1
|
Gálvez-Montosa F, Peduzzi G, Sanchez-Maldonado JM, Ter Horst R, Cabrera-Serrano AJ, Gentiluomo M, Macauda A, Luque N, Ünal P, García-Verdejo FJ, Li Y, López López JA, Stein A, Bueno-de-Mesquita HB, Arcidiacono PG, Zanette DL, Kahlert C, Perri F, Soucek P, Talar-Wojnarowska R, Theodoropoulos GE, Izbicki JR, Tamás H, Van Laarhoven H, Nappo G, Petrone MC, Lovecek M, Vermeulen RCH, Adamonis K, Reyes-Zurita FJ, Holleczek B, Sumskiene J, Mohelníková-Duchoňová B, Lawlor RT, Pezzilli R, Aoki MN, Pasquali C, Petrenkiene V, Basso D, Bunduc S, Comandatore A, Brenner H, Ermini S, Vanella G, Goetz MR, Archibugi L, Lucchesi M, Uzunoglu FG, Busch O, Milanetto AC, Puzzono M, Kupcinskas J, Morelli L, Sperti C, Carrara S, Capurso G, van Eijck CHJ, Oliverius M, Roth S, Tavano F, Kaaks R, Szentesi A, Vodickova L, Luchini C, Schöttker B, Landi S, Dohan O, Tacelli M, Greenhalf W, Gazouli M, Neoptolemos JP, Cavestro GM, Boggi U, Latiano A, Hegyi P, Ginocchi L, Netea MG, Sánchez-Rovira P, Canzian F, Campa D, Sainz J. Polymorphisms within autophagy-related genes as susceptibility biomarkers for pancreatic cancer: A meta-analysis of three large European cohorts and functional characterization. Int J Cancer 2025; 156:339-352. [PMID: 39319538 DOI: 10.1002/ijc.35196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with patients having unresectable or metastatic disease at diagnosis, with poor prognosis and very short survival. Given that genetic variation within autophagy-related genes influences autophagic flux and susceptibility to solid cancers, we decided to investigate whether 55,583 single nucleotide polymorphisms (SNPs) within 234 autophagy-related genes could influence the risk of developing PDAC in three large independent cohorts of European ancestry including 12,754 PDAC cases and 324,926 controls. The meta-analysis of these populations identified, for the first time, the association of the BIDrs9604789 variant with an increased risk of developing the disease (ORMeta = 1.31, p = 9.67 × 10-6). We also confirmed the association of TP63rs1515496 and TP63rs35389543 variants with PDAC risk (OR = 0.89, p = 6.27 × 10-8 and OR = 1.16, p = 2.74 × 10-5). Although it is known that BID induces autophagy and TP63 promotes cell growth, cell motility and invasion, we also found that carriers of the TP63rs1515496G allele had increased numbers of FOXP3+ Helios+ T regulatory cells and CD45RA+ T regulatory cells (p = 7.67 × 10-4 and p = 1.56 × 10-3), but also decreased levels of CD4+ T regulatory cells (p = 7.86 × 10-4). These results were in agreement with research suggesting that the TP63rs1515496 variant alters binding sites for FOXA1 and CTCF, which are transcription factors involved in modulating specific subsets of regulatory T cells. In conclusion, this study identifies BID as new susceptibility locus for PDAC and confirms previous studies suggesting that the TP63 gene is involved in the development of PDAC. This study also suggests new pathogenic mechanisms of the TP63 locus in PDAC.
Collapse
Affiliation(s)
| | | | - José Manuel Sanchez-Maldonado
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain
- Instituto de Investigación Biosanataria Ibs.Granada, Granada, Spain
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Antonio J Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain
- Instituto de Investigación Biosanataria Ibs.Granada, Granada, Spain
| | | | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalia Luque
- Department of Medical Oncology, Complejo Hospitalario de Jaén, Jaén, Spain
| | - Pelin Ünal
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Paolo Giorgio Arcidiacono
- Pancreatico/Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Christoph Kahlert
- Department of General Surgery, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, Foggia, Italy
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - George E Theodoropoulos
- Colorectal Unit, First Department of Propaedeutic Surgery, Medical School of National and Kapodistrian University of Athens, Hippocration General Hospital, Athens, Greece
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hussein Tamás
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Hanneke Van Laarhoven
- Department of Medical Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Gennaro Nappo
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Maria Chiara Petrone
- Pancreatico/Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Martin Lovecek
- Department of Surgery I, University Hospital Olomouc, Olomouc, Czech Republic
| | | | - Kestutis Adamonis
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Bernd Holleczek
- Saarland Cancer Registry, Saarbrücken, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jolanta Sumskiene
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Rita T Lawlor
- ARC-Net Centre for Applied Research on Cancer University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Mateus Nobrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | | | - Vitalija Petrenkiene
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Daniela Basso
- Department of DIMED, Laboratory Medicine, University of Padova, Padova, Italy
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
| | - Annalisa Comandatore
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Giuseppe Vanella
- Digestive and Liver Disease Unit, S Andrea Hospital, Rome, Italy
- Pancreas Translational and Clinical Research Center, Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Mara R Goetz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Livia Archibugi
- Digestive and Liver Disease Unit, S Andrea Hospital, Rome, Italy
- Pancreas Translational and Clinical Research Center, Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Maurizio Lucchesi
- Oncologia Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Faik Guntac Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olivier Busch
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Marta Puzzono
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Juozas Kupcinskas
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Cosimo Sperti
- Department of DISCOG, University of Padova, Padova, Italy
| | - Silvia Carrara
- Department of Gastroenterology, IRCCS Humanitas Research Hospital - Endoscopic Unit, Milan, Italy
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, S Andrea Hospital, Rome, Italy
- Pancreas Translational and Clinical Research Center, Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Susanne Roth
- Department of General Surgery, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, Foggia, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Claudio Luchini
- ARC-Net Centre for Applied Research on Cancer University of Verona, Verona, Italy
- Department of Engineering for Innovation in Medicine, University of Verona, Verona, Italy
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Orsolya Dohan
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Matteo Tacelli
- Pancreatico/Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - William Greenhalf
- Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - John P Neoptolemos
- Department of General Surgery, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ugo Boggi
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Anna Latiano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, Foggia, Italy
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Laura Ginocchi
- Oncologia Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Mihai G Netea
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | | | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, Granada, Spain
- Instituto de Investigación Biosanataria Ibs.Granada, Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| |
Collapse
|
2
|
Tu R, Zhong D, Li P, Li Y, Chen Z, Hu F, Yuan G, Chen Z, Yu S, Song J. Assessment of LINC-PINT genetic polymorphisms and esophageal squamous cell carcinoma risk in the Hainan Han population. Ann Med 2024; 56:2397569. [PMID: 39221756 PMCID: PMC11370687 DOI: 10.1080/07853890.2024.2397569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high incidence and mortality rates worldwide. This study aimed to investigate the correlation between LINC-PINT polymorphisms and ESCC risk in the Hainan Han population. METHODS A total of 391 patients with ESCC and 452 healthy controls were enrolled to evaluate the effect of LINC-PINT SNPs (single nucleotide polymorphisms) on ESCC susceptibility. Associations were evaluated by calculating odds ratios (OR) and 95% confidence intervals (CIs). Multifactor dimensionality reduction analysis was performed to explore the association between SNP-SNP interactions and ESCC susceptibility. We further determined the correlation between clinical indicators and SNP in patients with ESCC. RESULTS Our study showed that rs157916 (OR 0.63, p = 0.011) and rs157928 (OR 0.80, p = 0.021) were associated with a decreased risk of ESCC. Stratified analysis indicated that rs157916 could decrease the risk of ESCC in people aged >64 years, in males, and non-drinkers (OR 0.58, p = 0.042; OR 0.58, p = 0.010; OR 0.62, p = 0.025, respectively). Rs16873842 was related to a decreased risk of ESCC in males (OR 0.70, p = 0.015). Rs7801029 was associated with ESCC risk in females (OR 0.39, p = 0.033) and non-drinkers (OR 0.68, p = 0.040). Rs7781295 decreased the ESCC risk in smokers (OR 0.58, p = 0.046) and drinkers (OR 0.58, p = 0.046). In addition, rs157928 played a protective role in ESCC risk in females (OR 0.39, p = 0.033) and non-smokers (OR 0.32, p = 0.006). Additionally, the best predictive model for ESCC was a combination of rs157916, rs16873842, rs7801029, rs7781295, rs28662387, and rs157928. CONCLUSION Our study revealed that LINC-PINT polymorphisms were associated with ESCC risk.
Collapse
Affiliation(s)
- Ruisha Tu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Dunjing Zhong
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Ping Li
- Department of Digestive Endoscopy Center, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Yongyu Li
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Zhuang Chen
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Feixiang Hu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Guihong Yuan
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Zhaowei Chen
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Shuyong Yu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Jian Song
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Jafari SH, Lajevardi ZS, Zamani Fard MM, Jafari A, Naghavi S, Ravaei F, Taghavi SP, Mosadeghi K, Zarepour F, Mahjoubin-Tehran M, Rahimian N, Mirzaei H. Imaging Techniques and Biochemical Biomarkers: New Insights into Diagnosis of Pancreatic Cancer. Cell Biochem Biophys 2024; 82:3123-3144. [PMID: 39026059 DOI: 10.1007/s12013-024-01437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Pancreatic cancer (PaC) incidence is increasing, but our current screening and diagnostic strategies are not very effective. However, screening could be helpful in the case of PaC, as recent evidence shows that the disease progresses gradually. Unfortunately, there is no ideal screening method or program for detecting PaC in its early stages. Conventional imaging techniques, such as abdominal ultrasound, CT, MRI, and EUS, have not been successful in detecting early-stage PaC. On the other hand, biomarkers may be a more effective screening tool for PaC and have greater potential for further evaluation compared to imaging. Recent studies on biomarkers and artificial intelligence (AI)-enhanced imaging have shown promising results in the early diagnosis of PaC. In addition to proteins, non-coding RNAs are also being studied as potential biomarkers for PaC. This review consolidates the current literature on PaC screening modalities to provide an organized framework for future studies. While conventional imaging techniques have not been effective in detecting early-stage PaC, biomarkers and AI-enhanced imaging are promising avenues of research. Further studies on the use of biomarkers, particularly non-coding RNAs, in combination with imaging modalities may improve the accuracy of PaC screening and lead to earlier detection of this deadly disease.
Collapse
Affiliation(s)
- Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sadat Lajevardi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroush Naghavi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Kimia Mosadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Daniel N, Farinella R, Chatziioannou AC, Jenab M, Mayén AL, Rizzato C, Belluomini F, Canzian F, Tavanti A, Keski-Rahkonen P, Hughes DJ, Campa D. Genetically predicted gut bacteria, circulating bacteria-associated metabolites and pancreatic ductal adenocarcinoma: a Mendelian randomisation study. Sci Rep 2024; 14:25144. [PMID: 39448785 PMCID: PMC11502931 DOI: 10.1038/s41598-024-77431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has high mortality and rising incidence rates. Recent data indicate that the gut microbiome and associated metabolites may play a role in the development of PDAC. To complement and inform observational studies, we investigated associations of genetically predicted abundances of individual gut bacteria and genetically predicted circulating concentrations of microbiome-associated metabolites with PDAC using Mendelian randomisation (MR). Gut microbiome-associated metabolites were identified through a comprehensive search of Pubmed, Exposome Explorer and Human Metabolome Database. Single Nucleotide Polymorphisms (SNPs) associated by Genome-Wide Association Studies (GWAS) with circulating levels of 109 of these metabolites were collated from Pubmed and the GWAS catalogue. SNPs for 119 taxonomically defined gut genera were selected from a meta-analysis performed by the MiBioGen consortium. Two-sample MR was conducted using GWAS summary statistics from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4), including a total of 8,769 cases and 7,055 controls. Inverse variance-weighted MR analyses were performed along with sensitivity analyses to assess potential violations of MR assumptions. Nominally significant associations were noted for genetically predicted circulating concentrations of mannitol (odds ratio per standard deviation [ORSD] = 0.97; 95% confidence interval [CI]: 0.95-0.99, p = 0.006), methionine (ORSD= 0.97; 95%CI: 0.94-1.00, p = 0.031), stearic acid (ORSD= 0.93; 95%CI: 0.87-0.99, p = 0.027), carnitine = (ORSD=1.01; 95% CI: 1.00-1.03, p = 0.027), hippuric acid (ORSD= 1.02; 95%CI: 1.00-1.04, p = 0.038) and 3-methylhistidine (ORSD= 1.05; 95%CI: 1.01-1.10, p = 0.02). Two gut microbiome genera were associated with reduced PDAC risk; Clostridium sensu stricto 1 (OR: 0.88; 95%CI: 0.78-0.99, p = 0.027) and Romboutsia (OR: 0.87; 95%CI: 0.80-0.96, p = 0.004). These results, though based only on genetically predicted gut microbiome characteristics and circulating bacteria-related metabolite concentrations, provide evidence for causal associations with pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Corradi C, Lencioni G, Felici A, Rizzato C, Gentiluomo M, Ermini S, Archibugi L, Mickevicius A, Lucchesi M, Malecka-Wojciesko E, Basso D, Arcidiacono PG, Petrone MC, Carrara S, Götz M, Bunduc S, Holleczek B, Aoki MN, Uzunoglu FG, Zanette DL, Mambrini A, Jamroziak K, Oliverius M, Lovecek M, Cavestro GM, Milanetto AC, Peduzzi G, Duchonova BM, Izbicki JR, Zalinkevicius R, Hlavac V, van Eijck CHJ, Brenner H, Vanella G, Vokacova K, Soucek P, Tavano F, Perri F, Capurso G, Hussein T, Kiudelis M, Kupcinskas J, Busch OR, Morelli L, Theodoropoulos GE, Testoni SGG, Adamonis K, Neoptolemos JP, Gazouli M, Pasquali C, Kormos Z, Skalicky P, Pezzilli R, Sperti C, Kauffmann E, Büchler MW, Schöttker B, Hegyi P, Capretti G, Lawlor RT, Canzian F, Campa D. Potential association between PSCA rs2976395 functional variant and pancreatic cancer risk. Int J Cancer 2024; 155:1432-1442. [PMID: 38924078 DOI: 10.1002/ijc.35046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 06/28/2024]
Abstract
Correlated regions of systemic interindividual variation (CoRSIV) represent a small proportion of the human genome showing DNA methylation patterns that are the same in all human tissues, are different among individuals, and are partially regulated by genetic variants in cis. In this study we aimed at investigating single-nucleotide polymorphisms (SNPs) within CoRSIVs and their involvement with pancreatic ductal adenocarcinoma (PDAC) risk. We analyzed 29,099 CoRSIV-SNPs and 133,615 CoRSIV-mQTLs in 14,394 cases and 247,022 controls of European and Asian descent. We observed that the A allele of the rs2976395 SNP was associated with increased PDAC risk in Europeans (p = 2.81 × 10-5). This SNP lies in the prostate stem cell antigen gene and is in perfect linkage disequilibrium with a variant (rs2294008) that has been reported to be associated with risk of many other cancer types. The A allele is associated with the DNA methylation level of the gene according to the PanCan-meQTL database and with overexpression according to QTLbase. The expression of the gene has been observed to be deregulated in many tumors of the gastrointestinal tract including pancreatic cancer; however, functional studies are needed to elucidate the function relevance of the association.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefano Ermini
- Blood Transfusion Service, Azienda Ospedaliera-Universitaria Meyer, Children's Hospital, Florence, Italy
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
| | - Antanas Mickevicius
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Maurizio Lucchesi
- Oncology of Massa Carrara, Oncological Department, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | | | - Daniela Basso
- Laboratory Medicine, Department DIMED, University of Padova, Padua, Italy
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Petrone
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Carrara
- Endoscoopic Unit, Gastroenterology Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mara Götz
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stefania Bunduc
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Parana, Brazil
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Dalila Lucíola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Parana, Brazil
| | - Andrea Mambrini
- Oncology of Massa Carrara, Oncological Department, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Rimantas Zalinkevicius
- Clinics of Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Viktor Hlavac
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giuseppe Vanella
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
| | - Klara Vokacova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Soucek
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
| | - Tamás Hussein
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Mindaugas Kiudelis
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Gastroenterology Department, Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Olivier R Busch
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Luca Morelli
- General Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - George E Theodoropoulos
- First Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sabrina Gloria Giulia Testoni
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Kestutis Adamonis
- Gastroenterology Department, Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - John P Neoptolemos
- First Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Zita Kormos
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | | | - Cosimo Sperti
- Department of DiSCOG, University of Padova, Padua, Italy
| | - Emanuele Kauffmann
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Markus W Büchler
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Giovanni Capretti
- Pancreatic Surgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Rozzano, Milan, Italy
| | - Rita T Lawlor
- ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Al-Qahtani A, Al-Ali A, John B, Kapila K, Al-Temaimi R. Analysis of Pancreatic Cancer Genetic Risk Factors in a Multi-Ethnic Population Sample. World J Oncol 2024; 15:792-800. [PMID: 39328336 PMCID: PMC11424118 DOI: 10.14740/wjon1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 09/28/2024] Open
Abstract
Background Pancreatic cancer (PC) has one of the highest mortality to incidence ratio of all cancers. Early identification of at-risk individuals should permit early diagnosis. Genome-wide association studies showed the association of several genetic variants with PC risk in multi-ethnic populations. Our objective was to examine the association of these genetic variants with PC in a population sample from Kuwait. Methods DNA samples from 103 pancreatic ductal adenocarcinoma (PDAC) specimens and 132 healthy controls were used for genotyping ABO rs505922, BCAR1 rs7190458, LINC-PINT rs6971499, HNF1B rs4795218, VDR rs2228570 rs731236, and PRSS1 rs111033565 rs111033568 rs387906698 and rs267606982 using TaqMan genotyping assays, and VDR expression was performed by immunocytochemistry. Results ABO rs505922C and VDR rs2228570A were associated with PDAC risk (odds ratio (OR): 1.55, 95% confidence interval (CI): 1.07 - 2.24, P = 0.027; OR: 1.64, 95% CI: 1.09 - 2.48, P = 0.024; respectively). An unweighted polygenic risk score (ABO rs505922, BCAR1 rs7190458, LINC-PINT rs6971499, and HNF1B rs4795218) was significantly associated with PDAC risk (β: -0.11, 95% CI: -0.15 to -0.05, P < 0.001). VDR expression was downregulated or absent in most PDAC specimens regardless of VDR haplotype. Conclusion ABO rs505922C and VDR rs2228570A are PDAC genetic risk factors in our population. Ethnicity influences the association of reported genetic PDAC risk factors and should be adjusted for when performing PDAC genetic risk estimations. Investigation of these genetic risk factors in other ethnic populations is a necessity to evaluate their PDAC risk prediction potential.
