1
|
Diamantopoulos MA, Adamopoulos PG, Tsiakanikas P, Nisotakis T, Skourou PC, Scorilas A. Unraveling novel mRNA transcripts of the human DNA N-glycosylase 1 (NTHL1) gene with the implementation of an innovative targeted DNA-seq assay. Gene 2024; 930:148856. [PMID: 39147115 DOI: 10.1016/j.gene.2024.148856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/13/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The human NTHL1 gene encodes a DNA glycosylase that plays a key role in the base excision repair (BER) pathway, repairing oxidative DNA damage and maintaining genome integrity. The physiological activity of NTHL1 is crucial in preventing genetic alterations that can lead to cancer. In this study, we employed an innovative targeted DNA sequencing (DNA-seq) methodology to explore the transcriptional landscape of the NTHL1 gene, revealing previously uncharacterized alternative splicing events and novel exons. Our designed approach provided significantly improved sequencing depth and coverage, enabling the identification of novel NTHL1 mRNA transcripts. Bioinformatics analysis confirmed all annotated splice junctions of the main NTHL1 transcripts (v.1 - v.3) and revealed novel mRNA transcripts (NTHL1 v.4 - v.9) derived from splicing events between annotated exons as well as mRNAs containing previously uncharacterized exons (NTHL1 v.10 - v.14). Quantitative PCR analysis highlighted a diverse expression pattern of these novel transcripts across different human cell lines, suggesting cell-specific roles and regulatory mechanisms. Notably, NTHL1 v.5 was overexpressed in luminal A breast cancer cells (MCF-7), while v.13 was prominent in triple negative (BT-20), HER2 + breast cancer (SK-BR-3), prostate, colorectal cancer cells and HEK-293 cells. Our findings suggest that specific novel NTHL1 transcripts may encode protein isoforms with distinct structural features, as indicated by ribosome profiling datasets, while others containing premature termination codons could function as long non-coding RNAs. These insights enhance our understanding of NTHL1 regulatory role and its potential as a biomarker and therapeutic target in human malignancies. This study underscores the importance of exploring the transcriptional diversity of NTHL1 to fully elucidate its role in cancer pathobiology.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Nisotakis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi C Skourou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Kozak M, Negrete D, Balzer BL, Gaddam S, Guindi M, Hutchings DA, Larson BK, Waters KM. Analysis of the Application of Professional Society Screening Guidelines for Colorectal Polyposis Syndromes at a Single Institution. Mod Pathol 2024; 37:100567. [PMID: 39025407 DOI: 10.1016/j.modpat.2024.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Several professional society guidelines suggest germline genetic testing for colorectal polyposis syndromes in patients with ≥10 lifetime adenomatous polyps. This study evaluated the factors associated with genetic testing decisions and outcomes when germline testing was recommended per guidelines. Surgical archives revealed 145 patients with a recommendation for germline genetic polyposis testing based on guidelines. Demographic data and medical history were collected to examine their association with testing decisions and results. Germline genetic testing was ordered in 90 out of 145 patients and was ordered in younger patients with more lifetime adenomas. Pathogenic alterations were detected in 12 out of 53 patients who completed testing. Younger ages and higher numbers of lifetime adenomas were not associated with the detection of germline genetic alterations. In fact, patients with a pathogenic germline alteration had higher median ages and fewer lifetime adenomas than those without an alteration. Half of the 12 patients with a pathogenic germline mutation were not White non-Hispanic, although White non-Hispanic patients comprised 75.5% of those tested. This study supports the 10 adenomatous polyp threshold for recommending germline genetic polyposis testing, as an alteration was detected in a sizable proportion (>20%) of patients tested. Although a younger age and a higher number of lifetime adenomas were associated with an increased likelihood of ordered tests, no evidence was found to support these additional factors in testing decisions.
Collapse
Affiliation(s)
- Michael Kozak
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - David Negrete
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bonnie L Balzer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Srinivas Gaddam
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Maha Guindi
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Danielle A Hutchings
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brent K Larson
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kevin M Waters
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
3
|
Petrachkova T, Soldatkina O, Leduy L, Nepveu A. The BCL11A transcription factor stimulates the enzymatic activities of the OGG1 DNA glycosylase. Biol Chem 2024:hsz-2024-0088. [PMID: 39272221 DOI: 10.1515/hsz-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The BCL11A transcription factor has previously been shown to interact with and stimulate the enzymatic activities of the NTHL1 DNA glycosylase and Pol β polymerase. Here we show that BCL11A and a smaller peptide encompassing amino acids 160 to 520 can interact with the 8-oxoguanine DNA glycosylase, OGG1, increase the binding of OGG1 to DNA that contains an 8-oxoguanine base and stimulate the glycosylase activity of OGG1. Following BCL11A knockdown, we observed an increase in oxidized purines in the genome using comet assays, while immunoassays reveal an increase in 8-oxoG bases. Structure-function analysis indicates that the stimulation of OGG1 by BCL11A requires the zinc fingers 1, 2 and 3 as well as the proline-rich region between the first and second zing finger, but a glutamate-rich region downstream of zinc finger 3 is dispensable. Ectopic expression of a small peptide that contains the three zinc fingers can rescue the increase in 8-oxoguanine caused by BCL11A knockdown. These findings, together with previous results showing that BCL11A stimulates the enzymatic activities of NTHL1 and the Pol β polymerase, suggest that high expression of BCL11A is important to protect cancer cells against oxidative DNA damage.
Collapse
Affiliation(s)
- Tetiana Petrachkova
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Olha Soldatkina
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Medicine, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Oncology, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| |
Collapse
|
4
|
Walker R, Joo JE, Mahmood K, Clendenning M, Como J, Preston SG, Joseland S, Pope BJ, Medeiros ABD, Murillo BV, Pachter N, Sweet K, Spigelman AD, Groves A, Gleeson M, Bernatowicz K, Poplawski N, Andrews L, Healey E, Gallinger S, Grant RC, Win AK, Hopper JL, Jenkins MA, Torrezan GT, Rosty C, Macrae FA, Winship IM, Buchanan DD, Georgeson P. Adenomas from individuals with pathogenic biallelic variants in the MUTYH and NTHL1 genes demonstrate base excision repair tumour mutational signature profiles similar to colorectal cancers, expanding potential diagnostic and variant classification applications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311713. [PMID: 39148833 PMCID: PMC11326331 DOI: 10.1101/2024.08.08.24311713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Colorectal cancers (CRCs) from people with biallelic germline likely pathogenic/pathogenic variants in MUTYH or NTHL1 exhibit specific single base substitution (SBS) mutational signatures, namely combined SBS18 and SBS36 (SBS18+SBS36), and SBS30, respectively. The aim was to determine if adenomas from biallelic cases demonstrated these mutational signatures at diagnostic levels. Methods Whole-exome sequencing of FFPE tissue and matched blood-derived DNA was performed on 9 adenomas and 15 CRCs from 13 biallelic MUTYH cases, on 7 adenomas and 2 CRCs from 5 biallelic NTHL1 cases and on 27 adenomas and 26 CRCs from 46 non-hereditary (sporadic) participants. All samples were assessed for COSMIC v3.2 SBS mutational signatures. Results In biallelic MUTYH cases, SBS18+SBS36 signature proportions in adenomas (mean±standard deviation, 65.6%±29.6%) were not significantly different to those observed in CRCs (76.2%±20.5%, p-value=0.37), but were significantly higher compared with non-hereditary adenomas (7.6%±7.0%, p-value=3.4×10-4). Similarly, in biallelic NTHL1 cases, SBS30 signature proportions in adenomas (74.5%±9.4%) were similar to those in CRCs (78.8%±2.4%) but significantly higher compared with non-hereditary adenomas (2.8%±3.6%, p-value=5.1×10-7). Additionally, a compound heterozygote with the c.1187G>A p.(Gly396Asp) pathogenic variant and the c.533G>C p.(Gly178Ala) variant of unknown significance (VUS) in MUTYH demonstrated high levels of SBS18+SBS36 in four adenomas and one CRC, providing evidence for reclassification of the VUS to pathogenic. Conclusions SBS18+SBS36 and SBS30 were enriched in adenomas at comparable proportions observed in CRCs from biallelic MUTYH and biallelic NTHL1 cases, respectively. Therefore, testing adenomas may improve the identification of biallelic cases and facilitate variant classification, ultimately enabling opportunities for CRC prevention.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Susan G Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Ana B D Medeiros
- Clinical and Functional Genomics Group, International Research Centre/CIPE, A.C. Camargo Cancer Centre, Sao Paulo, 01508-010, Brazil
| | - Brenely V Murillo
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
- Medical School, University of Western Australia, Perth, WA, 6009, Australia
- School of Medicine, Curtin University, Perth, WA, 6845, Australia
| | - Kevin Sweet
- Division of Human Genetics, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Allan D Spigelman
- Hunter Family Cancer Service, Newcastle, NSW, 2298, Australia
- St Vincent's Cancer Genetics Unit, Sydney, NSW, 2290, Australia
- Surgical Professorial Unit, UNSW Clinical School of Clinical Medicine, Sydney, NSW, 2052, Australia
| | | | | | | | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Lesley Andrews
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Emma Healey
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Randwick, New South Wales 2031 Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, New South Wales 2500 Australia
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert C Grant
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aung K Win
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - Giovana T Torrezan
- Clinical and Functional Genomics Group, International Research Centre/CIPE, A.C. Camargo Cancer Centre, Sao Paulo, 01508-010, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, 4059, Australia
- University of Queensland, Brisbane, QLD, 4072, Australia
| | - Finlay A Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3000, Australia
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3000, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| |
Collapse
|
5
|
Fasano C, Lepore Signorile M, De Marco K, Forte G, Disciglio V, Sanese P, Grossi V, Simone C. In Silico Deciphering of the Potential Impact of Variants of Uncertain Significance in Hereditary Colorectal Cancer Syndromes. Cells 2024; 13:1314. [PMID: 39195204 DOI: 10.3390/cells13161314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) ranks third in terms of cancer incidence worldwide and is responsible for 8% of all deaths globally. Approximately 10% of CRC cases are caused by inherited pathogenic mutations in driver genes involved in pathways that are crucial for CRC tumorigenesis and progression. These hereditary mutations significantly increase the risk of initial benign polyps or adenomas developing into cancer. In recent years, the rapid and accurate sequencing of CRC-specific multigene panels by next-generation sequencing (NGS) technologies has enabled the identification of several recurrent pathogenic variants with established functional consequences. In parallel, rare genetic variants that are not characterized and are, therefore, called variants of uncertain significance (VUSs) have also been detected. The classification of VUSs is a challenging task because each amino acid has specific biochemical properties and uniquely contributes to the structural stability and functional activity of proteins. In this scenario, the ability to computationally predict the effect of a VUS is crucial. In particular, in silico prediction methods can provide useful insights to assess the potential impact of a VUS and support additional clinical evaluation. This approach can further benefit from recent advances in artificial intelligence-based technologies. In this review, we describe the main in silico prediction tools that can be used to evaluate the structural and functional impact of VUSs and provide examples of their application in the analysis of gene variants involved in hereditary CRC syndromes.
