1
|
Luft FC. Personal Genetic-Hypertension Odyssey From Phenotypes to Genotypes and Targets. Hypertension 2024; 81:2395-2406. [PMID: 39355912 DOI: 10.1161/hypertensionaha.124.21714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Hypertension requires increased systemic vascular resistance. Thus far, Mendelian hypertension-related genes are related to salt retention, an indirect regulatory effect. With the identification of mutated, overactive, PDE3A (phosphodiesterase 3A), we have uncovered a more direct vasoconstrictive mechanism. The autosomal-dominant syndrome features another specific phenotype, brachydactyly type E. Hypertension and the bony phenotype invariably occur together. We distinguished between these phenotypes by examining individual pedigrees. We implicated the gene encoding the parathyroid hormone-related peptide in the brachydactyly. We identified the hypertensive mechanisms as involving regulatory-region, gain-of-function, exon 4 rare pathogenic variants, in the cAMP-cGMP-catabolizing enzyme, PDE3A. We generated rodent models that recapitulate all human phenotypes. Comparisons not only allowed pathogenic insights into the human condition but also provided intervention models. Moreover, we identified rare pathogenic variants in exon 13 encoding the enzymatic pocket. These patients had identical phenotypes, also corroborated in a rodent model, which produced the same human phenotypes. These data could allow the differentiation between a target organ and blood pressure phenotype. The research allows visualization of enzymatic processes at the intracellular nanodomain level. The scope of this project has elucidated genetic mechanisms important to cartilage development, possibly cancer metastases, and findings relevant to cardiovascular regulation via systemic vascular resistance. For our team, the project was an educational/scientific adventure over a professional lifetime.
Collapse
Affiliation(s)
- Friedrich C Luft
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany
| |
Collapse
|
2
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Jurgens JA, England EM, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. Nat Commun 2024; 15:8268. [PMID: 39333082 PMCID: PMC11436875 DOI: 10.1038/s41467-024-52463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generate single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. We evaluate enhancer activity for 59 elements using an in vivo transgenic assay and validate 44 (75%), demonstrating that single cell accessibility can be a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieve significant reduction in our variant search space and nominate candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work delivers non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lauren J Ayers
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Lydia N Fozo
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brandon M Pratt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas E Collins
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew F Rose
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan P Tenney
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cassia Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Victoria R Bradford
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie A Jurgens
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Delrue C, Speeckaert R, Moresco RN, Speeckaert MM. Cyclic Adenosine Monophosphate Signaling in Chronic Kidney Disease: Molecular Targets and Therapeutic Potentials. Int J Mol Sci 2024; 25:9441. [PMID: 39273390 PMCID: PMC11395066 DOI: 10.3390/ijms25179441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by a steady decline in kidney function and affects roughly 10% of the world's population. This review focuses on the critical function of cyclic adenosine monophosphate (cAMP) signaling in CKD, specifically how it influences both protective and pathogenic processes in the kidney. cAMP, a critical secondary messenger, controls a variety of cellular functions, including transcription, metabolism, mitochondrial homeostasis, cell proliferation, and apoptosis. Its compartmentalization inside cellular microdomains ensures accurate signaling. In kidney physiology, cAMP is required for hormone-regulated activities, particularly in the collecting duct, where it promotes water reabsorption through vasopressin signaling. Several illnesses, including Fabry disease, renal cell carcinoma, nephrogenic diabetes insipidus, Bartter syndrome, Liddle syndrome, diabetic nephropathy, autosomal dominant polycystic kidney disease, and renal tubular acidosis, have been linked to dysfunction in the cAMP system. Both cAMP analogs and phosphodiesterase inhibitors have the potential to improve kidney function and reduce kidney damage. Future research should focus on developing targeted PDE inhibitors for the treatment of CKD.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
4
|
Gardner OFW, Bai T, Baillie GS, Ferretti P. Phosphodiesterase 4D activity in acrodysostosis-associated neural pathology: too much or too little? Brain Commun 2024; 6:fcae225. [PMID: 38983619 PMCID: PMC11232698 DOI: 10.1093/braincomms/fcae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Members of the phosphodiesterase 4 (PDE4) enzyme family regulate the availability of the secondary messenger cyclic adenosine monophosphate (cAMP) and, by doing so, control cellular processes in health and disease. In particular, PDE4D has been associated with Alzheimer's disease and the intellectual disability seen in fragile X syndrome. Furthermore, single point mutations in critical PDE4D regions cause acrodysostosis type 2(ACRDYS2, also referred to as inactivating PTH/PTHrP signalling disorder 5 or iPPSD5), where intellectual disability is seen in ∼90% of patients alongside the skeletal dysmorphologies that are characteristic of acrodysostosis type 1 (ACRDYS1/iPPSD4) and ACRDYS2. Two contrasting mechanisms have been proposed to explain how mutations in PDE4D cause iPPSD5. The first mechanism, the 'over-activation hypothesis', suggests that cAMP/PKA (cyclic adenosine monophosphate/protein kinase A) signalling is reduced by the overactivity of mutant PDE4D, whilst the second, the 'over-compensation hypothesis' suggests that mutations reduce PDE4D activity. That reduction in activity is proposed to cause an increase in cellular cAMP, triggering the overexpression of other PDE isoforms. The resulting over-compensation then reduces cellular cAMP and the levels of cAMP/PKA signalling. However, neither of these proposed mechanisms accounts for the fine control of PDE activation and localization, which are likely to play a role in the development of iPPSD5. This review will draw together our understanding of the role of PDE4D in iPPSD5 and present a novel perspective on possible mechanisms of disease.
Collapse
Affiliation(s)
- Oliver F W Gardner
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Tianshu Bai
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - George S Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patrizia Ferretti
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
5
|
Shahid A, Shetty NS, Patel N, McClinchey T, Arora G, Arora P. Hypertension and Brachydactyly Syndrome: Genetic Insights and a Novel Presentation. JACC Case Rep 2024; 29:102343. [PMID: 38689596 PMCID: PMC11059297 DOI: 10.1016/j.jaccas.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Phosphodiesterase 3A (PDE3A) gene mutations have recently been associated with hypertension and brachydactyly syndrome (HTNB). This report shows how the recent recognition of the role of the PDE3A gene in HTNB facilitated the diagnosis of HTNB in a 20-year-old female who could not be diagnosed at her initial presentation at 6 years of age.
Collapse
Affiliation(s)
- Abdulla Shahid
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Naman S. Shetty
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nirav Patel
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Taylor McClinchey
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Garima Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Mani A. Update in genetic and epigenetic causes of hypertension. Cell Mol Life Sci 2024; 81:201. [PMID: 38691164 PMCID: PMC11062952 DOI: 10.1007/s00018-024-05220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/03/2024]
Abstract
Hypertension is a heritable disease that affects one-fourth of the population and accounts for about 50% of cardiovascular deaths. The genetic basis of hypertension is multifaceted, involving both monogenic and most commonly complex polygenic forms. With the advent of the human genome project, genome-wide association studies (GWAS) have identified a plethora of loci linked to hypertension by examining common genetic variations. It's notable, however, that the majority of these genetic variants do not affect the protein-coding sequences, posing a considerable obstacle in pinpointing the actual genes responsible for hypertension. Despite these challenges, precise mapping of GWAS-identified loci is emerging as a promising strategy to reveal novel genes and potential targets for the pharmacological management of blood pressure. This review provides insight into the monogenic and polygenic causes of hypertension. Special attention is given to PRDM6, among the earliest functionally characterized GWAS-identified genes. Moreover, this review delves into the roles of genes contributing to renal and vascular forms of hypertension, offering insights into their genetic and epigenetic mechanisms of action.
