic point mutations or mosaic chromosomal alterations (mCAs). It is linked to adverse systemic effects, including hematologic malignancies, cardiovascular diseases, metabolic disorders, as well as liver and kidney ailments, ultimately contributing to elevated overall mortality.Given its diverse biological and clinical implications, the identification of clonal hematopoiesis holds significance in various contexts. While traditionally centered on mutations associated with myeloid malignancies, stem/progenitor cell involvement has been documented for various lymphoid malignancies, including T-cell lymphoma, chronic lymphocytic leukemia (CLL), and follicular lymphoma (FL). Lymphoid CH (L-CH) involves a broader spectrum of genes and occurs at a lower prevalence, resulting in reduced mutation prevalences per gene. This characteristic poses challenges for efficient CH detection.The major strategies to identify CH are whole exome sequencing (WES), whole genome sequencing (WGS), or targeted sequencing. Targeted sequencing allows for much higher sequencing depth compared to WES and WGS because of the focus on genes known to be associated with CH and therefore allows detecting potential variants at low frequencies with high precision. Here, we describe an error-corrected targeted sequencing approach for detection of CH in bone marrow (BM) or peripheral blood (PB) samples, which we have successfully established and used in various cohorts. This protocol includes the process of DNA isolation from PB and BM samples, library preparation with molecular tags including quality control steps and computational analysis including variant filtering.
Collapse
Affiliation(s)
- Benjamin N Locher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Pelle Löwe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Friederike Christen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Frederik Damm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Xinyi Y, Vladimirovich RI, Beeraka NM, Satyavathi A, Kamble D, Nikolenko VN, Lakshmi AN, Basappa B, Reddy Y P, Fan R, Liu J. Emerging insights into epigenetics and hematopoietic stem cell trafficking in age-related hematological malignancies. Stem Cell Res Ther 2024; 15:401. [PMID: 39506818 DOI: 10.1186/s13287-024-04008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hematopoiesis within the bone marrow (BM) is a complex and tightly regulated process predominantly influenced by immune factors. Aging, diabetes, and obesity are significant contributors to BM niche damage, which can alter hematopoiesis and lead to the development of clonal hematopoiesis of intermediate potential (CHIP). Genetic/epigenetic alterations during aging could influence BM niche reorganization for hematopoiesis or clonal hematopoiesis. CHIP is driven by mutations in genes such as Tet2, Dnmt3a, Asxl1, and Jak2, which are associated with age-related hematological malignancies. OBJECTIVE This literature review aims to provide an updated exploration of the functional aspects of BM niche cells within the hematopoietic microenvironment in the context of age-related hematological malignancies. The review specifically focuses on how immunological stressors modulate different signaling pathways that impact hematopoiesis. METHODS An extensive review of recent studies was conducted, examining the roles of various BM niche cells in hematopoietic stem cell (HSC) trafficking and the development of age-related hematological malignancies. Emphasis was placed on understanding the influence of immunological stressors on these processes. RESULTS Recent findings reveal a significant microheterogeneity and temporal stochasticity of niche cells across the BM during hematopoiesis. These studies demonstrate that niche cells, including mesenchymal stem cells, osteoblasts, and endothelial cells, exhibit dynamic interactions with HSCs, significantly influenced by the BM microenvironment as the age increases. Immunosurveillance plays a crucial role in maintaining hematopoietic homeostasis, with alterations in immune signaling pathways contributing to the onset of hematological malignancies. Novel insights into the interaction between niche cells and HSCs under stress/aging conditions highlight the importance of niche plasticity and adaptability. CONCLUSION The involvement of age-induced genetic/epigenetic alterations in BM niche cells and immunological stressors in hematopoiesis is crucial for understanding the development of age-related hematological malignancies. This comprehensive review provides new insights into the complex interplay between niche cells and HSCs, emphasizing the potential for novel therapeutic approaches that target niche cell functionality and resilience to improve hematopoietic outcomes in the context of aging and metabolic disorders. NOVELTY STATEMENT This review introduces novel concepts regarding the plasticity and adaptability of BM niche cells in response to immunological stressors and epigenetics. It proposes that targeted therapeutic strategies aimed at enhancing niche cell resilience could mitigate the adverse effects of aging, diabetes, and obesity on hematopoiesis and clonal hematopoiesis. Additionally, the review suggests that understanding the precise temporal and spatial dynamics of niche-HSC interactions and epigenetics influence may lead to innovative treatments for age-related hematological malignancies.
Collapse
Affiliation(s)
- Yang Xinyi
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Reshetov Igor Vladimirovich
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Allaka Satyavathi
- Department of Chemistry, Faculty of science, Dr B R Ambedkar Open University, Wanaparthy, Telangana, 509103, India
| | - Dinisha Kamble
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Allaka Naga Lakshmi
- Department of Computer Science, St Philomena's College (Autonomous), Bangalore - Mysore Rd, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Padmanabha Reddy Y
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China.
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China
| |
Collapse
|
3
|
Park K, Jeon MC, Lee D, Kim JI, Im SW. Genetic and Epigenetic Alterations in Aging and Rejuvenation of Human. Mol Cells 2024:100137. [PMID: 39433213 DOI: 10.1016/j.mocell.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
All the information essential for life is encoded within our genome and epigenome, which orchestrates diverse cellular states spatially and temporally. In particular, the epigenome interacts with internal and external stimuli, encoding and preserving cellular experiences, and it serves as the regulatory base of the transcriptome across diverse cell types. The emergence of single-cell transcriptomic and epigenomic data collection has revealed unique omics signatures in diverse tissues, highlighting cellular heterogeneity. Recent research has documented age-related epigenetic changes at the single-cell level, alongside the validation of cellular rejuvenation through partial reprogramming, which involves simultaneous epigenetic modifications. These dynamic shifts, primarily fueled by stem cell plasticity, have catalyzed significant interest and cross-disciplinary research endeavors. This review explores the genomic and epigenomic alterations with aging, elucidating their reciprocal interactions. Additionally, it seeks to discuss the evolving landscape of rejuvenation research, with a particular emphasis on dissecting stem cell behavior through the lens of single-cell analysis. Moreover, it proposes potential research methodologies for future studies.
Collapse
Affiliation(s)
- Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dakyung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Korea.
| |
Collapse
|
4
|
Waarts MR, Mowla S, Boileau M, Benitez ARM, Sango J, Bagish M, Fernández-Maestre I, Shan Y, Eisman SE, Park YC, Wereski M, Csete I, O’Connor K, Romero-Vega AC, Miles LA, Xiao W, Wu X, Koche RP, Armstrong SA, Shih AH, Papapetrou EP, Butler JM, Cai SF, Bowman RL, Levine RL. CRISPR Dependency Screens in Primary Hematopoietic Stem Cells Identify KDM3B as a Genotype-specific Vulnerability in IDH2- and TET2-mutant Cells. Cancer Discov 2024; 14:1860-1878. [PMID: 38819218 PMCID: PMC11452290 DOI: 10.1158/2159-8290.cd-23-1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Clonal hematopoiesis (CH) is a common premalignant state in the blood and confers an increased risk of blood cancers and all-cause mortality. Identification of therapeutic targets in CH has been hindered by the lack of an ex vivo platform amenable for studying primary hematopoietic stem and progenitor cells (HSPCs). Here, we utilize an ex vivo co-culture system of HSPCs with bone marrow endothelial cells to perform CRISPR/Cas9 screens in mutant HSPCs. Our data reveal that loss of the histone demethylase family members Kdm3b and Jmjd1c specifically reduces the fitness of Idh2- and Tet2-mutant HSPCs. Kdm3b loss in mutant cells leads to decreased expression of critical cytokine receptors including Mpl, rendering mutant HSPCs preferentially susceptible to inhibition of downstream JAK2 signaling. Our study nominates an epigenetic regulator and an epigenetically regulated receptor signaling pathway as genotype-specific therapeutic targets and provides a scalable platform to identify genetic dependencies in mutant HSPCs. Significance: Given the broad prevalence, comorbidities, and risk of malignant transformation associated with CH, there is an unmet need to identify therapeutic targets. We develop an ex vivo platform to perform CRISPR/Cas9 screens in primary HSPCs. We identify KDM3B and downstream signaling components as genotype-specific dependencies in CH and myeloid malignancies. See related commentary by Khabusheva and Goodell, p. 1768.
Collapse
Affiliation(s)
- Michael R. Waarts
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Meaghan Boileau
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Junya Sango
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai
| | - Maya Bagish
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Inés Fernández-Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yufan Shan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shira E. Eisman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Young C. Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Matthew Wereski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Isabelle Csete
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Kavi O’Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Angelica C. Romero-Vega
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Linde A. Miles
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Xiaodi Wu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan H. Shih
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai
| | - Jason M. Butler
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Sheng F. Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L. Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
5
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
6
|
Waldvogel SM, Posey JE, Goodell MA. Human embryonic genetic mosaicism and its effects on development and disease. Nat Rev Genet 2024; 25:698-714. [PMID: 38605218 PMCID: PMC11408116 DOI: 10.1038/s41576-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Nearly every mammalian cell division is accompanied by a mutational event that becomes fixed in a daughter cell. When carried forward to additional cell progeny, a clone of variant cells can emerge. As a result, mammals are complex mosaics of clones that are genetically distinct from one another. Recent high-throughput sequencing studies have revealed that mosaicism is common, clone sizes often increase with age and specific variants can affect tissue function and disease development. Variants that are acquired during early embryogenesis are shared by multiple cell types and can affect numerous tissues. Within tissues, variant clones compete, which can result in their expansion or elimination. Embryonic mosaicism has clinical implications for genetic disease severity and transmission but is likely an under-recognized phenomenon. To better understand its implications for mosaic individuals, it is essential to leverage research tools that can elucidate the mechanisms by which expanded embryonic variants influence development and disease.
Collapse
Affiliation(s)
- Sarah M Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Dunn WG, McLoughlin MA, Vassiliou GS. Clonal hematopoiesis and hematological malignancy. J Clin Invest 2024; 134:e180065. [PMID: 39352393 PMCID: PMC11444162 DOI: 10.1172/jci180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.