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, 70013 Castellana Grotte, Italy
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
6
|
Duan J, Pan S, Ye Y, Hu Z, Chen L, Liang D, Fu T, Zhan L, Li Z, Liao J, Zhao X. Uncovering hidden genetic variations: long-read sequencing reveals new insights into tuberous sclerosis complex. Front Cell Dev Biol 2024; 12:1415258. [PMID: 39144255 PMCID: PMC11321964 DOI: 10.3389/fcell.2024.1415258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Background Tuberous sclerosis is a multi-system disorder caused by mutations in either TSC1 or TSC2. The majority of affected patients (85%-90%) have heterozygous variants, and a smaller number (around 5%) have mosaic variants. Despite using various techniques, some patients still have "no mutation identified" (NMI). Methods We hypothesized that the causal variants of patients with NMI may be structural variants or deep intronic variants. To investigate this, we sequenced the DNA of 26 tuberous sclerosis patients with NMI using targeted long-read sequencing. Results We identified likely pathogenic/pathogenic variants in 13 of the cases, of which 6 were large deletions, four were InDels, two were deep intronic variants, one had retrotransposon insertion in either TSC1 or TSC2, and one was complex rearrangement. Furthermore, there was a de novo Alu element insertion with a high suspicion of pathogenicity that was classified as a variant of unknown significance. Conclusion Our findings expand the current knowledge of known pathogenic variants related to tuberous sclerosis, particularly uncovering mosaic complex structural variations and retrotransposon insertions that have not been previously reported in tuberous sclerosis. Our findings suggest a higher prevalence of mosaicism among tuberous sclerosis patients than previously recognized. Our results indicate that long-read sequencing is a valuable approach for tuberous sclerosis cases with no mutation identified (NMI).
Collapse
Affiliation(s)
- Jing Duan
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | | | - Yuanzhen Ye
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Zhanqi Hu
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Li Chen
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Dachao Liang
- Shenzhen A-Smart Medical Research Center, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Tao Fu
- Shenzhen A-Smart Medical Research Center, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | | | - Zhuo Li
- Shenzhen A-Smart Medical Research Center, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Xia Zhao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Ha GW, Lee MR, Ahn AR, Chung MJ, Kim KM. Attenuated adenomatous polyposis with MSH6 variation: Two case reports. Medicine (Baltimore) 2024; 103:e38791. [PMID: 38968511 PMCID: PMC11224831 DOI: 10.1097/md.0000000000038791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024] Open
Abstract
RATIONALE Adenomatous polyposis (AP) is a genetic disorder characterized by the occurrence of numerous adenomatous polyps in the colon and rectum and can be classified into classical AP and attenuated AP (AAP). AAP is diagnosed when the number of observed adenomas is between 10 and 99. The detection of AAP is significantly increasing mainly due to the improvement of the imaging technique and application of the screening program for colorectal cancer detection. Currently, the germline variations of the APC and MUTYH genes are reported as the main cause of classical AP. However, the underlying genetic basis of AAP is not well understood. In this study, we report 2 cases of AAP with MSH6 variations. PATIENT CONCERNS Both patients visited the hospital after multiple polyps were detected during colonoscopies conducted as part of their health checkups. DIAGNOSES The 2 patients were diagnosed with AAP through colonoscopic examination at our hospital. INTERVENTIONS The 2 received genetic consultation; and, for follow-up purposes, both patients agreed to be tested for an underlying genetic condition through next generation sequencing. And germline MSH6 variations were detected in both AAP patients. OUTCOMES There was no recurrence for both patients for 3 years follow-up. LESSONS Minor portion of AAP can cause by genetic mutation in MSH6, and further research is needed.
Collapse
Affiliation(s)
- Gi Won Ha
- Department of Surgery, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Min Ro Lee
- Department of Surgery, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Ae Ri Ahn
- Departments of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Myoung Ja Chung
- Departments of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Kyoung Min Kim
- Departments of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Church J. The Natural History of Hereditary Colorectal Cancer Syndromes: From Phenotype to Genotype? Where Do We Stand and What Does the Future Hold? Clin Colon Rectal Surg 2024; 37:127-132. [PMID: 38606050 PMCID: PMC11006442 DOI: 10.1055/s-0043-1770380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Applying the concept of a "natural history" to hereditary colorectal cancer is an interesting exercise because the way the syndromes are approached has changed so drastically. However, the exercise is instructive as it forces us to think in depth about where we are, where we have been, and, most helpfully, about where we may be going. In this article the diagnosis, along with endoscopic and surgical management of hereditary colorectal cancer are discussed in the context of their history and the changes in genomics and technology that have occurred over the last one hundred years.
Collapse
Affiliation(s)
- James Church
- Division of Colorectal Surgery, Department of Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
9
|
Aoyama S, Inoue A, Kagawa Y, Komori T, Ozato Y, Nishizawa Y, Sugimoto T, Komatsu H, Hirota M, Miyazaki Y, Tomokuni A, Motoori M, Fushimi H, Yamamoto G, Akagi K, Iwase K, Fujitani K. Curative resection via right hemicolectomy and regional lymph node dissection for colonic adenomatous polyposis of unknown etiology with adenocarcinomas localized in the right side of the colon: a case report. Surg Case Rep 2024; 10:93. [PMID: 38647838 PMCID: PMC11035501 DOI: 10.1186/s40792-024-01890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND APC and MUTYH are both well-known colorectal polyposis causative genes. However, 30-50% of colorectal adenomatous polyposis cases are classified as colonic adenomatous polyposis of unknown etiology and lack identifiable pathogenic variants. Although guidelines recommend total proctocolectomy for colonic adenomatous polyposis of unknown etiology with over 100 adenomas, evidence is lacking. This study presents a unique case of localized colonic adenomatous polyposis of unknown etiology with multiple adenocarcinomas, treated with hemicolectomy and regional lymph node dissection. CASE PRESENTATION The patient was a 72-year-old woman whose colonoscopy revealed numerous polyps and two adenocarcinomas localized in the right side of the colon, with no lesions in the left side. The patient had no family history of polyposis or colorectal cancer. No extracolonic lesions, enlarged lymph nodes, or distant metastases were found. Considering the patient's age and lesion localization, laparoscopic right hemicolectomy with regional lymph node dissection was performed. Histopathological diagnosis revealed three adenocarcinoma lesions with no lymph node metastasis. The most advanced pathological stage was T2N0M0 Stage I (UICC 8th edition). The patient was alive 5 years postoperatively, without recurrence of cancer or polyposis in the remaining colon and rectum. To diagnose hereditary colorectal cancer/polyposis, a germline multigene panel testing for APC, EPCAM, MBD4, MLH1, MLH3, MSH2, MSH3, MSH6, MUTYH, NTHL1, PMS2, POLD1, POLE, and TP53 was performed using DNA extracted from blood samples: however, no pathogenic variant was detected. Therefore, the patient was diagnosed with colonic adenomatous polyposis of unknown etiology. CONCLUSIONS In this rare case, colonic adenomatous polyposis of unknown etiology, with numerous adenomatous polyps and multiple adenocarcinomas localized in the right side of the colon, was successfully treated with right hemicolectomy and regional lymph node dissection. Despite genetic analysis, no causative germline variants were identified. Segmental colectomy according to the distribution of polyps might be a curative approach.
Collapse
Affiliation(s)
- Shu Aoyama
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| | - Akira Inoue
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan.
| | - Yoshinori Kagawa
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| | - Takamichi Komori
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
- Department of Surgery, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan
| | - Yuki Ozato
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| | - Yujiro Nishizawa
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| | - Tomoki Sugimoto
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| | - Hisateru Komatsu
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| | - Masashi Hirota
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| | - Akira Tomokuni
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| | - Masaaki Motoori
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| | - Hiroaki Fushimi
- Department of Pathology, Osaka General Medical Center, Osaka, Japan
| | - Gou Yamamoto
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Kitaadachi-gun, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Kitaadachi-gun, Japan
| | - Kazuhiro Iwase
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| | - Kazumasa Fujitani
- Department of Gastroenterological Surgery, Osaka General Medical Center, 3-1-56 Bandaihigashi, Sumiyoshi-Ku, Osaka, Japan
| |
Collapse
|
10
|
Odstrcil RE, Dutta P, Liu J. Enhanced Sampling for Conformational Changes and Molecular Mechanisms of Human NTHL1. J Phys Chem Lett 2024; 15:3206-3213. [PMID: 38483510 PMCID: PMC11059236 DOI: 10.1021/acs.jpclett.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The functionalities of proteins rely on protein conformational changes during many processes. Identification of the protein conformations and capturing transitions among different conformations are important but extremely challenging in both experiments and simulations. In this work, we develop a machine learning based approach to identify a reaction coordinate that accelerates the exploration of protein conformational changes in molecular simulations. We implement our approach to study the conformational changes of human NTHL1 during DNA repair. Our results identified three distinct conformations: open (stable), closed (unstable), and bundle (stable). The existence of the bundle conformation can rationalize recent experimental observations. Comparison with an NTHL1 mutant demonstrates that a closely packed cluster of positively charged residues in the linker could be a factor to search when screening for genetic abnormalities. Results will lead to a better modulation of the DNA repair pathway to protect against carcinogenesis.
Collapse
Affiliation(s)
- Ryan E. Odstrcil
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
11
|
Rosty C, Brosens LAA. Pathology of Gastrointestinal Polyposis Disorders. Gastroenterol Clin North Am 2024; 53:179-200. [PMID: 38280747 DOI: 10.1016/j.gtc.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Gastrointestinal polyposis disorders are a group of syndromes defined by clinicopathologic features that include the predominant histologic type of colorectal polyp and specific inherited gene mutations. Adenomatous polyposis syndromes comprise the prototypical familial adenomatous polyposis syndrome and other recently identified genetic conditions inherited in a dominant or recessive manner. Serrated polyposis syndrome is defined by arbitrary clinical criteria. The diagnosis of hamartomatous polyposis syndromes can be suggested from the histologic characteristics of colorectal polyps and the association with various extraintestinal manifestations. Proper identification of affected individuals is important due to an increased risk of gastrointestinal and extragastrointestinal cancers.
Collapse
Affiliation(s)
- Christophe Rosty
- Envoi Specialist Pathologists, Brisbane, Queensland 4059, Australia; University of Queensland, Brisbane, Queensland 4072, Australia; Department of Clinical Pathology, Colorectal Oncogenomics Group, Victorian Comprehensive Cancer Centre, The University of Melbourne, Victoria 3051, Australia.
| | - Lodewijk A A Brosens
- Department of Pathology University Medical Center Utrecht, Utrecht University, Postbus 85500, 3508, Utrecht, Galgenwaad, The Netherlands
| |
Collapse
|
12
|
Carballal S, Balaguer F, Bujanda L, Capellá G, González Santiago S, Jover R, Moreira L, Pineda M, Ruiz-Ponte C, Sánchez Heras AB, Serrano Blanch R, Soto JL, Vidal Tocino R, Cubiella J. Use of multi-gene panels in patients at high risk of hereditary digestive cancer: position statement of AEG, SEOM, AEGH and IMPaCT-GENÓMICA consortium. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:293-318. [PMID: 37315767 DOI: 10.1016/j.gastrohep.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
This position statement, sponsored by the Asociación Española de Gastroenterología, the Sociedad Española de Oncología Médica, the Asociación Española de Genética Humana and the IMPaCT-Genómica Consortium aims to establish recommendations for use of multi-gene panel testing in patients at high risk of hereditary gastrointestinal and pancreatic cancer. To rate the quality of the evidence and the levels of recommendation, we used the methodology based on the GRADE system (Grading of Recommendations Assessment, Development and Evaluation). We reached a consensus among experts using a Delphi method. The document includes recommendations on clinical scenarios where multi-gene panel testing is recommended in colorectal cancer, polyposis syndromes, gastric and pancreatic cancer, as well as the genes to be considered in each clinical scenario. Recommendations on the evaluation of mosaicisms, counseling strategies in the absence of an index subject and, finally, constitutional analysis after identification of pathogenic tumor variants are also made.