Collapse
Affiliation(s)
- Arya Mani
- Department of Internal Medicine, Yale University School of Medicine, Yale Cardiovascular Research Center, 300 George Street, New Haven, CT, 06511, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Aydin A, Klenk C, Nemec K, Işbilir A, Martin LM, Zauber H, Rrustemi T, Toka HR, Schuster H, Gong M, Stricker S, Bock A, Bähring S, Selbach M, Lohse MJ, Luft FC. ADAM19 cleaves the PTH receptor and associates with brachydactyly type E. Life Sci Alliance 2024; 7:e202302400. [PMID: 38331475 PMCID: PMC10853454 DOI: 10.26508/lsa.202302400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Brachydactyly type E (BDE), shortened metacarpals, metatarsals, cone-shaped epiphyses, and short stature commonly occurs as a sole phenotype. Parathyroid hormone-like protein (PTHrP) has been shown to be responsible in all forms to date, either directly or indirectly. We used linkage and then whole genome sequencing in a small pedigree, to elucidate BDE and identified a truncated disintegrin-and-metalloproteinase-19 (ADAM19) allele in all affected family members, but not in nonaffected persons. Since we had shown earlier that the extracellular domain of the parathyroid hormone receptor (PTHR1) is subject to an unidentified metalloproteinase cleavage, we tested the hypothesis that ADAM19 is a sheddase for PTHR1. WT ADAM19 cleaved PTHR1, while mutated ADAM-19 did not. We mapped the cleavage site that we verified with mass spectrometry between amino acids 64-65. ADAM-19 cleavage increased Gq and decreased Gs activation. Moreover, perturbed PTHR1 cleavage by ADAM19 increased ß-arrestin2 recruitment, while cAMP accumulation was not altered. We suggest that ADAM19 serves as a regulatory element for PTHR1 and could be responsible for BDE. This sheddase may affect other PTHrP or PTH-related functions.
Collapse
Affiliation(s)
- Atakan Aydin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Christoph Klenk
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Katarina Nemec
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Department of Structural Biology and Center of Excellence for Data-Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ali Işbilir
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Lisa M Martin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Trendelina Rrustemi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hakan R Toka
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Herbert Schuster
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Maolian Gong
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Bock
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sylvia Bähring
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- ISAR Bioscience Institute, Munich, Germany
| | - Friedrich C Luft
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
8
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
9
|
Thériault S, Li Z, Abner E, Luan J, Manikpurage HD, Houessou U, Zamani P, Briend M, Boudreau DK, Gaudreault N, Frenette L, Argaud D, Dahmene M, Dagenais F, Clavel MA, Pibarot P, Arsenault BJ, Boekholdt SM, Wareham NJ, Esko T, Mathieu P, Bossé Y. Integrative genomic analyses identify candidate causal genes for calcific aortic valve stenosis involving tissue-specific regulation. Nat Commun 2024; 15:2407. [PMID: 38494474 PMCID: PMC10944835 DOI: 10.1038/s41467-024-46639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
There is currently no medical therapy to prevent calcific aortic valve stenosis (CAVS). Multi-omics approaches could lead to the identification of novel molecular targets. Here, we perform a genome-wide association study (GWAS) meta-analysis including 14,819 cases among 941,863 participants of European ancestry. We report 32 genomic loci, among which 20 are novel. RNA sequencing of 500 human aortic valves highlights an enrichment in expression regulation at these loci and prioritizes candidate causal genes. Homozygous genotype for a risk variant near TWIST1, a gene involved in endothelial-mesenchymal transition, has a profound impact on aortic valve transcriptomics. We identify five genes outside of GWAS loci by combining a transcriptome-wide association study, colocalization, and Mendelian randomization analyses. Using cross-phenotype and phenome-wide approaches, we highlight the role of circulating lipoproteins, blood pressure and inflammation in the disease process. Our findings pave the way for the development of novel therapies for CAVS.
Collapse
Affiliation(s)
- Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC, Canada.
| | - Zhonglin Li
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Hasanga D Manikpurage
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Ursula Houessou
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Pardis Zamani
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Mewen Briend
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Dominique K Boudreau
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Nathalie Gaudreault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Lily Frenette
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Déborah Argaud
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Manel Dahmene
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - François Dagenais
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Surgery, Université Laval, Quebec City, QC, Canada
| | - Marie-Annick Clavel
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Philippe Pibarot
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Benoit J Arsenault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrick Mathieu
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Surgery, Université Laval, Quebec City, QC, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
10
|
Shu T, Zhou Y, Yan C. The perspective of cAMP/cGMP signaling and cyclic nucleotide phosphodiesterases in aortic aneurysm and dissection. Vascul Pharmacol 2024; 154:107278. [PMID: 38262506 PMCID: PMC10939884 DOI: 10.1016/j.vph.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Aortic aneurysm (AA) and dissection (AD) are aortic diseases caused primarily by medial layer degeneration and perivascular inflammation. They are lethal when the rupture happens. Vascular smooth muscle cells (SMCs) play critical roles in the pathogenesis of medial degeneration, characterized by SMC loss and elastin fiber degradation. Many molecular pathways, including cyclic nucleotide signaling, have been reported in regulating vascular SMC functions, matrix remodeling, and vascular structure integrity. Intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are second messengers that mediate intracellular signaling transduction through activating effectors, such as protein kinase A (PKA) and PKG, respectively. cAMP and cGMP are synthesized by adenylyl cyclase (AC) and guanylyl cyclase (GC), respectively, and degraded by cyclic nucleotide phosphodiesterases (PDEs). In this review, we will discuss the roles and mechanisms of cAMP/cGMP signaling and PDEs in AA/AD formation and progression and the potential of PDE inhibitors in AA/AD, whether they are beneficial or detrimental. We also performed database analysis and summarized the results showing PDEs with significant expression changes under AA/AD, which should provide rationales for future research on PDEs in AA/AD.
Collapse
Affiliation(s)
- Ting Shu
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, New York, United States
| | - Yitian Zhou
- Peking Union Medical College, MD Program, Beijing, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, New York, United States.
| |
Collapse
|
11
|
Luft FC. Calcineurin inhibition, cardiovascular consequences, vascular resistance, and potential responses. Acta Physiol (Oxf) 2024; 240:e14084. [PMID: 38214031 DOI: 10.1111/apha.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
AIM To place the consequences of calcineurin inhibition in a cardiovascular context. METHODS Literature review coupled with personal encounters. RESULTS Calcineurin is a calcium-binding and calmodulin-binding protein that is conserved across evolution from yeast to mammals. The enzyme functions as a calcium-dependent, calmodulin-stimulated protein phosphatase. Its role in regulating physiology has largely been elucidated by observing calcineurin inhibition. Calcineurin inhibition transformed organ transplantation from an experiment into a therapy and made much of general immunotherapy possible. The function of this phosphatase and how its inhibition leads to toxicity concern us to this date. Initial research from patients and animal models implicated a panoply of factors contributing to hypertension and vasculopathy. Subsequently, the role of calcineurin in regulating the effective fluid volume, sodium reabsorption, and potassium and hydrogen ion excretion was elucidated by investigating calcineurin inhibition. Understanding the regulatory effects of calcineurin on endothelial and vascular smooth muscle cell function has also made substantial progress. However, precisely how the increase in systemic vascular resistance arises requires further mechanistic research. CONCLUSION Calcineurin inhibition continues to save lives; however, options to counteract the negative effects of calcineurin inhibition should be vigorously pursued.
Collapse
Affiliation(s)
- Friedrich C Luft
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany
| |
Collapse
|
12
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.22.23300468. [PMID: 38234731 PMCID: PMC10793524 DOI: 10.1101/2023.12.22.23300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generated single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. Seventy-five percent of elements (44 of 59) validated in an in vivo transgenic reporter assay, demonstrating that single cell accessibility is a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieved significant reduction in our variant search space and nominated candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as new candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work provides novel non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S. Lee
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Lauren J. Ayers
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Wai-Man Chan
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Lydia N. Fozo
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Brandon M. Pratt
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Thomas E. Collins
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
| | - Matthew F. Rose
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pathology, Boston Children's Hospital, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Jack M. Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alan P. Tenney
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Cassia Lee
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Harvard College, Cambridge, MA
| | - Kristen M. Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brenda J. Barry
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Victoria R. Bradford
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Daniel G. MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Michael E. Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Elizabeth C. Engle
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
van Duijvenboden S, Ramírez J, Young WJ, Olczak KJ, Ahmed F, Alhammadi MJAY, Bell CG, Morris AP, Munroe PB. Integration of genetic fine-mapping and multi-omics data reveals candidate effector genes for hypertension. Am J Hum Genet 2023; 110:1718-1734. [PMID: 37683633 PMCID: PMC10577090 DOI: 10.1016/j.ajhg.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
Genome-wide association studies of blood pressure (BP) have identified >1,000 loci, but the effector genes and biological pathways at these loci are mostly unknown. Using published association summary statistics, we conducted annotation-informed fine-mapping incorporating tissue-specific chromatin segmentation and colocalization to identify causal variants and candidate effector genes for systolic BP, diastolic BP, and pulse pressure. We observed 532 distinct signals associated with ≥2 BP traits and 84 with all three. For >20% of signals, a single variant accounted for >75% posterior probability, 65 were missense variants in known (SLC39A8, ADRB2, and DBH) and previously unreported BP candidate genes (NRIP1 and MMP14). In disease-relevant tissues, we colocalized >80 and >400 distinct signals for each BP trait with cis-eQTLs and regulatory regions from promoter capture Hi-C, respectively. Integrating mouse, human disorder, gene expression and tissue abundance data, and literature review, we provide consolidated evidence for 436 BP candidate genes for future functional validation and discover several potential drug targets.