Collapse
Affiliation(s)
- William G. Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Matthew A. McLoughlin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
8
|
Yao S, Guo R, Tian W, Zheng Y, Hu J, Han G, Yin R, Zhou F, Zhang H. Epigenetic modifications in hematopoietic ecosystem: a key tuner from homeostasis to acute myeloid leukemia. BLOOD SCIENCE 2024; 6:e00206. [PMID: 39281854 PMCID: PMC11398801 DOI: 10.1097/bs9.0000000000000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Hematopoietic stem cells (HSCs) maintain homeostasis in the hematopoietic ecosystem, which is tightly regulated at multiple layers. Acute myeloid leukemia (AML) is a severe hematologic malignancy driven by genetic and epigenetic changes that lead to the transformation of leukemia stem cells (LSCs). Since somatic mutations in DNA methylation-related genes frequently occur in AML, DNA methylation is widely altered and functions as a starting engine for initiating AML. Additionally, RNA modifications, especially N6-methyladenosine (m6A), also play an important role in the generation and maintenance of the hematopoietic ecosystem, and AML development requires reprogramming of m6A modifications to facilitate cells with hallmarks of cancer. Given the complex pathogenesis and poor prognosis of AML, it is important to fully understand its pathogenesis. Here, we mainly focus on DNA methylation and RNA m6A modification in hematopoiesis and AML and summarize recent advances in this field.
Collapse
Affiliation(s)
- Shuxin Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yanbing Zheng
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jin Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Guoqiang Han
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rong Yin
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
| | - Haojian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Hodge RA, Bach EA. Mechanisms of Germline Stem Cell Competition across Species. Life (Basel) 2024; 14:1251. [PMID: 39459551 PMCID: PMC11509876 DOI: 10.3390/life14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become "winners" that outcompete cells of lower relative fitness ("losers"). We discuss the idea of super-competitors, mutant cells that expand at the expense of wild-type cells. Work on adult stem cells (ASCs) has revealed principles of neutral competition, wherein ASCs can be stochastically lost and replaced, and of biased competition, in which a winning ASC with a competitive advantage replaces its neighbors. Germline stem cells (GSCs) are ASCs that are uniquely endowed with the ability to produce gametes and, therefore, impact the next generation. Mechanisms of GSC competition have been elucidated by studies in Drosophila gonads, tunicates, and the mammalian testis. Competition between ASCs is thought to underlie various forms of cancer, including spermatocytic tumors in the human testis. Paternal age effect (PAE) disorders are caused by de novo mutations in human GSCs that increase their competitive ability and make them more likely to be inherited, leading to skeletal and craniofacial abnormalities in offspring. Given its widespread effects on human health, it is important to study GSC competition to elucidate how cells can become winners or losers.
Collapse
Affiliation(s)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
10
|
Kawashima N, Kubota Y, Bravo-Perez C, Guarnera L, Williams ND, Durmaz A, Witt M, Ahmed A, Gurnari C, Maciejewski JP, Visconte V. Landscape of biallelic DNMT3A mutant myeloid neoplasms. J Hematol Oncol 2024; 17:87. [PMID: 39334207 PMCID: PMC11438130 DOI: 10.1186/s13045-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
DNA methyltransferase 3 A mutations (DNMT3AMT) are frequent in myeloid neoplasia (MN) and mostly heterozygous. However, cases with multiple DNMT3AMT can be also encountered but their clinical and genetic landscape remains unexplored. We retrospectively analyzed 533 cases with DNMT3AMT identified out of 5,603 consecutive MNs, of whom 8.4% had multiple DNMT3AMT hits. They were most frequent in acute myeloid leukemia (AML) with R882 variant accounting for 13.3% of the multi-hits. Multiple DNMT3AMT more likely coincided with IDH2 (P = 0.005) and ETV6 (P = 0.044) mutations compared to patients with single DNMT3AMT. When the sum of variant allele frequencies (VAFs) for multiple DNMT3AMT exceeded 60%, we found a significant positive clonal burden correlation of the two DNMT3A variants (P < 0.0001) suggesting that they occurred in biallelic configuration. AML patients with biallelic DNMT3A inactivation (n = 52) presented with older age (P = 0.029), higher leukocytes (P < 0.0001) and peripheral blast counts (P = 0.0001) and significantly poorer survival rate (5.6% vs. 47.6% at 2 years; P = 0.002) than monoallelic DNMT3AMT. Multivariate analysis identified biallelic DNMT3AMT (HR 2.65; P = 0.001), male gender (HR 2.05; P = 0.014) and adverse genetic alteration according to the European LeukemiaNet 2022 classification (HR 1.84; P = 0.028) as independent adverse factors for survival, whereas intensive chemotherapy (HR 0.47; P = 0.011) favorably influenced outcomes. Longitudinal molecular analysis of 12 cases with biallelic DNMT3AMT demonstrated that such clones persisted or expanded in 9 relapsed or transformed cases (75%) suggesting the early origin of biallelic hits with strong leukemogenic potential. Our study describes the likelihood that biallelic DNMT3AMT, while rare, are indeed compatible with clonal expansion and thus questions the applicability of synthetic lethality strategies.
Collapse
Affiliation(s)
- Naomi Kawashima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Carlos Bravo-Perez
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, University of Murcia, IMIB-Pascual Parrilla, CIBERER - Instituto de Salud Carlos III, Murcia, Spain
| | - Luca Guarnera
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nakisha D Williams
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Michaela Witt
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Arooj Ahmed
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, 9620 Carnegie Ave, Building NE6-312, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Radwan A, Eccleston J, Sabag O, Marcus H, Sussman J, Ouro A, Rahamim M, Azagury M, Azria B, Stanger BZ, Cedar H, Buganim Y. Transdifferentiation occurs without resetting development-specific DNA methylation, a key determinant of full-function cell identity. Proc Natl Acad Sci U S A 2024; 121:e2411352121. [PMID: 39292740 PMCID: PMC11441492 DOI: 10.1073/pnas.2411352121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
A number of studies have demonstrated that it is possible to directly convert one cell type to another by factor-mediated transdifferentiation, but in the vast majority of cases, the resulting reprogrammed cells are unable to maintain their new cell identity for prolonged culture times and have a phenotype only partially similar to their endogenous counterparts. To better understand this phenomenon, we developed an analytical approach for better characterizing trans-differentiation-associated changes in DNA methylation, a major determinant of long-term cell identity. By examining various models of transdifferentiation both in vitro and in vivo, our studies indicate that despite convincing expression changes, transdifferentiated cells seem unable to alter their original developmentally mandated methylation patterns. We propose that this blockage is due to basic developmental limitations built into the regulatory sequences that govern epigenetic programming of cell identity. These results shed light on the molecular rules necessary to achieve complete somatic cell reprogramming.
Collapse
Affiliation(s)
- Ahmed Radwan
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Jason Eccleston
- Department of Medicine and Cell, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Department of Development Biology, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Howard Marcus
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Jonathan Sussman
- Department of Medicine and Cell, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Department of Development Biology, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - Alberto Ouro
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Moran Rahamim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Batia Azria
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Ben Z. Stanger
- Department of Medicine and Cell, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Department of Development Biology, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| |
Collapse
|
12
|
Meng Y, Nerlov C. Epigenetic regulation of hematopoietic stem cell fate. Trends Cell Biol 2024:S0962-8924(24)00162-4. [PMID: 39271425 DOI: 10.1016/j.tcb.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Hematopoietic stem cells (HSCs) sustain blood cell production throughout the mammalian life span. However, it has become clear that at the single cell level a subset of HSCs is stably biased in their lineage output, and that such heterogeneity may play a key role in physiological processes including aging and adaptive immunity. Analysis of chromatin accessibility, DNA methylation, and histone modifications has revealed that HSCs with different lineage bias exhibit distinct epigenetic traits inscribed at poised, lineage-specific enhancers. This allows for lineage priming without initiating lineage-specific gene expression in HSCs, controlling lineage bias while preserving self-renewal and multipotency. Here, we review our current understanding of epigenetic regulation in the establishment and maintenance of HSC fate decisions under different physiological conditions.
Collapse
Affiliation(s)
- Yiran Meng
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK.
| |
Collapse
|
13
|
Iyer P, Jasdanwala SS, Bhatia K, Bhatt S. Mitochondria and Acute Leukemia: A Clinician's Perspective. Int J Mol Sci 2024; 25:9704. [PMID: 39273651 PMCID: PMC11395402 DOI: 10.3390/ijms25179704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Acute leukemia is a group of aggressive hematological malignancies, with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) being the most common types. The biology of acute leukemia involves complex genetic and epigenetic alterations that lead to uncontrolled cell proliferation and resistance to apoptosis. Mitochondrial dysfunction is a feature of acute leukemia that results in altered energy production, unregulated cell death pathways, and increased cancer cell survival. Apoptosis, particularly via the mitochondrial pathway, is crucial for cellular homeostasis and cancer prevention. In acute leukemia, disruption of apoptosis is pivotal in disease development and progression, with elevated levels of anti-apoptotic proteins conferring a survival advantage to leukemia cells and promoting resistance to conventional therapies. Targeting mitochondrial apoptosis using BH3 mimetics and anti-apoptotic protein inhibitors is a viable therapeutic strategy. Alterations in the mitochondrial membrane potential, metabolism, and dynamics also contribute to the pathogenesis of acute leukemia. Continued research is vital for developing novel therapies and enhancing survival outcomes in patients with acute leukemia while minimizing the long-term adverse effects of treatment. In this narrative review, we provide a birds-eye view of the available scientific literature on the importance of mitochondria in acute leukemia, and discuss the role of BH3 mimetics in targeting the mitochondrial internal apoptotic machinery.