Collapse
Affiliation(s)
- Abdullah Al-Qahtani
- Undergraduate Medical Program, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ali Al-Ali
- Department of Gastroenterology and Hepatology, Mubarak Al Kabeer Hospital, Jabriya, Kuwait
- Department of Medicine, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Bency John
- Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Kusum Kapila
- Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
- Department of Laboratory Medicine, Mubarak Al Kabeer Hospital, Jabriya, Kuwait
| | - Rabeah Al-Temaimi
- Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
7
|
Connelly KE, Hullin K, Abdolalizadeh E, Zhong J, Eiser D, O’Brien A, Collins I, Sudipto Das, Duncan G, Chanock SJ, Stolzenberg-Solomon RZ, Klein AP, Wolpin BM, Hoskins JW, Andresson T, Smith JP, Amundadottir LT. Allelic effects on KLHL17 expression likely mediated by JunB/D underlie a PDAC GWAS signal at chr1p36.33. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.16.24313748. [PMID: 39371158 PMCID: PMC11451706 DOI: 10.1101/2024.09.16.24313748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths in the U.S. Both rare and common germline variants contribute to PDAC risk. Here, we fine-map and functionally characterize a common PDAC risk signal at 1p36.33 (tagged by rs13303010) identified through a genome wide association study (GWAS). One of the fine-mapped SNPs, rs13303160 (r2=0.93 in 1000G EUR samples, OR=1.23, P value=2.74x10-9) demonstrated allele-preferential gene regulatory activity in vitro and allele-preferential binding of JunB and JunD in vitro and in vivo. Expression Quantitative Trait Locus (eQTL) analysis identified KLHL17 as a likely target gene underlying the signal. Proteomic analysis identified KLHL17 as a member of the Cullin-E3 ubiquitin ligase complex in PDAC-derived cells. In silico differential gene expression analysis of the GTExv8 pancreas data suggested an association between lower KLHL17 (risk associated) and pro-inflammatory pathways. We hypothesize that KLHL17 may mitigate inflammation by recruiting pro-inflammatory proteins for ubiquitination and degradation thereby influencing PDAC risk.
Collapse
Affiliation(s)
- Katelyn E. Connelly
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Katherine Hullin
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Ehssan Abdolalizadeh
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Daina Eiser
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Aidan O’Brien
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Gerard Duncan
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | | | | | - Stephen J. Chanock
- Laboratory of Genomic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Rachael Z. Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Alison P. Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jill P. Smith
- Department of Medicine, Georgetown University, Washington, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
8
|
Wang L, Baek S, Prasad G, Wildenthal J, Guo K, Sturgill D, Truongvo T, Char E, Pegoraro G, McKinnon K, Hoskins JW, Amundadottir LT, Arda HE. Predictive Prioritization of Enhancers Associated with Pancreas Disease Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611794. [PMID: 39314336 PMCID: PMC11418953 DOI: 10.1101/2024.09.07.611794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Genetic and epigenetic variations in regulatory enhancer elements increase susceptibility to a range of pathologies. Despite recent advances, linking enhancer elements to target genes and predicting transcriptional outcomes of enhancer dysfunction remain significant challenges. Using 3D chromatin conformation assays, we generated an extensive enhancer interaction dataset for the human pancreas, encompassing more than 20 donors and five major cell types, including both exocrine and endocrine compartments. We employed a network approach to parse chromatin interactions into enhancer-promoter tree models, facilitating a quantitative, genome-wide analysis of enhancer connectivity. With these tree models, we developed a machine learning algorithm to estimate the impact of enhancer perturbations on cell type-specific gene expression in the human pancreas. Orthogonal to our computational approach, we perturbed enhancer function in primary human pancreas cells using CRISPR interference and quantified the effects at the single-cell level through RNA FISH coupled with high-throughput imaging. Our enhancer tree models enabled the annotation of common germline risk variants associated with pancreas diseases, linking them to putative target genes in specific cell types. For pancreatic ductal adenocarcinoma, we found a stronger enrichment of disease susceptibility variants within acinar cell regulatory elements, despite ductal cells historically being assumed as the primary cell-of-origin. Our integrative approach-combining cell type-specific enhancer-promoter interaction mapping, computational models, and single-cell enhancer perturbation assays-produced a robust resource for studying the genetic basis of pancreas disorders.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gauri Prasad
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Wildenthal
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Konnie Guo
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thucnhi Truongvo
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Char
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine McKinnon
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H. Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Ni Z, Kundu P, McKean DF, Wheeler W, Albanes D, Andreotti G, Antwi SO, Arslan AA, Bamlet WR, Beane-Freeman LE, Berndt SI, Bracci PM, Brennan P, Buring JE, Chanock SJ, Gallinger S, Gaziano JM, Giles GG, Giovannucci EL, Goggins MG, Goodman PJ, Haiman CA, Hassan MM, Holly EA, Hung RJ, Katzke V, Kooperberg C, Kraft P, LeMarchand L, Li D, McCullough ML, Milne RL, Moore SC, Neale RE, Oberg AL, Patel AV, Peters U, Rabe KG, Risch HA, Shu XO, Smith-Byrne K, Visvanathan K, Wactawski-Wende J, White E, Wolpin BM, Yu H, Zeleniuch-Jacquotte A, Zheng W, Zhong J, Amundadottir LT, Stolzenberg-Solomon RZ, Klein AP. Genome-Wide Analysis to Assess if Heavy Alcohol Consumption Modifies the Association between SNPs and Pancreatic Cancer Risk. Cancer Epidemiol Biomarkers Prev 2024; 33:1229-1239. [PMID: 38869494 DOI: 10.1158/1055-9965.epi-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Pancreatic cancer is a leading cause of cancer-related death globally. Risk factors for pancreatic cancer include common genetic variants and potentially heavy alcohol consumption. We assessed if genetic variants modify the association between heavy alcohol consumption and pancreatic cancer risk. METHODS We conducted a genome-wide interaction analysis of single-nucleotide polymorphisms (SNP) by heavy alcohol consumption (more than three drinks per day) for pancreatic cancer in European ancestry populations from genome-wide association studies. Our analysis included 3,707 cases and 4,167 controls from case-control studies and 1,098 cases and 1,162 controls from cohort studies. Fixed-effect meta-analyses were conducted. RESULTS A potential novel region of association on 10p11.22, lead SNP rs7898449 (interaction P value (Pinteraction) = 5.1 × 10-8 in the meta-analysis; Pinteraction = 2.1 × 10-9 in the case-control studies; Pinteraction = 0.91 in the cohort studies), was identified. An SNP correlated with this lead SNP is an expression quantitative trait locus for the neuropilin 1 gene. Of the 17 genomic regions with genome-wide significant evidence of association with pancreatic cancer in prior studies, we observed suggestive evidence that heavy alcohol consumption modified the association for one SNP near LINC00673, rs11655237 on 17q25.1 (Pinteraction = 0.004). CONCLUSIONS We identified a novel genomic region that may be associated with pancreatic cancer risk in conjunction with heavy alcohol consumption located near an expression quantitative trait locus for neuropilin 1, a protein that plays an important role in the development and progression of pancreatic cancer. IMPACT This work can provide insights into the etiology of pancreatic cancer, particularly in heavy drinkers.
Collapse
Affiliation(s)
- Zhanmo Ni
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Prosenjit Kundu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David F McKean
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Samuel O Antwi
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York
- Department of Population Health, New York University School of Medicine, New York, New York
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - William R Bamlet
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Laura E Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - J M Gaziano
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Aging, Brigham and Women's Hospital, Boston, Massachusetts
- Boston VA Healthcare System, Boston, Massachusetts
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Edward L Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael G Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Manal M Hassan
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Peter Kraft
- Trans-Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Steven C Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachel E Neale
- Department of Population Health, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Ann L Oberg
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kari G Rabe
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachael Z Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
10
|
Wang L, Sheng J, Zhang Q, Yang Z, Xin Y, Song Y, Zhang Q, Wang B. A novel sand cat swarm optimization algorithm-based SVM for diagnosis imaging genomics in Alzheimer's disease. Cereb Cortex 2024; 34:bhae329. [PMID: 39147391 DOI: 10.1093/cercor/bhae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
In recent years, brain imaging genomics has advanced significantly in revealing underlying pathological mechanisms of Alzheimer's disease (AD) and providing early diagnosis. In this paper, we present a framework for diagnosing AD that integrates magnetic resonance imaging (fMRI) genetic preprocessing, feature selection, and a support vector machine (SVM) model. In particular, a novel sand cat swarm optimization (SCSO) algorithm, named SS-SCSO, which integrates the spiral search strategy and alert mechanism from the sparrow search algorithm, is proposed to optimize the SVM parameters. The optimization efficacy of the SS-SCSO algorithm is evaluated using CEC2017 benchmark functions, with results compared with other metaheuristic algorithms (MAs). The proposed SS-SCSO-SVM framework has been effectively employed to classify different stages of cognitive impairment in Alzheimer's Disease using imaging genetic datasets from the Alzheimer's Disease Neuroimaging Initiative. It has demonstrated excellent classification accuracies for four typical cases, including AD, early mild cognitive impairment, late mild cognitive impairment, and healthy control. Furthermore, experiment results indicate that the SS-SCSO-SVM algorithm has a stronger exploration capability for diagnosing AD compared to other well-established MAs and machine learning techniques.
Collapse
Affiliation(s)
- Luyun Wang
- School of Computer Science and Technology, Hangzhou Dianzi University, 1158 2nd Street, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, 215 6th Street, Hangzhou, Zhejiang 310018, China
- Hangzhou Vocational & Technical College, 68 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Jinhua Sheng
- School of Computer Science and Technology, Hangzhou Dianzi University, 1158 2nd Street, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, 215 6th Street, Hangzhou, Zhejiang 310018, China
| | - Qiao Zhang
- Beijing Hospital, 1 Dahua Road, Beijing 100730, China
- National Center of Gerontology, 1 Dahua Road, Beijing 100730, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 1 Dahua Road, Beijing 100730, China
| | - Ze Yang
- School of Computer Science and Technology, Hangzhou Dianzi University, 1158 2nd Street, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, 215 6th Street, Hangzhou, Zhejiang 310018, China
| | - Yu Xin
- School of Computer Science and Technology, Hangzhou Dianzi University, 1158 2nd Street, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, 215 6th Street, Hangzhou, Zhejiang 310018, China
| | - Yan Song
- Beijing Hospital, 1 Dahua Road, Beijing 100730, China
- National Center of Gerontology, 1 Dahua Road, Beijing 100730, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 1 Dahua Road, Beijing 100730, China
| | - Qian Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, 1158 2nd Street, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, 215 6th Street, Hangzhou, Zhejiang 310018, China
| | - Binbing Wang
- School of Computer Science and Technology, Hangzhou Dianzi University, 1158 2nd Street, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, 215 6th Street, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
11
|
Jacobs MF, Stoffel EM. Genetic and other risk factors for pancreatic ductal adenocarcinoma (PDAC). Fam Cancer 2024; 23:221-232. [PMID: 38573398 DOI: 10.1007/s10689-024-00372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at an advanced stage, resulting in poor prognosis and low 5-year survival rates. While early evidence suggests increased long-term survival in those with screen-detected resectable cancers, surveillance imaging is currently only recommended for individuals with a lifetime risk of PDAC ≥ 5%. Identification of risk factors for PDAC provides opportunities for early detection, risk reducing interventions, and targeted therapies, thus potentially improving patient outcomes. Here, we summarize modifiable and non-modifiable risk factors for PDAC. We review hereditary cancer syndromes associated with risk for PDAC and their implications for patients and their relatives. In addition, other biologically relevant pathways and environmental and lifestyle risk factors are discussed. Future work may focus on elucidating additional genetic, environmental, and lifestyle risk factors that may modify PDAC risk to continue to identify individuals at increased risk for PDAC who may benefit from surveillance and risk reducing interventions.
Collapse
Affiliation(s)
- Michelle F Jacobs
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
12
|
Lyu J, Jiang M, Zhu Z, Wu H, Kang H, Hao X, Cheng S, Guo H, Shen X, Wu T, Chang J, Wang C. Identification of biomarkers and potential therapeutic targets for pancreatic cancer by proteomic analysis in two prospective cohorts. CELL GENOMICS 2024; 4:100561. [PMID: 38754433 PMCID: PMC11228889 DOI: 10.1016/j.xgen.2024.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
Pancreatic cancer (PC) is the deadliest malignancy due to late diagnosis. Aberrant alterations in the blood proteome might serve as biomarkers to facilitate early detection of PC. We designed a nested case-control study of incident PC based on a prospective cohort of 38,295 elderly Chinese participants with ∼5.7 years' follow-up. Forty matched case-control pairs passed the quality controls for the proximity extension assay of 1,463 serum proteins. With a lenient threshold of p < 0.005, we discovered regenerating family member 1A (REG1A), REG1B, tumor necrosis factor (TNF), and phospholipase A2 group IB (PLA2G1B) in association with incident PC, among which the two REG1 proteins were replicated using the UK Biobank Pharma Proteomics Project, with effect sizes increasing steadily as diagnosis time approaches the baseline. Mendelian randomization analysis further supported the potential causal effects of REG1 proteins on PC. Taken together, circulating REG1A and REG1B are promising biomarkers and potential therapeutic targets for the early detection and prevention of PC.