Collapse
Affiliation(s)
- Stefan van Duijvenboden
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK; Institute of Cardiovascular Science, University College London, London, UK; Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julia Ramírez
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain
| | - William J Young
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK; Barts Heart Centre, St Bartholomew's Hospital, EC1A 7BE London, UK
| | - Kaya J Olczak
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Farah Ahmed
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | | | - Christopher G Bell
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK; National Institute of Health and Care Research, Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and the London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK; National Institute of Health and Care Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, EC1M 6BQ London, UK.
| |
Collapse
|
14
|
Liu T, Klussmann E. Targeting cAMP signaling compartments in iPSC-derived models of cardiovascular disease. Curr Opin Pharmacol 2023; 71:102392. [PMID: 37453312 DOI: 10.1016/j.coph.2023.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Adenosine 3',5'-cyclic monophosphate (cAMP) acts as a second messenger that is involved in the regulation of a plethora of processes. The activation of cAMP signaling in defined compartments is critical for cells to respond to an extracellular stimulus in a specific manner. Rapid advances in the field of human induced pluripotent stem cells (iPSCs) reflect their great potential for cardiovascular disease modeling, drug screening, regenerative and precision medicine. This review discusses cAMP signaling in iPSC-derived cardiovascular disease models, and the prospects of using such systems to elucidate disease mechanisms, drug actions and to identify novel drug targets for the treatment of cardiovascular diseases with unmet medical need, such as hypertension and heart failure.
Collapse
Affiliation(s)
- Tiannan Liu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| |
Collapse
|
15
|
Oliveros W, Delfosse K, Lato DF, Kiriakopulos K, Mokhtaridoost M, Said A, McMurray BJ, Browning JW, Mattioli K, Meng G, Ellis J, Mital S, Melé M, Maass PG. Systematic characterization of regulatory variants of blood pressure genes. CELL GENOMICS 2023; 3:100330. [PMID: 37492106 PMCID: PMC10363820 DOI: 10.1016/j.xgen.2023.100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 07/27/2023]
Abstract
High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association studies have identified genetic variants for BP, but functional insights into causality and related molecular mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in vascular smooth muscle cells and cardiomyocytes by massively parallel reporter assays. High densities of regulatory variants at BP loci (i.e., ULK4, MAP4, CFDP1, PDE5A) indicate that multiple variants drive genetic association. Regulatory variants are enriched in repeats, alter cardiovascular-related transcription factor motifs, and spatially converge with genes controlling specific cardiovascular pathways. Using heuristic scoring, we define likely causal variants, and CRISPR prime editing finally determines causal variants for KCNK9, SFXN2, and PCGF6, which are candidates for developing high BP. Our systems-level approach provides a catalog of functionally relevant variants and their genomic architecture in two trait-relevant cell lines for a better understanding of BP gene regulation.
Collapse
Affiliation(s)
- Winona Oliveros
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Kate Delfosse
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Daniella F. Lato
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Katerina Kiriakopulos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Milad Mokhtaridoost
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Abdelrahman Said
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brandon J. McMurray
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jared W.L. Browning
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guoliang Meng
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Ellis
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Seema Mital
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Philipp G. Maass
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Sholokh A, Walter S, Markó L, McMurray BJ, Sunaga-Franze DY, Xu M, Zühlke K, Russwurm M, Bartolomaeus TUP, Langanki R, Qadri F, Heuser A, Patzak A, Forslund SK, Bähring S, Borodina T, Persson PB, Maass PG, Bader M, Klussmann E. Mutant phosphodiesterase 3A protects the kidney from hypertension-induced damage. Kidney Int 2023:S0085-2538(23)00389-7. [PMID: 37244472 DOI: 10.1016/j.kint.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/29/2023]
Affiliation(s)
- Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany
| | - Stephan Walter
- MVZ Nierenzentrum Limburg, Im Großen Rohr 14, 65549 Limburg, Germany
| | - Lajos Markó
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany
| | - Brandon J McMurray
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada M5G 0A4, Canada
| | | | - Minze Xu
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael Russwurm
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät MA N1, Ruhr-Universität Bochum, Bochum, Germany
| | - Theda U P Bartolomaeus
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany
| | - Reika Langanki
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Andreas Patzak
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany
| | - Sofia K Forslund
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany; Berlin Institute of Health (BIH), Berlin, Germany; European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Sylvia Bähring
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany
| | - Tatiana Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany
| | - Philipp G Maass
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Germany; Institute for Biology, University of Lübeck, Germany
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
| |
Collapse
|
17
|
Jiang X, Hysi PG, Khawaja AP, Mahroo OA, Xu Z, Hammond CJ, Foster PJ, Welikala RA, Barman SA, Whincup PH, Rudnicka AR, Owen CG, Strachan DP. GWAS on retinal vasculometry phenotypes. PLoS Genet 2023; 19:e1010583. [PMID: 36757925 PMCID: PMC9910644 DOI: 10.1371/journal.pgen.1010583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023] Open
Abstract
The eye is the window through which light is transmitted and visual sensory signalling originates. It is also a window through which elements of the cardiovascular and nervous systems can be directly inspected, using ophthalmoscopy or retinal imaging. Measurements of ocular parameters may therefore offer important information on the physiology and homeostasis of these two important systems. Here we report the results of a genetic characterisation of retinal vasculature. Four genome-wide association studies performed on different aspects of retinal vasculometry phenotypes, such as arteriolar and venular tortuosity and width, found significant similarities between retinal vascular characteristics and cardiometabolic health. Our analyses identified 119 different regions of association with traits of retinal vasculature, including 89 loci associated arteriolar tortuosity, the strongest of which was rs35131825 (p = 2.00×10-108), 2 loci with arteriolar width (rs12969347, p = 3.30×10-09 and rs5442, p = 1.9E-15), 17 other loci associated with venular tortuosity and 11 novel associations with venular width. Our causal inference analyses also found that factors linked to arteriolar tortuosity cause elevated diastolic blood pressure and not vice versa.
Collapse
Affiliation(s)
- Xiaofan Jiang
- UCL Institute of Ophthalmology, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Pirro G. Hysi
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Omar A. Mahroo
- UCL Institute of Ophthalmology, London, United Kingdom
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Zihe Xu
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Christopher J. Hammond
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Roshan A. Welikala
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, United Kingdom
| | - Sarah A. Barman
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, United Kingdom
| | - Peter H. Whincup
- Population Health Research Institute, St George’s, University of London, London, United Kingdom
| | - Alicja R. Rudnicka
- Population Health Research Institute, St George’s, University of London, London, United Kingdom
| | - Christopher G. Owen
- Population Health Research Institute, St George’s, University of London, London, United Kingdom
| | - David P. Strachan
- Population Health Research Institute, St George’s, University of London, London, United Kingdom
| | | |
Collapse
|
18
|
Chiong M, Houslay MD, Lavandero S. Activation of Phosphodiesterase 3A: New Hope for Cardioprotection. Circulation 2022; 146:1779-1782. [PMID: 36469592 DOI: 10.1161/circulationaha.122.062215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mario Chiong
- From Advanced Center for Chronic Diseases (ACCDiS), Faculty Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago (M.C., S.L.)
| | | | - Sergio Lavandero
- From Advanced Center for Chronic Diseases (ACCDiS), Faculty Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago (M.C., S.L.).,Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (S.L.)
| |
Collapse
|
19
|
Ercu M, Mücke MB, Pallien T, Markó L, Sholokh A, Schächterle C, Aydin A, Kidd A, Walter S, Esmati Y, McMurray BJ, Lato DF, Yumi Sunaga-Franze D, Dierks PH, Flores BIM, Walker-Gray R, Gong M, Merticariu C, Zühlke K, Russwurm M, Liu T, Batolomaeus TUP, Pautz S, Schelenz S, Taube M, Napieczynska H, Heuser A, Eichhorst J, Lehmann M, Miller DC, Diecke S, Qadri F, Popova E, Langanki R, Movsesian MA, Herberg FW, Forslund SK, Müller DN, Borodina T, Maass PG, Bähring S, Hübner N, Bader M, Klussmann E. Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage. Circulation 2022; 146:1758-1778. [PMID: 36259389 DOI: 10.1161/circulationaha.122.060210] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The β-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.