Collapse
Affiliation(s)
- Prasad Iyer
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore 229899, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | | | - Karanpreet Bhatia
- Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
14
|
Kang Y, Lefebvre B, Pamies IM, Gill SI, Doucette AG, Denduluri S, Smith AM, McCurdy S, Luger S, Carver J, Scherrer-Crosbie M. Symptomatic Heart Failure and Clonal Hematopoiesis-Related Mutations in Patients With Acute Myeloid Leukemia. Am J Cardiol 2024; 226:9-17. [PMID: 38972534 PMCID: PMC11330721 DOI: 10.1016/j.amjcard.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common risk factor for hematologic malignancies and cardiovascular diseases. This study aimed to investigate the association between CHIP-related mutations and symptomatic heart failure (HF) in patients diagnosed with acute myeloid leukemia (AML). A total of 563 patients with newly diagnosed AML who underwent DNA sequencing of bone marrow before treatment were retrospectively investigated. Cox proportional hazard regression models and Fine and Gray's subdistribution hazard regression models were used to assess the association between CHIP-related mutations and symptomatic HF. A total of 79.0% patients had at least 1 CHIP-related mutation; the most frequent mutations were DNMT3A, ASXL1, and TET2. A total of 51 patients (9.1%) developed symptomatic HF. The incidence of symptomatic HF was more frequent in patients with DNMT3A mutations (p <0.01), with a 1-year cumulative incidence of symptomatic HF in patients with DNMT3A mutations of 11.4%, compared with 3.9% in patients with wild-type DNMT3A (p <0.01). After adjustment for age and anthracyclines dose, DNMT3A mutations remained independently correlated with HF (hazard ratio 2.32, 95% confidence interval 1.26 to 4.29, p = 0.01). In conclusion, in patients with AML, the presence of DNMT3A mutations was associated with a twofold increased risk for symptomatic HF, irrespective of age and anthracyclines use.
Collapse
Affiliation(s)
- Yu Kang
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benedicte Lefebvre
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ingrid Marti Pamies
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saar I Gill
- Division of Hematology and Oncology Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abigail G Doucette
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Srinivas Denduluri
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amanda M Smith
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology and Oncology Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon McCurdy
- Division of Hematology and Oncology Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Selina Luger
- Division of Hematology and Oncology Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph Carver
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marielle Scherrer-Crosbie
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
15
|
Wong TN, Mychalowych A, Feldpausch ER, Carson A, Karpova D, Link DC. The Clonal Hematopoiesis-associated Gene Srcap Plays an Essential Role in Hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607812. [PMID: 39229096 PMCID: PMC11370474 DOI: 10.1101/2024.08.16.607812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Somatic mutations arising in hematopoietic stem cells (HSCs) may provide the latter with a fitness advantage, allowing the mutant HSC to clonally expand. Such mutations have been recurrently identified in the chromatin modifier, SRCAP, in both non-malignant and leukemic clones, suggesting that this gene plays a significant role in hematopoiesis. We generated a conditional Srcap loss of function murine model and determined the consequences of hematopoietic-specific loss of this gene. We show that Srcap is essential for normal fetal liver erythropoiesis and monocytopoiesis. In Srcap deficient fetal livers, the number of phenotypic HSCs is similar to that of controls, but these HSCs exhibit a profound repopulating defect. Likewise, conditional deletion of Srcap during adult hematopoiesis results in a rapid loss of HSCs. Loss of Srcap is associated with evidence of increased DNA damage in HSCs and lineage-restricted progenitors as assessed by y-H2AX expression. Consistent with this finding, we observed strong transcriptional upregulation of the p53 pathway in Srcap deficient erythroid precursors. Collectively our data highlight the importance of Srcap in maintaining HSC function and supporting hematopoietic differentiation and suggests that it plays an essential role in maintaining genomic integrity.
Collapse
Affiliation(s)
- Terrence N. Wong
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Anna Mychalowych
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ellie R. Feldpausch
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Alexander Carson
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Darja Karpova
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel C. Link
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
16
|
Jakobsen NA, Turkalj S, Zeng AGX, Stoilova B, Metzner M, Rahmig S, Nagree MS, Shah S, Moore R, Usukhbayar B, Angulo Salazar M, Gafencu GA, Kennedy A, Newman S, Kendrick BJL, Taylor AH, Afinowi-Luitz R, Gundle R, Watkins B, Wheway K, Beazley D, Murison A, Aguilar-Navarro AG, Flores-Figueroa E, Dakin SG, Carr AJ, Nerlov C, Dick JE, Xie SZ, Vyas P. Selective advantage of mutant stem cells in human clonal hematopoiesis is associated with attenuated response to inflammation and aging. Cell Stem Cell 2024; 31:1127-1144.e17. [PMID: 38917807 PMCID: PMC11512683 DOI: 10.1016/j.stem.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSCs) acquire mutations, most frequently in the DNMT3A and TET2 genes, conferring a competitive advantage through mechanisms that remain unclear. To gain insight into how CH mutations enable gradual clonal expansion, we used single-cell multi-omics with high-fidelity genotyping on human CH bone marrow (BM) samples. Most of the selective advantage of mutant cells occurs within HSCs. DNMT3A- and TET2-mutant clones expand further in early progenitors, while TET2 mutations accelerate myeloid maturation in a dose-dependent manner. Unexpectedly, both mutant and non-mutant HSCs from CH samples are enriched for inflammatory and aging transcriptomic signatures, compared with HSCs from non-CH samples, revealing a non-cell-autonomous effect. However, DNMT3A- and TET2-mutant HSCs have an attenuated inflammatory response relative to wild-type HSCs within the same sample. Our data support a model whereby CH clones are gradually selected because they are resistant to the deleterious impact of inflammation and aging.
Collapse
Affiliation(s)
- Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Bilyana Stoilova
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Susann Rahmig
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Murtaza S Nagree
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sayyam Shah
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rachel Moore
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mirian Angulo Salazar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Grigore-Aristide Gafencu
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alison Kennedy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Simon Newman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Benjamin J L Kendrick
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Adrian H Taylor
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rasheed Afinowi-Luitz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Roger Gundle
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bridget Watkins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Kim Wheway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Debra Beazley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alicia G Aguilar-Navarro
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eugenia Flores-Figueroa
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
17
|
Huang G, Cai X, Li D. Significance of targeting DNMT3A mutations in AML. Ann Hematol 2024:10.1007/s00277-024-05885-8. [PMID: 39078434 DOI: 10.1007/s00277-024-05885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of leukemia among adults, characterized by aggressive behavior and significant genetic diversity. Despite decades of reliance on conventional chemotherapy as the mainstay treatment, patients often struggle with achieving remission, experience rapid relapses, and have limited survival prospects. While intensified induction chemotherapy and allogeneic stem cell transplantation have enhanced patient outcomes, these benefits are largely confined to younger AML patients capable of tolerating intensive treatments. DNMT3A, a crucial enzyme responsible for establishing de novo DNA methylation, plays a pivotal role in maintaining the delicate balance between hematopoietic stem cell differentiation and self-renewal, thereby influencing gene expression programs through epigenetic regulation. DNMT3A mutations are the most frequently observed genetic abnormalities in AML, predominantly in older patients, occurring in approximately 20-30% of adult AML cases and over 30% of AML with a normal karyotype. Consequently, the molecular underpinnings and potential therapeutic targets of DNMT3A mutations in AML are currently being thoroughly investigated. This article provides a comprehensive summary and the latest insights into the structure and function of DNMT3A, examines the impact of DNMT3A mutations on the progression and prognosis of AML, and explores potential therapeutic approaches for AML patients harboring DNMT3A mutations.
Collapse
Affiliation(s)
- Guiqin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoya Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Sano S, Walsh K. Can dental problems be indicative of clonal hematopoiesis? Cell Res 2024:10.1038/s41422-024-01006-2. [PMID: 39054344 DOI: 10.1038/s41422-024-01006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Affiliation(s)
- Soichi Sano
- Laboratory of Cardiovascular Mosaicism, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
19
|
Pendse S, Loeffler D. Decoding Clonal Hematopoiesis: Emerging Themes and Novel Mechanistic Insights. Cancers (Basel) 2024; 16:2634. [PMID: 39123361 PMCID: PMC11311828 DOI: 10.3390/cancers16152634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Clonal hematopoiesis (CH), the relative expansion of mutant clones, is derived from hematopoietic stem cells (HSCs) with acquired somatic or cytogenetic alterations that improve cellular fitness. Individuals with CH have a higher risk for hematological and non-hematological diseases, such as cardiovascular disease, and have an overall higher mortality rate. Originally thought to be restricted to a small fraction of elderly people, recent advances in single-cell sequencing and bioinformatics have revealed that CH with multiple expanded mutant clones is universal in the elderly population. Just a few years ago, phylogenetic reconstruction across the human lifespan and novel sensitive sequencing techniques showed that CH can start earlier in life, decades before it was thought possible. These studies also suggest that environmental factors acting through aberrant inflammation might be a common theme promoting clonal expansion and disease progression. However, numerous aspects of this phenomenon remain to be elucidated and the precise mechanisms, context-specific drivers, and pathways of clonal expansion remain to be established. Here, we review our current understanding of the cellular mechanisms driving CH and specifically focus on how pro-inflammatory factors affect normal and mutant HSC fates to promote clonal selection.
Collapse
Affiliation(s)
- Shalmali Pendse
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| | - Dirk Loeffler
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| |
Collapse
|
20
|
Levy D, Kirmani S, Huan T, Van Amburg J, Joehanes R, Uddin MM, Nguyen NQ, Yu B, Brody J, Fornage M, Bressler J, Sotoodehnia N, Ong D, Puddu F, Floyd J, Ballantyne C, Psaty B, Raffield L, Natarajan P, Conneely K, Carson A, Lange L, Ferrier K, Heard-Costa N, Murabito J, Bick A. Epigenome-wide DNA Methylation Association Study of CHIP Provides Insight into Perturbed Gene Regulation. RESEARCH SQUARE 2024:rs.3.rs-4656898. [PMID: 39070619 PMCID: PMC11276001 DOI: 10.21203/rs.3.rs-4656898/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
With age, hematopoietic stem cells can acquire somatic mutations in leukemogenic genes that confer a proliferative advantage in a phenomenon termed "clonal hematopoiesis of indeterminate potential" (CHIP). How these mutations confer a proliferative advantage and result in increased risk for numerous age-related diseases remains poorly understood. We conducted a multiracial meta-analysis of epigenome-wide association studies (EWAS) of CHIP and its subtypes in four cohorts (N=8196) to elucidate the molecular mechanisms underlying CHIP and illuminate how these changes influence cardiovascular disease risk. The EWAS findings were functionally validated using human hematopoietic stem cell (HSC) models of CHIP. A total of 9615 CpGs were associated with any CHIP, 5990 with DNMT3A CHIP, 5633 with TET2 CHIP, and 6078 with ASXL1 CHIP (P <1×10-7). CpGs associated with CHIP subtypes overlapped moderately, and the genome-wide DNA methylation directions of effect were opposite for TET2 and DNMT3A CHIP, consistent with their opposing effects on global DNA methylation. There was high directional concordance between the CpGs shared from the meta-EWAS and human edited CHIP HSCs. Expression quantitative trait methylation analysis further identified transcriptomic changes associated with CHIP-associated CpGs. Causal inference analyses revealed 261 CHIP-associated CpGs associated with cardiovascular traits and all-cause mortality (FDR adjusted p-value <0.05). Taken together, our study sheds light on the epigenetic changes impacted by CHIP and their associations with age-related disease outcomes. The novel genes and pathways linked to the epigenetic features of CHIP may serve as therapeutic targets for preventing or treating CHIP-mediated diseases.