Collapse
Affiliation(s)
- Jingjing Lyu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Jiang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Zhu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongji Wu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haonan Kang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjie Hao
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Cheng
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Shen
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Tangchun Wu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiang Chang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chaolong Wang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Peduzzi G, Felici A, Pellungrini R, Giorgolo F, Farinella R, Gentiluomo M, Spinelli A, Capurso G, Monreale A, Canzian F, Calderisi M, Campa D. Analysis of exposome and genetic variability suggests stress as a major contributor for development of pancreatic ductal adenocarcinoma. Dig Liver Dis 2024; 56:1054-1063. [PMID: 37985251 DOI: 10.1016/j.dld.2023.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The current knowledge on pancreatic ductal adenocarcinoma (PDAC) risk factors is limited and no study has comprehensively tested the exposome in combination with the genetic variability in relation to the disease susceptibility. AIM The aim of this study was to analyze the exposome and its interaction with known genetic susceptibility loci, in relation to PDAC risk. METHODS A case-control study nested in UK Biobank cohort was conducted on 816 PDAC cases and 302,645 controls. A total of 347 exposure variables, and a polygenic risk score (PRS) were analyzed through logistic regression. Gene-environment interaction analyses were conducted. RESULTS A total of 52 associations under the Bonferroni corrected threshold of p < 1.46 × 10-4 were observed. Known risk factors such as smoking, pancreatitis, diabetes, PRS, heavy alcohol drinking and overweight were replicated in this study. As for novel associations, a clear indication for length and intensity of mobile phone use and the stress-related factors and stressful events with increase of PDAC risk was observed. Although the PRS was associated with PDAC risk (P = 2.09 × 10-9), statistically significant gene-exposome interactions were not identified. CONCLUSION In conclusion, our results suggest that a stressful lifestyle and sedentary behaviors may play a major role in PDAC susceptibility independently from the genetic background.
Collapse
Affiliation(s)
- Giulia Peduzzi
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126 Pisa, Italy
| | - Alessio Felici
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126 Pisa, Italy
| | - Roberto Pellungrini
- Classe di scienze, Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
| | | | - Riccardo Farinella
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126 Pisa, Italy
| | - Manuel Gentiluomo
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126 Pisa, Italy
| | | | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Anna Monreale
- Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | - Daniele Campa
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126 Pisa, Italy.
| |
Collapse
|
14
|
Zhu H, Choi J, Kui N, Yang T, Wei P, Li D, Sun R. Identification of Pancreatic Cancer Germline Risk Variants With Effects That Are Modified by Smoking. JCO Precis Oncol 2024; 8:e2300355. [PMID: 38564682 DOI: 10.1200/po.23.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE Pancreatic cancer (PC) is a deadly disease most often diagnosed in late stages. Identification of high-risk subjects could both contribute to preventative measures and help diagnose the disease at earlier timepoints. However, known risk factors, assessed independently, are currently insufficient for accurately stratifying patients. We use large-scale data from the UK Biobank (UKB) to identify genetic variant-smoking interaction effects and show their importance in risk assessment. METHODS We draw data from 15,086,830 genetic variants and 315,512 individuals in the UKB. There are 765 cases of PC. Crucially, robust resampling corrections are used to overcome well-known challenges in hypothesis testing for interactions. Replication analysis is conducted in two independent cohorts totaling 793 cases and 570 controls. Integration of functional annotation data and construction of polygenic risk scores (PRS) demonstrate the additional insight provided by interaction effects. RESULTS We identify the genome-wide significant variant rs77196339 on chromosome 2 (per minor allele odds ratio in never-smokers, 2.31 [95% CI, 1.69 to 3.15]; per minor allele odds ratio in ever-smokers, 0.53 [95% CI, 0.30 to 0.91]; P = 3.54 × 10-8) as well as eight other loci with suggestive evidence of interaction effects (P < 5 × 10-6). The rs77196339 region association is validated (P < .05) in the replication sample. PRS incorporating interaction effects show improved discriminatory ability over PRS of main effects alone. CONCLUSION This study of genome-wide germline variants identified smoking to modify the effect of rs77196339 on PC risk. Interactions between known risk factors can provide critical information for identifying high-risk subjects, given the relative inadequacy of models considering only main effects, as demonstrated in PRS. Further studies are necessary to advance toward comprehensive risk prediction approaches for PC.
Collapse
Affiliation(s)
- Huili Zhu
- Section of Hematology and Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Jaihee Choi
- Department of Statistics, Rice University, Houston, TX
| | - Naishu Kui
- Department of Biostatistics, University of Texas School of Public Health, Houston, TX
| | - Tianzhong Yang
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Peng Wei
- Department of Biostatistics, Division of Basic Science, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ryan Sun
- Department of Biostatistics, Division of Basic Science, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
15
|
Yamazaki H, Streicher SA, Wu L, Fukuhara S, Wagner R, Heni M, Grossman SR, Lenz HJ, Setiawan VW, Le Marchand L, Huang BZ. Evidence for a causal link between intra-pancreatic fat deposition and pancreatic cancer: A prospective cohort and Mendelian randomization study. Cell Rep Med 2024; 5:101391. [PMID: 38280379 PMCID: PMC10897551 DOI: 10.1016/j.xcrm.2023.101391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/29/2024]
Abstract
Prior observational studies suggest an association between intra-pancreatic fat deposition (IPFD) and pancreatic ductal adenocarcinoma (PDAC); however, the causal relationship is unclear. To elucidate causality, we conduct a prospective observational study using magnetic resonance imaging (MRI)-measured IPFD data and also perform a Mendelian randomization study using genetic instruments for IPFD. In the observational study, we use UK Biobank data (N = 29,463, median follow-up: 4.5 years) and find that high IPFD (>10%) is associated with PDAC risk (adjusted hazard ratio [HR]: 3.35, 95% confidence interval [95% CI]: 1.60-7.00). In the Mendelian randomization study, we leverage eight out of nine IPFD-associated genetic variants (p < 5 × 10-8) from a genome-wide association study in the UK Biobank (N = 25,617) and find that genetically determined IPFD is associated with PDAC (odds ratio [OR] per 1-standard deviation [SD] increase in IPFD: 2.46, 95% CI: 1.38-4.40) in the Pancreatic Cancer Cohort Consortium I, II, III (PanScan I-III)/Pancreatic Cancer Case-Control Consortium (PanC4) dataset (8,275 PDAC cases and 6,723 non-cases). This study provides evidence for a potential causal role of IPFD in the pathogenesis of PDAC. Thus, reducing IPFD may lower PDAC risk.
Collapse
Affiliation(s)
- Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan.
| | - Samantha A Streicher
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Shunichi Fukuhara
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Róbert Wagner
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Heni
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, Ulm University, Ulm, Germany; Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Steven R Grossman
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Wendy Setiawan
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Brian Z Huang
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Gentiluomo M, Dixon-Suen SC, Farinella R, Peduzzi G, Canzian F, Milne RL, Lynch BM, Campa D. Physical Activity, Sedentary Behavior, and Pancreatic Cancer Risk: A Mendelian Randomization Study. J Endocr Soc 2024; 8:bvae017. [PMID: 38425433 PMCID: PMC10904288 DOI: 10.1210/jendso/bvae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 03/02/2024] Open
Abstract
Pancreatic cancer is currently the seventh leading cause of cancer death worldwide. Understanding whether modifiable factors increase or decrease the risk of this disease is central to facilitating primary prevention. Several epidemiological studies have described the benefits of physical activity, and the risks associated with sedentary behavior, in relation to cancer. This study aimed to assess evidence of causal effects of physical activity and sedentary behavior on pancreatic cancer risk. We conducted a two-sample Mendelian randomization study using publicly available data for genetic variants associated with physical activity and sedentary behavior traits and genetic data from the Pancreatic Cancer Cohort Consortium (PanScan), the Pancreatic Cancer Case-Control Consortium (PanC4), and the FinnGen study for a total of 10 018 pancreatic cancer cases and 266 638 controls. We also investigated the role of body mass index (BMI) as a possible mediator between physical activity and sedentary traits and risk of developing pancreatic cancer. We found evidence of a causal association between genetically determined hours spent watching television (hours per day) and increased risk of pancreatic cancer for each hour increment (PanScan-PanC4 odds ratio = 1.52, 95% confidence interval 1.17-1.98, P = .002). Additionally, mediation analysis showed that genetically determined television-watching time was strongly associated with BMI, and the estimated proportion of the effect of television-watching time on pancreatic cancer risk mediated by BMI was 54%. This study reports the first Mendelian randomization-based evidence of a causal association between a measure of sedentary behavior (television-watching time) and risk of pancreatic cancer and that this is strongly mediated by BMI. Summary: Pancreatic cancer is a deadly disease that is predicted to become the second leading cause of cancer-related deaths by 2030. Physical activity and sedentary behaviors have been linked to cancer risk and survival. However, there is limited research on their correlation with pancreatic cancer. To investigate this, we used a Mendelian randomization approach to examine the genetic predisposition to physical activity and sedentariness and their relation to pancreatic cancer risk, while excluding external confounders. Our findings revealed a causal link between the time spent watching television and an increased risk of pancreatic cancer. Additionally, we determined that over half of the effect of watching television on pancreatic risk is mediated by the individual's BMI.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Unit of Genetics, Department of Biology, University of Pisa, Pisa, Italy 56126
| | - Suzanne C Dixon-Suen
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
| | - Riccardo Farinella
- Unit of Genetics, Department of Biology, University of Pisa, Pisa, Italy 56126
| | - Giulia Peduzzi
- Unit of Genetics, Department of Biology, University of Pisa, Pisa, Italy 56126
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany 69120
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia 3168
| | - Brigid M Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Physical Activity Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia 3004
| | - Daniele Campa
- Unit of Genetics, Department of Biology, University of Pisa, Pisa, Italy 56126
| |
Collapse
|
17
|
Liu S, Zhong H, Zhu J, Wu Y, Deng Y, Wu L. Regulome-wide association study identifies genetically driven accessible regions associated with pancreatic cancer risk. Int J Cancer 2024; 154:670-678. [PMID: 37850323 PMCID: PMC10842605 DOI: 10.1002/ijc.34761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
Genome-wide association studies (GWAS) have identified two dozen genetic variants that are associated with the risk of pancreatic ductal adenocarcinoma (PDAC), a deadly malignancy. However, a majority of these variants are located in noncoding regions of the genome, which limits the translation of GWAS findings into clinical applications. The regulome-wide association study (RWAS) is a recently developed method for identifying TF binding-induced accessibility regions for diseases. However, their potential connection to PDAC has yet to be fully explored. We evaluated the associations between genetically predicted levels of chromatin accessibility and risk of PDAC by using pan-cancer chromatin accessibility genetic prediction models. Our analysis included 8275 cases and 6723 controls from the PanScan (I, II, and III) and PanC4 consortia. To further refine our results, we also integrated genes associated to allele-specific accessibility quantitative trait loci (as-aQTL) and TF motifs located in the as-aQTL. We found that 50 chromatin accessibility features were associated with PDAC risk at a false discovery rate (FDR) of less than 0.05. A total of 28 RWAS peaks were identified as conditionally significant. By integrating the results from as-aQTL, motif analysis, and RWAS, we identified candidate causal regulatory elements for two potential chromatin accessibility regions (THCA_89956 and ESCA_89167) that are associated with PDAC risk. Our study identified chromatin accessibility features in noncoding genomic regions that are associated with PDAC risk. We also predicted the associated genes and disrupt motifs. Our findings provide new insights into the regulatory mechanisms of noncoding regions for pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Shuai Liu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen School of Medicine at UCLA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
18
|
Ajay AK, Gasser M, Hsiao LL, Böldicke T, Waaga-Gasser AM. TLR2 and TLR9 Blockade Using Specific Intrabodies Inhibits Inflammation-Mediated Pancreatic Cancer Cell Growth. Antibodies (Basel) 2024; 13:11. [PMID: 38390872 PMCID: PMC10885114 DOI: 10.3390/antib13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) remains a deadly cancer worldwide with a need for new therapeutic approaches. A dysregulation in the equilibrium between pro- and anti-inflammatory responses with a predominant immunosuppressive inflammatory reaction in advanced stage tumors seem to contribute to tumor growth and metastasis. The current therapies do not include strategies against pro-tumorigenic inflammation in cancer patients. We have shown that the upregulated cell surface expression of Toll-like Receptor (TLR) 2 and of TLR9 inside PDAC cells maintain chronic inflammatory responses, support chemotherapeutic resistance, and mediate tumor progression in human pancreatic cancer. We further demonstrated intracellular TLR2 and TLR9 targeting using specific intrabodies, which resulted in downregulated inflammatory signaling. In this study, we tested, for the first time, an intrabody-mediated TLR blockade in human TLR2- and TLR9-expressing pancreatic cancer cells for its effects on inflammatory signaling-mediated tumor growth. Newly designed anti-TLR2- and anti-TLR9-specific intrabodies inhibited PDAC growth. Co-expression analysis of the intrabodies and corresponding human TLRs showed efficient retention and accumulation of both intrabodies within the endoplasmic reticulum (ER), while co-immunoprecipitation studies indicated both intrabodies interacting with their cognate TLR antigen within the pancreatic cancer cells. Cancer cells with attenuated proliferation expressing accumulated TLR2 and TRL9 intrabodies demonstrated reduced STAT3 phosphorylation signaling, while apoptotic markers Caspases 3 and 8 were upregulated. To conclude, our results demonstrate the TLR2 and TLR9-specific intrabody-mediated signaling pathway inhibition of autoregulatory inflammation inside cancer cells and their proliferation, resulting in the suppression of pancreatic tumor cell growth. These findings underscore the potential of specific intrabody-mediated TLR inhibition in the ER relevant for tumor growth inhibition and open up a new therapeutic intervention strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Amrendra K Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Martin Gasser
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Li-Li Hsiao
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ana Maria Waaga-Gasser
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
farrukh S, Baig S, Hussain R, Imad R, kulsoom O, Yousaf Rana M. Identification of polymorphic alleles in TERC and TERT gene reprogramming the telomeres of newborn and legacy with parental health. Saudi J Biol Sci 2024; 31:103897. [PMID: 38192544 PMCID: PMC10772381 DOI: 10.1016/j.sjbs.2023.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Telomere and telomerase genes (TERC and TERT) highlighted many novel genetic polymorphisms related to common diseases. This study explored the polymorphic alleles of TERC and TERT gene in parents-newborn (triad) and its association with telomere length (TL) and parental diseases (mother: Gestational Diabetes Mellitus (GDM), Preeclampsia, fathers: Diabetes, Hypertension). In this cross-sectional study, the blood samples (n = 612) were collected from parents-newborn triad (204 each) for TL (T/S ratio) quantification by using qPCR, and gene (TERC and TERT) polymorphism was detected by Sanger sequencing. The correlation analysis was used to find an association between paternal TL (T/S ratio) and newborn TL. The multivariate linear regression was applied to determine the effect of parents genes and diseases on newborn TL. A positive association (r = 0.42,0.39) (p < 0.0001) among parents and newborn TL was observed. In the diseased group, both TERC (rs10936599) and TERT (rs2736100) genes had a high frequency of allele C in newborns (OR = 0.94, P = 0.90, OR = 4.24, P = 0.012). However, among parents, TERT gene [Mother CC (B = 0.575; P = 0.196), Father CC (B = -0.739; P = 0.071)] was found significant contributing factor for Newborn TL. Diseased parents with T/T and A/C genotypes had longer newborn TL (2.82 ± 2.43, p < 0.022; 1.80 ± 1.20, p < 0.00) than the C/C genotype. Therefore, the study, confirmed that major allele C of TERC and TERT genes is associated with smaller TL in diseased parents-newborns of the targeted population.