Collapse
Affiliation(s)
- Maria Ercu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
| | - Michael B Mücke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
| | - Tamara Pallien
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
| | - Lajos Markó
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
| | - Carolin Schächterle
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Atakan Aydin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Alexa Kidd
- Clinical Genetics Ltd, Christchurch, New Zealand (A.K.)
| | | | - Yasmin Esmati
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Brandon J McMurray
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada (B.J.M., D.F.L., P.G.M.)
| | - Daniella F Lato
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada (B.J.M., D.F.L., P.G.M.)
| | - Daniele Yumi Sunaga-Franze
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Philip H Dierks
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Barbara Isabel Montesinos Flores
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Ryan Walker-Gray
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Maolian Gong
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Claudia Merticariu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Michael Russwurm
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät MA N1, Ruhr-Universität Bochum, Germany (M.R.)
| | - Tiannan Liu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Theda U P Batolomaeus
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Sabine Pautz
- Department of Biochemistry, University of Kassel, Germany (S.P., F.W.H.)
| | - Stefanie Schelenz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Martin Taube
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Hanna Napieczynska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L.)
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L.)
| | - Duncan C Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Berlin Institute of Health (BIH), Germany (S.D., S.K.F.)
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Elena Popova
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Reika Langanki
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | | | | | - Sofia K Forslund
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
- Berlin Institute of Health (BIH), Germany (S.D., S.K.F.)
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany (S.K.F.)
| | - Dominik N Müller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Tatiana Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Philipp G Maass
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada (B.J.M., D.F.L., P.G.M.)
- Department of Molecular Genetics, University of Toronto, ON, Canada (P.G.M.)
| | - Sylvia Bähring
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Norbert Hübner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Institute for Biology, University of Lübeck, Germany (M.B.)
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
| |
Collapse
|
20
|
Huang X, Li XL, Liu FY, Li H, Zhou H, Li XM. Hypertension and brachydactyly syndrome: a further case report. Clin Dysmorphol 2022; 31:201-205. [PMID: 35762486 DOI: 10.1097/mcd.0000000000000424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | | | - Hao Li
- Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | | | | |
Collapse
|
21
|
Costa-Barbosa FA, Giorgi RB, Kater CE. Focus on adrenal and related causes of hypertension in childhood and adolescence: Rare or rarely recognized? ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:895-907. [PMID: 35929903 PMCID: PMC10118774 DOI: 10.20945/2359-3997000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High blood pressure (BP) is not restricted to adults; children and adolescents may also be affected, albeit less frequently. Aside from unfavorable environmental factors, such as obesity and sedentary life leading to early-onset essential hypertension (HT), several secondary causes must be investigated in the occasional hypertensive child/adolescent. Endocrine causes are relevant and multiple, related to the pituitary, thyroid, parathyroid, gonads, insulin, and others, but generally are associated with adrenal disease. This common scenario has several vital components, such as aldosterone, deoxycorticosterone (DOC), cortisol, or catecholamines, but there are also monogenic disorders involving the kidney tubule that cause inappropriate salt retention and HT that simulate adrenal disease. Finally, a blood vessel disease was recently described that may also participate in this vast spectrum of pediatric hypertensive disease. This review will shed some light on the diagnosis and management of conditions, focusing on the most prevalent adrenal (or adrenal-like) disturbances causing HT.
Collapse
|
22
|
Mani A. PDE4DIP in health and diseases. Cell Signal 2022; 94:110322. [PMID: 35346821 PMCID: PMC9618167 DOI: 10.1016/j.cellsig.2022.110322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
Abstract
Cyclic-AMP (cAMP), the first second messenger to be identified, is synthesized, and is universally utilized as a second messenger, and plays important roles in integrity, and function of organs, including heart. Through its coupling with other intracellular messengers, cAMP facilitates excitation-contraction coupling, increases heart rate and conduction velocity. It is degraded by a class of enzymes called cAMP-dependent phosphodiesterase (PDE), with PDE3 and PDE4 being the predominant isoforms in the heart. This highly diverse class of enzymes degrade cAMP and through anchoring proteins generates dynamic microdomains to target specific proteins and control specific cell functions in response to various stimuli. The impaired function of the anchoring protein either by inherited genetic mutations or acquired injuries results in altered intracellular targeting, and blunted responsiveness to stimulating pathways and contributes to pathological cardiac remodeling, cardiac arrhythmias and reduced cell survival. Recent genetic studies provide compelling evidence for an association between the variants in the anchoring protein PDE4DIP and atrial fibrillation, stroke, and heart failure.
Collapse
Affiliation(s)
- Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
A Review of Vascular Traits and Assessment Techniques, and Their Heritability. Artery Res 2022. [DOI: 10.1007/s44200-022-00016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
AbstractVarious tools are available to assess atherosclerosis, arterial stiffening, and endothelial function. They offer utility in the assessment of hypertensive phenotypes, in cardiovascular risk prediction, and as surrogate endpoints in clinical trials. We explore the relative influence of participant genetics, with reference to large-scale genomic studies, population-based cohorts, and candidate gene studies. We find heritability estimates highest for carotid intima-media thickness (CIMT 35–65%), followed by pulse wave velocity as a measure of arterial stiffness (26–43%), and flow mediated dilatation as a surrogate for endothelial function (14–39%); data were lacking for peripheral artery tonometry. We furthermore examine genes and polymorphisms relevant to each technique. We conclude that CIMT and pulse wave velocity dominate the existing evidence base, with fewer published genomic linkages for measures of endothelial function. We finally make recommendations regarding planning and reporting of data relating to vascular assessment techniques, particularly when genomic data are also available, to facilitate integration of these tools into cardiovascular disease research.
Collapse
|
24
|
Zhang H, Mo X, Wang A, Peng H, Guo D, Zhong C, Zhu Z, Xu T, Zhang Y. Association of DNA Methylation in Blood Pressure-Related Genes With Ischemic Stroke Risk and Prognosis. Front Cardiovasc Med 2022; 9:796245. [PMID: 35345488 PMCID: PMC8957103 DOI: 10.3389/fcvm.2022.796245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundA genome-wide association study identified 12 genetic loci influencing blood pressure and implicated a role of DNA methylation. However, the relationship between methylation and ischemic stroke has not yet been clarified. We conducted a large-sample sequencing study to identify blood leukocyte DNA methylations as novel biomarkers for ischemic stroke risk and prognosis based on previously identified genetic loci.MethodsMethylation levels of 17 genes were measured by sequencing in 271 ischemic stroke cases and 323 controls, and the significant associations were validated in another independent sample of 852 cases and 925 controls. The associations between methylation levels and ischemic stroke risk and prognosis were evaluated.ResultsMethylation of AMH, C17orf82, HDAC9, IGFBP3, LRRC10B, PDE3A, PRDM6, SYT7 and TBX2 was significantly associated with ischemic stroke. Compared to participants without any hypomethylated targets, the odds ratio (OR) (95% confidence interval, CI) for those with 9 hypomethylated genes was 1.41 (1.33–1.51) for ischemic stroke. Adding methylation levels of the 9 genes to the basic model of traditional risk factors significantly improved the risk stratification for ischemic stroke. Associations between AMH, HDAC9, IGFBP3, PDE3A and PRDM6 gene methylation and modified Rankin Scale scores were significant after adjustment for covariates. Lower methylation levels of AMH, C17orf82, PRDM6 and TBX2 were significantly associated with increased 3-month mortality. Compared to patients without any hypomethylated targets, the OR (95% CI) for those with 4 hypomethylated targets was 1.12 (1.08–1.15) for 3-month mortality (P = 2.28 × 10−10).ConclusionThe present study identified blood leukocyte DNA methylations as potential factors affecting ischemic stroke risk and prognosis among Han Chinese individuals.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hao Peng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- *Correspondence: Yonghong Zhang
| |
Collapse
|
25
|
Current Knowledge about the New Drug Firibastat in Arterial Hypertension. Int J Mol Sci 2022; 23:ijms23031459. [PMID: 35163378 PMCID: PMC8836050 DOI: 10.3390/ijms23031459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hypertension significantly increases the risk of cardiovascular disease. Currently, effective standard pharmacological treatment is available in the form of diuretics, ACE inhibitors, angiotensin II receptor blockers and calcium channel blockers. These all help to decrease blood pressure in hypertensive patients, each with their own mechanism. Recently, firibastat, a new first-in-class antihypertensive drug has been developed. Firibastat is a prodrug that when crossing the blood-brain barrier, is cleaved into two active EC33 molecules. EC33 is the active molecule that inhibits the enzyme aminopeptidase A. Aminopeptidase A converts angiotensin II to angiotensin III. Angiotensin III usually has three central mechanisms that increase blood pressure, so by inhibiting this enzyme activity, a decrease in blood pressure is seen. Firibastat is an antihypertensive drug that affects the brain renin angiotensin system by inhibiting aminopeptidase A. Clinical trials with firibastat have been performed in animals and humans. No severe adverse effects related to firibastat treatment have been reported. Results from studies show that firibastat is generally well tolerated and safe to use in hypertensive patients. The aim of this review is to investigate the current knowledge about firibastat in the treatment of hypertension.