Collapse
Affiliation(s)
- Daniel Levy
- Framingham Heart Study, Framingham, MA, 01702, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Sara Kirmani
- Framingham Heart Study, Framingham, MA, 01702, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda
| | | | - Joseph Van Amburg
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center
| | | | | | | | - Bing Yu
- University of Texas Health Science Center at Houston
| | | | - Myriam Fornage
- 1. Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center 2. Human Genetics Center, Department of Epidemiology, School of Public Health
| | - Jan Bressler
- School of Public Health, University of Texas Health Science Center at Houston
| | | | - David Ong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | | | | | | | | | - Pradeep Natarajan
- Broad Institute of Harvard and Massachusetts Institute of Technology
| | | | | | - Leslie Lange
- Division of Biomedical Informatics and Personalized Medicine
| | | | | | - Joanne Murabito
- Section of General Internal Medicine, Boston University Chobanian & Avedisian School of Medicine
| | | |
Collapse
|
21
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
22
|
Jafari PA, Bagheri R, Lavasani S, Goudarzi S. DNMT3A-R882: a mutation with many paradoxes. Ann Hematol 2024:10.1007/s00277-024-05874-x. [PMID: 38969930 DOI: 10.1007/s00277-024-05874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Understanding the underlying mechanism of acute myeloid leukemia (AML) has led to the discovery of novel biomarkers to help predict, treat and monitor leukemia. DNA (cytosine-5)-methyltransferase 3 A (DNMT3A) is considered a prognostic and therapeutic epigenetic target in AML patients with a hotspot mutation of R882. R882 mutation is associated with impaired differentiation of Hematopoietic stem cells in the bone marrow and disease progression. The prevalence of R882 mutation varied in different ethnicities and countries, and similarly, its prognostic impact differed among numerous studies. Nevertheless, the co-occurrence of mutations in R882 with NPM1 and FLT3 has been reported more frequently and is associated with a worse prognosis. These studies also suggest diverse results regarding bone marrow transplantation response as a treatment, while chemoresistance is reached as a conclusive outcome These findings highlight the crucial need for an in-depth discussion on the significance of the R882 mutation in AML patients. Understanding its impact on leukemic transformation, prognosis, and treatment is vital for advancing clinical implications.
Collapse
Affiliation(s)
| | - Ramin Bagheri
- Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | |
Collapse
|
23
|
Rogers JH, Rosen A, Reyes JM, Ketkar S, Conneely SE, Gupta R, Yang L, Miller MB, Medrano G, Aguilar R, Uchenda N, Goodell MA, Rau RE. Dose-dependent effects of Dnmt3a in an inducible murine model of Kras G12D-driven leukemia. Exp Hematol 2024; 135:104248. [PMID: 38834136 PMCID: PMC11288274 DOI: 10.1016/j.exphem.2024.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
DNMT3A mutations are frequently found in clonal hematopoiesis and a variety of hematologic malignancies, including acute myeloid leukemia. An assortment of mouse models have been engineered to explore the tumorigenic potential and malignant lineage bias due to loss of function of DNMT3A in consort with commonly comutated genes in myeloid malignancies, such as Flt3, Nras, Kras, and c-Kit. We employed several tamoxifen-inducible Cre-ERT2 murine model systems to study the effects of constitutively active KrasG12D-driven myeloid leukemia (Kras) development together with heterozygous (3aHet) or homozygous Dnmt3a deletion (3aKO). Due to the rapid generation of diverse nonhematologic tumors appearing after tamoxifen induction, we employed a transplantation model. With pretransplant tamoxifen induction, most Kras mice died quickly of T-cell malignancies regardless of Dnmt3a status. Using posttransplant induction, we observed a dose-dependent effect of DNMT3A depletion that skewed the leukemic phenotype toward a myeloid lineage. Specifically, 64% of 3aKO/Kras mice had exclusively myeloid disease compared with 36% of 3aHet/Kras and only 13% of Kras mice. Here, 3aKO combined with Kras led to increased disease burden, multiorgan infiltration, and faster disease progression. DOT1L inhibition exerted profound antileukemic effects in malignant 3aKO/Kras cells, but not malignant cells with Kras mutation alone, consistent with the known sensitivity of DNMT3A-mutant leukemia to DOT1L inhibition. RNAseq from malignant myeloid cells revealed that biallelic Dnmt3a deletion was associated with loss of cell-cycle regulation, MYC activation, and TNF⍺ signaling. Overall, we developed a robust model system for mechanistic and preclinical investigations of acute myeloid leukemia with DNMT3A and Ras-pathway lesions.
Collapse
Affiliation(s)
- Jason H Rogers
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Allison Rosen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Jaime M Reyes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Rohit Gupta
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Luibin Yang
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Matthew B Miller
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Geraldo Medrano
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Rogelio Aguilar
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Nneka Uchenda
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Margaret A Goodell
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Rachel E Rau
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pediatrics and the Ben Towne Center for Childhood Cancer Research, Seattle Children's Hospital, University of Washington, Seattle, WA..
| |
Collapse
|
24
|
Usart M, Stetka J, Luque Paz D, Hansen N, Kimmerlin Q, Almeida Fonseca T, Lock M, Kubovcakova L, Karjalainen R, Hao-Shen H, Börsch A, El Taher A, Schulz J, Leroux JC, Dirnhofer S, Skoda RC. Loss of Dnmt3a increases self-renewal and resistance to pegIFN-α in JAK2-V617F-positive myeloproliferative neoplasms. Blood 2024; 143:2490-2503. [PMID: 38493481 PMCID: PMC11208296 DOI: 10.1182/blood.2023020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Pegylated interferon alfa (pegIFN-α) can induce molecular remissions in patients with JAK2-V617F-positive myeloproliferative neoplasms (MPNs) by targeting long-term hematopoietic stem cells (LT-HSCs). Additional somatic mutations in genes regulating LT-HSC self-renewal, such as DNMT3A, have been reported to have poorer responses to pegIFN-α. We investigated whether DNMT3A loss leads to alterations in JAK2-V617F LT-HSC functions conferring resistance to pegIFN-α treatment in a mouse model of MPN and in hematopoietic progenitors from patients with MPN. Long-term treatment with pegIFN-α normalized blood parameters and reduced splenomegaly and JAK2-V617F chimerism in single-mutant JAK2-V617F (VF) mice. However, pegIFN-α in VF;Dnmt3aΔ/Δ (VF;DmΔ/Δ) mice worsened splenomegaly and failed to reduce JAK2-V617F chimerism. Furthermore, LT-HSCs from VF;DmΔ/Δ mice compared with VF were less prone to accumulate DNA damage and exit dormancy upon pegIFN-α treatment. RNA sequencing showed that IFN-α induced stronger upregulation of inflammatory pathways in LT-HSCs from VF;DmΔ/Δ than from VF mice, indicating that the resistance of VF;DmΔ/Δ LT-HSC was not due to failure in IFN-α signaling. Transplantations of bone marrow from pegIFN-α-treated VF;DmΔ/Δ mice gave rise to more aggressive disease in secondary and tertiary recipients. Liquid cultures of hematopoietic progenitors from patients with MPN with JAK2-V617F and DNMT3A mutation showed increased percentages of JAK2-V617F-positive colonies upon IFN-α exposure, whereas in patients with JAK2-V617F alone, the percentages of JAK2-V617F-positive colonies decreased or remained unchanged. PegIFN-α combined with 5-azacytidine only partially overcame resistance in VF;DmΔ/Δ mice. However, this combination strongly decreased the JAK2-mutant allele burden in mice carrying VF mutation only, showing potential to inflict substantial damage preferentially to the JAK2-mutant clone.
Collapse
Affiliation(s)
- Marc Usart
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jan Stetka
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Damien Luque Paz
- University of Angers, Nantes Université, Centre Hospitalier Universitaire Angers, INSERM, Centre National de la Recherche Scientifique, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers, Angers, France
| | - Nils Hansen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Quentin Kimmerlin
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tiago Almeida Fonseca
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Melissa Lock
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lucia Kubovcakova
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riikka Karjalainen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anastasiya Börsch
- Department of Biomedicine, Bioinformatics, University of Basel and University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Athimed El Taher
- Department of Biomedicine, Bioinformatics, University of Basel and University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jessica Schulz
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Constantinescu SN, Vainchenker W. DNMT3A gates IFN-induced MPN HSC exhaustion. Blood 2024; 143:2445-2446. [PMID: 38869916 DOI: 10.1182/blood.2024024448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Affiliation(s)
- Stefan N Constantinescu
- Université Catholique de Louvain
- Ludwig Institute of Cancer Research Laboratories
- University of Oxford
| | | |
Collapse
|
26
|
Tecik M, Adan A. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors. Curr Treat Options Oncol 2024; 25:719-751. [PMID: 38696033 PMCID: PMC11222205 DOI: 10.1007/s11864-024-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
27
|
Nayarisseri A, Bandaru S, Khan A, Sharma K, Bhrdwaj A, Kaur M, Ghosh D, Chopra I, Panicker A, Kumar A, Saravanan P, Belapurkar P, Mendonça Junior FJB, Singh SK. Epigenetic dysregulation in cancers by isocitrate dehydrogenase 2 (IDH2). ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:223-253. [PMID: 38960475 DOI: 10.1016/bs.apcsb.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Recent advances in genome-wide studies have revealed numerous epigenetic regulations brought about by genes involved in cellular metabolism. Isocitrate dehydrogenase (IDH), an essential enzyme, that converts isocitrate into -ketoglutarate (KG) predominantly in the tricarboxylic acid (TCA) cycle, has gained particular importance due to its cardinal role in the metabolic pathway in cells. IDH1, IDH2, and IDH3 are the three isomeric IDH enzymes that have been shown to regulate cellular metabolism. Of particular importance, IDH2 genes are associated with several cancers, including gliomas, oligodendroglioma, and astrocytomas. These mutations lead to the production of oncometabolite D-2-hydroxyglutarate (D-2-HG), which accumulates in cells promoting tumor growth. The enhanced levels of D-2-HG competitively inhibit α-KG dependent enzymes, inhibiting cell TCA cycle, upregulating the cell growth and survival relevant HIF-1α pathway, promoting DNA hypermethylation related epigenetic activity, all of which synergistically contribute to carcinogenesis. The present review discusses epigenetic mechanisms inIDH2 regulation in cells and further its clinical implications.