Collapse
Affiliation(s)
- Sabela Carballal
- Servicio de Gastroenterología, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, España.
| | - Francesc Balaguer
- Servicio de Gastroenterología, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, España
| | - Luis Bujanda
- Servicio de Aparato Digestivo, Hospital Universitario Donostia, Instituto Biodonostia. Universidad del País Vasco (UPV/EHU), CIBEREHD, San Sebastián, Guipúzcoa, España
| | - Gabriel Capellá
- Programa de Cáncer Hereditario, Instituto Catalán de Oncología, Programa ONCOBELL, IDIBELL, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), L'Hospitalet de Llobregat, Barcelona, España
| | | | - Rodrigo Jover
- Servicio de Medicina Digestiva, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria de Alicante (ISABIAL), Departamento de Medicina Clínica, Universidad Miguel Hernández, Alicante, España
| | - Leticia Moreira
- Servicio de Gastroenterología, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, España
| | - Marta Pineda
- Programa de Cáncer Hereditario, Instituto Catalán de Oncología, Programa ONCOBELL, IDIBELL, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), L'Hospitalet de Llobregat, Barcelona, España
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), Grupo de Medicina Xenomica (USC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, La Coruña, España
| | - Ana Beatriz Sánchez Heras
- Unidad de Consejo Genético en Cáncer, Servicio de Oncología Médica, Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Elche, Alicante, España
| | - Raquel Serrano Blanch
- Unidad de Consejo Genético en Cáncer, Unidad de Gestión Clínica de Oncología Médica, H.U. Reina Sofía de Córdoba. Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBERONC, Universidad de Córdoba (UCO), Córdoba, España
| | - José Luis Soto
- Unidad de Genética Molecular, Hospital General Universitario de Elche, FISABIO, Elche, Alicante, España
| | - Rosario Vidal Tocino
- Servicio de Oncología Médica, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, España
| | - Joaquín Cubiella
- Servicio de Aparato Digestivo, Hospital Universitario de Ourense, Grupo de Investigación en Oncología Digestiva-Ourense (GIODO), CIBEREHD, Ourense, España.
| |
Collapse
|
13
|
Kar A, Degtyareva NP, Doetsch PW. Human NTHL1 expression and subcellular distribution determines cisplatin sensitivity in human lung epithelial and non-small cell lung cancer cells. NAR Cancer 2024; 6:zcae006. [PMID: 38384388 PMCID: PMC10880605 DOI: 10.1093/narcan/zcae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Base excision repair is critical for maintaining genomic stability and for preventing malignant transformation. NTHL1 is a bifunctional DNA glycosylase/AP lyase that initiates repair of oxidatively damaged pyrimidines. Our recent work established that transient over-expression of NTHL1 leads to acquisition of several hallmarks of cancer in non-tumorigenic immortalized cells likely through interaction with nucleotide excision repair protein XPG. Here, we investigate how NTHL1 expression levels impact cellular sensitivity to cisplatin in non-tumorigenic immortalized cells and five non-small cell lung carcinomas cell lines. The cell line with lowest expression of NTHL1 (H522) shows the highest resistance to cisplatin indicating that decrease in NTHL1 levels may modulate resistance to crosslinking agents in NSCLC tumors. In a complementation study, overexpression of NTHL1 in H522 cell line sensitized it to cisplatin. Using NTHL1 N-terminal deletion mutants defective in nuclear localization we show that cisplatin treatment can alter NTHL1 subcellular localization possibly leading to altered protein-protein interactions and affecting cisplatin sensitivity. Experiments presented in this study reveal a previously unknown link between NTHL1 expression levels and cisplatin sensitivity of NSCLC tumor cells. These findings provide an opportunity to understand how altered NTHL1 expression levels and subcellular distribution can impact cisplatin sensitivity in NSCLC tumor cells.
Collapse
Affiliation(s)
- Anirban Kar
- Mutagenesis & DNA Repair Regulation Group, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Durham, NC 27709, USA
| | - Natalya P Degtyareva
- Mutagenesis & DNA Repair Regulation Group, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Durham, NC 27709, USA
| | - Paul W Doetsch
- Mutagenesis & DNA Repair Regulation Group, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Durham, NC 27709, USA
| |
Collapse
|
14
|
Spier I, Yin X, Richardson M, Pineda M, Laner A, Ritter D, Boyle J, Mur P, Hansen TVO, Shi X, Mahmood K, Plazzer JP, Ognedal E, Nordling M, Farrington SM, Yamamoto G, Baert-Desurmont S, Martins A, Borras E, Tops C, Webb E, Beshay V, Genuardi M, Pesaran T, Capellá G, Tavtigian SV, Latchford A, Frayling IM, Plon SE, Greenblatt M, Macrae FA, Aretz S. Gene-specific ACMG/AMP classification criteria for germline APC variants: Recommendations from the ClinGen InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel. Genet Med 2024; 26:100992. [PMID: 37800450 PMCID: PMC10922469 DOI: 10.1016/j.gim.2023.100992] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE The Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) was established by the International Society for Gastrointestinal Hereditary Tumours and the Clinical Genome Resource, who set out to develop recommendations for the interpretation of germline APC variants underlying Familial Adenomatous Polyposis, the most frequent hereditary polyposis syndrome. METHODS Through a rigorous process of database analysis, literature review, and expert elicitation, the APC VCEP derived gene-specific modifications to the ACMG/AMP (American College of Medical Genetics and Genomics and Association for Molecular Pathology) variant classification guidelines and validated such criteria through the pilot classification of 58 variants. RESULTS The APC-specific criteria represented gene- and disease-informed specifications, including a quantitative approach to allele frequency thresholds, a stepwise decision tool for truncating variants, and semiquantitative evaluations of experimental and clinical data. Using the APC-specific criteria, 47% (27/58) of pilot variants were reclassified including 14 previous variants of uncertain significance (VUS). CONCLUSION The APC-specific ACMG/AMP criteria preserved the classification of well-characterized variants on ClinVar while substantially reducing the number of VUS by 56% (14/25). Moving forward, the APC VCEP will continue to interpret prioritized lists of VUS, the results of which will represent the most authoritative variant classification for widespread clinical use.
Collapse
Affiliation(s)
- Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany; European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547
| | - Xiaoyu Yin
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany; Department of Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Australia; Department of Medicine, University of Melbourne, Parkville, Australia.
| | | | - Marta Pineda
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547; Hereditary Cancer Program, Catalan Institute of Oncology - ONCOBELL, IDIBELL, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | | | - Deborah Ritter
- Baylor College of Medicine, Houston, TX; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Julie Boyle
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology - ONCOBELL, IDIBELL, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Thomas V O Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, University of Melbourne, Parkville, Australia; Melbourne Bioinformatics, University of Melbourne, Parkville, Australia
| | - John-Paul Plazzer
- Department of Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Australia
| | | | - Margareta Nordling
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Susan M Farrington
- Cancer Research UK Edinburgh Centre, the University of Edinburgh, Edinburgh, United Kingdom
| | - Gou Yamamoto
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | | | | | | | - Carli Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Maurizio Genuardi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, and Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Gabriel Capellá
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547; Hereditary Cancer Program, Catalan Institute of Oncology - ONCOBELL, IDIBELL, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Sean V Tavtigian
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Andrew Latchford
- Polyposis Registry, St. Mark's Hospital, London, United Kingdom; Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Ian M Frayling
- Polyposis Registry, St. Mark's Hospital, London, United Kingdom; Inherited Tumour Syndromes Research Group, Institute of Cancer & Genetics, Cardiff University, United Kingdom
| | - Sharon E Plon
- Baylor College of Medicine, Houston, TX; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Marc Greenblatt
- Larner College of Medicine, University of Vermont, Burlington, VT
| | - Finlay A Macrae
- Department of Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany; European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547
| |
Collapse
|
15
|
Valle L, Monahan KJ. Genetic predisposition to gastrointestinal polyposis: syndromes, tumour features, genetic testing, and clinical management. Lancet Gastroenterol Hepatol 2024; 9:68-82. [PMID: 37931640 DOI: 10.1016/s2468-1253(23)00240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 11/08/2023]
Abstract
Gastrointestinal tract polyposis is characterised by the presence of multiple polyps, particularly in the colorectum, and encompasses both cancer predisposition genetic syndromes and non-syndromic clinical manifestations. The sources of the heterogeneity observed in polyposis syndromes relate to genetic cause, mode of inheritance, polyp burden and histological type, and spectrum and frequency of extracolonic manifestations. These features determine the clinical management of carriers, including strategies for cancer prevention and early detection, and oncological treatments. Despite substantial progress in identifying the genetic causes of polyposis, a large proportion of cases remain genetically unexplained. Although some of these cases might be due to lifestyle, environmental factors, or cancer treatments, it is likely that additional polyposis predisposition genes will be identified. This Review provides an overview of the known syndromes and genes, genetic testing, and clinical management of patients with polyposis, and recent advances and challenges in the field of gastrointestinal polyposis.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Programme, Catalan Institute of Oncology, Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Kevin J Monahan
- The St Mark's Centre for Familial Intestinal Cancer Lynch Syndrome & Family Cancer Clinic & Polyposis Registry, St Mark's Hospital, London, UK; Imperial College, London, UK.
| |
Collapse
|
16
|
Dolan M, St. John N, Zaidi F, Doyle F, Fasullo M. High-throughput screening of the Saccharomyces cerevisiae genome for 2-amino-3-methylimidazo [4,5-f] quinoline resistance identifies colon cancer-associated genes. G3 (BETHESDA, MD.) 2023; 13:jkad219. [PMID: 37738679 PMCID: PMC11025384 DOI: 10.1093/g3journal/jkad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/25/2022] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic agents found in charred meats and cigarette smoke. However, few eukaryotic resistance genes have been identified. We used Saccharomyces cerevisiae (budding yeast) to identify genes that confer resistance to 2-amino-3-methylimidazo[4,5-f] quinoline (IQ). CYP1A2 and NAT2 activate IQ to become a mutagenic nitrenium compound. Deletion libraries expressing human CYP1A2 and NAT2 or no human genes were exposed to either 400 or 800 µM IQ for 5 or 10 generations. DNA barcodes were sequenced using the Illumina HiSeq 2500 platform and statistical significance was determined for exactly matched barcodes. We identified 424 ORFs, including 337 genes of known function, in duplicate screens of the "humanized" collection for IQ resistance; resistance was further validated for a select group of 51 genes by growth curves, competitive growth, or trypan blue assays. Screens of the library not expressing human genes identified 143 ORFs conferring resistance to IQ per se. Ribosomal protein and protein modification genes were identified as IQ resistance genes in both the original and "humanized" libraries, while nitrogen metabolism, DNA repair, and growth control genes were also prominent in the "humanized" library. Protein complexes identified included the casein kinase 2 (CK2) and histone chaperone (HIR) complex. Among DNA Repair and checkpoint genes, we identified those that function in postreplication repair (RAD18, UBC13, REV7), base excision repair (NTG1), and checkpoint signaling (CHK1, PSY2). These studies underscore the role of ribosomal protein genes in conferring IQ resistance, and illuminate DNA repair pathways for conferring resistance to activated IQ.