Collapse
|
26
|
Harkes R, Kukk O, Mukherjee S, Klarenbeek J, van den Broek B, Jalink K. Dynamic FRET-FLIM based screening of signal transduction pathways. Sci Rep 2021; 11:20711. [PMID: 34671065 PMCID: PMC8528867 DOI: 10.1038/s41598-021-00098-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Fluorescence Lifetime Imaging (FLIM) is an intrinsically quantitative method to screen for protein-protein interactions and is frequently used to record the outcome of signal transduction events. With new highly sensitive and photon efficient FLIM instrumentation, the technique also becomes attractive to screen, with high temporal resolution, for fast changes in Förster Resonance Energy Transfer (FRET), such as those occurring upon activation of cell signaling. The second messenger cyclic adenosine monophosphate (cAMP) is rapidly formed following activation of certain cell surface receptors. cAMP is subsequently degraded by a set of phosphodiesterases (PDEs) which display cell-type specific expression and may also affect baseline levels of the messenger. To study which specific PDEs contribute most to cAMP regulation, we knocked down individual PDEs and recorded breakdown rates of cAMP levels following transient stimulation in HeLa cells stably expressing the FRET/FLIM sensor, Epac-SH189. Many hundreds of cells were recorded at 5 s intervals for each condition. FLIM time traces were calculated for every cell, and decay kinetics were obtained. cAMP clearance was significantly slower when PDE3A and, to a lesser amount, PDE10A were knocked down, identifying these isoforms as dominant in HeLa cells. However, taking advantage of the quantitative FLIM data, we found that knockdown of individual PDEs has a very limited effect on baseline cAMP levels. By combining photon-efficient FLIM instrumentation with optimized sensors, systematic gene knockdown and an automated open-source analysis pipeline, our study demonstrates that dynamic screening of transient cell signals has become feasible. The quantitative platform described here provides detailed kinetic analysis of cellular signals in individual cells with unprecedented throughput.
Collapse
Affiliation(s)
- Rolf Harkes
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Olga Kukk
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sravasti Mukherjee
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeffrey Klarenbeek
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bram van den Broek
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- BioImaging Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kees Jalink
- Cell Biophysics Group, Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. G αs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G αs-PKA Signaling. Pharmacol Rev 2021; 73:155-197. [PMID: 34663687 PMCID: PMC11060502 DOI: 10.1124/pharmrev.120.000269] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many of the fundamental concepts of signal transduction and kinase activity are attributed to the discovery and crystallization of cAMP-dependent protein kinase, or protein kinase A. PKA is one of the best-studied kinases in human biology, with emphasis in biochemistry and biophysics, all the way to metabolism, hormone action, and gene expression regulation. It is surprising, however, that our understanding of PKA's role in disease is largely underappreciated. Although genetic mutations in the PKA holoenzyme are known to cause diseases such as Carney complex, Cushing syndrome, and acrodysostosis, the story largely stops there. With the recent explosion of genomic medicine, we can finally appreciate the broader role of the Gαs-PKA pathway in disease, with contributions from aberrant functioning G proteins and G protein-coupled receptors, as well as multiple alterations in other pathway components and negative regulators. Together, these represent a broad family of diseases we term the Gαs-PKA pathway signalopathies. The Gαs-PKA pathway signalopathies encompass diseases caused by germline, postzygotic, and somatic mutations in the Gαs-PKA pathway, with largely endocrine and neoplastic phenotypes. Here, we present a signaling-centric review of Gαs-PKA-driven pathophysiology and integrate computational and structural analysis to identify mutational themes commonly exploited by the Gαs-PKA pathway signalopathies. Major mutational themes include hotspot activating mutations in Gαs, encoded by GNAS, and mutations that destabilize the PKA holoenzyme. With this review, we hope to incite further study and ultimately the development of new therapeutic strategies in the treatment of a wide range of human diseases. SIGNIFICANCE STATEMENT: Little recognition is given to the causative role of Gαs-PKA pathway dysregulation in disease, with effects ranging from infectious disease, endocrine syndromes, and many cancers, yet these disparate diseases can all be understood by common genetic themes and biochemical signaling connections. By highlighting these common pathogenic mechanisms and bridging multiple disciplines, important progress can be made toward therapeutic advances in treating Gαs-PKA pathway-driven disease.
Collapse
Affiliation(s)
- Dana J Ramms
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Francesco Raimondi
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Nadia Arang
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Friedrich W Herberg
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Susan S Taylor
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - J Silvio Gutkind
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| |
Collapse
|
28
|
Csizmar CM, Shah M. Brachydactyly in Pseudopseudohypoparathyroidism. Mayo Clin Proc 2021; 96:2303-2304. [PMID: 34481595 DOI: 10.1016/j.mayocp.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Clifford M Csizmar
- Internal Medicine Residency Program, Mayo Clinic School of Graduate Medical Education, Mayo Clinic, Rochester, MN
| | - Meera Shah
- Division of Endocrinology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
29
|
Manava P, Hastreiter P, Schmieder RE, Jung S, Fahlbusch R, Dörfler A, Lell MM, Buchfelder M, Naraghi R. Neurovascular Compression in Arterial Hypertension: Correlation of Clinical Data to 3D-Visualizations of MRI-Findings. Open Neuroimag J 2021. [DOI: 10.2174/1874440002114010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aims:
In this study, we attempted to identify clinical parameters predicting the absence or presence of Neurovascular Compression (NVC) at the Ventrolateral Medulla (VLM) in arterial hypertension (HTN) in MRI findings.
Background:
Cardiovascular and pulmonary afferences are transmitted through the left vagus and glossopharyngeal nerve to the brain stem and vasoactive centers. Evidence supports the association between HTN and NVC at the left VLM. Several independent studies indicate a reduction of HTN after Microvascular Decompression (MVD) of the left. Several independent studies indicate a reduction of HTN after Microvascular Decompression (MVD) of the left VLM. Image processing of MRI provides comprehensible detection of NVC. HTN affects hemodynamic parameters and organs.
Objective:
This study analyzes and correlates clinical data and MRI findings in patients with and without NVC at the VLM in treatment resistant HTN to obtain possible selection criteria for neurogenic hypertension.
Methods:
In 44 patients with treatment resistant HTN, we compared MRI findings of neurovascular imaging to demographic, clinical and lifestyle data, office and 24-hour ambulatory Blood Pressure (BP), and cardiovascular imaging and parameters.
Results:
Twenty-nine (66%) patients had evidence of NVC at the VLM in MRI. Sixteen patients (36%) had unilateral NVC on the left side, 7 (16%) unilateral right and 6 (14%) bilateral NVC. Fifteen (34%) had no evidence of NVC at the VLM. Patients with left sided NVC were significantly younger, than those without NVC (p=0.034). They showed a statistically significant variance in daytime (p=0.020) and nighttime diastolic BP (p<0.001) as the mean arterial pressure (p=0.020). Other measured parameters did not show significant differences between the two groups.
Conclusion:
We suggest to examine young adults with treatment resistant HTN for the presence of NVC at VLM, before signs of permanent organ damage appear. Clinical and hemodynamic parameters did not emerge as selection criteria to predict NVC. MVD as a surgical treatment of NVC in HTN is not routine yet as a surgical treatment of NVC in HTN is not routine yet. Detection of NVC by imaging and image processing remains the only criteria to suggest MVD, which should be indicated on an individual decision.