Collapse
Affiliation(s)
- Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India.
| | - Srinivas Bandaru
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Department of Biotechnology, Koneru Lakshmaiah Educational Foundation (KLEF), Green Fields, Vaddeswaram, Andhra Pradesh, India
| | - Arshiya Khan
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Manmeet Kaur
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Dipannita Ghosh
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Aravind Panicker
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Abhishek Kumar
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Department of Biosciences, Acropolis Institute, Indore, Madhya Pradesh, India
| | - Priyadevi Saravanan
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Pranoti Belapurkar
- Department of Biosciences, Acropolis Institute, Indore, Madhya Pradesh, India
| | | | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
28
|
Young AL, Davis HC, Cox MJ, Parsons TM, Burkart SC, Bender DE, Sun L, Oh ST, Challen GA. Spatial Mapping of Hematopoietic Clones in Human Bone Marrow. Blood Cancer Discov 2024; 5:153-163. [PMID: 38421682 PMCID: PMC11062237 DOI: 10.1158/2643-3230.bcd-23-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Clonal hematopoiesis (CH) is the expansion of somatically mutated cells in the hematopoietic compartment of individuals without hematopoietic dysfunction. Large CH clones (i.e., >2% variant allele fraction) predispose to hematologic malignancy, but CH is detected at lower levels in nearly all middle-aged individuals. Prior work has extensively characterized CH in peripheral blood, but the spatial distribution of hematopoietic clones in human bone marrow is largely undescribed. To understand CH at this level, we developed a method for spatially aware somatic mutation profiling and characterized the bone marrow of a patient with polycythemia vera. We identified the complex clonal distribution of somatic mutations in the hematopoietic compartment, the restriction of somatic mutations to specific subpopulations of hematopoietic cells, and spatial constraints of these clones in the bone marrow. This proof of principle paves the way to answering fundamental questions regarding CH spatial organization and factors driving CH expansion and malignant transformation in the bone marrow. SIGNIFICANCE CH occurs commonly in humans and can predispose to hematologic malignancy. Although well characterized in blood, it is poorly understood how clones are spatially distributed in the bone marrow. To answer this, we developed methods for spatially aware somatic mutation profiling to describe clonal heterogeneity in human bone marrow. See related commentary by Austin and Aifantis, p. 139.
Collapse
Affiliation(s)
- Andrew L. Young
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hannah C. Davis
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Maggie J. Cox
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Tyler M. Parsons
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Samantha C. Burkart
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Diane E. Bender
- The Bursky Center for Human Immunology and Immunotherapy Programs Immunomonitoring Laboratory, Washington University School of Medicine, St. Louis, Missouri
| | - Lulu Sun
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Stephen T. Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Grant A. Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
29
|
Chen W, Huang J, Zhao Y, Huang L, Yuan Z, Gu M, Xu X, Shi J, Luo Y, Yu J, Lai X, Liu L, Fu H, Bao C, Huang X, Zheng Z, Huang H, Hu X, Zhao Y. Measurable residual disease monitoring by ddPCR in the early posttransplant period complements the traditional MFC method to predict relapse after HSCT in AML/MDS: a multicenter retrospective study. J Transl Med 2024; 22:410. [PMID: 38689269 PMCID: PMC11061929 DOI: 10.1186/s12967-024-05114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Droplet digital PCR (ddPCR) is widely applied to monitor measurable residual disease (MRD). However, there are limited studies on the feasibility of ddPCR-MRD monitoring after allogeneic hematopoietic stem cell transplantation (allo-HSCT), especially targeting multiple molecular markers simultaneously. METHODS Our study collected samples from patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) in complete remission after allo-HSCT between January 2018 and August 2021 to evaluate whether posttransplant ddPCR-MRD monitoring can identify patients at high risk of relapse. RESULTS Of 152 patients, 58 (38.2%) were MRD positive by ddPCR within 4 months posttransplant, with a median variant allele frequency of 0.198%. The detectable DTA mutations (DNMT3A, TET2, and ASXL1 mutations) after allo-HSCT were not associated with an increased risk of relapse. After excluding DTA mutations, patients with ddPCR-MRD positivity had a significantly higher cumulative incidence of relapse (CIR, 38.7% vs. 9.7%, P < 0.001) and lower rates of relapse-free survival (RFS, 55.5% vs. 83.7%, P < 0.001) and overall survival (OS, 60.5% vs. 90.5%, P < 0.001). In multivariate analysis, ddPCR-MRD positivity of non-DTA genes was an independent adverse predictor for CIR (hazard ratio [HR], 4.02; P < 0.001), RFS (HR, 2.92; P = 0.002) and OS (HR, 3.12; P = 0.007). Moreover, the combination of ddPCR with multiparameter flow cytometry (MFC) can further accurately identify patients at high risk of relapse (F+/M+, HR, 22.44; P < 0.001, F+/M-, HR, 12.46; P < 0.001 and F-/M+, HR, 4.51; P = 0.003). CONCLUSION ddPCR-MRD is a feasible approach to predict relapse after allo-HSCT in AML/MDS patients with non-DTA genes and is more accurate when combined with MFC. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT06000306. Registered 17 August 2023 -Retrospectively registered ( https://clinicaltrials.gov/study/NCT06000306?term=NCT06000306&rank=1 ).
Collapse
Affiliation(s)
- Weihao Chen
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
| | - Jingtao Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijiner Road, Shanghai, 200025, China
- Collaborative Innovation Center of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yeqian Zhao
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Luo Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zhiyang Yuan
- Shanghai Dishuo Beken Biotechnology Co., Ltd, Shanghai, China
| | - Miner Gu
- Division of Hematology-Oncology, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Xu
- Division of Hematology-Oncology, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jimin Shi
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi Luo
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jian Yu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Huarui Fu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Chenhui Bao
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Xin Huang
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | | | - He Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Xiaoxia Hu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijiner Road, Shanghai, 200025, China.
- Collaborative Innovation Center of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yanmin Zhao
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
30
|
Alawieh D, Cysique-Foinlan L, Willekens C, Renneville A. RAS mutations in myeloid malignancies: revisiting old questions with novel insights and therapeutic perspectives. Blood Cancer J 2024; 14:72. [PMID: 38658558 PMCID: PMC11043080 DOI: 10.1038/s41408-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
NRAS and KRAS activating point mutations are present in 10-30% of myeloid malignancies and are often associated with a proliferative phenotype. RAS mutations harbor allele-specific structural and biochemical properties depending on the hotspot mutation, contributing to variable biological consequences. Given their subclonal nature in most myeloid malignancies, their clonal architecture, and patterns of cooperativity with other driver genetic alterations may potentially have a direct, causal influence on the prognosis and treatment of myeloid malignancies. RAS mutations overall tend to be associated with poor clinical outcome in both chronic and acute myeloid malignancies. Several recent prognostic scoring systems have incorporated RAS mutational status. While RAS mutations do not always act as independent prognostic factors, they significantly influence disease progression and survival. However, their clinical significance depends on the type of mutation, disease context, and treatment administered. Recent evidence also indicates that RAS mutations drive resistance to targeted therapies, particularly FLT3, IDH1/2, or JAK2 inhibitors, as well as the venetoclax-azacitidine combination. The investigation of novel therapeutic strategies and combinations that target multiple axes within the RAS pathway, encompassing both upstream and downstream components, is an active field of research. The success of direct RAS inhibitors in patients with solid tumors has brought renewed optimism that this progress will be translated to patients with hematologic malignancies. In this review, we highlight key insights on RAS mutations across myeloid malignancies from the past decade, including their prevalence and distribution, cooperative genetic events, clonal architecture and dynamics, prognostic implications, and therapeutic targeting.
Collapse
Affiliation(s)
- Dana Alawieh
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Leila Cysique-Foinlan
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France
- Department of Hematology, Gustave Roussy, Villejuif, France
| | - Christophe Willekens
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France
- Department of Hematology, Gustave Roussy, Villejuif, France
| | - Aline Renneville
- INSERM U1287, Gustave Roussy, Paris-Saclay University, Villejuif, France.