Collapse
Affiliation(s)
- Sadia farrukh
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
- Department of Community Health Sciences, The Agha Khan University, Karachi, Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Rubina Hussain
- Department Gynecology and obstetrician, Ziauddin university and hospitals, Karachi, Pakistan
| | - Rehan Imad
- Department of Molecular medicine, Ziauddin University Karachi, Pakistan
| | - Ome kulsoom
- Department Gynecology and obstetrician, Ziauddin hospital, Karachi, Pakistan
| | - Mehreen Yousaf Rana
- Department Gynecology and obstetrician, Ziauddin hospital, Karachi, Pakistan
| |
Collapse
|
20
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
21
|
Liu D, Bae YE, Zhu J, Zhang Z, Sun Y, Deng Y, Wu C, Wu L. Splicing transcriptome-wide association study to identify splicing events for pancreatic cancer risk. Carcinogenesis 2023; 44:741-747. [PMID: 37769343 DOI: 10.1093/carcin/bgad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
A large proportion of the heritability of pancreatic cancer risk remains elusive, and the contribution of specific mRNA splicing events to pancreatic cancer susceptibility has not been systematically evaluated. In this study, we performed a large splicing transcriptome-wide association study (spTWAS) using three modeling strategies (Enet, LASSO and MCP) to develop alternative splicing genetic prediction models for identifying novel susceptibility loci and splicing introns for pancreatic cancer risk by assessing 8275 pancreatic cancer cases and 6723 controls of European ancestry. Data from 305 subjects of whom the majority are of European descent in the Genotype-Tissue Expression Project (GTEx) were used and both cis-acting and promoter-enhancer interaction regions were considered to build these models. We identified nine splicing events of seven genes (ABO, UQCRC1, STARD3, ETAA1, CELA3B, LGR4 and SFT2D1) that showed an association of genetically predicted expression with pancreatic cancer risk at a false discovery rate ≤0.05. Of these genes, UQCRC1 and LGR4 have not yet been reported to be associated with pancreatic cancer risk. Fine-mapping analyses supported likely causal associations corresponding to six splicing events of three genes (P4HTM, ABO and PGAP3). Our study identified novel genes and splicing events associated with pancreatic cancer risk, which can improve our understanding of the etiology of this deadly malignancy.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, P.R. China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ye Eun Bae
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Yanfa Sun
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
- College of Life Science, Longyan University, Longyan, Fujian 364012, P.R. China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian 364012, P.R. China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, Fujian 364012, P.R. China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
22
|
Zeng L, Wu Z, Yang J, Zhou Y, Chen R. Association of genetic risk and lifestyle with pancreatic cancer and their age dependency: a large prospective cohort study in the UK Biobank. BMC Med 2023; 21:489. [PMID: 38066552 PMCID: PMC10709905 DOI: 10.1186/s12916-023-03202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is influenced by both genetic and lifestyle factors. However, further research is still needed to comprehensively clarify the relationships among lifestyle, genetic factors, their combined effect on PC, and how these associations might be age-dependent. METHODS We included 340,631 participants from the UK Biobank. Three polygenic risk score (PRS) models for PC were applied, which were derived from the previous study and were categorized as low, intermediate, and high. Two healthy lifestyle scores (HLSs) were constructed using 9 lifestyle factors based on the World Cancer Research Fund/American Institute of Cancer Research (WCRF/AICR) lifestyle score and the American Cancer Society (ACS) guidelines and were categorized as unfavorable, intermediate, and favorable. Data were analyzed using Cox proportional hazards models. RESULTS There were 1,129 cases of incident PC during a median follow-up of 13.05 years. Higher PRS was significantly associated with an increased risk of PC (hazard ratio [HR], 1.58; 95% confidence intervals [CI], 1.47-1.71). Adhering to a favorable lifestyle was associated with a lower risk (HR, 0.48; 95% CI, 0.41-0.56). Participants with an unfavorable lifestyle and a high PRS had the highest risk of PC (HR, 2.84; 95% CI, 2.22-3.62). Additionally, when stratified by age, a favorable lifestyle was most pronounced associated with a lower risk of PC among participants aged ≤ 60 years (HR, 0.35; 95% CI, 0.23-0.54). However, the absolute risk reduction was more pronounced among those aged > 70 years (ARR, 0.19%, 95% CI, 0.13%-0.26%). A high PRS was more strongly associated with PC among participants aged ≤ 60 years (HR, 1.89; 95% CI, 1.30-2.73). Furthermore, we observed a significant multiplicative interaction and several significant additive interactions. CONCLUSIONS A healthy lifestyle was associated with a lower risk of PC, regardless of the participants' age, sex, or genetic risk. Importantly, our findings indicated the age-dependent association of lifestyle and genetic factors with PC, emphasizing the importance of early adoption for effective prevention and potentially providing invaluable guidance for setting the optimal age to start preventive measures.
Collapse
Affiliation(s)
- Liangtang Zeng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhuo Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiabin Yang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yu Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Rufu Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China.
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
23
|
Giaccherini M, Gori L, Gentiluomo M, Farinella R, Cervena K, Skieceviciene J, Dijk F, Capurso G, Vezakis A, Archibugi L, Chammas R, Hussein T, Tavano F, Hegyi P, Lovecek M, Izbicki JR, Brenner H, Mohelnikova-Duchonova B, Dell'Anna G, Kupcinskas J, Ermini S, Aoki MN, Neoptolemos JP, Gazouli M, Pasquali C, Pezzilli R, Talar-Wojnarowska R, Oliverius M, Al-Saeedi M, Lucchesi M, Furbetta N, Carrara S, van Eijck CHJ, Maleckas A, Milanetto AC, Lawlor RT, Schöttker B, Boggi U, Morelli L, Ginocchi L, Ponz de Leon Pisani R, Sperti C, Zerbi A, Arcidiacono PG, Uzunoglu FG, Bunduc S, Holleczek B, Gioffreda D, Małecka-Wojciesko E, Kiudelis M, Szentesi A, van Laarhoven HWM, Soucek P, Götz M, Erőss B, Cavestro GM, Basso D, Perri F, Landi S, Canzian F, Campa D. A scan of all coding region variants of the human genome, identifies 13q12.2-rs9579139 and 15q24.1-rs2277598 as novel risk loci for pancreatic ductal adenocarcinoma. Carcinogenesis 2023; 44:642-649. [PMID: 37670727 DOI: 10.1093/carcin/bgad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
Coding sequence variants comprise a small fraction of the germline genetic variability of the human genome. However, they often cause deleterious change in protein function and are therefore associated with pathogenic phenotypes. To identify novel pancreatic ductal adenocarcinoma (PDAC) risk loci, we carried out a complete scan of all common missense and synonymous SNPs and analysed them in a case-control study comprising four different populations, for a total of 14 538 PDAC cases and 190 657 controls. We observed a statistically significant association between 13q12.2-rs9581957-T and PDAC risk (P = 2.46 × 10-9), that is in linkage disequilibrium (LD) with a deleterious missense variant (rs9579139) of the URAD gene. Recent findings suggest that this gene is active in peroxisomes. Considering that peroxisomes have a key role as molecular scavengers, especially in eliminating reactive oxygen species, a malfunctioning URAD protein might expose the cell to a higher load of potentially DNA damaging molecules and therefore increase PDAC risk. The association was observed in individuals of European and Asian ethnicity. We also observed the association of the missense variant 15q24.1-rs2277598-T, that belongs to BBS4 gene, with increased PDAC risk (P = 1.53 × 10-6). rs2277598 is associated with body mass index and is in LD with diabetes susceptibility loci. In conclusion, we identified two missense variants associated with the risk of developing PDAC independently from the ethnicity highlighting the importance of conducting reanalysis of genome-wide association studies (GWASs) in light of functional data.
Collapse
Affiliation(s)
| | - Leonardo Gori
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic
| | - Jurgita Skieceviciene
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Frederike Dijk
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
- Pancreato-Biliary Endoscopy and Endosonography Division, IRCCS San Raffaele Scientific Institute, Pancreas Translational and Clinical Research Center, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonis Vezakis
- Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Livia Archibugi
- Digestive and Liver Disease Unit, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
- Pancreato-Biliary Endoscopy and Endosonography Division, IRCCS San Raffaele Scientific Institute, Pancreas Translational and Clinical Research Center, Vita-Salute San Raffaele University, Milan, Italy
| | - Roger Chammas
- Departamento de Radiologia e Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Center for Translational Research in Oncology (LIM24), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Tamás Hussein
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Martin Lovecek
- Department of Surgery I, University Hospital Olomouc, Olomouc, Czech Republic
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beatrice Mohelnikova-Duchonova
- Department of Oncology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech
| | - Giuseppe Dell'Anna
- Pancreatico/Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Juozas Kupcinskas
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Stefano Ermini
- Blood Transfusion Service, Azienda Ospedaliero-Universitaria Meyer, Children's Hospital, Florence, Italy
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - John P Neoptolemos
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Claudio Pasquali
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padua, Italy
| | | | | | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mohammed Al-Saeedi
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Maurizio Lucchesi
- Department of Medical Oncology, Oncology of Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Silvia Carrara
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research, Milan, Italy
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Almantas Maleckas
- Department of Surgery, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Anna Caterina Milanetto
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padua, Italy
| | - Rita T Lawlor
- ARC-Net Centre for Applied Research on Cancer and Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ugo Boggi
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Laura Ginocchi
- Department of Medical Oncology, Oncology of Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Ruggero Ponz de Leon Pisani
- Pancreatico/Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padua, Italy
| | - Alessandro Zerbi
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Paolo Giorgio Arcidiacono
- Pancreatico/Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Center for Gastroenterology, Hepatology and Liver Transplant, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | | | - Mindaugas Kiudelis
- Department of Surgery, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Medicine, Centre for Translational Medicine, University of Szeged, Szeged, Hungary
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Mara Götz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bálint Erőss
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniela Basso
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padua, Italy
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Wang L, Grimshaw AA, Mezzacappa C, Larki NR, Yang YX, Justice AC. Do Polygenic Risk Scores Add to Clinical Data in Predicting Pancreatic Cancer? A Scoping Review. Cancer Epidemiol Biomarkers Prev 2023; 32:1490-1497. [PMID: 37610426 PMCID: PMC10873036 DOI: 10.1158/1055-9965.epi-23-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Polygenic risk scores (PRS) summarize an individual's germline genetic risk, but it is unclear whether PRS offer independent information for pancreatic cancer risk prediction beyond routine clinical data. METHODS We searched 8 databases from database inception to March 10, 2023 to identify studies evaluating the independent performance of pancreatic cancer-specific PRS for pancreatic cancer beyond clinical risk factors. RESULTS Twenty-one studies examined associations between a pancreatic cancer-specific PRS and pancreatic cancer. Seven studies evaluated risk factors beyond age and sex. Three studies evaluated the change in discrimination associated with the addition of PRS to routine risk factors and reported improvements (AUCs: 0.715 to 0.745; AUC 0.791 to 0.830; AUC from 0.694 to 0.711). Limitations to clinical applicability included using source populations younger/healthier than those at risk for pancreatic cancer (n = 10), exclusively of European ancestry (n = 13), or controls without relevant exposures (n = 1). CONCLUSIONS While most studies of pancreatic cancer-specific PRS did not evaluate the independent discrimination of PRS for pancreatic cancer beyond routine risk factors, three that did showed improvements in discrimination. IMPACT For pancreatic cancer PRS to be clinically useful, they must demonstrate substantial improvements in discrimination beyond established risk factors, apply to diverse ancestral populations representative of those at risk for pancreatic cancer, and use appropriate controls.
Collapse
Affiliation(s)
- Louise Wang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Catherine Mezzacappa
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Navid Rahimi Larki
- VA Connecticut Healthcare System, West Haven, CT, USA
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yu-Xiao Yang
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA USA
| | - Amy C. Justice
- VA Connecticut Healthcare System, West Haven, CT, USA
- Section of General Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
25
|
Corradi C, Lencioni G, Gentiluomo M, Felici A, Latiano A, Kiudelis G, van Eijck CHJ, Marta K, Lawlor RT, Tavano F, Boggi U, Dijk F, Cavestro GM, Vermeulen RCH, Hackert T, Petrone MC, Uzunoğlu FG, Archibugi L, Izbicki JR, Morelli L, Zerbi A, Landi S, Stocker H, Talar-Wojnarowska R, Di Franco G, Hegyi P, Sperti C, Carrara S, Capurso G, Gazouli M, Brenner H, Bunduc S, Busch O, Perri F, Oliverius M, Hegyi PJ, Goetz M, Scognamiglio P, Mambrini A, Arcidiacono PG, Kreivenaite E, Kupcinskas J, Hussein T, Ermini S, Milanetto AC, Vodicka P, Kiudelis V, Hlaváč V, Soucek P, Theodoropoulos GE, Basso D, Neoptolemos JP, Nóbrega Aoki M, Pezzilli R, Pasquali C, Chammas R, Testoni SGG, Mohelnikova-Duchonova B, Lucchesi M, Rizzato C, Canzian F, Campa D. Polymorphic variants involved in methylation regulation: a strategy to discover risk loci for pancreatic ductal adenocarcinoma. J Med Genet 2023; 60:980-986. [PMID: 37130759 DOI: 10.1136/jmg-2022-108910] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Only a small number of risk factors for pancreatic ductal adenocarcinoma (PDAC) has been established. Several studies identified a role of epigenetics and of deregulation of DNA methylation. DNA methylation is variable across a lifetime and in different tissues; nevertheless, its levels can be regulated by genetic variants like methylation quantitative trait loci (mQTLs), which can be used as a surrogate. MATERIALS AND METHODS We scanned the whole genome for mQTLs and performed an association study in 14 705 PDAC cases and 246 921 controls. The methylation data were obtained from whole blood and pancreatic cancer tissue through online databases. We used the Pancreatic Cancer Cohort Consortium and the Pancreatic Cancer Case-Control Consortium genome-wide association study (GWAS) data as discovery phase and the Pancreatic Disease Research consortium, the FinnGen project and the Japan Pancreatic Cancer Research consortium GWAS as replication phase. RESULTS The C allele of 15q26.1-rs12905855 showed an association with a decreased risk of PDAC (OR=0.90, 95% CI 0.87 to 0.94, p=4.93×10-8 in the overall meta-analysis), reaching genome-level statistical significance. 15q26.1-rs12905855 decreases the methylation of a 'C-phosphate-G' (CpG) site located in the promoter region of the RCCD1 antisense (RCCD1-AS1) gene which, when expressed, decreases the expression of the RCC1 domain-containing (RCCD1) gene (part of a histone demethylase complex). Thus, it is possible that the rs12905855 C-allele has a protective role in PDAC development through an increase of RCCD1 gene expression, made possible by the inactivity of RCCD1-AS1. CONCLUSION We identified a novel PDAC risk locus which modulates cancer risk by controlling gene expression through DNA methylation.
Collapse
Affiliation(s)
| | | | | | | | - Anna Latiano
- Division of Gastroenterology and Research Laboratory, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Gediminas Kiudelis
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Casper H J van Eijck
- Department of Surgery, Erasmus Medical Center, Erasmus University, Rotterdam, Netherlands
| | - Katalin Marta
- Center for Traslational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Disease, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Rita T Lawlor
- ARC-NET, Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ugo Boggi
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Frederike Dijk
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Giulia Martina Cavestro
- Division of Experimental Oncology, Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | | - Thilo Hackert
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Maria Chiara Petrone
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Faik Güntac Uzunoğlu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Roma, Italy
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Morelli
- General Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, Università di Pisa, Pisa, Italy
| | - Alessandro Zerbi
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | | | - Gregorio Di Franco
- General Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, Università di Pisa, Pisa, Italy
| | - Péter Hegyi
- Center for Traslational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Disease, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pecs, Hungary
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Cosimo Sperti
- Department of Surgery-DiSCOG, Padua University Hospital, Padova, Italy
| | - Silvia Carrara
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Roma, Italy
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefania Bunduc
- Center for Traslational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Disease, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucarest, Romania
| | - Olivier Busch
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Martin Oliverius
- Department of Surgery, Third Faculty of Medicine, University Hospital Kralovske Vinohrady, Charles University, Prague, Czech Republic
| | - Péter Jeno Hegyi
- Center for Traslational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Disease, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Mara Goetz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Mambrini
- Oncology of Massa Carrara, Oncological Department, Azienda USL Toscana Nord Ovest, Pisa, Italy
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Edita Kreivenaite
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tamas Hussein
- Center for Traslational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Disease, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Stefano Ermini
- Blood Transfusion Service, Azienda Ospedaliero Universitaria Meyer, Firenze, Italy
| | | | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic
| | - Vytautas Kiudelis
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Viktor Hlaváč
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - George E Theodoropoulos
- First Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Daniela Basso
- Department of Medicine-DIMED, Padua University Hospital, Padova, Italy
| | - John P Neoptolemos
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | | | - Claudio Pasquali
- Department of Surgery-DiSCOG, Padua University Hospital, Padova, Italy
| | - Roger Chammas
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Sabrina Gloria Giulia Testoni
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | | | - Maurizio Lucchesi
- Oncology of Massa Carrara, Oncological Department, Azienda USL Toscana Nord Ovest, Pisa, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and new Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Nodari Y, Gentiluomo M, Mohelnikova-Duchonova B, Kreivenaite E, Milanetto AC, Skieceviciene J, Landi S, Lawlor RT, Petrone MC, Arcidiacono PG, Lovecek M, Gazouli M, Bijlsma MF, Morelli L, Kiudelis V, Tacelli M, Zanette DL, Soucek P, Uzunoglu F, Kaaks R, Izbicki J, Boggi U, Pezzilli R, Mambrini A, Pasquali C, van Laarhoven HW, Katzke V, Cavestro GM, Sperti C, Loos M, Latiano A, Erőss B, Oliverius M, Johnson T, Basso D, Neoptolemos JP, Aoki MN, Greenhalf W, Vodicka P, Archibugi L, Vanella G, Lucchesi M, Talar-Wojnarowska R, Jamroziak K, Saeedi MA, van Eijck CHJ, Kupcinskas J, Hussein T, Puzzono M, Bunduc S, Götz M, Carrara S, Szentesi A, Tavano F, Moz S, Hegyi P, Luchini C, Capurso G, Perri F, Ermini S, Theodoropoulos G, Capretti G, Palmieri O, Ginocchi L, Furbetta N, Canzian F, Campa D. Genetic and non-genetic risk factors for early-onset pancreatic cancer. Dig Liver Dis 2023; 55:1417-1425. [PMID: 36973108 DOI: 10.1016/j.dld.2023.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Early-onset pancreatic cancer (EOPC) represents 5-10% of all pancreatic ductal adenocarcinoma (PDAC) cases, and the etiology of this form is poorly understood. It is not clear if established PDAC risk factors have the same relevance for younger patients. This study aims to identify genetic and non-genetic risk factors specific to EOPC. METHODS A genome-wide association study was performed, analysing 912 EOPC cases and 10 222 controls, divided into discovery and replication phases. Furthermore, the associations between a polygenic risk score (PRS), smoking, alcohol consumption, type 2 diabetes and PDAC risk were also assessed. RESULTS Six novel SNPs were associated with EOPC risk in the discovery phase, but not in the replication phase. The PRS, smoking, and diabetes affected EOPC risk. The OR comparing current smokers to never-smokers was 2.92 (95% CI 1.69-5.04, P = 1.44 × 10-4). For diabetes, the corresponding OR was 14.95 (95% CI 3.41-65.50, P = 3.58 × 10-4). CONCLUSION In conclusion, we did not identify novel genetic variants associated specifically with EOPC, and we found that established PDAC risk variants do not have a strong age-dependent effect. Furthermore, we add to the evidence pointing to the role of smoking and diabetes in EOPC.