Collapse
|
30
|
Abstract
Parathyroid hormone (PTH), which is primarily regulated by extracellular calcium changes, controls calcium and phosphate homeostasis. Different diseases are derived from PTH deficiency (hypoparathyroidism), excess (hyperparathyroidism) and resistance (pseudohypoparathyroidism, PHP). Pseudohypoparathyroidism was historically classified into subtypes according to the presence or not of inherited PTH resistance associated or not with features of Albright's hereditary osteodystrophy and deep and progressive ectopic ossifications. The growing knowledge on the PTH/PTHrP signaling pathway showed that molecular defects affecting different members of this pathway determined distinct, yet clinically related disorders, leading to the proposal of a new nomenclature and classification encompassing all disorders, collectively termed inactivating PTH/PTHrP signaling disorders (iPPSD).
Collapse
Affiliation(s)
- Giovanna Mantovani
- University of Milan, Dept. Clinical Sciences and Commmunity Health, Via Lamarmora 5, Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via Lamarmora 5, 20122, Milan, Italy.
| | - Francesca Marta Elli
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via Lamarmora 5, 20122, Milan, Italy.
| |
Collapse
|
31
|
Stehle D, Xu MZ, Schomber T, Hahn MG, Schweda F, Feil S, Kraehling JR, Eitner F, Patzak A, Sandner P, Feil R, Bénardeau A. Novel soluble guanylyl cyclase activators increase glomerular cGMP, induce vasodilation and improve blood flow in the murine kidney. Br J Pharmacol 2021; 179:2476-2489. [PMID: 34096053 PMCID: PMC9292672 DOI: 10.1111/bph.15586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/07/2021] [Accepted: 05/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Generation of cGMP via NO-sensitive soluble guanylyl cyclase (sGC) has been implicated in the regulation of renal functions. Chronic kidney disease (CKD) is associated with decreased NO bioavailability, increased oxidative stress and oxidation of sGC to its haem-free form, apo-sGC. Apo-sGC cannot be activated by NO, resulting in impaired cGMP signalling that is associated with chronic kidney disease progression. We hypothesised that sGC activators, which activate apo-sGC independently of NO, increase renal cGMP production under conditions of oxidative stress, thereby improving renal blood flow (RBF) and kidney function. EXPERIMENTAL APPROACH Two novel sGC activators, runcaciguat and BAY-543, were tested on murine kidney. We measured cGMP levels in real time in kidney slices of cGMP sensor mice, vasodilation of pre-constricted glomerular arterioles and RBF in isolated perfused kidneys. Experiments were performed at baseline conditions, under L-NAME-induced NO deficiency, and in the presence of oxidative stress induced by ODQ. KEY RESULTS Mouse glomeruli showed NO-induced cGMP increases. Under baseline conditions, sGC activator did not alter glomerular cGMP concentration or NO-induced cGMP generation. In the presence of ODQ, NO-induced glomerular cGMP signals were markedly reduced, whereas sGC activator induced strong cGMP increases. L-NAME and ODQ pretreated isolated glomerular arterioles were strongly dilated by sGC activator. sGC activator also increased cGMP and RBF in ODQ-perfused kidneys. CONCLUSION AND IMPLICATION sGC activators increase glomerular cGMP, dilate glomerular arterioles and improve RBF under disease-relevant oxidative stress conditions. Therefore, sGC activators represent a promising class of drugs for chronic kidney disease treatment.
Collapse
Affiliation(s)
- Daniel Stehle
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| | - Min Ze Xu
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tibor Schomber
- Bayer AG, Cardiovascular Research, Pharma Research Center, Wuppertal, Germany
| | - Michael G Hahn
- Bayer AG, Cardiovascular Research, Pharma Research Center, Wuppertal, Germany
| | - Frank Schweda
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| | - Jan R Kraehling
- Bayer AG, Cardiovascular Research, Pharma Research Center, Wuppertal, Germany
| | - Frank Eitner
- Bayer AG, Cardiovascular Research, Pharma Research Center, Wuppertal, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Sandner
- Bayer AG, Cardiovascular Research, Pharma Research Center, Wuppertal, Germany.,Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| | - Agnès Bénardeau
- Bayer AG, Cardiovascular Research, Pharma Research Center, Wuppertal, Germany.,Novo Nordisk A/S, Cardio-Renal Biology, Måløv, Denmark
| |
Collapse
|
32
|
Abstract
Pseudohypoparathyroidism (PHP) and pseudopseudohypoparathyroidism (PPHP) are caused by mutations and/or epigenetic changes at the complex GNAS locus on chromosome 20q13.3 that undergoes parent-specific methylation changes at several differentially methylated regions (DMRs). GNAS encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. PHP type Ia (PHP1A) is caused by heterozygous inactivating mutations involving the maternal exons 1-13. Heterozygosity of these maternal GNAS mutations cause PTH-resistant hypocalcemia and hyperphosphatemia because paternal Gsα expression is suppressed in certain organs thus leading to little or no Gsα protein in the proximal renal tubules and other tissues. Besides biochemical abnormalities, PHP1A patients show developmental abnormalities, referred to as Albright's hereditary osteodystrophy (AHO). Some, but not all of these AHO features are encountered also in patients affected by PPHP, who carry paternal Gsα-specific mutations and typically show no laboratory abnormalities. Autosomal dominant PHP type Ib (AD-PHP1B) is caused by heterozygous maternal deletions within GNAS or STX16, which are associated with loss of methylation at the A/B DMR alone or at all maternally methylated GNAS exons. Loss of methylation of exon A/B and the resulting biallelic expression of A/B transcript reduces Gsα expression thus leading to hormonal resistance. Epigenetic changes at all differentially methylated GNAS regions are also observed in sporadic PHP1B, which is the most frequent PHP1B variant. However, this disease variant remains unresolved at the molecular level, except for rare cases with paternal uniparental isodisomy or heterodisomy of chromosome 20q (patUPD20q).
Collapse
Affiliation(s)
- Harald Jüppner
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Correspondence: Harald Jüppner, MD, Endocrine Unit, Thier 10, 50 Blossom Street, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
33
|
Sholokh A, Klussmann E. Local cyclic adenosine monophosphate signalling cascades-Roles and targets in chronic kidney disease. Acta Physiol (Oxf) 2021; 232:e13641. [PMID: 33660401 DOI: 10.1111/apha.13641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms underlying chronic kidney disease (CKD) are poorly understood and treatment options are limited, a situation underpinning the need for elucidating the causative molecular mechanisms and for identifying innovative treatment options. It is emerging that cyclic 3',5'-adenosine monophosphate (cAMP) signalling occurs in defined cellular compartments within nanometre dimensions in processes whose dysregulation is associated with CKD. cAMP compartmentalization is tightly controlled by a specific set of proteins, including A-kinase anchoring proteins (AKAPs) and phosphodiesterases (PDEs). AKAPs such as AKAP18, AKAP220, AKAP-Lbc and STUB1, and PDE4 coordinate arginine-vasopressin (AVP)-induced water reabsorption by collecting duct principal cells. However, hyperactivation of the AVP system is associated with kidney damage and CKD. Podocyte injury involves aberrant AKAP signalling. cAMP signalling in immune cells can be local and slow the progression of inflammatory processes typical for CKD. A major risk factor of CKD is hypertension. cAMP directs the release of the blood pressure regulator, renin, from juxtaglomerular cells, and plays a role in Na+ reabsorption through ENaC, NKCC2 and NCC in the kidney. Mutations in the cAMP hydrolysing PDE3A that cause lowering of cAMP lead to hypertension. Another major risk factor of CKD is diabetes mellitus. AKAP18 and AKAP150 and several PDEs are involved in insulin release. Despite the increasing amount of data, an understanding of functions of compartmentalized cAMP signalling with relevance for CKD is fragmentary. Uncovering functions will improve the understanding of physiological processes and identification of disease-relevant aberrations may guide towards new therapeutic concepts for the treatment of CKD.