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France.
| |
Collapse
|
31
|
Teschendorff AE. On epigenetic stochasticity, entropy and cancer risk. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230054. [PMID: 38432318 PMCID: PMC10909509 DOI: 10.1098/rstb.2023.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/26/2023] [Indexed: 03/05/2024] Open
Abstract
Epigenetic changes are known to accrue in normal cells as a result of ageing and cumulative exposure to cancer risk factors. Increasing evidence points towards age-related epigenetic changes being acquired in a quasi-stochastic manner, and that they may play a causal role in cancer development. Here, I describe the quasi-stochastic nature of DNA methylation (DNAm) changes in ageing cells as well as in normal cells at risk of neoplastic transformation, discussing the implications of this stochasticity for developing cancer risk prediction strategies, and in particular, how it may require a conceptual paradigm shift in how we select cancer risk markers. I also describe the mounting evidence that a significant proportion of DNAm changes in ageing and cancer development are related to cell proliferation, reflecting tissue-turnover and the opportunity this offers for predicting cancer risk via the development of epigenetic mitotic-like clocks. Finally, I describe how age-associated DNAm changes may be causally implicated in cancer development via an irreversible suppression of tissue-specific transcription factors that increases epigenetic and transcriptomic entropy, promoting a more plastic yet aberrant cancer stem-cell state. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, People's Republic of China
| |
Collapse
|
32
|
Dregoesc MI, Tercan H, Țigu AB, Bekkering S, Joosten LAB, Netea MG, van Deuren RC, Hoischen A, Riksen NP, Iancu AC. Clonal hematopoiesis is associated with cardiovascular events in patients with stable coronary artery disease. iScience 2024; 27:109472. [PMID: 38558938 PMCID: PMC10981089 DOI: 10.1016/j.isci.2024.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Clonal hematopoiesis (CH) is a risk factor for atherosclerotic cardiovascular disease, but the impact of smaller clones and the effect on inflammatory parameters is largely unknown. Using ultrasensitive single-molecule molecular inversion probe sequencing, we evaluated the association between CH and a first major adverse cardiovascular event (MACE) in patients with angiographically documented stable coronary artery disease (CAD) and no history of acute ischemic events. CH was associated with an increased rate of MACE at four years follow-up. The size of the clone predicted MACE at an optimal cut-off value of 1.07% variant allele frequency (VAF). Mutation carriers had no change in monocytes subsets or cytokine production capacity but had higher levels of circulating tissue factor, matrilysin, and proteinase-activated receptor-1. Our study identified CH driver mutations with a VAF as small as 1.07% as a residual cardiovascular risk factor and identified potential biomarkers and therapeutic targets for patients with stable CAD.
Collapse
Affiliation(s)
- Mihaela I. Dregoesc
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Department of Cardiology –“Niculae Stăncioiu” Heart Institute, 19-21 Calea Moților, 400001 Cluj-Napoca, Romania
| | - Helin Tercan
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
| | - Adrian B. Țigu
- MEDFUTURE Research Center for Advanced Medicine, Department of Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 4-6 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Siroon Bekkering
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
| | - Leo AB. Joosten
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 4-6 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Mihai G. Netea
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Rosanne C. van Deuren
- Radboud University Medical Center, Department of Human Genetics, Geert Grooteplein Zuid 855, 6525 GA Nijmegen, the Netherlands
| | - Alexander Hoischen
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Human Genetics, Geert Grooteplein Zuid 855, 6525 GA Nijmegen, the Netherlands
- Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Niels P. Riksen
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
| | - Adrian C. Iancu
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Department of Cardiology –“Niculae Stăncioiu” Heart Institute, 19-21 Calea Moților, 400001 Cluj-Napoca, Romania
| |
Collapse
|
33
|
Longhini ALF, Fernández-Maestre I, Kennedy MC, Wereski MG, Mowla S, Xiao W, Lowe SW, Levine RL, Gardner R. Development of a customizable mouse backbone spectral flow cytometry panel to delineate immune cell populations in normal and tumor tissues. Front Immunol 2024; 15:1374943. [PMID: 38605953 PMCID: PMC11008467 DOI: 10.3389/fimmu.2024.1374943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction In vivo studies of cancer biology and assessment of therapeutic efficacy are critical to advancing cancer research and ultimately improving patient outcomes. Murine cancer models have proven to be an invaluable tool in pre-clinical studies. In this context, multi-parameter flow cytometry is a powerful method for elucidating the profile of immune cells within the tumor microenvironment and/or play a role in hematological diseases. However, designing an appropriate multi-parameter panel to comprehensively profile the increasing diversity of immune cells across different murine tissues can be extremely challenging. Methods To address this issue, we designed a panel with 13 fixed markers that define the major immune populations -referred to as the backbone panel- that can be profiled in different tissues but with the option to incorporate up to seven additional fluorochromes, including any marker specific to the study in question. Results This backbone panel maintains its resolution across different spectral flow cytometers and organs, both hematopoietic and non-hematopoietic, as well as tumors with complex immune microenvironments. Discussion Having a robust backbone that can be easily customized with pre-validated drop-in fluorochromes saves time and resources and brings consistency and standardization, making it a versatile solution for immuno-oncology researchers. In addition, the approach presented here can serve as a guide to develop similar types of customizable backbone panels for different research questions requiring high-parameter flow cytometry panels.
Collapse
Affiliation(s)
- Ana Leda F. Longhini
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, United States
| | - Inés Fernández-Maestre
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Margaret C. Kennedy
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Shoron Mowla
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Wenbin Xiao
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ross L. Levine
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, United States
| |
Collapse
|
34
|
Ling RE, Cross JW, Roy A. Aberrant stem cell and developmental programs in pediatric leukemia. Front Cell Dev Biol 2024; 12:1372899. [PMID: 38601080 PMCID: PMC11004259 DOI: 10.3389/fcell.2024.1372899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.
Collapse
Affiliation(s)
- Rebecca E. Ling
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Joe W. Cross
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
35
|
Abunimye DA, Okafor IM, Okorowo H, Obeagu EI. The role of GATA family transcriptional factors in haematological malignancies: A review. Medicine (Baltimore) 2024; 103:e37487. [PMID: 38518015 PMCID: PMC10956995 DOI: 10.1097/md.0000000000037487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/13/2024] [Indexed: 03/24/2024] Open
Abstract
GATA transcriptional factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The 3 important GATA transcription factors GATA1, GATA2 and GATA3 play essential role in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and Megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in gene encoding the GATA transcription factor or alteration in the protein expression level or their function have been linked to a variety of human haematological malignancies. This review presents a summary of recent understanding of how the disrupted biological function of GATA may contribute to hematologic diseases.
Collapse
Affiliation(s)
- Dennis Akongfe Abunimye
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | - Ifeyinwa Maryanne Okafor
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | - Henshew Okorowo
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | | |
Collapse
|
36
|
Reyes JM, Tovy A, Zhang L, Bortoletto AS, Rosas C, Chen CW, Waldvogel SM, Guzman AG, Aguilar R, Gupta S, Liu L, Buckley MT, Patel KR, Marcogliese AN, Li Y, Curry CV, Rando TA, Brunet A, Parchem RJ, Rau RE, Goodell MA. Hematologic DNMT3A reduction and high-fat diet synergize to promote weight gain and tissue inflammation. iScience 2024; 27:109122. [PMID: 38414863 PMCID: PMC10897855 DOI: 10.1016/j.isci.2024.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/11/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
During aging, blood cell production becomes dominated by a limited number of variant hematopoietic stem cell (HSC) clones. Differentiated progeny of variant HSCs are thought to mediate the detrimental effects of such clonal hematopoiesis on organismal health, but the mechanisms are poorly understood. While somatic mutations in DNA methyltransferase 3A (DNMT3A) frequently drive clonal dominance, the aging milieu also likely contributes. Here, we examined in mice the interaction between high-fat diet (HFD) and reduced DNMT3A in hematopoietic cells; strikingly, this combination led to weight gain. HFD amplified pro-inflammatory pathways and upregulated inflammation-associated genes in mutant cells along a pro-myeloid trajectory. Aberrant DNA methylation during myeloid differentiation and in response to HFD led to pro-inflammatory activation and maintenance of stemness genes. These findings suggest that reduced DNMT3A in hematopoietic cells contributes to weight gain, inflammation, and metabolic dysfunction, highlighting a role for DNMT3A loss in the development of metabolic disorders.
Collapse
Affiliation(s)
- Jaime M. Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Linda Zhang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Angelina S. Bortoletto
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Carina Rosas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sarah M. Waldvogel
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Anna G. Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rogelio Aguilar
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Sinjini Gupta
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Palo Alto, CA, USA
| | | | - Kalyani R. Patel
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Choladda V. Curry
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Thomas A. Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Palo Alto, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Palo Alto, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Palo Alto, CA, USA
| | - Ronald J. Parchem
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel E. Rau
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Margaret A. Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
37
|
Lai X, Xiao J, Wang T, Hou C, Chen J, Wu D, Xu Y. Prognostic significance of persisting DNMT3A, ASXL1, and TET2 mutation burden in acute myeloid leukemia patients with allogeneic hematopoietic stem cell transplantation during complete remission. Leuk Lymphoma 2024; 65:363-371. [PMID: 37990829 DOI: 10.1080/10428194.2023.2284089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
We retrospectively analyzed 155 AML patients with DAT mutations at diagnosis who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) at complete remission. Of the 155 AML patients with DAT mutations at diagnosis, 59 (38.1%) patients had persisting DAT mutations pretransplantation. Compared to patients with pretransplant DAT transitions, patients with persisting DAT mutation burden were shown to be older (p = 0.004), and fewer patients had TET2 mutations at diagnosis (p = 0.033). Patients with persistent DAT mutation burden had shorter overall survival (OS) (3-year OS: 59.3% vs. 83.0%, p < 0.001) and disease-free survival (DFS) (3-year DFS: 56.1% vs. 83.0%, p < 0.001) with a higher cumulative incidence of relapse (CIR) (24.6% vs. 17.4%, p = 0.002) than those with DAT transitions. Additionally, multivariate analysis confirmed that persisting DAT mutations were an independent adverse factor for relapse, OS, and DFS. Collectively, persisting DAT mutations prior to allo-HSCT at complete remission for AML correlated with negative outcomes.
Collapse
Affiliation(s)
- Xiaoxuan Lai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jinyan Xiao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tanzhen Wang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chang Hou
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jia Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
38
|
Kapadia CD, Goodell MA. Tissue mosaicism following stem cell aging: blood as an exemplar. NATURE AGING 2024; 4:295-308. [PMID: 38438628 DOI: 10.1038/s43587-024-00589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024]
Abstract
Loss of stem cell regenerative potential underlies aging of all tissues. Somatic mosaicism, the emergence of cellular patchworks within tissues, increases with age and has been observed in every organ yet examined. In the hematopoietic system, as in most tissues, stem cell aging through a variety of mechanisms occurs in lockstep with the emergence of somatic mosaicism. Here, we draw on insights from aging hematopoiesis to illustrate fundamental principles of stem cell aging and somatic mosaicism. We describe the generalizable changes intrinsic to aged stem cells and their milieu that provide the backdrop for somatic mosaicism to emerge. We discuss genetic and nongenetic mechanisms that can result in tissue somatic mosaicism and existing methodologies to detect such clonal outgrowths. Finally, we propose potential avenues to modify mosaicism during aging, with the ultimate aim of increasing tissue resiliency.