Collapse
Affiliation(s)
- Ylenia Nodari
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Edita Kreivenaite
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Anna Caterina Milanetto
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 3, Padova, Italy
| | - Jurgita Skieceviciene
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Rita T Lawlor
- Department of Diagnostics and Public Health, and ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Maria Chiara Petrone
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center Vita Salute San Raffaele University San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Giorgio Arcidiacono
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center Vita Salute San Raffaele University San Raffaele Scientific Institute, Milan, Italy
| | - Martin Lovecek
- Department of Surgery I, University Hospital Olomouc, Olomouc, Czech Republic
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Maarten F Bijlsma
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Vytautas Kiudelis
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Matteo Tacelli
- PancreatoBiliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center Vita Salute San Raffaele University San Raffaele Scientific Institute, Milan, Italy
| | - Dalila Lucíola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Pavel Soucek
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Faik Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ugo Boggi
- Divisione di Chirurgia Generale e dei Trapianti, Università di Pisa, Pisa, Italy
| | | | - Andrea Mambrini
- Oncological Department, Massa Carrara Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Claudio Pasquali
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 3, Padova, Italy
| | - Hanneke W van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Cosimo Sperti
- Deptartment of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 1, Padova, Italy
| | - Martin Loos
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Latiano
- Division of Gastroenterology, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Bálint Erőss
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Martin Oliverius
- Department of General Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Basso
- Department of Medicine-DIMED, Laboratory Medicine-University of Padova, Padova, Italy
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - William Greenhalf
- Molecular and Clinical Cancer Medicine, The University of Liverpool, Liverpool, United Kingdom
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Livia Archibugi
- Digestive and Liver Disease Unit, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy; Pancreato-Biliary Endoscopy and Endosonography Division, IRCCS San Raffaele Scientific Institute, Pancreas Translational and Clinical Research Center, Vita-Salute San Raffaele University, Milan, Italy
| | - Giuseppe Vanella
- Digestive and Liver Disease Unit, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy; Pancreato-Biliary Endoscopy and Endosonography Division, IRCCS San Raffaele Scientific Institute, Pancreas Translational and Clinical Research Center, Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Lucchesi
- Oncological Department, Massa Carrara Azienda USL Toscana Nord Ovest, Carrara, Italy
| | | | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, University Clinical Center of the Medical University of Warsaw, Warsaw, Poland
| | - Mohammed Al Saeedi
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Juozas Kupcinskas
- Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tamás Hussein
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Marta Puzzono
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Stefania Bunduc
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Mara Götz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvia Carrara
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Centre for Translational Medicine, Department of Medicine, University of Szeged, Szeged, Hungary; János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Francesca Tavano
- Division of Gastroenterology, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Stefania Moz
- Department of Medicine-DIMED, Laboratory Medicine-University of Padova, Padova, Italy
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary; János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Claudio Luchini
- Department of Diagnostics and Public Health, and ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy; Pancreato-Biliary Endoscopy and Endosonography Division, IRCCS San Raffaele Scientific Institute, Pancreas Translational and Clinical Research Center, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Stefano Ermini
- Blood Transfusion Service, Children's Hospital, Azienda Ospedaliero-Universitaria Meyer, Florence, Italy
| | - George Theodoropoulos
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Giovanni Capretti
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Orazio Palmieri
- Division of Gastroenterology, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Laura Ginocchi
- Oncological Department, Massa Carrara Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
27
|
Kim J, Yuan C, Amundadottir LT, Wolpin BM, Klein AP, Risch HA, Kraft P. Relationship between ABO Blood Group Alleles and Pancreatic Cancer Is Modulated by Secretor (FUT2) Genotype, but Not Lewis Antigen (FUT3) Genotype. Cancer Epidemiol Biomarkers Prev 2023; 32:1242-1248. [PMID: 37342060 PMCID: PMC10527950 DOI: 10.1158/1055-9965.epi-23-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND In Western populations, pancreatic ductal adenocarcinoma (PDAC) risk has been found to be greater among individuals with non-O blood types than those with O blood type. However, the association has not been fully evaluated with respect to FUT2 (determining secretor status) and FUT3 (determining Lewis antigens) status, two biologically important genes in the expression of ABO blood groups with PDAC. METHODS We examined interactions in data from 8,027 cases and 11,362 controls in large pancreatic cancer consortia (PanScan I-III and PanC4) by using genetic variants to predict ABO blood groups (rs505922 and rs8176746), secretor status (rs601338), and Lewis antigens (rs812936, rs28362459, and rs3894326). Multivariable logistic regression was used to estimate ORs and 95% confidence intervals (CI) of the risk of PDAC adjusted for age and sex. We examined multiplicative interactions of ABO with secretor status and Lewis antigens by considering each product term between ABO and secretor and between ABO and Lewis antigens individually. RESULTS We found that the increased risk associated with non-O blood groups was somewhat stronger among secretors than nonsecretors [ORs, 1.28 (95% CI, 1.15-1.42) and 1.17 (95% CI, 1.03-1.32) respectively; Pinteraction = 0.002]. We did not find any interactions between ABO and Lewis antigens. CONCLUSIONS Our large consortia data provide evidence of effect modification in the association between non-O blood type and pancreatic cancer risk by secretor status. IMPACT Our results indicate that the association between ABO blood type and PDAC risk may vary by secretor status, but not by Lewis antigens.
Collapse
Affiliation(s)
- Jihye Kim
- Program in Genetic Epidemiology and Statistical Genetics,
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston,
Massachusetts, United States of America
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts, United States of America
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer
Epidemiology and Genetics, National Cancer Institute, National Institutes of Health,
Bethesda, Maryland, United States of America
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts, United States of America
| | | | - Alison P. Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer
Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Sol Goldman Pancreatic Cancer
Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United
States of America
| | | | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of
Public Health, New Haven, Connecticut, United States of America
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics,
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston,
Massachusetts, United States of America
- Department of Biostatistics, Harvard T.H. Chan School of
Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
28
|
Piccardi M, Gentiluomo M, Bertoncini S, Pezzilli R, Erőss B, Bunduc S, Uzunoglu FG, Talar-Wojnarowska R, Vanagas T, Sperti C, Oliverius M, Aoki MN, Ermini S, Hussein T, Boggi U, Jamroziak K, Maiello E, Morelli L, Vodickova L, Di Franco G, Landi S, Szentesi A, Lovecek M, Puzzono M, Tavano F, van Laarhoven HWM, Zerbi A, Mohelnikova-Duchonova B, Stocker H, Costello E, Capurso G, Ginocchi L, Lawlor RT, Vanella G, Bazzocchi F, Izbicki JR, Latiano A, Bueno-de-Mesquita B, Ponz de Leon Pisani R, Schöttker B, Soucek P, Hegyi P, Gazouli M, Hackert T, Kupcinskas J, Poskiene L, Tacelli M, Roth S, Carrara S, Perri F, Hlavac V, Theodoropoulos GE, Busch OR, Mambrini A, van Eijck CHJ, Arcidiacono P, Scarpa A, Pasquali C, Basso D, Lucchesi M, Milanetto AC, Neoptolemos JP, Cavestro GM, Janciauskas D, Chen X, Chammas R, Goetz M, Brenner H, Archibugi L, Dannemann M, Canzian F, Tofanelli S, Campa D. Exploring the Neandertal legacy of pancreatic ductal adenocarcinoma risk in Eurasians. Biol Res 2023; 56:46. [PMID: 37574541 PMCID: PMC10424372 DOI: 10.1186/s40659-023-00457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND The genomes of present-day non-Africans are composed of 1-3% of Neandertal-derived DNA as a consequence of admixture events between Neandertals and anatomically modern humans about 50-60 thousand years ago. Neandertal-introgressed single nucleotide polymorphisms (aSNPs) have been associated with modern human disease-related traits, which are risk factors for pancreatic ductal adenocarcinoma (PDAC), such as obesity, type 2 diabetes, and inflammation. In this study, we aimed at investigating the role of aSNPs in PDAC in three Eurasian populations. RESULTS The high-coverage Vindija Neandertal genome was used to select aSNPs in non-African populations from 1000 Genomes project phase 3 data. Then, the association between aSNPs and PDAC risk was tested independently in Europeans and East Asians, using existing GWAS data on more than 200 000 individuals. We did not find any significant associations between aSNPs and PDAC in samples of European descent, whereas, in East Asians, we observed that the Chr10p12.1-rs117585753-T allele (MAF = 10%) increased the risk to develop PDAC (OR = 1.35, 95%CI 1.19-1.54, P = 3.59 × 10-6), with a P-value close to a threshold that takes into account multiple testing. CONCLUSIONS Our results show only a minimal contribution of Neandertal SNPs to PDAC risk.
Collapse
Affiliation(s)
- Margherita Piccardi
- Department of Biology, Unit of Genetics, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Manuel Gentiluomo
- Department of Biology, Unit of Genetics, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Stefania Bertoncini
- Department of Biology, Unit of Zoology and Anthropology, University of Pisa, Pisa, Italy
| | | | - Bálint Erőss
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Stefania Bunduc
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Tomas Vanagas
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Cosimo Sperti
- Department DISCOG, Chirurgia Generale 1, University of Padova, Padua, Italy
| | - Martin Oliverius
- Department of Surgery, Third Faculty of Medicine, University Hospital Kralovske Vinohrady, Charles University, Prague, Czech Republic
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Curitiba, Brazil
| | - Stefano Ermini
- Blood Transfusion Service, Azienda Ospedaliero-Universitaria Meyer, Children's Hospital, Florence, Italy
| | - Tamás Hussein
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Ugo Boggi
- Division of General and Transplantation Surgery, University of Pisa, Pisa, Italy
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, University of Warsaw, Warsaw, Poland
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS "Casa Sollievo Della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Luca Morelli
- Department of Translational Research and New Technologies in Medicine and Surgery, General Surgery Unit, University of Pisa, Pisa, Italy
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Gregorio Di Franco
- Department of Translational Research and New Technologies in Medicine and Surgery, General Surgery Unit, University of Pisa, Pisa, Italy
| | - Stefano Landi
- Department of Biology, Unit of Genetics, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Martin Lovecek
- Department of Surgery I, University Hospital Olomouc, Olomouc, Czech Republic
| | - Marta Puzzono
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo Della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Alessandro Zerbi
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Eithne Costello
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, S Andrea Hospital, Rome, Italy
- Pancreas Translational and Clinical Research Center, Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Laura Ginocchi
- Oncological Department, Oncology of Massa Carrara, ASL Toscana Nord Ovest, Massa Carrara, Italy
| | - Rita T Lawlor
- ARC-NET Research Centre and Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Giuseppe Vanella
- Digestive and Liver Disease Unit, S Andrea Hospital, Rome, Italy
- Pancreas Translational and Clinical Research Center, Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Francesca Bazzocchi
- Department of Surgery, Fondazione IRCCS "Casa Sollievo Della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Latiano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo Della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Bas Bueno-de-Mesquita
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ruggero Ponz de Leon Pisani
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thilo Hackert
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Matteo Tacelli
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Susanne Roth
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Silvia Carrara
- Department of Gastroenterology, Endoscopic Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo Della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - George E Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Olivier R Busch
- Department of Surgery, Amsterdam UMC, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrea Mambrini
- Oncological Department, Oncology of Massa Carrara, ASL Toscana Nord Ovest, Massa Carrara, Italy
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Paolo Arcidiacono
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre and Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Claudio Pasquali
- Department DISCOG, Chirurgia Generale 3, University of Padova, Padua, Italy
| | - Daniela Basso
- Department DIMED, Laboratory Medicine, University of Padova, Padua, Italy
| | - Maurizio Lucchesi
- Oncological Department, Oncology of Massa Carrara, ASL Toscana Nord Ovest, Massa Carrara, Italy
| | | | - John P Neoptolemos
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dainius Janciauskas
- Department of Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Roger Chammas
- Department of Radiology and Oncology, Institute of Cancer of São Paulo (ICESP) São Paulo, Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mara Goetz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Livia Archibugi
- Digestive and Liver Disease Unit, S Andrea Hospital, Rome, Italy
- Pancreas Translational and Clinical Research Center, Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Michael Dannemann
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sergio Tofanelli
- Department of Biology, Unit of Zoology and Anthropology, University of Pisa, Pisa, Italy
| | - Daniele Campa
- Department of Biology, Unit of Genetics, University of Pisa, Via Derna 1, 56126, Pisa, Italy.
| |
Collapse
|
29
|
Gentiluomo M, Corradi C, Arcidiacono PG, Crippa S, Falconi M, Belfiori G, Farinella R, Apadula L, Lauri G, Bina N, Rizzato C, Canzian F, Morelli L, Capurso G, Campa D. Role of pancreatic ductal adenocarcinoma risk factors in intraductal papillary mucinous neoplasm progression. Front Oncol 2023; 13:1172606. [PMID: 37346070 PMCID: PMC10280811 DOI: 10.3389/fonc.2023.1172606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is lethal due to its late diagnosis and lack of successful treatments. A possible strategy to reduce its death burden is prevention. Intraductal papillary mucinous neoplasms (IPMNs) are precursors of PDAC. It is difficult to estimate the incidence of IPMNs because they are asymptomatic. Two recent studies reported pancreatic cysts in 3% and 13% of scanned subjects. The possibility of identifying a subgroup of IPMN patients with a higher probability of progression into cancer could be instrumental in increasing the survival rate. In this study, genetic and non-genetic PDAC risk factors were tested in a group of IPMN patients under surveillance. Methods A retrospective study was conducted on 354 IPMN patients enrolled in two Italian centres with an average follow-up of 64 months. With the use of DNA extracted from blood, collected at IPMN diagnosis, all patients were genotyped for 30 known PDAC risk loci. The polymorphisms were analysed individually and grouped in an unweighted polygenic score (PGS) in relation to IPMN progression. The ABO blood group and non-genetic PDAC risk factors were also analysed. IPMN progression was defined based on the development of worrisome features and/or high-risk stigmata during follow-up. Results Two genetic variants (rs1517037 and rs10094872) showed suggestive associations with an increment of IPMN progression. After correction for multiple testing, using the Bonferroni correction, none of the variants showed a statistically significant association. However, associations were observed for the non-genetic variables, such as smoking status, comparing heavy smokers with light smokers (HR = 3.81, 95% 1.43-10.09, p = 0.007), and obesity (HR = 2.46, 95% CI 1.22-4.95, p = 0.012). Conclusion In conclusion, this study is the first attempt to investigate the presence of shared genetic background between PDAC risk and IPMN progression; however, the results suggest that the 30 established PDAC susceptibility polymorphisms are not associated with clinical IPMN progression in a sample of 354 patients. However, we observed indications of cigarette smoking and body mass index (BMI) involvement in IPMN progression. The biological mechanism that could link these two risk factors to progression could be chronic inflammation, of which both smoking and obesity are strong promoters.