Collapse
Affiliation(s)
- Anastasiia Sholokh
- Max‐Delbrück‐Center for Molecular Medicine (MDC) Helmholtz Association Berlin Germany
| | - Enno Klussmann
- Max‐Delbrück‐Center for Molecular Medicine (MDC) Helmholtz Association Berlin Germany
- DZHK (German Centre for Cardiovascular Research) Berlin Germany
| |
Collapse
|
34
|
Feil R, Lehners M, Stehle D, Feil S. Visualising and understanding cGMP signals in the cardiovascular system. Br J Pharmacol 2021; 179:2394-2412. [PMID: 33880767 DOI: 10.1111/bph.15500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/14/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
cGMP is an important signalling molecule in humans. Fluorescent cGMP biosensors have emerged as powerful tools for the sensitive analysis of cGMP pathways at the single-cell level. Here, we briefly outline cGMP's multifaceted role in (patho)physiology and pharmacotherapy. Then we summarise what new insights cGMP imaging has provided into endogenous cGMP signalling and drug action, with a focus on the cardiovascular system. Indeed, the use of cGMP biosensors has led to several conceptual advances, such as the discovery of local, intercellular and mechanosensitive cGMP signals. Importantly, single-cell imaging can provide valuable information about the heterogeneity of cGMP signals within and between individual cells of an isolated cell population or tissue. We also discuss current challenges and future directions of cGMP imaging, such as the direct visualisation of cGMP microdomains, simultaneous monitoring of cGMP and other signalling molecules and, ultimately, cGMP imaging in tissues and animals under close-to-native conditions.
Collapse
Affiliation(s)
- Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Moritz Lehners
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Daniel Stehle
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
The PDE-Opathies: Diverse Phenotypes Produced by a Functionally Related Multigene Family. Trends Genet 2021; 37:669-681. [PMID: 33832760 DOI: 10.1016/j.tig.2021.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Abstract
The phosphodiesterase (PDE)-opathies, an expanding set of disorders caused by germline mutations in cyclic nucleotide PDEs, present an intriguing paradox. The enzymes encoded by the PDE family all hydrolyze cAMP and/or cGMP, but mutations in different family members produce very divergent phenotypes. Three interacting factors have been shown recently to contribute to this phenotypic diversity: (i) the 21 genes encode over 80 different isoforms, using alternative mRNA splicing and related mechanisms; (ii) the various isoforms have different regulatory mechanisms, mediated by their unique amino-terminal regulatory domains; (iii) the isoforms differ widely in their pattern of tissue expression. These mechanisms explain why many PDE-opathies are gain-of-function mutations and how they exemplify uniqueness and redundancy within a multigene family.
Collapse
|
36
|
Abstract
The known genetic architecture of blood pressure now comprises >30 genes, with rare variants resulting in monogenic forms of hypertension or hypotension and >1,477 common single-nucleotide polymorphisms (SNPs) being associated with the blood pressure phenotype. Monogenic blood pressure syndromes predominantly involve the renin-angiotensin-aldosterone system and the adrenal glucocorticoid pathway, with a smaller fraction caused by neuroendocrine tumours of the sympathetic and parasympathetic nervous systems. The SNPs identified in genome-wide association studies (GWAS) as being associated with the blood pressure phenotype explain only approximately 27% of the 30-50% estimated heritability of blood pressure, and the effect of each SNP on the blood pressure phenotype is small. A paucity of SNPs from GWAS are mapped to known genes causing monogenic blood pressure syndromes. For example, a GWAS signal mapped to the gene encoding uromodulin has been shown to affect blood pressure by influencing sodium homeostasis, and the effects of another GWAS signal were mediated by endothelin. However, the majority of blood pressure-associated SNPs show pleiotropic associations. Unravelling these associations can potentially help us to understand the underlying biological pathways. In this Review, we appraise the current knowledge of blood pressure genomics, explore the causal pathways for hypertension identified in Mendelian randomization studies and highlight the opportunities for drug repurposing and pharmacogenomics for the treatment of hypertension.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Anna F Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
37
|
[Molecular genetics of human hypertension]. Internist (Berl) 2021; 62:223-235. [PMID: 33595671 DOI: 10.1007/s00108-021-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
A genetic influence on blood pressure was demonstrated more than 100 years ago and a simple Mendelian inheritance was initially presumed. Platt and Pickering conducted a lively debate on this topic. Platt favored the idea that a single gene or only a few genes were responsible for high blood pressure. Pickering presented research results, which supported the assumption that many genes exerted an influence on blood pressure. This was all in a period when it was not even known what genes were. Genome-wide association studies (GWAS) according to the Pickering model have identified > 500 blood pressure relevant gene loci, which are distributed over the whole genome. Each individual gene exerts only a small effect on blood pressure. The dark horses of hypertension research are the secondary causes. In pheochromocytoma, primary aldosteronism, Cushing's syndrome and even fibromuscular dysplasia (renovascular hypertension) the results indicate that a genetic cause regularly underlies secondary hypertension. This would therefore also partially confirm Platt's theory. In the meantime, a multitude of forms of hypertension have been described with a genetic inheritance according to Mendel. Each of these genetic variants exerts a considerable influence on blood pressure. A multitude of novel physiological mechanisms were explained by this. These findings will become therapeutically important. Therefore, it is incumbent upon clinicians to be optimally informed about these research results.
Collapse
|
38
|
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) is the key second messenger molecule in nitric oxide signaling. Its rapid generation and fate, but also its role in mediating acute cellular functions has been extensively studied. In the past years, genetic studies suggested an important role for cGMP in affecting the risk of chronic cardiovascular diseases, for example, coronary artery disease and myocardial infarction. Here, we review the role of cGMP in atherosclerosis and other cardiovascular diseases and discuss recent genetic findings and identified mechanisms. Finally, we highlight open questions and promising research topics.
Collapse
|
39
|
Rassi-Cruz M, Maria AG, Faucz FR, London E, Vilela LAP, Santana LS, Benedetti AFF, Goldbaum TS, Tanno FY, Srougi V, Chambo JL, Pereira MAA, Cavalcante ACBS, Carnevale FC, Pilan B, Bortolotto LA, Drager LF, Lerario AM, Latronico AC, Fragoso MCBV, Mendonca BB, Zerbini MCN, Stratakis CA, Almeida MQ. Phosphodiesterase 2A and 3B variants are associated with primary aldosteronism. Endocr Relat Cancer 2021; 28:1-13. [PMID: 33112806 PMCID: PMC7757641 DOI: 10.1530/erc-20-0384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Familial primary aldosteronism (PA) is rare and mostly diagnosed in early-onset hypertension (HT). However, 'sporadic' bilateral adrenal hyperplasia (BAH) is the most frequent cause of PA and remains without genetic etiology in most cases. Our aim was to investigate new genetic defects associated with BAH and PA. We performed whole-exome sequencing (paired blood and adrenal tissue) in six patients with PA caused by BAH that underwent unilateral adrenalectomy. Additionally, we conducted functional studies in adrenal hyperplastic tissue and transfected cells to confirm the pathogenicity of the identified genetic variants. Rare germline variants in phosphodiesterase 2A (PDE2A) and 3B (PDE3B) genes were identified in three patients. The PDE2A heterozygous variant (p.Ile629Val) was identified in a patient with BAH and early-onset HT at 13 years of age. Two PDE3B heterozygous variants (p.Arg217Gln and p.Gly392Val) were identified in patients with BAH and HT diagnosed at 18 and 33 years of age, respectively. A strong PDE2A staining was found in all cases of BAH in zona glomerulosa and/or micronodules (that were also positive for CYP11B2). PKA activity in frozen tissue was significantly higher in BAH from patients harboring PDE2A and PDE3B variants. PDE2A and PDE3B variants significantly reduced protein expression in mutant transfected cells compared to WT. Interestingly, PDE2A and PDE3B variants increased SGK1 and SCNN1G/ENaCg at mRNA or protein levels. In conclusion, PDE2A and PDE3B variants were associated with PA caused by BAH. These novel genetic findings expand the spectrum of genetic etiologies of PA.