Collapse
Affiliation(s)
- Chiraag D Kapadia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
39
|
Li Y, Abel HJ, Cai M, LaValle TA, Yin T, Helton NM, Smith AM, Miller CA, Ley TJ. Rapid and accurate remethylation of DNA in Dnmt3a-deficient hematopoietic cells with restoration of DNMT3A activity. SCIENCE ADVANCES 2024; 10:eadk8598. [PMID: 38295174 PMCID: PMC10830114 DOI: 10.1126/sciadv.adk8598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
Here, we characterize the DNA methylation phenotypes of bone marrow cells from mice with hematopoietic deficiency of Dnmt3a or Dnmt3b (or both enzymes) or expressing the dominant-negative Dnmt3aR878H mutation [R882H in humans; the most common DNMT3A mutation found in acute myeloid leukemia (AML)]. Using these cells as substrates, we defined DNA remethylation after overexpressing wild-type (WT) DNMT3A1, DNMT3B1, DNMT3B3 (an inactive splice isoform of DNMT3B), or DNMT3L (a catalytically inactive "chaperone" for DNMT3A and DNMT3B in early embryogenesis). Overexpression of DNMT3A for 2 weeks reverses the hypomethylation phenotype of Dnmt3a-deficient cells or cells expressing the R878H mutation. Overexpression of DNMT3L (which is minimally expressed in AML cells) also corrects the hypomethylation phenotype of Dnmt3aR878H/+ marrow, probably by augmenting the activity of WT DNMT3A encoded by the residual WT allele. DNMT3L reactivation may represent a previously unidentified approach for restoring DNMT3A activity in hematopoietic cells with reduced DNMT3A function.
Collapse
Affiliation(s)
- Yang Li
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Haley J. Abel
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michelle Cai
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | - Tiankai Yin
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nichole M. Helton
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | |
Collapse
|
40
|
Gibson CJ, Lindsley RC, Gondek LP. Clonal hematopoiesis in the setting of hematopoietic cell transplantation. Semin Hematol 2024; 61:9-15. [PMID: 38429201 PMCID: PMC10978245 DOI: 10.1053/j.seminhematol.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 03/03/2024]
Abstract
Clonal hematopoiesis (CH) in autologous transplant recipients and allogeneic transplant donors has genetic features and clinical associations that are distinct from each other and from non-cancer populations. CH in the setting of autologous transplant is enriched for mutations in DNA damage response pathway genes and is associated with adverse outcomes, including an increased risk of therapy-related myeloid neoplasm and inferior overall survival. Studies of CH in allogeneic transplant donors have yielded conflicting results but have generally shown evidence of potentiated alloimmunity in recipients, with some studies showing an association with favorable recipient outcomes.
Collapse
Affiliation(s)
| | - R Coleman Lindsley
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Lukasz P Gondek
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
41
|
Kanagal-Shamanna R, Beck DB, Calvo KR. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. ANNUAL REVIEW OF PATHOLOGY 2024; 19:479-506. [PMID: 37832948 DOI: 10.1146/annurev-pathmechdis-051222-122724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA;
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Xu D, Yan S, Jin H, Chen C, Tang X, Wang X, Li Y, Fei F, Yang A. Integration of RRBS and RNA-seq unravels the regulatory role of DNMT3A in porcine Sertoli cell proliferation. Front Genet 2024; 14:1302351. [PMID: 38264208 PMCID: PMC10803568 DOI: 10.3389/fgene.2023.1302351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
DNMT3A participates in de novo methylation, yet its impact on the proliferation of testicular Sertoli cells remains unclear. Development-specific methylation has been proven to be associated with cellular development. Therefore, in this study, we simulated DNMT3A expression pattern during testicular development by DNMT3A interference. Then, RRBS and RNA-seq were used to decipher DNMT3A regulatory mechanisms on Sertoli cell proliferation. Immunofluorescence staining revealed the expression of DNMT3A in the Sertoli cells of the prepubertal testis. DNMT3A was demonstrated to inhibit the cell cycle and proliferation of Sertoli cells, while promoting cell apoptosis. After transfected with DNMT3A interference, a total of 560 DEGs and 2,091 DMGs produced by DNMT3A interference were identified between two treated groups, respectively. Integrating the results from RRBS and RNA-seq, the overlapping genes between DMGs and DEGs were found to be enriched in the Gene Ontology (GO) terms related to cellular development and the Apelin signaling pathway. The present study demonstrated the impact of DNMT3A on the proliferation of porcine testicular Sertoli cells, suggesting that DNMT3A primarily acts through the Apelin signaling pathway. These findings provide valuable insights into how DNMT3A influences testicular development and health, offering new perspectives.
Collapse
Affiliation(s)
- Dong Xu
- Department of Biological and Environmental Engineering, Yueyang Vocational Technical College, Yueyang, Hunan, China
| | - Saina Yan
- School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Huimin Jin
- School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chujie Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xu Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yonghong Li
- Department of Biological and Environmental Engineering, Yueyang Vocational Technical College, Yueyang, Hunan, China
| | - Fang Fei
- Department of Biological and Environmental Engineering, Yueyang Vocational Technical College, Yueyang, Hunan, China
| | - Anqi Yang
- School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
43
|
Ma Z, Sugimura R, Lui KO. The role of m6A mRNA modification in normal and malignant hematopoiesis. J Leukoc Biol 2024; 115:100-115. [PMID: 37195903 DOI: 10.1093/jleuko/qiad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
Hematopoiesis is a highly orchestrated biological process sustaining the supply of leukocytes involved in the maintenance of immunity, O2 and CO2 exchange, and wound healing throughout the lifetime of an animal, including humans. During early hematopoietic cell development, several waves of hematopoiesis require the precise regulation of hematopoietic ontogeny as well as the maintenance of hematopoietic stem and progenitor cells in the hematopoietic tissues, such as the fetal liver and bone marrow. Recently, emerging evidence has suggested the critical role of m6A messenger RNA (mRNA) modification, an epigenetic modification dynamically regulated by its effector proteins, in the generation and maintenance of hematopoietic cells during embryogenesis. In the adulthood, m6A has also been demonstrated to be involved in the functional maintenance of hematopoietic stem and progenitor cells in the bone marrow and umbilical cord blood, as well as the progression of malignant hematopoiesis. In this review, we focus on recent progress in identifying the biological functions of m6A mRNA modification, its regulators, and downstream gene targets during normal and pathological hematopoiesis. We propose that targeting m6A mRNA modification could offer novel insights into therapeutic development against abnormal and malignant hematopoietic cell development in the future.
Collapse
Affiliation(s)
- Zhangjing Ma
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Rio Sugimura
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam , Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Nanshan District, Shenzhen, China
| |
Collapse
|
44
|
Grens K, Church KM, Diehl E, Hunter SE, Tatton-Brown K, Kiernan J, Delagrammatikas CG. Epilepsy and overgrowth-intellectual disability syndromes: a patient organization perspective on collaborating to accelerate pathways to treatment. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241254123. [PMID: 38827639 PMCID: PMC11143874 DOI: 10.1177/26330040241254123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/18/2024] [Indexed: 06/04/2024]
Abstract
Overgrowth-intellectual disability (OGID) syndromes are a collection of rare genetic disorders with overlapping clinical profiles. In addition to the cardinal features of general overgrowth (height and/or head circumference at least two standard deviations above the mean) and some degree of intellectual disability, the OGID syndromes are often associated with neurological anomalies including seizures. In an effort to advance research in directions that will generate meaningful treatments for people with OGID syndromes, a new collaborative partnership called the Overgrowth Syndromes Alliance (OSA) formed in 2023. By taking a phenotype-first approach, OSA aims to unite research and patient communities traditionally siloed by genetic disorder. OSA has galvanized OGID patient organizations around shared interests and developed a research roadmap to identify and address our community's greatest unmet needs. Here, we describe the literature regarding seizures among those with overgrowth syndromes and present the OSA Research Roadmap. This patient-driven guide outlines the milestones essential to reaching the outcome of effective treatments for OGID syndromes and offers resources for reaching those milestones.