Collapse
Affiliation(s)
| | | | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Crippa
- Unit of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Massimo Falconi
- Unit of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giulio Belfiori
- Unit of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Laura Apadula
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gaetano Lauri
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Niccolò Bina
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant’Andrea University Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
30
|
Campa D, Gentiluomo M, Stein A, Aoki MN, Oliverius M, Vodičková L, Jamroziak K, Theodoropoulos G, Pasquali C, Greenhalf W, Arcidiacono PG, Uzunoglu F, Pezzilli R, Luchini C, Puzzono M, Loos M, Giaccherini M, Katzke V, Mambrini A, Kiudeliene E, Federico KE, Johansen J, Hussein T, Mohelnikova-Duchonova B, van Eijck CHJ, Brenner H, Farinella R, Pérez JS, Lovecek M, Büchler MW, Hlavac V, Izbicki JR, Hackert T, Chammas R, Zerbi A, Lawlor R, Felici A, Götz M, Capurso G, Ginocchi L, Gazouli M, Kupcinskas J, Cavestro GM, Vodicka P, Moz S, Neoptolemos JP, Kunovsky L, Bojesen SE, Carrara S, Gioffreda D, Morkunas E, Abian O, Bunduc S, Basso D, Boggi U, Wlodarczyk B, Szentesi A, Vanella G, Chen I, Bijlsma MF, Kiudelis V, Landi S, Schöttker B, Corradi C, Giese N, Kaaks R, Peduzzi G, Hegyi P, Morelli L, Furbetta N, Soucek P, Latiano A, Talar-Wojnarowska R, Lindgaard SC, Dijk F, Milanetto AC, Tavano F, Cervena K, Erőss B, Testoni SG, Verhagen-Oldenampsen JHE, Małecka-Wojciesko E, Costello E, Salvia R, Maiello E, Ermini S, Sperti C, Holleczek B, Perri F, Skieceviciene J, Archibugi L, Lucchesi M, Rizzato C, Canzian F. The PANcreatic Disease ReseArch (PANDoRA) consortium: Ten years' experience of association studies to understand the genetic architecture of pancreatic cancer. Crit Rev Oncol Hematol 2023; 186:104020. [PMID: 37164172 DOI: 10.1016/j.critrevonc.2023.104020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023] Open
Abstract
Pancreatic cancer has an incidence that almost matches its mortality. Only a small number of risk factors and 33 susceptibility loci have been identified. so Moreover, the relative rarity of pancreatic cancer poses significant hurdles for research aimed at increasing our knowledge of the genetic mechanisms contributing to the disease. Additionally, the inability to adequately power research questions prevents small monocentric studies from being successful. Several consortia have been established to pursue a better understanding of the genetic architecture of pancreatic cancers. The Pancreatic disease research (PANDoRA) consortium is the largest in Europe. PANDoRA is spread across 12 European countries, Brazil and Japan, bringing together 29 basic and clinical research groups. In the last ten years, PANDoRA has contributed to the discovery of 25 susceptibility loci, a feat that will be instrumental in stratifying the population by risk and optimizing preventive strategies.
Collapse
Affiliation(s)
- Daniele Campa
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy.
| | - Manuel Gentiluomo
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Vodičková
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Pilsen, Czech Republic
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - George Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Claudio Pasquali
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 3, Padova, Italy
| | - William Greenhalf
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientic Institute, Milan, Italy
| | - Faik Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Marta Puzzono
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martin Loos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Verena Katzke
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mambrini
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Edita Kiudeliene
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Julia Johansen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Tamás Hussein
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Juan Sainz Pérez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Complejo Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain; Department of Immunology, University of Granada, Granada, Spain
| | - Martin Lovecek
- Department of Surgery I, University Hospital Olomouc, Olomouc, Czech Republic
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Alessandro Zerbi
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Rita Lawlor
- ARC-Net Research Center, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Alessio Felici
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Mara Götz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Laura Ginocchi
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Juozas Kupcinskas
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Pilsen, Czech Republic
| | - Stefania Moz
- Azienda Ospedale-Università di Padova Medicina di Laboratorio, Padova, Italy
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Lumir Kunovsky
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic; 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Stig E Bojesen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Silvia Carrara
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Egidijus Morkunas
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Olga Abian
- Instituto BIFI-Universidad de Zaragoza, Zaragoza, Spain
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Center for Digestive Diseases and Liver Transplant, Fundeni Clinical Insitute, Bucharest, Romania
| | - Daniela Basso
- Dept. of Medicine, University of Padova Medicina di Laboratorio, Padova, Italy
| | - Ugo Boggi
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Barbara Wlodarczyk
- Dept of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Giuseppe Vanella
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Inna Chen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Maarten F Bijlsma
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Vytautas Kiudelis
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Stefano Landi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Corradi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Nathalia Giese
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giulia Peduzzi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Péter Hegyi
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation University of Szeged, Szeged, Hungary
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Anna Latiano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | | | - Sidsel C Lindgaard
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Frederike Dijk
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Anna Caterina Milanetto
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 3, Padova, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bálint Erőss
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Sabrina G Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientic Institute, Milan, Italy
| | | | | | - Eithne Costello
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Roberto Salvia
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | | | - Cosimo Sperti
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 1, Padova, Italy
| | - Bernd Holleczek
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Saarland Cancer Registry, Saarbrücken, Germany
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Jurgita Skieceviciene
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Maurizio Lucchesi
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
31
|
Placido D, Yuan B, Hjaltelin JX, Zheng C, Haue AD, Chmura PJ, Yuan C, Kim J, Umeton R, Antell G, Chowdhury A, Franz A, Brais L, Andrews E, Marks DS, Regev A, Ayandeh S, Brophy MT, Do NV, Kraft P, Wolpin BM, Rosenthal MH, Fillmore NR, Brunak S, Sander C. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nat Med 2023; 29:1113-1122. [PMID: 37156936 PMCID: PMC10202814 DOI: 10.1038/s41591-023-02332-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
Pancreatic cancer is an aggressive disease that typically presents late with poor outcomes, indicating a pronounced need for early detection. In this study, we applied artificial intelligence methods to clinical data from 6 million patients (24,000 pancreatic cancer cases) in Denmark (Danish National Patient Registry (DNPR)) and from 3 million patients (3,900 cases) in the United States (US Veterans Affairs (US-VA)). We trained machine learning models on the sequence of disease codes in clinical histories and tested prediction of cancer occurrence within incremental time windows (CancerRiskNet). For cancer occurrence within 36 months, the performance of the best DNPR model has area under the receiver operating characteristic (AUROC) curve = 0.88 and decreases to AUROC (3m) = 0.83 when disease events within 3 months before cancer diagnosis are excluded from training, with an estimated relative risk of 59 for 1,000 highest-risk patients older than age 50 years. Cross-application of the Danish model to US-VA data had lower performance (AUROC = 0.71), and retraining was needed to improve performance (AUROC = 0.78, AUROC (3m) = 0.76). These results improve the ability to design realistic surveillance programs for patients at elevated risk, potentially benefiting lifespan and quality of life by early detection of this aggressive cancer.
Collapse
Affiliation(s)
- Davide Placido
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Yuan
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jessica X Hjaltelin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chunlei Zheng
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Amalie D Haue
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Piotr J Chmura
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chen Yuan
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jihye Kim
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Renato Umeton
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Weill Cornell Medicine, New York City, NY, USA
| | | | | | - Alexandra Franz
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | | | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Genentech, Inc., South San Francisco, CA, USA
| | | | - Mary T Brophy
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Nhan V Do
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Peter Kraft
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brian M Wolpin
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Rosenthal
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Nathanael R Fillmore
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Chris Sander
- Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Boston, MA, USA.
| |
Collapse
|
32
|
Lee AA, Wang QL, Kim J, Babic A, Zhang X, Perez K, Ng K, Nowak J, Rifai N, Sesso HD, Buring JE, Anderson GL, Wactawski-Wende J, Wallace R, Manson JE, Giovannucci EL, Stampfer MJ, Kraft P, Fuchs CS, Yuan C, Wolpin BM. Helicobacter pylori Seropositivity, ABO Blood Type, and Pancreatic Cancer Risk From 5 Prospective Cohorts. Clin Transl Gastroenterol 2023; 14:e00573. [PMID: 36854058 PMCID: PMC10208692 DOI: 10.14309/ctg.0000000000000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/04/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Helicobacter pylori infection may be a risk factor for pancreatic cancer, particularly infection by strains without the cytotoxin-associated gene A (CagA) virulence factor. Non-O blood type is a known risk factor for pancreatic cancer, and H. pylori gastric colonization occurs largely from bacterial adhesins binding to blood group antigens on gastric mucosa. METHODS We included 485 pancreatic cancer cases and 1,122 matched controls from 5 U.S. prospective cohorts. Prediagnostic plasma samples were assessed for H. pylori and CagA antibody titers. Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for pancreatic cancer. ABO blood type was assessed using genetic polymorphisms at the ABO gene locus or self-report. RESULTS Compared with H. pylori -seronegative participants, those who were seropositive did not demonstrate an increased risk of pancreatic cancer (OR 0.83, 95% CI 0.65-1.06). This lack of association was similar among CagA-seropositive (OR 0.75, 95% CI 0.53-1.04) and -seronegative (OR 0.89, 95% CI 0.65-1.20) participants. The association was also similar when stratified by time between blood collection and cancer diagnosis ( P -interaction = 0.80). Consistent with previous studies, non-O blood type was associated with increased pancreatic cancer risk, but this increase in risk was similar regardless of H. pylori seropositivity ( P -interaction = 0.51). DISCUSSION In this nested case-control study, history of H. pylori infection as determined by H. pylori antibody serology was not associated with pancreatic cancer risk, regardless of CagA virulence factor status. The elevated risk associated with non-O blood type was consistent in those with or without H. pylori seropositivity.
Collapse
Affiliation(s)
- Alice A. Lee
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qiao-Li Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Jihye Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Nowak
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nader Rifai
- Departments of Pathology and Laboratory Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Howard D. Sesso
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Julie E. Buring
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Garnet L. Anderson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University of Buffalo, Buffalo, New York, USA
| | - Robert Wallace
- Departments of Epidemiology and Medicine, University of Iowa, Iowa City, Iowa, USA
| | - JoAnn E. Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Edward L. Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Meir J. Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Charles S. Fuchs
- Hematology and Oncology Product Development, Genentech & Roche, South San Francisco, California, USA
- Yale Cancer Center and Smillow Cancer Hospital, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Yamazaki H, Streicher SA, Wu L, Fukuhara S, Wagner R, Heni M, Grossman SR, Lenz HJ, Setiawan VW, Marchand LL, Huang BZ. Genetic Evidence Causally Linking Pancreas Fat to Pancreatic Cancer: A Mendelian Randomization Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.20.23288770. [PMID: 37163062 PMCID: PMC10168411 DOI: 10.1101/2023.04.20.23288770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background & Aims Pancreatic ductal adenocarcinoma (PDAC) is highly lethal, and any clues to understanding its elusive etiology could lead to breakthroughs in prevention, early detection, or treatment. Observational studies have shown a relationship between pancreas fat accumulation and PDAC, but the causality of this link is unclear. We therefore investigated whether pancreas fat is causally associated with PDAC using two-sample Mendelian randomization. Methods We leveraged eight genetic variants associated with pancreas fat (P<5×10 -8 ) from a genome-wide association study (GWAS) in the UK Biobank (25,617 individuals), and assessed their association with PDAC in the Pancreatic Cancer Cohort Consortium I-III and the Pancreatic Cancer Case-Control Consortium dataset (8,275 PDAC cases and 6,723 non-cases). Causality was assessed using the inverse-variance weighted method. Although none of these genetic variants were associated with body mass index (BMI) at genome-wide significance, we further conducted a sensitivity analysis excluding genetic variants with a nominal BMI association in GWAS summary statistics from the UK Biobank and the Genetic Investigation of Anthropometric Traits consortium dataset (806,834 individuals). Results Genetically determined higher levels of pancreas fat using the eight genetic variants was associated with increased risk of PDAC. For one standard deviation increase in pancreas fat levels (i.e., 7.9% increase in pancreas fat fraction), the odds ratio of PDAC was 2.46 (95%CI:1.38-4.40, P=0.002). Similar results were obtained after excluding genetic variants nominally linked to BMI (odds ratio:3.79, 95%CI:1.66-8.65, P=0.002). Conclusions This study provides genetic evidence for a causal role of pancreas fat in the pathogenesis of PDAC. Thus, reducing pancreas fat could lower the risk of PDAC.
Collapse
|
34
|
Marin AM, Sanchuki HBS, Namur GN, Uno M, Zanette DL, Aoki MN. Circulating Cell-Free Nucleic Acids as Biomarkers for Diagnosis and Prognosis of Pancreatic Cancer. Biomedicines 2023; 11:biomedicines11041069. [PMID: 37189687 DOI: 10.3390/biomedicines11041069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
A lack of reliable early diagnostic tools represents a major challenge in the management of pancreatic cancer (PCa), as the disease is often only identified after it reaches an advanced stage. This highlights the urgent need to identify biomarkers that can be used for the early detection, staging, treatment monitoring, and prognosis of PCa. A novel approach called liquid biopsy has emerged in recent years, which is a less- or non-invasive procedure since it focuses on plasmatic biomarkers such as DNA and RNA. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) have been identified such as DNA, mRNA, and non-coding RNA (miRNA and lncRNA). The presence of these molecules encouraged researchers to investigate their potential as biomarkers. In this article, we focused on circulating cfNAs as plasmatic biomarkers of PCa and analyzed their advantages compared to traditional biopsy methods.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Heloisa Bruna Soligo Sanchuki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Guilherme Naccache Namur
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| |
Collapse
|
35
|
Stoffel EM, Brand RE, Goggins M. Pancreatic Cancer: Changing Epidemiology and New Approaches to Risk Assessment, Early Detection, and Prevention. Gastroenterology 2023; 164:752-765. [PMID: 36804602 DOI: 10.1053/j.gastro.2023.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Pancreatic cancer usually results in poor survival with limited options for treatment, as most affected individuals present with advanced disease. Early detection of preinvasive pancreatic neoplasia and identifying molecular therapeutic targets provide opportunities for extending survival. Although screening for pancreatic cancer is currently not recommended for the general population, emerging evidence indicates that pancreatic surveillance can improve outcomes for individuals in certain high-risk groups. Changes in the epidemiology of pancreatic cancer, experience from pancreatic surveillance, and discovery of novel biomarkers provide a roadmap for new strategies for pancreatic cancer risk assessment, early detection, and prevention.
Collapse
Affiliation(s)
- Elena M Stoffel
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Randall E Brand
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Michael Goggins
- Departments of Medicine and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
36
|
Association of the Telomerase Reverse Transcriptase rs10069690 Polymorphism with the Risk, Age at Onset and Prognosis of Triple Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24031825. [PMID: 36768147 PMCID: PMC9916321 DOI: 10.3390/ijms24031825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) plays a key role in the maintenance of telomere DNA length. The rs10069690 single nucleotide variant, located in intron 4 of TERT, was found to be associated with telomere length and the risk of estrogen receptor-negative but not-positive breast cancer. This study aimed at analysis of the association of rs10069690 genotype and TERT expression with the risk, age at onset, prognosis, and clinically and molecularly relevant subtypes of breast cancer. Accordingly, rs10069690 was genotyped in a hospital-based case-control study of 403 female breast cancer patients and 246 female controls of a Central European (Austrian) study population, and the mRNA levels of TERT were quantified in 106 primary breast tumors using qRT-PCR. We found that in triple-negative breast cancer patients, the minor rs10069690 TT genotype tended to be associated with an increased breast cancer risk (OR, 1.87; 95% CI, 0.75-4.71; p = 0.155) and was significantly associated with 11.7 years younger age at breast cancer onset (p = 0.0002), whereas the CC genotype was associated with a poor brain metastasis-free survival (p = 0.009). Overall, our data show that the rs10069690 CC genotype and a high TERT expression tended to be associated with each other and with a poor prognosis. Our findings indicate a key role of rs10069690 in triple-negative breast cancer.