Collapse
Affiliation(s)
- Michael Dolan
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Nick St. John
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Faizan Zaidi
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Francis Doyle
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Michael Fasullo
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| |
Collapse
|
17
|
Nurmi AK, Pelttari LM, Kiiski JI, Khan S, Nurmikolu M, Suvanto M, Aho N, Tasmuth T, Kalso E, Schleutker J, Kallioniemi A, Heikkilä P, Aittomäki K, Blomqvist C, Nevanlinna H. NTHL1 is a recessive cancer susceptibility gene. Sci Rep 2023; 13:21127. [PMID: 38036545 PMCID: PMC10689455 DOI: 10.1038/s41598-023-47441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
In search of novel breast cancer (BC) risk variants, we performed a whole-exome sequencing and variant analysis of 69 Finnish BC patients as well as analysed loss-of-function variants identified in DNA repair genes in the Finns from the Genome Aggregation Database. Additionally, we carried out a validation study of SERPINA3 c.918-1G>C, recently suggested for BC predisposition. We estimated the frequencies of 41 rare candidate variants in 38 genes by genotyping them in 2482-4101 BC patients and in 1273-3985 controls. We further evaluated all coding variants in the candidate genes in a dataset of 18,786 BC patients and 182,927 controls from FinnGen. None of the variants associated significantly with cancer risk in the primary BC series; however, in the FinnGen data, NTHL1 c.244C>T p.(Gln82Ter) associated with BC with a high risk for homozygous (OR = 44.7 [95% CI 6.90-290], P = 6.7 × 10-5) and a low risk for heterozygous women (OR = 1.39 [1.18-1.64], P = 7.8 × 10-5). Furthermore, the results suggested a high risk of colorectal, urinary tract, and basal-cell skin cancer for homozygous individuals, supporting NTHL1 as a recessive multi-tumour susceptibility gene. No significant association with BC risk was detected for SERPINA3 or any other evaluated gene.
Collapse
Affiliation(s)
- Anna K Nurmi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Johanna I Kiiski
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Mika Nurmikolu
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Niina Aho
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Tiina Tasmuth
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, and FICAN West Cancer Centre, and Department of Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Anne Kallioniemi
- Tays Cancer Center, Tampere University Hospital, and BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland.
| |
Collapse
|
18
|
Yuan Z, Yang M, Yuan Y. The Progress of Colorectal Polyposis Syndrome in Chinese Population. Clin Colon Rectal Surg 2023; 36:391-399. [PMID: 37795462 PMCID: PMC10547542 DOI: 10.1055/s-0043-1767708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The pathogenesis, clinical phenotype, treatment strategy, and family management of hereditary tumor syndromes are different from those of sporadic tumors. Nearly a quarter of patients with colorectal cancer show significant familial aggregation and genetic predisposition, and 5 to 10% are associated with definite genetic factors. According to the clinical phenotype, it can be divided into nonpolyposis syndrome and polyposis syndrome. Among the polyposis syndrome patients with definite clinical symptoms, there are still some patients with unknown etiology (especially attenuated familial adenomatous polyposis), which is a difficult problem in clinical diagnosis and treatment. Therefore, for this rare disease, it is urgent to carry out multicenter studies, complete the gene variation spectrum, explore new pathogenic factors, and accumulate clinical experience. This article mainly introduces the research progress and related work of colorectal polyposis syndrome in China.
Collapse
Affiliation(s)
- Zhijun Yuan
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengyuan Yang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Mahmood K, Thomas M, Qu C, Hsu L, Buchanan DD, Peters U. Elucidating the Risk of Colorectal Cancer for Variants in Hereditary Colorectal Cancer Genes. Gastroenterology 2023; 165:1070-1076.e3. [PMID: 37453563 PMCID: PMC10866455 DOI: 10.1053/j.gastro.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Biostatistics, University of Washington, Seattle, Washington.
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington.
| |
Collapse
|
20
|
Grot N, Kaczmarek-Ryś M, Lis-Tanaś E, Kryszczyńska A, Nowakowska D, Jakubiuk-Tomaszuk A, Paszkowski J, Banasiewicz T, Hryhorowicz S, Pławski A. NTHL1 Gene Mutations in Polish Polyposis Patients-Weighty Player or Vague Background? Int J Mol Sci 2023; 24:14548. [PMID: 37834005 PMCID: PMC10572874 DOI: 10.3390/ijms241914548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Multiple polyposes are heterogeneous diseases with different underlying molecular backgrounds, sharing a common symptom: the presence of transforming into cancerous intestinal polyps. Recent reports have indicated biallelic mutations in the NTHL1 gene, which is involved in base excision repair (BER), as predisposing to an elevated risk of colorectal cancer (CRC). We aimed to evaluate the significance of the p.Q82* truncating variant in predisposition to intestinal polyposis by assessing its frequency in polyposis patients. We genotyped 644 Polish patients and 634 control DNA samples using high-resolution melting analysis (HRM) and Sanger sequencing. We found the p.Q82* variant in four polyposis patients; in three, it was homozygous (OR = 6.90, p value = 0.202). Moreover, the p.R92C mutation was detected in one patient. We also looked more closely at the disease course in patients carrying NTHL1 mutations. Two homozygous patients also presented other neoplasia. In the family case, we noticed the earlier presence of polyps in the proband and early hepatoblastoma in his brother. We cannot univocally confirm the relationship of p.Q82* with an increased risk of CRC. However, homozygous p.Q82* was more frequent by 10-fold in patients without other mutations identified, which makes NTHL1 gene screening in this group reasonable.
Collapse
Affiliation(s)
- Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Marta Kaczmarek-Ryś
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Emilia Lis-Tanaś
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Alicja Kryszczyńska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Dorota Nowakowska
- Cancer Genetics Unit, Cancer Prevention Department, The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, 02-781 Warsaw, Poland;
| | - Anna Jakubiuk-Tomaszuk
- Department of Pediatric Neurology, Medical University of Bialystok, 15-089 Bialystok, Poland;
- Medical Genetics Unit, Mastermed Medical Center, 15-089 Bialystok, Poland
| | - Jacek Paszkowski
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland; (J.P.); (T.B.)
| | - Tomasz Banasiewicz
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland; (J.P.); (T.B.)
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland; (J.P.); (T.B.)
| |
Collapse
|
21
|
Ahmad TR, Pekmezci M, Bloomer MM, Grenert JP, Afshar AR. Next-generation sequencing of a large uveal melanoma with whole genome doubling and a PBRM1 mutation. Am J Ophthalmol Case Rep 2023; 31:101861. [PMID: 37293395 PMCID: PMC10245097 DOI: 10.1016/j.ajoc.2023.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Purpose To report a large uveal melanoma with extra-scleral extension which underwent spontaneous infarction and its unique molecular signature profile. Observations An 81-year-old female presented with a blind, painful eye. Intraocular pressure was 48 mm Hg. There was a large subconjunctival melanotic mass overlying a choroidal melanoma with anterior extension involving the ciliary body and the iridocorneal angle and iris. Ultrasonography confirmed a dome-shaped anterior cilio-choroidal mass with extra-scleral extension. The patient underwent enucleation and pathologic evaluation confirmed cilio-choroidal melanoma. The posterior half of the tumor involving the ciliary body and the extra-scleral component were spontaneously infarcted and were composed of large melanophages. Next-generation sequencing demonstrated a splice site mutation in PBRM1 and whole-genome doubling in addition to a GNAQ hotspot mutation, chromosome 3 loss and 8q gain. Conclusions and importance This case of a large, auto-infarcted uveal melanoma demonstrates a PBRM1 mutation and whole-genome doubling.
Collapse
Affiliation(s)
- Tessnim R. Ahmad
- Department of Ophthalmology, Wayne & Gladys Valley Center for Vision, University of California San Francisco, San Francisco, CA, USA
| | - Melike Pekmezci
- Department of Ophthalmology, Wayne & Gladys Valley Center for Vision, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Clinical Cancer Genomics Laboratory, University of California San Francisco, San Francisco, CA, USA
| | - Michele M. Bloomer
- Department of Ophthalmology, Wayne & Gladys Valley Center for Vision, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - James P. Grenert
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Clinical Cancer Genomics Laboratory, University of California San Francisco, San Francisco, CA, USA
| | - Armin R. Afshar
- Department of Ophthalmology, Wayne & Gladys Valley Center for Vision, University of California San Francisco, San Francisco, CA, USA
- Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Pinto C, Guerra J, Pinheiro M, Escudeiro C, Santos C, Pinto P, Porto M, Bartosch C, Silva J, Peixoto A, Teixeira MR. Combined germline and tumor mutation signature testing identifies new families with NTHL1 tumor syndrome. Front Genet 2023; 14:1254908. [PMID: 37727376 PMCID: PMC10505957 DOI: 10.3389/fgene.2023.1254908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
NTHL1 tumor syndrome is an autosomal recessive rare disease caused by biallelic inactivating variants in the NTHL1 gene and which presents a broad tumor spectrum. To contribute to the characterization of the phenotype of this syndrome, we studied 467 index patients by KASP assay or next-generation sequencing, including 228 patients with colorectal polyposis and 239 patients with familial/personal history of multiple tumors (excluding multiple breast/ovarian/polyposis). Three NTHL1 tumor syndrome families were identified in the group of patients with polyposis and none in patients with familial/personal history of multiple tumors. Altogether, we identified nine affected patients with polyposis (two of them diagnosed after initiating colorectal cancer surveillance) with biallelic pathogenic or likely pathogenic NTHL1 variants, as well as two index patients with one pathogenic or likely pathogenic NTHL1 variant in concomitance with a missense variant of uncertain significance. Here we identified a novel inframe deletion classified as likely pathogenic using the ACMG criteria, supported also by tumor mutational signature analysis. Our findings indicate that the NTHL1 tumor syndrome is a multi-tumor syndrome strongly associated with polyposis and not with multiple tumors without polyposis.
Collapse
Affiliation(s)
- Carla Pinto
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Joana Guerra
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Doctoral Programme in Biomedical Sciences, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuela Pinheiro
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Escudeiro
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Catarina Santos
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Pedro Pinto
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Miguel Porto
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - João Silva
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Medical Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Ana Peixoto
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Manuel R. Teixeira
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Bonjoch L, Fernandez-Rozadilla C, Alvarez-Barona M, Lopez-Novo A, Herrera-Pariente C, Amigo J, Bujanda L, Remedios D, Dacal A, Cubiella J, Balaguer F, Fernández-Bañares F, Carracedo A, Jover R, Castellvi-Bel S, Ruiz-Ponte C. BMPR2 as a Novel Predisposition Gene for Hereditary Colorectal Polyposis. Gastroenterology 2023; 165:162-172.e5. [PMID: 36907526 DOI: 10.1053/j.gastro.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND & AIMS Colorectal cancer (CRC) is one of the most prevalent tumors worldwide, with incidence quickly increasing (particularly in the context of early-onset cases), despite important prevention efforts, mainly in the form of population-wide screening programs. Although many cases present a clear familial component, the current list of hereditary CRC genes leaves a considerable proportion of the cases unexplained. METHODS In this work, we used whole-exome sequencing approaches on 19 unrelated patients with unexplained colonic polyposis to identify candidate CRC predisposition genes. The candidate genes were then validated in an additional series of 365 patients. CRISPR-Cas9 models were used to validate BMPR2 as a potential candidate for CRC risk. RESULTS We found 8 individuals carrying 6 different variants in the BMPR2 gene (approximately 2% of our cohort of patients with unexplained colonic polyposis). CRISPR-Cas9 models of 3 of these variants showed that the p.(Asn442Thrfs∗32) truncating variant completely abrogated BMP pathway function in a similar way to the BMPR2 knockout. Missense variants p.(Asn565Ser), p.(Ser967Pro) had varying effects on cell proliferation levels, with the former impairing cell control inhibition via noncanonical pathways. CONCLUSIONS Collectively, these results support loss-of-function BMPR2 variants as candidates to be involved in CRC germline predisposition.