Collapse
Affiliation(s)
- Kerry Grens
- Tatton Brown Rahman Syndrome Community, Stanfordville, NY, USA
| | - Kit M. Church
- Tatton Brown Rahman Syndrome Community, Stanfordville, NY, USA
| | - Eric Diehl
- Tatton Brown Rahman Syndrome Community, Stanfordville, NY, USA
| | - Senyene E. Hunter
- Division of Pediatric Neurology, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katrina Tatton-Brown
- St George’s University Hospitals NHS Foundation Trust, London, UK
- St George’s University of London, London, UK
| | - Jill Kiernan
- Tatton Brown Rahman Syndrome Community, Stanfordville, NY, USA
| | | |
Collapse
|
45
|
Xiao M, Kondo S, Nomura M, Kato S, Nishimura K, Zang W, Zhang Y, Akashi T, Viny A, Shigehiro T, Ikawa T, Yamazaki H, Fukumoto M, Tanaka A, Hayashi Y, Koike Y, Aoyama Y, Ito H, Nishikawa H, Kitamura T, Kanai A, Yokoyama A, Fujiwara T, Goyama S, Noguchi H, Lee SC, Toyoda A, Hinohara K, Abdel-Wahab O, Inoue D. BRD9 determines the cell fate of hematopoietic stem cells by regulating chromatin state. Nat Commun 2023; 14:8372. [PMID: 38102116 PMCID: PMC10724271 DOI: 10.1038/s41467-023-44081-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
ATP-dependent chromatin remodeling SWI/SNF complexes exist in three subcomplexes: canonical BAF (cBAF), polybromo BAF (PBAF), and a newly described non-canonical BAF (ncBAF). While cBAF and PBAF regulate fates of multiple cell types, roles for ncBAF in hematopoietic stem cells (HSCs) have not been investigated. Motivated by recent discovery of disrupted expression of BRD9, an essential component of ncBAF, in multiple cancers, including clonal hematopoietic disorders, we evaluate here the role of BRD9 in normal and malignant HSCs. BRD9 loss enhances chromatin accessibility, promoting myeloid lineage skewing while impairing B cell development. BRD9 significantly colocalizes with CTCF, whose chromatin recruitment is augmented by BRD9 loss, leading to altered chromatin state and expression of myeloid-related genes within intact topologically associating domains. These data uncover ncBAF as critical for cell fate specification in HSCs via three-dimensional regulation of gene expression and illuminate roles for ncBAF in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Muran Xiao
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinji Kondo
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, National Institute of Genetics, Mishima, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Masaki Nomura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Facility for iPS Cell Therapy, CiRA Foundation, Kyoto, Japan
| | - Shinichiro Kato
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Study, Nagoya University, Nagoya, Japan
- Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yifan Zhang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Akashi
- Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Systems Biology, Center for Neurological Diseases and Cancer, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Aaron Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Tsukasa Shigehiro
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Tomokatsu Ikawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasutaka Hayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Yui Koike
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Yumi Aoyama
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Ito
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Study, Nagoya University, Nagoya, Japan
- Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Toshio Kitamura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Laboratory Diagnostics, Tohoku University Hospital, Sendai, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, National Institute of Genetics, Mishima, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Stanley C Lee
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Study, Nagoya University, Nagoya, Japan
- Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
46
|
Yan B, Yuan Q, Guryanova OA. Epigenetic Mechanisms in Hematologic Aging and Premalignant Conditions. EPIGENOMES 2023; 7:32. [PMID: 38131904 PMCID: PMC10743085 DOI: 10.3390/epigenomes7040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are essential for maintaining overall health by continuously generating blood cells throughout an individual's lifespan. However, as individuals age, the hematopoietic system undergoes significant functional decline, rendering them more susceptible to age-related diseases. Growing research evidence has highlighted the critical role of epigenetic regulation in this age-associated decline. This review aims to provide an overview of the diverse epigenetic mechanisms involved in the regulation of normal HSCs during the aging process and their implications in aging-related diseases. Understanding the intricate interplay of epigenetic mechanisms that contribute to aging-related changes in the hematopoietic system holds great potential for the development of innovative strategies to delay the aging process. In fact, interventions targeting epigenetic modifications have shown promising outcomes in alleviating aging-related phenotypes and extending lifespan in various animal models. Small molecule-based therapies and reprogramming strategies enabling epigenetic rejuvenation have emerged as effective approaches for ameliorating or even reversing aging-related conditions. By acquiring a deeper understanding of these epigenetic mechanisms, it is anticipated that interventions can be devised to prevent or mitigate the rates of hematologic aging and associated diseases later in life. Ultimately, these advancements have the potential to improve overall health and enhance the quality of life in aging individuals.
Collapse
Affiliation(s)
- Bowen Yan
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | | | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
47
|
Zhang YW, Schönberger K, Cabezas‐Wallscheid N. Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. EMBO J 2023; 42:e112348. [PMID: 38010205 PMCID: PMC10711668 DOI: 10.15252/embj.2022112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 11/29/2023] Open
Abstract
During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | | | | |
Collapse
|
48
|
Jouabadi SM, Ataabadi EA, Golshiri K, Bos D, Stricker BHC, Danser AHJ, Mattace-Raso F, Roks AJM. Clinical Impact and Mechanisms of Nonatherosclerotic Vascular Aging: The New Kid to Be Blocked. Can J Cardiol 2023; 39:1839-1858. [PMID: 37495207 DOI: 10.1016/j.cjca.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Ischemic cardiovascular disease and stroke remain the leading cause of global morbidity and mortality. During aging, protective mechanisms in the body gradually deteriorate, resulting in functional, structural, and morphologic changes that affect the vascular system. Because atherosclerotic plaques are not always present along with these alterations, we refer to this kind of vascular aging as nonatherosclerotic vascular aging (NAVA). To maintain proper vascular function during NAVA, it is important to preserve intracellular signalling, prevent inflammation, and block the development of senescent cells. Pharmacologic interventions targeting these components are potential therapeutic approaches for NAVA, with a particular emphasis on inflammation and senescence. This review provides an overview of the pathophysiology of vascular aging and explores potential pharmacotherapies that can improve the function of aged vasculature, focusing on NAVA.
Collapse
Affiliation(s)
- Soroush Mohammadi Jouabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ehsan Ataei Ataabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Keivan Golshiri
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Bruno H C Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Francesco Mattace-Raso
- Division of Geriatric Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Stelmach P, Richter S, Sauer S, Fabre MA, Gu M, Rohde C, Janssen M, Liebers N, Proynova R, Weinhold N, Raab MS, Goldschmidt H, Besenbeck B, Pavel P, Laier S, Trumpp A, Dietrich S, Vassiliou GS, Müller-Tidow C. Clonal hematopoiesis with DNMT3A and PPM1D mutations impairs regeneration in autologous stem cell transplant recipients. Haematologica 2023; 108:3308-3320. [PMID: 37381752 PMCID: PMC10690900 DOI: 10.3324/haematol.2023.282992] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Clonal hematopoiesis (CH) is an age-related condition driven by stem and progenitor cells harboring recurrent mutations linked to myeloid neoplasms. Currently, potential effects on hematopoiesis, stem cell function and regenerative potential under stress conditions are unknown. We performed targeted DNA sequencing of 457 hematopoietic stem cell grafts collected for autologous stem cell transplantation (ASCT) in myeloma patients and correlated our findings with high-dimensional longitudinal clinical and laboratory data (26,510 data points for blood cell counts/serum values in 25 days around transplantation). We detected CHrelated mutations in 152 patients (33.3%). Since many patients (n=54) harbored multiple CH mutations in one or more genes, we applied a non-negative matrix factorization (NMF) clustering algorithm to identify genes that are commonly co-mutated in an unbiased approach. Patients with CH were assigned to one of three clusters (C1-C3) and compared to patients without CH (C0) in a gene specific manner. To study the dynamics of blood cell regeneration following ASCT, we developed a time-dependent linear mixed effect model to validate differences in blood cell count trajectories amongst different clusters. The results demonstrated that C2, composed of patients with DNMT3A and PPM1D single and co-mutated CH, correlated with reduced stem cell yields and delayed platelet count recovery following ASCT. Also, the benefit of maintenance therapy was particularly strong in C2 patients. Taken together, these data indicate an impaired regenerative potential of hematopoietic stem cell grafts harboring CH with DNMT3A and PPM1D mutations.
Collapse
Affiliation(s)
- Patrick Stelmach
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM, gGmbH), Heidelberg
| | - Sarah Richter
- Department of Medicine V, Heidelberg University Hospital, Heidelberg
| | - Sandra Sauer
- Department of Medicine V, Heidelberg University Hospital, Heidelberg
| | - Margarete A Fabre
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R/D, AstraZeneca, Cambridge
| | - Muxin Gu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge
| | - Christian Rohde
- Department of Medicine V, Heidelberg University Hospital, Heidelberg
| | - Maike Janssen
- Department of Medicine V, Heidelberg University Hospital, Heidelberg
| | - Nora Liebers
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg
| | - Rumyana Proynova
- Department of Medicine V, Heidelberg University Hospital, Heidelberg
| | - Niels Weinhold
- Department of Medicine V, Heidelberg University Hospital, Heidelberg
| | - Marc S Raab
- Department of Medicine V, Heidelberg University Hospital, Heidelberg
| | | | - Birgit Besenbeck
- Department of Medicine V, Heidelberg University Hospital, Heidelberg
| | - Petra Pavel
- Stem Cell Laboratory, Institute of Clinical Transfusion Medicine and Cell Therapy Heidelberg GmbH, Heidelberg
| | - Sascha Laier
- Stem Cell Laboratory, Institute of Clinical Transfusion Medicine and Cell Therapy Heidelberg GmbH, Heidelberg
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM, gGmbH), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg
| | - Sascha Dietrich
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge
| | - Carsten Müller-Tidow
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg.
| |
Collapse
|
50
|
Beard DC, Zhang X, Wu DY, Martin JR, Erickson A, Boua JV, Hamagami N, Swift RG, McCullough KB, Ge X, Bell-Hensley A, Zheng H, Palmer CW, Fuhler NA, Lawrence AB, Hill CA, Papouin T, Noguchi KK, McAlinden A, Garbow JR, Dougherty JD, Maloney SE, Gabel HW. Distinct disease mutations in DNMT3A result in a spectrum of behavioral, epigenetic, and transcriptional deficits. Cell Rep 2023; 42:113411. [PMID: 37952155 PMCID: PMC10843706 DOI: 10.1016/j.celrep.2023.113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/06/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Phenotypic heterogeneity in monogenic neurodevelopmental disorders can arise from differential severity of variants underlying disease, but how distinct alleles drive variable disease presentation is not well understood. Here, we investigate missense mutations in DNA methyltransferase 3A (DNMT3A), a DNA methyltransferase associated with overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity. We generate a Dnmt3aP900L/+ mouse mimicking a mutation with mild to moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. P900L mutants exhibit core growth and behavioral phenotypes shared across models but show subtle epigenomic changes, while R878H mutants display extensive disruptions. We identify mutation-specific dysregulated genes that may contribute to variable disease severity. Shared transcriptomic disruption identified across mutations overlaps dysregulation observed in other developmental disorder models and likely drives common phenotypes. Together, our findings define central drivers of DNMT3A disorders and illustrate how variable epigenomic disruption contributes to phenotypic heterogeneity in neurodevelopmental disease.
Collapse
Affiliation(s)
- Diana C Beard
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiyun Zhang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jenna R Martin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alyssa Erickson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jane Valeriane Boua
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raylynn G Swift
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B McCullough
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongjun Zheng
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cory W Palmer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole A Fuhler
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Austin B Lawrence
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Cheryl A Hill
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin K Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Audrey McAlinden
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|