Collapse
|
37
|
Dicanio M, Giaccherini M, Clay‐Gilmour A, Macauda A, Sainz J, Machiela MJ, Rybicka‐Ramos M, Norman AD, Tyczyńska A, Chanock SJ, Barington T, Kumar SK, Bhatti P, Cozen W, Brown EE, Suska A, Haastrup EK, Orlowski RZ, Dudziński M, Garcia‐Sanz R, Kruszewski M, Martinez‐Lopez J, Beider K, Iskierka‐Jazdzewska E, Pelosini M, Berndt SI, Raźny M, Jamroziak K, Rajkumar SV, Jurczyszyn A, Vangsted AJ, Collado PG, Vogel U, Hofmann JN, Petrini M, Butrym A, Slager SL, Ziv E, Subocz E, Giles GG, Andersen NF, Mazur G, Watek M, Lesueur F, Hildebrandt MAT, Zawirska D, Ebbesen LH, Marques H, Gemignani F, Dumontet C, Várkonyi J, Buda G, Nagler A, Druzd‐Sitek A, Wu X, Kadar K, Camp NJ, Grzasko N, Waller RG, Vachon C, Canzian F, Campa D. A pleiotropic variant in DNAJB4 is associated with multiple myeloma risk. Int J Cancer 2023; 152:239-248. [PMID: 36082445 PMCID: PMC9828677 DOI: 10.1002/ijc.34278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023]
Abstract
Pleiotropy, which consists of a single gene or allelic variant affecting multiple unrelated traits, is common across cancers, with evidence for genome-wide significant loci shared across cancer and noncancer traits. This feature is particularly relevant in multiple myeloma (MM) because several susceptibility loci that have been identified to date are pleiotropic. Therefore, the aim of this study was to identify novel pleiotropic variants involved in MM risk using 28 684 independent single nucleotide polymorphisms (SNPs) from GWAS Catalog that reached a significant association (P < 5 × 10-8 ) with their respective trait. The selected SNPs were analyzed in 2434 MM cases and 3446 controls from the International Lymphoma Epidemiology Consortium (InterLymph). The 10 SNPs showing the strongest associations with MM risk in InterLymph were selected for replication in an independent set of 1955 MM cases and 1549 controls from the International Multiple Myeloma rESEarch (IMMEnSE) consortium and 418 MM cases and 147 282 controls from the FinnGen project. The combined analysis of the three studies identified an association between DNAJB4-rs34517439-A and an increased risk of developing MM (OR = 1.22, 95%CI 1.13-1.32, P = 4.81 × 10-7 ). rs34517439-A is associated with a modified expression of the FUBP1 gene, which encodes a multifunctional DNA and RNA-binding protein that it was observed to influence the regulation of various genes involved in cell cycle regulation, among which various oncogenes and oncosuppressors. In conclusion, with a pleiotropic scan approach we identified DNAJB4-rs34517439 as a potentially novel MM risk locus.
Collapse
Affiliation(s)
| | | | - Alyssa Clay‐Gilmour
- Department of Epidemiology and Biostatistics, Arnold School of Public HealthUniversity of South CarolinaGreenvilleSouth CarolinaUSA
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Juan Sainz
- Genomic Oncology Area, GENYO. Center for Genomics and Oncological Research: PfizerUniversity of Granada/Andalusian Regional GovernmentGranadaSpain,Department of HematologyVirgen de las Nieves University HospitalGranadaSpain,Department of MedicineUniversity of GranadaGranadaSpain
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | | | - Aaron D. Norman
- Division of Epidemiology, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA,Division of Biomedical Statistics and Informatics, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Agata Tyczyńska
- Department of Hematology and TransplantologyMedical University of GdańskGdańskPoland
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | | | - Shaji K. Kumar
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterOntarioUSA
| | - Parveen Bhatti
- Cancer Control ResearchBC CancerVancouverCanada,Program in Epidemiology, Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Wendy Cozen
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Susan and Henry Samueli College of Health SciencesChao Family Comprehensive Cancer Center, University of CaliforniaIrvineCaliforniaUSA,Department of Pathology, School of Medicine, Susan and Henry Samueli College of Health SciencesChao Family Comprehensive Cancer Center, University of CaliforniaIrvineCaliforniaUSA
| | - Elizabeth E. Brown
- Department of Pathology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Anna Suska
- Plasma Cell Dyscrasia Center Department of Hematology Jagiellonian University Faculty of MedicineKrakówPoland
| | | | - Robert Z. Orlowski
- Department of Lymphoma ‐ Myeloma, Division of Cancer MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Marek Dudziński
- Department of Hematology, Institute of Medical Sciences, College of Medical SciencesUniversity of RzeszowRzeszowPoland
| | - Ramon Garcia‐Sanz
- Medina A. Department of Hematology, University Hospital of Salamanca (HUS/IBSAL)CIBERONC and Cancer Research Institute of Salamanca‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Marcin Kruszewski
- Department of HematologyUniversity Hospital No. 2 in BydgoszczBydgoszczPoland
| | | | - Katia Beider
- Hematology Division Chaim Sheba Medical CenterTel HashomerIsrael
| | | | - Matteo Pelosini
- U.O. Dipartimento di EmatologiaAzienda USL Toscana Nord OvestLivornoItaly,Present address:
Ospedale Santa ChiaraPisaItaly
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | | | - Krzysztof Jamroziak
- Department of HematologyInstitute of Hematology and Transfusion MedicineWarsawPoland
| | - S. Vincent Rajkumar
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterOntarioUSA
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasia Center Department of Hematology Jagiellonian University Faculty of MedicineKrakówPoland
| | | | | | - Ulla Vogel
- National Research Center for the Working EnvironmentCopenhagenDenmark
| | - Jonathan N. Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | - Mario Petrini
- Hematology Unit, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Aleksandra Butrym
- Department of Cancer Prevention and TherapyWroclaw Medical UniversityWroclawPoland
| | - Susan L. Slager
- Division of Epidemiology, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Elad Ziv
- Department of MedicineUniversity of California San Francisco Helen Diller Family Comprehensive Cancer CenterSan FranciscoCaliforniaUSA
| | - Edyta Subocz
- Department of HematologyMilitary Institute of MedicineWarsawPoland
| | - Graham G. Giles
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVictoriaAustralia,Center for Epidemiology and Biostatistics, School of Population and Global HealthThe University of MelbourneMelbourneVictoriaAustralia,Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
| | | | - Grzegorz Mazur
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical OncologyWroclaw Medical UniversityWroclawPoland
| | - Marzena Watek
- Department of HematologyInstitute of Hematology and Transfusion MedicineWarsawPoland,Department of HematologyHolycross Cancer CenterKielcePoland
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL Research University, Mines ParisTechParisFrance
| | - Michelle A. T. Hildebrandt
- Department of Lymphoma ‐ Myeloma, Division of Cancer MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Daria Zawirska
- Department of HematologyUniversity Hospital in CracowCracowPoland
| | | | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of Minho, Braga, Portugal and ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | | | | | - Judit Várkonyi
- Department of Hematology and Internal MedicineSemmelweis UniversityBudapestHungary
| | - Gabriele Buda
- Hematology Unit, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Arnon Nagler
- Hematology Division Chaim Sheba Medical CenterTel HashomerIsrael
| | - Agnieszka Druzd‐Sitek
- Department of Lymphoproliferative DiseasesMaria Skłodowska‐Curie National Research Institute of OncologyWarsawPoland
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population SciencesUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Katalin Kadar
- Department of Hematology and Internal MedicineSemmelweis UniversityBudapestHungary
| | - Nicola J. Camp
- Division of Hematology and Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Norbert Grzasko
- Department of Experimental HematooncologyMedical University of LublinLublinPoland
| | - Rosalie G. Waller
- Division of Biomedical Statistics and Informatics, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Celine Vachon
- Division of Epidemiology, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ)HeidelbergGermany
| | | |
Collapse
|
38
|
Wang Z, Lu Y, Fornage M, Jiao L, Shen J, Li D, Wei P. Identification of novel susceptibility methylation loci for pancreatic cancer in a two-phase epigenome-wide association study. Epigenetics 2022; 17:1357-1372. [PMID: 35030986 PMCID: PMC9586592 DOI: 10.1080/15592294.2022.2026591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
The role of DNA methylation and its interplay with gene expression in the susceptibility to pancreatic cancer (PanC) remains largely unexplored. To fill in this gap, we conducted an integrative two-phase epigenome-wide association study (EWAS) of PanC using genomic DNA from 44 cases and 556 controls (20 local controls and 536 public controls in the Framingham Heart Study) in phase 1 and 23 cases and 22 controls in phase 2. We validated the findings using pre-diagnostic blood samples from 13 cases and 26 controls in the Women's Health Initiative (WHI) Study. We further examined gene expression in peripheral leukocytes of 47 cases and 31 controls involved in the methylation study using RNA sequencing and performed bidirectional Mendelian randomization (MR) analysis using existing single nucleotide polymorphism (SNP) data. In phase 1, we identified 2776 significantly differentially methylated CpG sites (DMPs) and 154 significantly differentially methylated regions (DMRs). In phase 2, we validated six DMPs (in or near AIM2, DGKA, STK39, and TNFSF8) and three DMRs (in or near nc886, LY6G5C, and HLA-DPB1). The DMR near nc886 was further validated in the WHI samples (P = 6.69 × 10-5). MR analysis suggested that the CpG sites cg00308130 and cg16684184 for nc886 and cg16875057 for STK39 were causally related to PanC susceptibility and that PanC influenced methylation of cg15354065 for DGKA. This first integrative EWAS of PanC provides novel insights into the role of DNA methylation and its interplay with SNPs and gene expression in the disease susceptibility.
Collapse
Affiliation(s)
- Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The Virginia Harris Cockrell Cancer Research Center at the University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX, USA
| | - Myriam Fornage
- IBrown Foundation Institute of Molecular Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The Virginia Harris Cockrell Cancer Research Center at the University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
Kawamoto M, Yoshida T, Tamura K, Dbouk M, Canto MI, Burkhart R, He J, Roberts NJ, Klein AP, Goggins M. Endoplasmic stress-inducing variants in carboxyl ester lipase and pancreatic cancer risk. Pancreatology 2022; 22:959-964. [PMID: 35995657 PMCID: PMC9669157 DOI: 10.1016/j.pan.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress-inducing variants in several pancreatic secretory enzymes have been associated with pancreatic disease. Multiple variants in CEL, encoding carboxyl ester lipase, are known to cause maturity-onset diabetes of the young (MODY8) but have not been implicated in pancreatic cancer risk. METHODS The prevalence of ER stress-inducing variants in the CEL gene was compared among pancreatic cancer cases vs. controls. Variants were identified by next-generation sequencing and confirmed by Sanger sequencing. Variants of uncertain significance (VUS) were assessed for their effect on the secretion of CEL protein and variants with reduced protein secretion were evaluated to determine if they induced endoplasmic reticulum stress. RESULTS ER stress-inducing CEL variants were found in 34 of 986 cases with sporadic pancreatic ductal adenocarcinoma, and 21 of 1045 controls (P = 0.055). Most of the variants were either the CEL-HYB1 variant, the I488T variant, or the combined CEL-HYB1/I488T variant; one case had a MODY8 variant. CONCLUSION This case/control analysis finds ER stress-inducing CEL variants are not associated with an increased likelihood of having pancreatic cancer.
Collapse
Affiliation(s)
- Makoto Kawamoto
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Takeichi Yoshida
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Koji Tamura
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mohamad Dbouk
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Marcia Irene Canto
- Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Jin He
- Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alison P Klein
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; The Sol Goldman Pancreatic Cancer Research Center, And the Bloomberg School of Public Health, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael Goggins
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
40
|
Ravaei A, Zimmer-Bensch G, Govoni M, Rubini M. lncRNA-mediated synovitis in rheumatoid arthritis: A perspective for biomarker development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:103-119. [PMID: 36126801 DOI: 10.1016/j.pbiomolbio.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a regulatory class of noncoding RNAs with a wide range of activities such as transcriptional and post-transcriptional regulations. Emerging evidence has demonstrated that various lncRNAs contribute to the initiation and progression of Rheumatoid Arthritis (RA) through distinctive mechanisms. The present study reviews the recent findings on lncRNA role in RA development. It focuses on the involvement of different lncRNAs in the main steps of RA pathogenesis including T cell activation, cytokine dysregulation, fibroblast-like synoviocyte (FLS) activation and joint destruction. Besides, it discusses the current findings on RA diagnosis and the potential of lncRNAs as diagnostic, prognostic and predictive biomarkers in Rheumatology clinic.
Collapse
Affiliation(s)
- Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany.
| | - Marcello Govoni
- Department of Medical Science, Section of Rheumatology, University of Ferrara, Ferrara, Italy.
| | - Michele Rubini
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
41
|
Peduzzi G, Archibugi L, Katzke V, Gentiluomo M, Capurso G, Milanetto AC, Gazouli M, Goetz M, Brenner H, Vermeulen RCH, Talar-Wojnarowska R, Vanella G, Tavano F, Lucchesi M, Mohelnikova-Duchonova B, Chen X, Kiudelis V, Hegyi P, Oliverius M, Stocker H, Stornello C, Vodickova L, Souček P, Neoptolemos JP, Testoni SGG, Morelli L, Lawlor RT, Basso D, Izbicki JR, Ermini S, Kupcinskas J, Pezzilli R, Boggi U, van Laarhoven HWM, Szentesi A, Erőss B, Capretti G, Schöttker B, Skieceviciene J, Aoki MN, van Eijck CHJ, Cavestro GM, Canzian F, Campa D. Common variability in oestrogen-related genes and pancreatic ductal adenocarcinoma risk in women. Sci Rep 2022; 12:18100. [PMID: 36302831 PMCID: PMC9613634 DOI: 10.1038/s41598-022-22973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2022] Open
Abstract
The incidence of pancreatic ductal adenocarcinoma (PDAC) is different among males and females. This disparity cannot be fully explained by the difference in terms of exposure to known risk factors; therefore, the lower incidence in women could be attributed to sex-specific hormones. A two-phase association study was conducted in 12,387 female subjects (5436 PDAC cases and 6951 controls) to assess the effect on risk of developing PDAC of single nucleotide polymorphisms (SNPs) in 208 genes involved in oestrogen and pregnenolone biosynthesis and oestrogen-mediated signalling. In the discovery phase 14 polymorphisms showed a statistically significant association (P < 0.05). In the replication none of the findings were validated. In addition, a gene-based analysis was performed on the 208 selected genes. Four genes (NR5A2, MED1, NCOA2 and RUNX1) were associated with PDAC risk, but only NR5A2 showed an association (P = 4.08 × 10-5) below the Bonferroni-corrected threshold of statistical significance. In conclusion, despite differences in incidence between males and females, our study did not identify an effect of common polymorphisms in the oestrogen and pregnenolone pathways in relation to PDAC susceptibility. However, we validated the previously reported association between NR5A2 gene variants and PDAC risk.