Collapse
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ceres Fernandez-Rozadilla
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Miriam Alvarez-Barona
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Anael Lopez-Novo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Cristina Herrera-Pariente
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Jorge Amigo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Luis Bujanda
- Hospital Universitario de Donostia, Instituto Biodonostia, Universidad del Pais Vasco, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, San Sebastián, Spain
| | - David Remedios
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Ourense, Spain
| | - Andrés Dacal
- Department of Gastroenterology, Hospital Lucus Augusti, Lugo, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Joaquín Cubiella
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Ourense, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Bañares
- Hospital Universitari Mutua Terrassa, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas, Ourense, Madrid, Spain
| | - Angel Carracedo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Rodrigo Jover
- Digestive Medicine Department, Instituto de Investigación Biomédica, Hospital General Universitario de Alicante, Departamento de Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
| | - Sergi Castellvi-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Clara Ruiz-Ponte
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.
| |
Collapse
|
24
|
Özdemir Z, Çevik E, Öksüzoğlu ÖBÇ, Doğan M, Ateş Ö, Esin E, Bilgetekin İ, Demirci U, Köseoğlu Ç, Topal A, Karadurmuş N, Erdem HB, Bahsi T. Uncommon variants detected via hereditary cancer panel and suggestions for genetic counseling. Mutat Res 2023; 827:111831. [PMID: 37453313 DOI: 10.1016/j.mrfmmm.2023.111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/08/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Hereditary cancer syndromes constitute 5-10% of all cancers. The development of next-generation sequencing technologies has made it possible to examine many hereditary cancer syndrome-causing genes in a single panel. This study's goal was to describe the prevalence and the variant spectrum using NGS in individuals who were thought to have a hereditary predisposition for cancer. MATERIAL AND METHOD Analysis was performed for 1254 who were thought to have a familial predisposition for cancer. We excluded 46 patients who were carrying BRCA1/2 variants in this study, for focusing on the rare gene mutations. Sequencing was performed using the Sophia Hereditary Cancer Solution v1.1 Panel and the Qiagen Large Hereditary Cancer Panel. The Illumina MiSeq system was used for the sequencing procedure. The software used for the data analyses was Sophia DDM and QIAGEN Clinical Insight (QCITM) Analyze. The resulting genomic changes were classified according to the current guidelines of ACMG/AMP. RESULTS Pathogenic/likely pathogenic variants were detected in 172 (13.7%) of 1254 patients. After excluding the 46 BRCA1/2-positive patients, among the remaining 126 patients; there were 60 (4.8%) breast cancer, 33 (2.6%) colorectal cancer, 9 (0.7%) ovarian cancer, 5 (0.4%) endometrium cancer, 5 (0.4%) stomach cancer, 3 (0.2%) prostate cancer patients. The most altered genes were MUTYH in 27 (2.1%) patients, MMR genes (MLH1, MSH6, MSH, MSH2, PMS2 and EPCAM) in 26 (2%) patients, and ATM in 25 (2%) patients. We also examined the genotype-phenotype correlation in rare variants. Additionally, we identified 11 novel variations. CONCLUSION This study provided significant information regarding rare variants observed in the Turkish population because it was carried out with a large patient group. Personalized treatment options and genetic counseling for the patients are therefore made facilitated.
Collapse
Affiliation(s)
- Zeynep Özdemir
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye.
| | - Ezgi Çevik
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye
| | | | - Mutlu Doğan
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Öztürk Ateş
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Ece Esin
- Bayındır Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - İrem Bilgetekin
- Lösante Hospital, Department of Medical Oncology, Ankara, Türkiye
| | - Umut Demirci
- Memorial Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Çağlar Köseoğlu
- University of Health Sciences, Gülhane Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Alper Topal
- University of Health Sciences, Gülhane Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Nuri Karadurmuş
- University of Health Sciences, Gülhane Training and Research Hospital, Department of Medical Oncology, Ankara, Turkiye
| | - Haktan Bağış Erdem
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye
| | - Taha Bahsi
- Ankara Etlik City Hospital, Department of Medical Genetics, Ankara, Turkiye
| |
Collapse
|
25
|
Kristmundsdottir S, Jonsson H, Hardarson MT, Palsson G, Beyter D, Eggertsson HP, Gylfason A, Sveinbjornsson G, Holley G, Stefansson OA, Halldorsson GH, Olafsson S, Arnadottir GA, Olason PI, Eiriksson O, Masson G, Thorsteinsdottir U, Rafnar T, Sulem P, Helgason A, Gudbjartsson DF, Halldorsson BV, Stefansson K. Sequence variants affecting the genome-wide rate of germline microsatellite mutations. Nat Commun 2023; 14:3855. [PMID: 37386006 PMCID: PMC10310707 DOI: 10.1038/s41467-023-39547-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Microsatellites are polymorphic tracts of short tandem repeats with one to six base-pair (bp) motifs and are some of the most polymorphic variants in the genome. Using 6084 Icelandic parent-offspring trios we estimate 63.7 (95% CI: 61.9-65.4) microsatellite de novo mutations (mDNMs) per offspring per generation, excluding one bp repeats motifs (homopolymers) the estimate is 48.2 mDNMs (95% CI: 46.7-49.6). Paternal mDNMs occur at longer repeats than maternal ones, which are in turn larger with a mean size of 3.4 bp vs 3.1 bp for paternal ones. mDNMs increase by 0.97 (95% CI: 0.90-1.04) and 0.31 (95% CI: 0.25-0.37) per year of father's and mother's age at conception, respectively. Here, we find two independent coding variants that associate with the number of mDNMs transmitted to offspring; The minor allele of a missense variant (allele frequency (AF) = 1.9%) in MSH2, a mismatch repair gene, increases transmitted mDNMs from both parents (effect: 13.1 paternal and 7.8 maternal mDNMs). A synonymous variant (AF = 20.3%) in NEIL2, a DNA damage repair gene, increases paternally transmitted mDNMs (effect: 4.4 mDNMs). Thus, the microsatellite mutation rate in humans is in part under genetic control.
Collapse
Affiliation(s)
- Snaedis Kristmundsdottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Marteinn T Hardarson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Doruk Beyter
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
| | | | | | | | | | | | - Gisli H Halldorsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Gudny A Arnadottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Gisli Masson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Agnar Helgason
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland.
- School of Technology, Reykjavik University, Reykjavik, Iceland.
| | | |
Collapse
|
26
|
Sherwood K, Ward JC, Soriano I, Martin L, Campbell A, Rahbari R, Kafetzopoulos I, Sproul D, Green A, Sampson JR, Donaldson A, Ong KR, Heinimann K, Nielsen M, Thomas H, Latchford A, Palles C, Tomlinson I. Germline de novo mutations in families with Mendelian cancer syndromes caused by defects in DNA repair. Nat Commun 2023; 14:3636. [PMID: 37336879 PMCID: PMC10279637 DOI: 10.1038/s41467-023-39248-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
DNA repair defects underlie many cancer syndromes. We tested whether de novo germline mutations (DNMs) are increased in families with germline defects in polymerase proofreading or base excision repair. A parent with a single germline POLE or POLD1 mutation, or biallelic MUTYH mutations, had 3-4 fold increased DNMs over sex-matched controls. POLE had the largest effect. The DNMs carried mutational signatures of the appropriate DNA repair deficiency. No DNM increase occurred in offspring of MUTYH heterozygous parents. Parental DNA repair defects caused about 20-150 DNMs per child, additional to the ~60 found in controls, but almost all extra DNMs occurred in non-coding regions. No increase in post-zygotic mutations was detected, excepting a child with bi-allelic MUTYH mutations who was excluded from the main analysis; she had received chemotherapy and may have undergone oligoclonal haematopoiesis. Inherited DNA repair defects associated with base pair-level mutations increase DNMs, but phenotypic consequences appear unlikely.
Collapse
Affiliation(s)
- Kitty Sherwood
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genomics and Cancer, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Joseph C Ward
- Dept of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Ignacio Soriano
- Dept of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Lynn Martin
- Institute of Cancer and Genomic Sciences, University of Birmingham Medical School, Vincent Drive, Edgbaston, Birmingham, B15 2JJ, UK
| | - Archie Campbell
- Centre for Genetics and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Raheleh Rahbari
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ioannis Kafetzopoulos
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genomics and Cancer, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Duncan Sproul
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genomics and Cancer, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Andrew Green
- Department of Clinical Genetics, Children's Health Ireland and School of Medicine University College, Dublin, Ireland
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Alan Donaldson
- Bristol Regional Clinical Genetics Service, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
| | - Kai-Ren Ong
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Karl Heinimann
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, BS, Switzerland
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, 2333 ZA, Leiden, the Netherlands
| | - Huw Thomas
- St Mark's Hospital, Watford Road, Harrow, HA1 3UJ, UK
| | | | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham Medical School, Vincent Drive, Edgbaston, Birmingham, B15 2JJ, UK.
| | - Ian Tomlinson
- Dept of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
27
|
Lirussi L, Nilsen HL. DNA Glycosylases Define the Outcome of Endogenous Base Modifications. Int J Mol Sci 2023; 24:10307. [PMID: 37373453 DOI: 10.3390/ijms241210307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.
Collapse
Affiliation(s)
- Lisa Lirussi
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Unit for Precision Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
28
|
Shida D, Kuchiba A, Shibata T, Hamaguchi T, Yamasaki S, Ito M, Kobatake T, Tonooka T, Masaki T, Shiozawa M, Takii Y, Uetake H, Okamura S, Ojima H, Kazama S, Takeyama H, Kanato K, Shimada Y, Murakami Y, Kanemitsu Y. Genomic landscape and its prognostic significance in stage III colorectal cancer: JCOG1506A1, an ancillary of JCOG0910. Cancer Sci 2023. [PMID: 37189003 PMCID: PMC10394152 DOI: 10.1111/cas.15834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Large-scale genomic sequencing of colorectal cancers has been reported mainly for Western populations. Differences by stage and ethnicity in the genomic landscape and their prognostic impact remain poorly understood. We investigated 534 Japanese stage III colorectal cancer samples from the Phase III trial, JCOG0910. Targeted-capture sequencing of 171 potentially colorectal cancer-associated genes was performed, and somatic single-nucleotide variants and insertion-deletions were determined. Hypermutated tumors were defined as tumors with MSIsensor score >7 and ultra-mutated tumors with POLE mutations. Genes with alterations associated with relapse-free survival were analyzed using multivariable Cox regression models. In all patients (184 right-sided, 350 left-sided), mutation frequencies were TP53, 75.3%; APC, 75.1%; KRAS, 43.6%; PIK3CA, 19.7%; FBXW7, 18.5%; SOX9, 11.8%; COL6A3, 8.2%; NOTCH3, 4.5%; NRAS, 4.1%; and RNF43, 3.7%. Thirty-one tumors were hypermutated (5.8%; 14.1% right-sided, 1.4% left-sided). Modest associations were observed: poorer relapse-free survival was seen with mutant KRAS (hazard ratio 1.66; p = 0.011) and mutant RNF43 (2.17; p = 0.055), whereas better relapse-free survival was seen with mutant COL6A3 (0.35; p = 0.040) and mutant NOTCH3 (0.18; p = 0.093). Relapse-free survival tended to be better for hypermutated tumors (0.53; p = 0.229). In conclusion, the overall spectrum of mutations in our Japanese stage III colorectal cancer cohort was similar to that in Western populations, but the frequencies of mutation for TP53, SOX9, and FBXW7 were higher, and the proportion of hypermutated tumors was lower. Multiple gene mutations appeared to impact relapse-free survival, suggesting that tumor genomic profiling can support precision medicine for colorectal cancer.