Collapse
Affiliation(s)
- Giulia Peduzzi
- grid.5395.a0000 0004 1757 3729Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Livia Archibugi
- grid.415230.10000 0004 1757 123XDigestive and Liver Disease Unit, Sant’Andrea Hospital, Rome, Italy ,grid.18887.3e0000000417581884Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Verena Katzke
- grid.7497.d0000 0004 0492 0584Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Gentiluomo
- grid.5395.a0000 0004 1757 3729Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Gabriele Capurso
- grid.415230.10000 0004 1757 123XDigestive and Liver Disease Unit, Sant’Andrea Hospital, Rome, Italy ,grid.18887.3e0000000417581884Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | | | - Maria Gazouli
- grid.5216.00000 0001 2155 0800Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mara Goetz
- grid.13648.380000 0001 2180 3484Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Hermann Brenner
- grid.7497.d0000 0004 0492 0584Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Renata Talar-Wojnarowska
- grid.8267.b0000 0001 2165 3025Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Giuseppe Vanella
- grid.415230.10000 0004 1757 123XDigestive and Liver Disease Unit, Sant’Andrea Hospital, Rome, Italy ,grid.18887.3e0000000417581884Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Francesca Tavano
- grid.413503.00000 0004 1757 9135Division of Gastroenterology and Research Laboratory, Fondazione IRCCS “Casa Sollievo Della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Maurizio Lucchesi
- Oncology of Massa Carrara, Oncological Department, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Beatrice Mohelnikova-Duchonova
- grid.10979.360000 0001 1245 3953Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Xuechen Chen
- grid.7497.d0000 0004 0492 0584Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Vytautas Kiudelis
- grid.45083.3a0000 0004 0432 6841Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Péter Hegyi
- grid.9679.10000 0001 0663 9479Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary ,grid.11804.3c0000 0001 0942 9821Centre for Translational Medicine, Semmelweis University, Budapest, Hungary ,grid.11804.3c0000 0001 0942 9821Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary ,grid.9679.10000 0001 0663 9479János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Martin Oliverius
- grid.4491.80000 0004 1937 116XSurgery Clinic Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hannah Stocker
- grid.7497.d0000 0004 0492 0584Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Caterina Stornello
- grid.415230.10000 0004 1757 123XDigestive and Liver Disease Unit, Sant’Andrea Hospital, Rome, Italy ,grid.18887.3e0000000417581884Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Ludmila Vodickova
- grid.424967.a0000 0004 0404 6946Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic ,grid.4491.80000 0004 1937 116XFirst Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic ,grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Souček
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - John P. Neoptolemos
- grid.7700.00000 0001 2190 4373Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Sabrina Gloria Giulia Testoni
- grid.18887.3e0000000417581884Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Luca Morelli
- grid.5395.a0000 0004 1757 3729General Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rita T. Lawlor
- grid.411475.20000 0004 1756 948XARC-NET, Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Daniela Basso
- grid.5608.b0000 0004 1757 3470Department DIMED-Laboratory Medicine, University of Padova, Padua, Italy
| | - Jakob R. Izbicki
- grid.13648.380000 0001 2180 3484Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Stefano Ermini
- grid.413181.e0000 0004 1757 8562Blood Transfusion Service, Azienda Ospedaliero-Universitaria Meyer, Florence, Italy
| | - Juozas Kupcinskas
- grid.45083.3a0000 0004 0432 6841Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Ugo Boggi
- grid.144189.10000 0004 1756 8209Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Hanneke W. M. van Laarhoven
- grid.7177.60000000084992262Department of Medical Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands ,grid.16872.3a0000 0004 0435 165XCancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Andrea Szentesi
- grid.9679.10000 0001 0663 9479Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary ,grid.9679.10000 0001 0663 9479János Szentágothai Research Center, University of Pécs, Pécs, Hungary ,grid.9008.10000 0001 1016 9625Centre for Translational Medicine, Department of Medicine, University of Szeged, Szeged, Hungary
| | - Bálint Erőss
- grid.9679.10000 0001 0663 9479Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary ,grid.11804.3c0000 0001 0942 9821Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary ,grid.11804.3c0000 0001 0942 9821Center for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Giovanni Capretti
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Milan, Italy ,grid.417728.f0000 0004 1756 8807Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ben Schöttker
- grid.7497.d0000 0004 0492 0584Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jurgita Skieceviciene
- grid.45083.3a0000 0004 0432 6841Gastroenterology Department and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mateus Nóbrega Aoki
- grid.418068.30000 0001 0723 0931Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Casper H. J. van Eijck
- grid.5645.2000000040459992XDepartment of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Giulia Martina Cavestro
- grid.15496.3f0000 0001 0439 0892Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Canzian
- grid.7497.d0000 0004 0492 0584Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- grid.5395.a0000 0004 1757 3729Department of Biology, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
42
|
García-Sancha N, Corchado-Cobos R, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Blanco-Gómez A, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Mendiburu-Eliçabe M, Pérez-Losada J. Evolutionary Origins of Metabolic Reprogramming in Cancer. Int J Mol Sci 2022; 23:ijms232012063. [PMID: 36292921 PMCID: PMC9603151 DOI: 10.3390/ijms232012063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. These changes are not specific to tumors but also take place during the physiological growth of tissues. Indeed, the cellular and tissue mechanisms present in the tumor have their physiological counterpart in the repair of tissue lesions and wound healing. These molecular mechanisms have been acquired during metazoan evolution, first to eliminate the infection of the tissue injury, then to enter an effective regenerative phase. Cancer itself could be considered a phenomenon of antagonistic pleiotropy of the genes involved in effective tissue repair. Cancer and tissue repair are complex traits that share many intermediate phenotypes at the molecular, cellular, and tissue levels, and all of these are integrated within a Systems Biology structure. Complex traits are influenced by a multitude of common genes, each with a weak effect. This polygenic component of complex traits is mainly unknown and so makes up part of the missing heritability. Here, we try to integrate these different perspectives from the point of view of the metabolic changes observed in cancer.
Collapse
Affiliation(s)
- Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Adrián Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.M.-E.); (J.P.-L.)
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.M.-E.); (J.P.-L.)
| |
Collapse
|
43
|
Corpas M, Megy K, Metastasio A, Lehmann E. Implementation of individualised polygenic risk score analysis: a test case of a family of four. BMC Med Genomics 2022; 15:207. [PMID: 36192731 PMCID: PMC9531350 DOI: 10.1186/s12920-022-01331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Polygenic risk scores (PRS) have been widely applied in research studies, showing how population groups can be stratified into risk categories for many common conditions. As healthcare systems consider applying PRS to keep their populations healthy, little work has been carried out demonstrating their implementation at an individual level. CASE PRESENTATION We performed a systematic curation of PRS sources from established data repositories, selecting 15 phenotypes, comprising an excess of 37 million SNPs related to cancer, cardiovascular, metabolic and autoimmune diseases. We tested selected phenotypes using whole genome sequencing data for a family of four related individuals. Individual risk scores were given percentile values based upon reference distributions among 1000 Genomes Iberians, Europeans, or all samples. Over 96 billion allele effects were calculated in order to obtain the PRS for each of the individuals analysed here. CONCLUSIONS Our results highlight the need for further standardisation in the way PRS are developed and shared, the importance of individual risk assessment rather than the assumption of inherited averages, and the challenges currently posed when translating PRS into risk metrics.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK.
- Institute of Continuing Education, University of Cambridge, Cambridge, UK.
- Facultad de Ciencias de La Salud, Universidad Internacional de La Rioja, Madrid, Spain.
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Department of Haematology, University of Cambridge & NHS Blood and Transplant, Cambridge, UK
| | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
| |
Collapse
|
44
|
Germline Testing for Individuals with Pancreatic Adenocarcinoma and Novel Genetic Risk Factors. Hematol Oncol Clin North Am 2022; 36:943-960. [DOI: 10.1016/j.hoc.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
45
|
Giaccherini M, Gentiluomo M, Arcidiacono PG, Falconi M, Testoni SGG, Apadula L, Lauri G, Di Franco G, Fatucchi LM, Petrone MC, Corradi C, Crippa S, Morelli L, Capurso G, Campa D. A polymorphic variant in telomere maintenance is associated with worrisome features and high-risk stigmata development in IPMNs. Carcinogenesis 2022; 43:728-735. [PMID: 35675759 DOI: 10.1093/carcin/bgac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) are nonobligatory precursor lesions of pancreatic ductal adenocarcinoma (PDAC). The identification of molecular biomarkers able to predict the risk of progression of IPMNs toward malignancy is largely lacking and sorely needed. Telomere length (TL) is associated with the susceptibility of developing cancers, including PDAC. Moreover, several PDAC risk factors have been shown to be associated with IPMN transition to malignancy. TL is genetically determined, and the aim of this study was to use 11 SNPs, alone or combined in a score (teloscore), to estimate the causal relation between genetically determined TL and IPMNs progression. For this purpose, 173 IPMN patients under surveillance were investigated. The teloscore did not show any correlation, however, we observed an association between PXK-rs6772228-A and an increased risk of IPMN transition to malignancy (HR = 3.17; 95%CI 1.47-6.84; P = 3.24 × 10-3). This effect was also observed in a validation cohort of 142 IPMNs even though the association was not statistically significant. The combined analysis was consistent showing an association between PXK-rs6772228-A and increased risk of progression. The A allele of this SNP is strongly associated with shorter LTL that in turn have been reported to be associated with increased risk of developing PDAC. These results clearly highlight the importance of looking for genetic variants as potential biomarkers in this setting in order to further our understanding the etiopathogenesis of PDAC and suggest that genetically determined TL might be an additional marker of IPMN prognosis.
Collapse
Affiliation(s)
| | | | - Paolo Giorgio Arcidiacono
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Sabrina Gloria Giulia Testoni
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Apadula
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Gaetano Lauri
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Gregorio Di Franco
- General Surgery Unit, Cisanello Hospital, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorenzo Maria Fatucchi
- General Surgery Unit, Cisanello Hospital, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Chiara Petrone
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Stefano Crippa
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Morelli
- General Surgery Unit, Cisanello Hospital, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriele Capurso
- Pancreatico-Biliary Endoscopy & Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
46
|
Role of Polygenic Risk Score in Cancer Precision Medicine of Non-European Populations: A Systematic Review. Curr Oncol 2022; 29:5517-5530. [PMID: 36005174 PMCID: PMC9406904 DOI: 10.3390/curroncol29080436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The development of new screening methods and diagnostic tests for traits, common diseases, and cancer is linked to the advent of precision genomic medicine, in which health care is individually adjusted based on a person’s lifestyle, environmental influences, and genetic variants. Based on genome-wide association study (GWAS) analysis, rapid and continuing progress in the discovery of relevant single nucleotide polymorphisms (SNPs) for traits or complex diseases has increased interest in the potential application of genetic risk models for routine health practice. The polygenic risk score (PRS) estimates an individual’s genetic risk of a trait or disease, calculated by employing a weighted sum of allele counts combined with non-genetic variables. However, 98.38% of PRS records held in public databases relate to the European population. Therefore, PRSs for multiethnic populations are urgently needed. We performed a systematic review to discuss the role of polygenic risk scores in advancing precision medicine for different cancer types in multiethnic non-European populations.
Collapse
|
47
|
Bukhari I, Khan MR, Hussain MA, Thorne RF, Yu Y, Zhang B, Zheng P, Mi Y. PINTology: A short history of the lncRNA LINC-PINT in different diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1705. [PMID: 35019222 DOI: 10.1002/wrna.1705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
LINC-PINT is a p53-induced long intergenic noncoding transcript that plays a crucial role in many diseases, especially cancer. This long noncoding RNA (lncRNA) gene produces in total 102 (LNCipedia) alternatively spliced variants (LINC-PINT:1 to LINC-PINT:102). The functions of known variants include RNA transcripts, host transcripts for circular RNA (circRNA) generation and as sources for the translation of short peptides. In most human tumors, LINC-PINT is down-regulated where it serves as a tumor suppressor. However, the diversity of its functions in other maladies signifies its general clinical importance. Current LINC-PINT molecular functions include RNA-protein interactions, miRNA sponging and epigenetic modulation with these mechanisms operating in different cellular contexts to exert effects on biological processes ranging from DNA damage responses, cell cycle and growth arrest, senescence, cell migration and invasion, and apoptosis. Genetic polymorphisms in LINC-PINT have also been functionally associated with cancer and other pathologies including the autoimmune diseases pemphigus foliaceus and arthritis. Hence, LINC-PINT shows great potential as a clinical biomarker, especially for the diagnosis and prognosis of cancer. In this review, we explore the current knowledge highlighting the distinctive molecular functions of LINC-PINT in specific cancers and other disease states. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated hospital of Zhengzhou University, Zhengzhou, China
| | - Muhammad Riaz Khan
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie - Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mohammed Amir Hussain
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China.,School of Environmental & Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Yong Yu
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated hospital of Zhengzhou University, Zhengzhou, China
| | - Bingyong Zhang
- Department of Gastroenterology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Yuan C, Kim J, Wang QL, Lee AA, Babic A, Amundadottir LT, Klein AP, Li D, McCullough ML, Petersen GM, Risch HA, Stolzenberg-Solomon RZ, Perez K, Ng K, Giovannucci EL, Stampfer MJ, Kraft P, Wolpin BM. The age-dependent association of risk factors with pancreatic cancer. Ann Oncol 2022; 33:693-701. [PMID: 35398288 PMCID: PMC9233063 DOI: 10.1016/j.annonc.2022.03.276] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pancreatic cancer presents as advanced disease in >80% of patients; yet, appropriate ages to consider prevention and early detection strategies are poorly defined. We investigated age-specific associations and attributable risks of pancreatic cancer for established modifiable and non-modifiable risk factors. PATIENTS AND METHODS We included 167 483 participants from two prospective US cohort studies with 1190 incident cases of pancreatic cancer during >30 years of follow-up; 5107 pancreatic cancer cases and 8845 control participants of European ancestry from a completed multicenter genome-wide association study (GWAS); and 248 893 pancreatic cancer cases documented in the US Surveillance, Epidemiology, and End Results (SEER) Program. Across different age categories, we investigated cigarette smoking, obesity, diabetes, height, and non-O blood group in the prospective cohorts; weighted polygenic risk score of 22 previously identified single nucleotide polymorphisms in the GWAS; and male sex and black race in the SEER Program. RESULTS In the prospective cohorts, all five risk factors were more strongly associated with pancreatic cancer risk among younger participants, with associations attenuated among those aged >70 years. The hazard ratios comparing participants with three to five risk factors with those with no risk factors were 9.24 [95% confidence interval (CI) 4.11-20.77] among those aged ≤60 years, 3.00 (95% CI 1.85-4.86) among those aged 61-70 years, and 1.46 (95% CI 1.10-1.94) among those aged >70 years (Pheterogeneity = 3×10-5). These factors together were related to 65.6%, 49.7%, and 17.2% of incident pancreatic cancers in these age groups, respectively. In the GWAS and the SEER Program, the associations with the polygenic risk score, male sex, and black race were all stronger among younger individuals (Pheterogeneity ≤0.01). CONCLUSIONS Established risk factors are more strongly associated with earlier-onset pancreatic cancer, emphasizing the importance of age at initiation for cancer prevention and control programs targeting this highly lethal malignancy.
Collapse
Affiliation(s)
- C Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA.
| | - J Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Q L Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - A A Lee
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - A Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - L T Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - A P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, USA; Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, USA
| | - D Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - M L McCullough
- Department of Population Science, American Cancer Society, Atlanta, USA
| | - G M Petersen
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine, Rochester, USA
| | - H A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, USA
| | | | - K Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - K Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - E L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - M J Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - P Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA
| | - B M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| |
Collapse
|
49
|
Chen X, Jiang L, Zhou Z, Yang B, He Q, Zhu C, Cao J. The Role of Membrane-Associated E3 Ubiquitin Ligases in Cancer. Front Pharmacol 2022; 13:928794. [PMID: 35847032 PMCID: PMC9285105 DOI: 10.3389/fphar.2022.928794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
The cell membrane system comprises the plasma membrane, endoplasmic reticulum, Golgi apparatus, lysosome, mitochondria, and nuclear membrane, which are essential for maintaining normal physiological functions of cells. The proteins associated with these membrane-organelles are frequently modified to regulate their functions, the most common of which is ubiquitin modification. So far, many ubiquitin E3 ligases anchored in the membrane system have been identified as critical players facilitating intracellular biofunctions whose dysfunction is highly related to cancer. In this review, we summarized membrane-associated E3 ligases and revealed their relationship with cancer, which is of great significance for discovering novel drug targets of cancer and may open up new avenues for inducing ubiquitination-mediated degradation of cancer-associated membrane proteins via small chemicals such as PROTAC and molecular glue.
Collapse
Affiliation(s)
- Xuankun Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Li Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Zhesheng Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Chengliang Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, China
- *Correspondence: Chengliang Zhu, ; Ji Cao,
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
- *Correspondence: Chengliang Zhu, ; Ji Cao,
| |
Collapse
|
50
|
Abstract
Background It is estimated that about 10% of pancreatic cancer cases have a genetic background. People with a familial predisposition to pancreatic cancer can be divided into 2 groups. The first is termed hereditary pancreatic cancer, which occurs in individuals with a known hereditary cancer syndrome caused by germline single gene mutations (e.g., BRCA1/2, CDKN2A). The second is considered as familial pancreatic cancer, which is associated with several genetic factors responsible for the more common development of pancreatic cancer in certain families, but the precise single gene mutation has not been found. Aim This review summarizes the current state of knowledge regarding the risk of pancreatic cancer development in hereditary pancreatic cancer and familial pancreatic cancer patients. Furthermore, it gathers the latest recommendations from the three major organizations dealing with the prevention of pancreatic cancer in high-risk groups and explores recent guidelines of scientific societies on screening for pancreatic cancers in individuals at risk for hereditary or familial pancreatic cancer. Conclusions In order to improve patients’ outcomes, authors of current guidelines recommend early and intensive screening in patients with pancreatic cancer resulting from genetic background. The screening should be performed in excellence centers. The scope, extent and cost-effectiveness of such interventions requires further studies.
Collapse
|