Collapse
Affiliation(s)
- Dai Shida
- Department of Colorectal Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Aya Kuchiba
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Tokyo, Japan
- Graduate School of Health Innovation, Kanagawa University of Human Services, Kanagawa, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Hamaguchi
- Department of Gastroenterological Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Satoshi Yamasaki
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Ito
- Department of Colorectal Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Takaya Kobatake
- Department of Gastroenterological Surgery, National Hospital Organization Shikoku Cancer Center, Ehime, Japan
| | - Toru Tonooka
- Department of Gastroenterological Surgery, Chiba Cancer Center, Chiba, Japan
| | - Tadahiko Masaki
- Department of Surgery, Kyorin University, Mitaka City, Japan
| | - Manabu Shiozawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan
| | - Yasumasa Takii
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Hiroyuki Uetake
- Department of Specialized Surgeries, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Okamura
- Department of Surgery, Suita Municipal Hospital, Osaka, Japan
| | - Hitoshi Ojima
- Department of Gastroenterological Surgery, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Shinsuke Kazama
- Division of Gastroenterological Surgery, Saitama Cancer Center, Saitama, Japan
| | | | - Keisuke Kanato
- Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhiro Shimada
- Gastrointestinal Medical Oncology Division, Kochi Health Sciences Center, Kochi, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yukihide Kanemitsu
- Department of Colorectal Surgery, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
29
|
Garutti M, Foffano L, Mazzeo R, Michelotti A, Da Ros L, Viel A, Miolo G, Zambelli A, Puglisi F. Hereditary Cancer Syndromes: A Comprehensive Review with a Visual Tool. Genes (Basel) 2023; 14:1025. [PMID: 37239385 PMCID: PMC10218093 DOI: 10.3390/genes14051025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Hereditary cancer syndromes account for nearly 10% of cancers even though they are often underdiagnosed. Finding a pathogenic gene variant could have dramatic implications in terms of pharmacologic treatments, tailored preventive programs, and familiar cascade testing. However, diagnosing a hereditary cancer syndrome could be challenging because of a lack of validated testing criteria or because of their suboptimal performance. In addition, many clinicians are not sufficiently well trained to identify and select patients that could benefit from a genetic test. Herein, we searched the available literature to comprehensively review and categorize hereditary cancer syndromes affecting adults with the aim of helping clinicians in their daily clinical practice through a visual tool.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Lorenzo Foffano
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Roberta Mazzeo
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Anna Michelotti
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Lucia Da Ros
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Alessandra Viel
- Unit of Oncogenetics and Genomics CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Gianmaria Miolo
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Alberto Zambelli
- Medical Oncology and Hematology Unit, IRCCS—Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Fabio Puglisi
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
30
|
Zhu LH, Dong J, Li WL, Kou ZY, Yang J. Genotype-Phenotype Correlations in Autosomal Dominant and Recessive APC Mutation-Negative Colorectal Adenomatous Polyposis. Dig Dis Sci 2023:10.1007/s10620-023-07890-9. [PMID: 36862359 DOI: 10.1007/s10620-023-07890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
The most prevalent type of intestinal polyposis, colorectal adenomatous polyposis (CAP), is regarded as a precancerous lesion of colorectal cancer with obvious genetic characteristics. Early screening and intervention can significantly improve patients' survival and prognosis. The adenomatous polyposis coli (APC) mutation is believed to be the primary cause of CAP. There is, however, a subset of CAP with undetectable pathogenic mutations in APC, known as APC (-)/CAP. The genetic predisposition to APC (-)/CAP has largely been associated with germline mutations in some susceptible genes, including the human mutY homologue (MUTYH) gene and the Nth-like DNA glycosylase 1 (NTHL1) gene, and DNA mismatch repair (MMR) can cause autosomal recessive APC (-)/CAP. Furthermore, autosomal dominant APC (-)/CAP could occur as a result of DNA polymerase epsilon (POLE)/DNA polymerase delta 1 (POLD1), axis inhibition protein 2 (AXIN2), and dual oxidase 2 (DUOX2) mutations. The clinical phenotypes of these pathogenic mutations vary greatly depending on their genetic characteristics. Therefore, in this study, we present a comprehensive review of the association between autosomal recessive and dominant APC (-)/CAP genotypes and clinical phenotypes and conclude that APC (-)/CAP is a disease caused by multiple genes with different phenotypes and interaction exists in the pathogenic genes.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jian Dong
- Department of Internal Medicine-Oncology, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Wen-Liang Li
- Colorectal Cancer Clinical Research Center, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Zhi-Yong Kou
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China.
| |
Collapse
|
31
|
Anugwom C, Braimoh G, Sultan A, Johnson WM, Debes JD, Mohammed A. Epidemiology and genetics of early onset colorectal cancer—African overview with a focus on Ethiopia. Semin Oncol 2023:S0093-7754(23)00040-4. [PMID: 37032270 DOI: 10.1053/j.seminoncol.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Colorectal cancer (CRC) is a common cause of cancer-related death worldwide, with high rates of late diagnosis and increased mortality in sub-Saharan Africa. Furthermore, there is an alarming uptrend in the incidence of early onset colorectal cancer (EOCRC) across the globe, thus necessitating the need for early screening in general and special populations. There is, however, limited data available on the incidence and genetic characteristics of EOCRC from resource-poor countries, particularly Africa. Moreover, there is lack of clarity if recommendations and mechanisms proposed based on data from resource-rich countries applies to other regions of the world. In this review, we appraise the literature on EOCRC, its overall incidence, and genetic components as it pertains to sub-Saharan Africa. In addition, we highlight epidemiologic and epigenetic findings of our EOCRC cohort in Ethiopia.
Collapse
|
32
|
Hereditary Women's Cancer: Management and Risk-Reducing Surgery. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020300. [PMID: 36837501 PMCID: PMC9967188 DOI: 10.3390/medicina59020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Hereditary women's syndromes due to inherited mutations result in an elevated risk of developing gynecological cancers over the lifetime of affected carriers. The BRCA 1 and 2 mutations, Lynch syndrome (LS), and mutations in rare hereditary syndromes increase this risk and require more effective management of these patients based on surveillance and prophylactic surgery. Patients need counseling regarding risk-reducing surgery (RRS) and the time required to perform it, considering the adverse effects of premenopausal surgery and the hormonal effect on quality of life, bone density, sexual activity, and cardiological and vascular diseases. Risk-reducing salpingo-oophorectomy (RRSO) is the gold standard for BRCA-mutated patients. An open question is that of endometrial cancer (EC) risk in patients with BRCA1/2 mutation to justify prophylactic hysterectomy during RRSO surgical procedures. RRS provides a 90-95% risk reduction for ovarian and breast cancer in women who are mutation carriers, but the role of prophylactic hysterectomy is underinvestigated in this setting of patients. In this review, we evaluate the management of the most common hereditary syndromes and the benefits of risk-reducing surgery, particularly exploring the role of prophylactic hysterectomy.
Collapse
|
33
|
Walker R, Georgeson P, Mahmood K, Joo JE, Makalic E, Clendenning M, Como J, Preston S, Joseland S, Pope BJ, Hutchinson RA, Kasem K, Walsh MD, Macrae FA, Win AK, Hopper JL, Mouradov D, Gibbs P, Sieber OM, O'Sullivan DE, Brenner DR, Gallinger S, Jenkins MA, Rosty C, Winship IM, Buchanan DD. Evaluating Multiple Next-Generation Sequencing-Derived Tumor Features to Accurately Predict DNA Mismatch Repair Status. J Mol Diagn 2023; 25:94-109. [PMID: 36396080 PMCID: PMC10424255 DOI: 10.1016/j.jmoldx.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Identifying tumor DNA mismatch repair deficiency (dMMR) is important for precision medicine. Tumor features, individually and in combination, derived from whole-exome sequenced (WES) colorectal cancers (CRCs) and panel-sequenced CRCs, endometrial cancers (ECs), and sebaceous skin tumors (SSTs) were assessed for their accuracy in detecting dMMR. CRCs (n = 300) with WES, where mismatch repair status was determined by immunohistochemistry, were assessed for microsatellite instability (MSMuTect, MANTIS, MSIseq, and MSISensor), Catalogue of Somatic Mutations in Cancer tumor mutational signatures, and somatic mutation counts. A 10-fold cross-validation approach (100 repeats) evaluated the dMMR prediction accuracy for i) individual features, ii) Lasso statistical model, and iii) an additive feature combination approach. Panel-sequenced tumors (29 CRCs, 22 ECs, and 20 SSTs) were assessed for the top performing dMMR predicting features/models using these three approaches. For WES CRCs, 10 features provided >80% dMMR prediction accuracy, with MSMuTect, MSIseq, and MANTIS achieving ≥99% accuracy. The Lasso model achieved 98.3% accuracy. The additive feature approach, with three or more of six of MSMuTect, MANTIS, MSIseq, MSISensor, insertion-deletion count, or tumor mutational signature small insertion/deletion 2 + small insertion/deletion 7 achieved 99.7% accuracy. For the panel-sequenced tumors, the additive feature combination approach of three or more of six achieved accuracies of 100%, 95.5%, and 100% for CRCs, ECs, and SSTs, respectively. The microsatellite instability calling tools performed well in WES CRCs; however, an approach combining tumor features may improve dMMR prediction in both WES and panel-sequenced data across tissue types.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ryan A Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Kais Kasem
- Department of Clinical Pathology, Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael D Walsh
- Sullivan Nicolaides Pathology, Bowen Hills, Queensland, Australia
| | - Finlay A Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia; Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Aung K Win
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Gibbs
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Medical Oncology, Western Health, Melbourne, Victoria, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dylan E O'Sullivan
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Darren R Brenner
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada; Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Alberta, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Envoi Specialist Pathologists, Brisbane, Queensland, Australia; University of Queensland, Brisbane, Queensland, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Weatherill CB, Burke SA, Haskins CG, Berry DK, Homer JP, Demeure MJ, Darabi S. Six case reports of NTHL1-associated tumor syndrome further support it as a multi-tumor predisposition syndrome. Clin Genet 2023; 103:231-235. [PMID: 36196035 DOI: 10.1111/cge.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 01/20/2023]
Abstract
NTHL1-associated tumor syndrome (NATS) is an autosomal recessive condition characterized by an increased risk for colorectal polyposis and colorectal cancer (CRC). Only 46 case reports have been previously published. In a retrospective review, we analyzed the clinical histories of six patients found to have NATS after genetic counseling and testing. NATS appears to be associated with an increased risk for colorectal polyposis, CRC, female breast cancer, meningiomas, and endometrial cancer. Although research is limited, prior publications have reported a multi-tumor predisposition for individuals with biallelic pathogenic or likely pathogenic variants in NTHL1. Additional data are necessary to further define the cancer risks so affected individuals can be appropriately managed.
Collapse
Affiliation(s)
| | - Sarah A Burke
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carolyn G Haskins
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Darcy K Berry
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jeanne P Homer
- Hoag Family Cancer Institute, Newport Beach, California, USA
| | - Michael J Demeure
- Hoag Family Cancer Institute, Newport Beach, California, USA
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Sourat Darabi
- Hoag Family Cancer Institute, Newport Beach, California, USA
| |
Collapse
|
35
|
Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int J Mol Sci 2023; 24:ijms24032137. [PMID: 36768460 PMCID: PMC9916931 DOI: 10.3390/ijms24032137] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Colorectal cancer is one of the most common tumors, and genetic predisposition is one of the key risk factors in the development of this malignancy. Lynch syndrome and familial adenomatous polyposis are the best-known genetic diseases associated with hereditary colorectal cancer. However, some other genetic disorders confer an increased risk of colorectal cancer, such as Li-Fraumeni syndrome (TP53 gene), MUTYH-associated polyposis (MUTYH gene), Peutz-Jeghers syndrome (STK11 gene), Cowden syndrome (PTEN gene), and juvenile polyposis syndrome (BMPR1A and SMAD4 genes). Moreover, the recent advances in molecular techniques, in particular Next-Generation Sequencing, have led to the identification of many new genes involved in the predisposition to colorectal cancers, such as RPS20, POLE, POLD1, AXIN2, NTHL1, MSH3, RNF43 and GREM1. In this review, we summarized the past and more recent findings in the field of cancer predisposition genes, with insights into the role of the encoded proteins and into the associated genetic disorders. Furthermore, we discussed the possible clinical utility of genetic testing in terms of prevention protocols and therapeutic approaches.
Collapse
|
36
|
Petronek MS, Allen BG. Maintenance of genome integrity by the late-acting cytoplasmic iron-sulfur assembly (CIA) complex. Front Genet 2023; 14:1152398. [PMID: 36968611 PMCID: PMC10031043 DOI: 10.3389/fgene.2023.1152398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are unique, redox-active co-factors ubiquitous throughout cellular metabolism. Fe-S cluster synthesis, trafficking, and coordination result from highly coordinated, evolutionarily conserved biosynthetic processes. The initial Fe-S cluster synthesis occurs within the mitochondria; however, the maturation of Fe-S clusters culminating in their ultimate insertion into appropriate cytosolic/nuclear proteins is coordinated by a late-acting cytosolic iron-sulfur assembly (CIA) complex in the cytosol. Several nuclear proteins involved in DNA replication and repair interact with the CIA complex and contain Fe-S clusters necessary for proper enzymatic activity. Moreover, it is currently hypothesized that the late-acting CIA complex regulates the maintenance of genome integrity and is an integral feature of DNA metabolism. This review describes the late-acting CIA complex and several [4Fe-4S] DNA metabolic enzymes associated with maintaining genome stability.
Collapse
|
37
|
Alenezi WM, Fierheller CT, Serruya C, Revil T, Oros KK, Subramanian DN, Bruce J, Spiegelman D, Pugh T, Campbell IG, Mes-Masson AM, Provencher D, Foulkes WD, Haffaf ZE, Rouleau G, Bouchard L, Greenwood CMT, Ragoussis J, Tonin PN. Genetic analyses of DNA repair pathway associated genes implicate new candidate cancer predisposing genes in ancestrally defined ovarian cancer cases. Front Oncol 2023; 13:1111191. [PMID: 36969007 PMCID: PMC10030840 DOI: 10.3389/fonc.2023.1111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Not all familial ovarian cancer (OC) cases are explained by pathogenic germline variants in known risk genes. A candidate gene approach involving DNA repair pathway genes was applied to identify rare recurring pathogenic variants in familial OC cases not associated with known OC risk genes from a population exhibiting genetic drift. Whole exome sequencing (WES) data of 15 OC cases from 13 families tested negative for pathogenic variants in known OC risk genes were investigated for candidate variants in 468 DNA repair pathway genes. Filtering and prioritization criteria were applied to WES data to select top candidates for further analyses. Candidates were genotyped in ancestry defined study groups of 214 familial and 998 sporadic OC or breast cancer (BC) cases and 1025 population-matched controls and screened for additional carriers in 605 population-matched OC cases. The candidate genes were also analyzed in WES data from 937 familial or sporadic OC cases of diverse ancestries. Top candidate variants in ERCC5, EXO1, FANCC, NEIL1 and NTHL1 were identified in 5/13 (39%) OC families. Collectively, candidate variants were identified in 7/435 (1.6%) sporadic OC cases and 1/566 (0.2%) sporadic BC cases versus 1/1025 (0.1%) controls. Additional carriers were identified in 6/605 (0.9%) OC cases. Tumour DNA from ERCC5, NEIL1 and NTHL1 variant carriers exhibited loss of the wild-type allele. Carriers of various candidate variants in these genes were identified in 31/937 (3.3%) OC cases of diverse ancestries versus 0-0.004% in cancer-free controls. The strategy of applying a candidate gene approach in a population exhibiting genetic drift identified new candidate OC predisposition variants in DNA repair pathway genes.
Collapse
Affiliation(s)
- Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Medical Laboratory Technology, Taibah University, Medina, Saudi Arabia
| | - Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Corinne Serruya
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Kathleen K. Oros
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
| | - Deepak N. Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jeffrey Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dan Spiegelman
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Trevor Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Departement of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montreal, QC, Canada
| | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Zaki El Haffaf
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Service de Médecine Génique, Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Guy Rouleau
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, Centres intégrés universitaires de santé et de services sociaux du Saguenay-Lac-Saint-Jean hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
- Centre de Recherche du Centre hospitalier l’Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Celia M. T. Greenwood
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Patricia N. Tonin,
| |
Collapse
|
38
|
Aelvoet AS, Hoekman DR, Redeker BJW, Weegenaar J, Dekker E, van Noesel CJM, Duijkers FAM. A large family with MSH3-related polyposis. Fam Cancer 2023; 22:49-54. [PMID: 35675019 PMCID: PMC9829574 DOI: 10.1007/s10689-022-00297-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
Biallelic MSH3 germline variants are a rare cause of adenomatous polyposis as yet reported in two small families only. We describe the phenotype of a third family, the largest thus far, with adenomatous polyposis related to compound heterozygous MSH3 pathogenic variants. The index patient was a 55-years old male diagnosed with rectal cancer and adenomatous polyposis (cumulatively 52 polyps), with a family history of colorectal polyposis with unknown cause. Next-generation sequencing and copy number variation analysis of a panel of genes associated with colorectal cancer and polyposis revealed compound heterozygous germline pathogenic variants in the MSH3 gene. Nine out of 11 siblings were genotyped. Three siblings carried the same compound heterozygous MSH3 variants. Colonoscopy screening showed predominantly right-sided adenomatous polyposis in all compound heterozygous siblings, with a cumulative number of adenomas ranging from 18 to 54 in an average of four colonoscopies, and age at first adenoma detection ranging from 46 to 59. Microsatellite analysis demonstrated alterations at selected tetranucleotide repeats (EMAST) in DNA retrieved from the rectal adenocarcinoma, colorectal adenomas as well as of normal colonic mucosa. Gastro-duodenoscopy did not reveal adenomas in any of the four patients. Extra-intestinal findings included a ductal adenocarcinoma in ectopic breast tissue in one female sibling at the age of 46, and liver cysts in three affected siblings. None of the three heterozygous or wild type siblings who previously underwent colonoscopy had adenomatous polyposis. We conclude that biallelic variants in MSH3 are a rare cause of attenuated adenomatous polyposis with an onset in middle age.
Collapse
Affiliation(s)
- Arthur S Aelvoet
- Amsterdam UMC location University of Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Daniël R Hoekman
- Amsterdam UMC location University of Amsterdam, Department of Human Genetics, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Bert J W Redeker
- Amsterdam UMC location University of Amsterdam, Department of Human Genetics, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Jitske Weegenaar
- Amsterdam UMC location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Evelien Dekker
- Amsterdam UMC location University of Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Amsterdam UMC location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Floor A M Duijkers
- Amsterdam UMC location University of Amsterdam, Department of Human Genetics, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
39
|
Strong Hereditary Predispositions to Colorectal Cancer. Genes (Basel) 2022; 13:genes13122326. [PMID: 36553592 PMCID: PMC9777620 DOI: 10.3390/genes13122326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide. A strong predisposition to cancer is generally only observed in colorectal cancer (5% of cases) and breast cancer (2% of cases). Colorectal cancer is the most common cancer with a strong genetic predisposition, but it includes dozens of various syndromes. This group includes familial adenomatous polyposis, attenuated familial adenomatous polyposis, MUTYH-associated polyposis, NTHL1-associated polyposis, Peutz-Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, Lynch syndrome, and Muir-Torre syndrome. The common symptom of all these diseases is a very high risk of colorectal cancer, but depending on the condition, their course is different in terms of age and range of cancer occurrence. The rate of cancer development is determined by its conditioning genes, too. Hereditary predispositions to cancer of the intestine are a group of symptoms of heterogeneous diseases, and their proper diagnosis is crucial for the appropriate management of patients and their successful treatment. Mutations of specific genes cause strong colorectal cancer predispositions. Identifying mutations of predisposing genes will support proper diagnosis and application of appropriate screening programs to avoid malignant neoplasm.
Collapse
|
40
|
Chen L, Ye L, Hu B. Hereditary Colorectal Cancer Syndromes: Molecular Genetics and Precision Medicine. Biomedicines 2022; 10:biomedicines10123207. [PMID: 36551963 PMCID: PMC9776295 DOI: 10.3390/biomedicines10123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Hereditary CRC syndromes account for approximately 5-10% of all CRC, with a lifetime risk of CRC that approaches 50-80% in the absence of endoscopic or surgical treatment. Hereditary CRC syndromes can be phenotypically divided into polyposis and non-polyposis syndrome, mainly according to the conditions of polyps. The typical representatives are familial adenomatous polyposis (FAP) and Lynch syndromes (LS), respectively. Over the past few decades, molecular genetics enhanced the discovery of cancer-predisposing genes and revolutionized the field of clinical oncology. Hereditary CRC syndromes have been a key part of this effort, with data showing that pathogenic variants are present in up to 10% of cases. Molecular phenotypes of tumors can not only help identify individuals with genetic susceptibility to CRC but also guide the precision prevention and treatment for the development of CRC. This review emphasizes the molecular basis and prevention strategies for hereditary CRC syndromes.
Collapse
Affiliation(s)
| | | | - Bing Hu
- Correspondence: ; Tel.: +86-18980601278
| |
Collapse
|
41
|
Te Paske IBAW, Mensenkamp AR, Neveling K, Hoogerbrugge N, Ligtenberg MJL, De Voer RM. Noncoding Aberrations in Mismatch Repair Genes Underlie a Substantial Part of the Missing Heritability in Lynch Syndrome. Gastroenterology 2022; 163:1691-1694.e7. [PMID: 36037994 DOI: 10.1053/j.gastro.2022.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Iris B A W Te Paske
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | | | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Department of Pathology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Richarda M De Voer
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.
| |
Collapse
|
42
|
Olkinuora AP, Mayordomo AC, Kauppinen AK, Cerliani MB, Coraglio M, Collia ÁK, Gutiérrez A, Alvarez K, Cassana A, Lopéz-Köstner F, Jauk F, García-Rivello H, Ristimäki A, Koskenvuo L, Lepistö A, Nieminen TT, Vaccaro CA, Pavicic WH, Peltomäki P. Mono- and biallelic germline variants of DNA glycosylase genes in colon adenomatous polyposis families from two continents. Front Oncol 2022; 12:870863. [DOI: 10.3389/fonc.2022.870863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, biallelic germline variants of the DNA glycosylase genes MUTYH and NTHL1 were linked to polyposis susceptibility. Significant fractions remain without a molecular explanation, warranting searches for underlying causes. We used exome sequencing to investigate clinically well-defined adenomatous polyposis cases and families from Finland (N=34), Chile (N=21), and Argentina (N=12), all with known susceptibility genes excluded. Nine index cases (13%) revealed germline variants with proven or possible pathogenicity in the DNA glycosylase genes, involving NEIL1 (mono- or biallelic) in 3 cases, MUTYH (monoallelic) in 3 cases, NTHL1 (biallelic) in 1 case, and OGG1 (monoallelic) in 2 cases. NTHL1 was affected with the well-established, pathogenic c.268C>T, p.(Gln90Ter) variant. A recurrent heterozygous NEIL1 c.506G>A, p.(Gly169Asp) variant was observed in two families. In a Finnish family, the variant occurred in trans with a truncating NEIL1 variant (c.821delT). In an Argentine family, the variant co-occurred with a genomic deletion of exons 2 – 11 of PMS2. Mutational signatures in tumor tissues complied with biological functions reported for NEIL1. Our results suggest that germline variants in DNA glycosylase genes may occur in a non-negligible proportion of unexplained colon polyposis cases and may predispose to tumor development.
Collapse
|
43
|
Beck SH, Jelsig AM, Yassin HM, Lindberg LJ, Wadt KAW, Karstensen JG. Intestinal and extraintestinal neoplasms in patients with NTHL1 tumor syndrome: a systematic review. Fam Cancer 2022; 21:453-462. [PMID: 35292903 DOI: 10.1007/s10689-022-00291-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
Germline biallelic pathogenic variants (PVs) in NTHL1 have since 2015 been associated with the autosomal recessive tumor predisposition syndrome: NTHL1 tumor syndrome or NTHL1-associated polyposis. In this systematic review, we aim to systematically investigate the phenotypic and genotypic spectrum of the condition including occurrence of both benign and malignant tumors. The databases PubMed, EMBASE, and Scopus were searched. The search was conducted the 25th of august 2021. We included patients with germline PVs, both heterozygous and homo-/compound heterozygous carriers. Twenty-one papers were selected including 47 patients with biallelic PVs in NTHL1 in 32 families. Twenty-three out of 47 patients (49%) were diagnosed with colorectal cancer (CRC) (mean age: 55, range: 31-73) and 12 out of 22 female patients (55%) were diagnosed with breast cancer (mean age: 49, range: 36-63). Apart from three, all patients who underwent a colonoscopy, had colonic adenomas (93%), and three patients (6%) had duodenal adenomatosis. We also identified 158 heterozygous carriers of germline PVs in NTHL1. Twenty-six out of 68 (38%) heterozygous carriers, who underwent colonoscopy, had colonic polyps or adenomas. Twenty-nine heterozygous carriers (18%) were diagnosed with CRC and 59 (49%) with breast cancer. We observed a high frequency of early onset CRC and breast cancer in patients with NTHL1 tumor syndrome. Subsequently, colorectal, breast, and endometrial cancer screening programs are recommended for NTHL1 biallelic carriers. Trial registry PROSPERO: CRD42021275159.
Collapse
Affiliation(s)
- S H Beck
- Faculty of Health and Medical Sciences, University of Copenhagen, Nørregade 10, 1165, Copenhagen, Denmark.
| | - A M Jelsig
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - H M Yassin
- Faculty of Health and Medical Sciences, University of Copenhagen, Nørregade 10, 1165, Copenhagen, Denmark
| | - L J Lindberg
- Danish HNPCC Register, Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - K A W Wadt
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J G Karstensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Polyposis Registry, Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| |
Collapse
|
44
|
Vickridge E, Faraco CCF, Tehrani PS, Ramdzan ZM, Djerir B, Rahimian H, Leduy L, Maréchal A, Gingras AC, Nepveu A. The DNA repair function of BCL11A suppresses senescence and promotes continued proliferation of triple-negative breast cancer cells. NAR Cancer 2022; 4:zcac028. [PMID: 36186110 PMCID: PMC9516615 DOI: 10.1093/narcan/zcac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
We identified the BCL11A protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. In vitro, DNA repair assays demonstrate that both BCL11A and a small recombinant BCL11A160-520 protein that is devoid of DNA binding and transcription regulatory domains can stimulate the enzymatic activities of two base excision repair enzymes: NTHL1 and DNA Pol β. Increased DNA repair efficiency, in particular of the base excision repair pathway, is essential for many cancer cells to proliferate in the presence of elevated reactive oxygen species (ROS) produced by cancer-associated metabolic changes. BCL11A is highly expressed in triple-negative breast cancers (TNBC) where its knockdown was reported to reduce clonogenicity and cause tumour regression. We show that BCL11A knockdown in TNBC cells delays repair of oxidative DNA damage, increases the number of oxidized bases and abasic sites in genomic DNA, slows down proliferation and induces cellular senescence. These phenotypes are rescued by ectopic expression of the short BCL11A160-520 protein. We further show that the BCL11A160-520 protein accelerates the repair of oxidative DNA damage and cooperates with RAS in cell transformation assays, thereby enabling cells to avoid senescence and continue to proliferate in the presence of high ROS levels.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Camila C F Faraco
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Payman S Tehrani
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zubaidah M Ramdzan
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Billel Djerir
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Hedyeh Rahimian
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Alexandre Maréchal
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alain Nepveu
- To whom correspondence should be addressed. Tel: +1 514 398 5839; Fax: +1 514 398 6769;
| |
Collapse
|
45
|
Abstract
The traditional approach of one-size-fits-all for colorectal cancer has been replaced by personalized interventions to an individual's unique genetic, molecular, and environmental profile, seeking to identify high-risk individuals who would benefit from individualized screening and surveillance. This change in approach is due, in part, to emerging technologies, such as next-generation DNA sequencing.
Collapse
|
46
|
Coverlizza S, Masu L, Manini C. Multiple Adenocarcinomas of the Small Bowel in a Patient with Brunner’s Glands Agenesia: A Previously Unreported Association. Clin Pract 2022; 12:672-676. [PMID: 36136863 PMCID: PMC9498684 DOI: 10.3390/clinpract12050069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Adenocarcinoma of the small bowel is rather uncommon and several etio-pathogenic factors have been proposed. We report a case of multiple synchronous adenocarcinomas arising in the non-ampullary duodenum and first tract of the jejunum in a background of Brunner’s glands agenesia, chronic duodenitis, and extensive dysplasia in a 64 year-old woman. To the best of our knowledge such association has not been reported so far.
Collapse
Affiliation(s)
- Sergio Coverlizza
- Department of Pathology, San Giovanni Bosco Hospital, 10154 Turin, Italy
| | - Lavinia Masu
- Department of Pathology, S. Andrea Hospital, ASLVC, 13100 Vercelli, Italy
| | - Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, 10154 Turin, Italy
- Department of Sciences of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
- Correspondence:
| |
Collapse
|
47
|
Djursby M, Hansen TVO, Wadt KAW, Madsen MB, Berchtold LA, Lautrup CK, Markholt S, Jensen UB, Krogh LN, Lundsgaard M, Gerdes AM, Nilbert M, Therkildsen C. Clinical implications of genetic testing in familial intermediate and late-onset colorectal cancer. Hum Genet 2022; 141:1925-1933. [PMID: 35904628 DOI: 10.1007/s00439-022-02470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
The genetic background of familial, late-onset colorectal cancer (CRC) (i.e., onset > age 50 years) has not been studied as thoroughly as other subgroups of familial CRC, and the proportion of families with a germline genetic predisposition to CRC remains to be defined. To define the contribution of known or suggested CRC predisposition genes to familial late-onset CRC, we analyzed 32 well-established or candidate CRC predisposition genes in 75 families with late-onset CRC. We identified pathogenic or likely pathogenic variants in five patients in MSH6 (n = 1), MUTYH (monoallelic; n = 2) and NTHL1 (monoallelic; n = 2). In addition, we identified a number of variants of unknown significance in particular in the lower penetrant Lynch syndrome-associated mismatch repair (MMR) gene MSH6 (n = 6). In conclusion, screening using a comprehensive cancer gene panel in families with accumulation of late-onset CRC appears not to have a significant clinical value due to the low level of high-risk pathogenic variants detected. Our data suggest that only patients with abnormal MMR immunohistochemistry (IHC) or microsatellite instability (MSI) analyses, suggestive of Lynch syndrome, or a family history indicating another cancer predisposition syndrome should be prioritized for such genetic evaluations. Variants in MSH6 and MUTYH have previously been proposed to be involved in digenic or oligogenic hereditary predisposition to CRC. Accumulation of variants in MSH6 and monoallelic, pathogenic variants in MUTYH in our study indicates that digenic or oligogenic inheritance might be involved in late-onset CRC and warrants further studies of complex types of inheritance.
Collapse
Affiliation(s)
- Malene Djursby
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin A W Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Majbritt Busk Madsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lukas Adrian Berchtold
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte Kvist Lautrup
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Sara Markholt
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Malene Lundsgaard
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mef Nilbert
- Clinical Research Centre, Copenhagen University Hospital, Amager and Hvidovre Hospital, Copenhagen, Denmark.,Institute of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Christina Therkildsen
- Clinical Research Centre, Copenhagen University Hospital, Amager and Hvidovre Hospital, Copenhagen, Denmark.,HNPCC Register, Gastro Unit, Copenhagen University Hospital, Amager and Hvidovre Hospital, Copenhagen, Denmark
| |
Collapse
|
48
|
Styk J, Buglyó G, Pös O, Csók Á, Soltész B, Lukasz P, Repiská V, Nagy B, Szemes T. Extracellular Nucleic Acids in the Diagnosis and Progression of Colorectal Cancer. Cancers (Basel) 2022; 14:3712. [PMID: 35954375 PMCID: PMC9367600 DOI: 10.3390/cancers14153712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Colorectal cancer (CRC) is the 3rd most common malignant neoplasm worldwide, with more than two million new cases diagnosed yearly. Despite increasing efforts in screening, many cases are still diagnosed at a late stage, when mortality is high. This paper briefly reviews known genetic causes of CRC (distinguishing between sporadic and familial forms) and discusses potential and confirmed nucleic acid biomarkers obtainable from liquid biopsies, classified by their molecular features, focusing on clinical relevance. We comment on advantageous aspects such as better patient compliance due to blood sampling being minimally invasive, the possibility to monitor mutation characteristics of sporadic and hereditary CRC in a disease showing genetic heterogeneity, and using up- or down-regulated circulating RNA markers to reveal metastasis or disease recurrence. Current difficulties and thoughts on some possible future directions are also discussed. We explore current evidence in the field pointing towards the introduction of personalized CRC management.
Collapse
Affiliation(s)
- Jakub Styk
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Ondrej Pös
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Peter Lukasz
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary;
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Tomáš Szemes
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|
49
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
50
|
Anderson DJ, Reinicke T, Boyle AW, Porwal MH, Friedman AH. Second Case of Tumors Associated With Heterozygous NTHL1 Variant. Cureus 2022; 14:e26734. [PMID: 35967160 PMCID: PMC9364427 DOI: 10.7759/cureus.26734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
Homozygous mutations to NTHL1 are known to increase cancer risk, particularly in the colon and breast. NTHL1 tumor syndrome (NTS) is an autosomal recessive genetic condition. Little is known about the cancer risk in patients who have heterozygous NTHL1 mutations. We previously published a case of benign tumors associated with a heterozygous NTHL1 mutation. In this second case, we present a patient with a heterozygous NTHL1 mutation who developed a gastrointestinal stromal tumor, pilocytic astrocytoma, tall cell papillary thyroid cancer, invasive ductal papilloma, spinal nerve sheath tumors, and spinal hemangiomas. Here, we show that heterozygous NTHL1 mutations may increase cancer risk and may even manifest similarly to NTS.
Collapse
|