Collapse
Affiliation(s)
- Marcela Rassi-Cruz
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Andrea G. Maria
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Edra London
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Leticia A. P. Vilela
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Lucas S. Santana
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Anna Flavia F. Benedetti
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Tatiana S. Goldbaum
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Fabio Y. Tanno
- Serviço de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Vitor Srougi
- Serviço de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Jose L. Chambo
- Serviço de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Maria Adelaide A. Pereira
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Aline C. B. S. Cavalcante
- Instituto de Radiologia InRad, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Francisco C. Carnevale
- Instituto de Radiologia InRad, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Bruna Pilan
- Instituto de Radiologia InRad, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Luiz A. Bortolotto
- Unidade de Hipertensão, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-900, Brasil
| | - Luciano F. Drager
- Unidade de Hipertensão, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-900, Brasil
- Unidade de Hipertensão, Disciplina de Nefrologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Antonio M. Lerario
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
- Endocrinology, Metabolism and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Ana Claudia Latronico
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Maria Candida B. V. Fragoso
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
- Servico de Endocrinologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-000, Brasil
| | - Berenice B. Mendonca
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Maria Claudia N. Zerbini
- Divisão de Anatomia Patológica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Madson Q. Almeida
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
- Servico de Endocrinologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-000, Brasil
| |
Collapse
|
40
|
Kim YR, Yi M, Cho SA, Kim WY, Min J, Shin JG, Lee SJ. Identification and functional study of genetic polymorphisms in cyclic nucleotide phosphodiesterase 3A (PDE3A). Ann Hum Genet 2020; 85:80-91. [PMID: 33249558 DOI: 10.1111/ahg.12411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
Phosphodiesterase 3A (PDE3A) is an enzyme that plays an important role in the regulation of cyclic adenosine monophosphate (cAMP)-mediated intracellular signaling in cardiac myocytes and platelets. PDE3A hydrolyzes cAMP, which results in a decrease in intracellular cAMP levels and leads to platelet activation. Whole-exome sequencing of 50 DNA samples from a healthy Korean population revealed a total of 13 single nucleotide polymorphisms including five missense variants, D12N, Y497C, H504Q, C707R, and A980V. Recombinant proteins for the five variants of PDE3A (and wild-type protein) were expressed in a FreeStyle 293 expression system with site-directed mutagenesis. The expression of the recombinant PDE3A proteins was confirmed with Western blotting. Catalytic activity of the PDE3A missense variants and wild-type enzyme was measured with a PDE-based assay. Effects of the missense variants on the inhibition of PDE3A activity by cilostazol were also investigated. All variant proteins showed reduced activity (33-53%; p < .0001) compared to the wild-type protein. In addition, PDE3A activity was inhibited by cilostazol in a dose-dependent manner and was further suppressed in the missense variants. Specifically, the PDE3A Y497C showed significantly reduced activity, consistent with the predictions of in silico analyses. The present study provides evidence that individuals carrying the PDE3A Y497C variant may have lower enzyme activity for cAMP hydrolysis, which could cause interindividual variation in cAMP-mediated physiological functions.
Collapse
Affiliation(s)
- You Ran Kim
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan, South Korea
| | - MyeongJin Yi
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan, South Korea.,Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Sun-Ah Cho
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan, South Korea
| | - Woo-Young Kim
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan, South Korea
| | - JungKi Min
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Jae-Gook Shin
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan, South Korea.,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Inje University College of Medicine, Inje University, Busan, 47392, South Korea
| | - Su-Jun Lee
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan, South Korea
| |
Collapse
|
41
|
Levanovich PE, Diaczok A, Rossi NF. Clinical and Molecular Perspectives of Monogenic Hypertension. Curr Hypertens Rev 2020; 16:91-107. [PMID: 30963979 PMCID: PMC7499356 DOI: 10.2174/1573402115666190409115330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
Advances in molecular research techniques have enabled a new frontier in discerning the mechanisms responsible for monogenic diseases. In this review, we discuss the current research on the molecular pathways governing blood pressure disorders with a Mendelian inheritance pattern, each presenting with a unique pathophysiology. Glucocorticoid Remediable Aldosteronism (GRA) and Apparent Mineralocorticoid Excess (AME) are caused by mutations in regulatory enzymes that induce increased production of mineralocorticoids or inhibit degradation of glucocorticoids, respectively. Geller syndrome is due to a point mutation in the hormone responsive element of the promotor for the mineralocorticoid receptor, rendering the receptor susceptible to activation by progesterone, leading to hypertension during pregnancy. Pseudohypoaldosteronism type II (PHA-II), also known as Gordon's syndrome or familial hyperkalemic hypertension, is a more variable disorder typically characterized by hypertension, high plasma potassium and metabolic acidosis. Mutations in a variety of intracellular enzymes that lead to enhanced sodium reabsorption have been identified. In contrast, hypertension in Liddle's syndrome, which results from mutations in the Epithelial sodium Channel (ENaC), is associated with low plasma potassium and metabolic alkalosis. In Liddle's syndrome, truncation of one the ENaC protein subunits removes a binding site necessary protein for ubiquitination and degradation, thereby promoting accumulation along the apical membrane and enhanced sodium reabsorption. The myriad effects due to mutation in phosphodiesterase 3A (PDE3A) lead to severe hypertension underlying sodium-independent autosomal dominant hypertension with brachydactyly. How mutations in PDE3A result in the phenotypic features of this disorder are discussed. Understanding the pathologies of these monogenic hypertensive disorders may provide insight into the causes of the more prevalent essential hypertension and new avenues to unravel the complexities of blood pressure regulation.
Collapse
Affiliation(s)
- Peter E Levanovich
- Department of Physiology, Wayne State University School of Medicine and the John D. Dingell VA Medical Center, Detroit, Michigan, MI 48201, United States
| | - Alexander Diaczok
- Department of Internal Medicine, Wayne State University School of Medicine and the John D. Dingell VA Medical Center, Detroit, Michigan, MI 48201, United States
| | - Noreen F Rossi
- Department of Physiology, Wayne State University School of Medicine and the John D. Dingell VA Medical Center, Detroit, Michigan, MI 48201, United States
| |
Collapse
|
42
|
Reyes M, Silve C, Jüppner H. Shortened Fingers and Toes: GNAS Abnormalities are Not the Only Cause. Exp Clin Endocrinol Diabetes 2020; 128:681-686. [PMID: 31860119 PMCID: PMC7950720 DOI: 10.1055/a-1047-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The PTH/PTHrP receptor (PTHR1) mediates the actions of parathyroid hormone (PTH) and PTH-related peptide (PTHrP) by coupling this G protein-coupled receptor (GPCR) to the alpha-subunit of the heterotrimeric stimulatory G protein (Gsα) and thereby to the formation of cAMP. In growth plates, PTHrP-dependent activation of the cAMP/PKA second messenger pathway prevents the premature differentiation of chondrocytes into hypertrophic cells resulting in delayed growth plate closure. Heterozygous mutations in GNAS, the gene encoding Gsα, lead to a reduction in cAMP levels in growth plate chondrocytes that is sufficient to cause shortening of metacarpals and/or -tarsals, i. e. typical skeletal aspects of Albright's Hereditary Osteodystrophy (AHO). However, heterozygous mutations in other genes, including those encoding PTHrP, PRKAR1A, PDE4D, and PDE3A, can lead to similar or even more pronounced acceleration of skeletal maturation that is particularly obvious in hands and feet, and reduces final adult height. Genetic mutations other than those resulting in Gsα haploinsufficiency thus reduce intracellular cAMP levels in growth plate chondrocytes to a similar extent and thereby accelerate skeletal maturation.
Collapse
Affiliation(s)
- Monica Reyes
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Caroline Silve
- INSERM équipe “Génomiques et épigénétique des tumeurs rares”, Institut Cochin, Paris, France
- Centre de Référence des Maladies rares du Calcium et du Phosphore and Filière de Santé Maladies Rares OSCAR, AP-HP, Paris, France
- Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, AP- HP, Paris, France
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, MassGeneral Hospital for Children Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Genetic variance on blood pressure was shown about 100 years ago; a Mendelian inheritance was initially presumed. Platt and Pickering conducted a lively debate, whether blood pressure was inherited in a Mendelian fashion or whether the condition was polygenic. Genetic-hypertension research has appropriately followed both pathways. RECENT FINDINGS Genome-wide association studies, Pickering model, have identified more than 500 blood-pressure loci, the targets of which are waiting to be evaluated. Then, come the 'dark-horses' of hypertension, namely 'secondary' causes. These conditions have been remarkably elucidative including pheochromocytoma, primary aldosteronism, Cushing's syndrome, and even renovascular hypertension. All these conditions feature genetic causes. Finally, arrive the Platt followers. A plethora of Mendelian conditions located within the kidney are established. These syndromes involve increased sodium (as chloride) absorption in the distal nephron. Finally, nonsalt-dependent Mendelian forms involving the vascular directly have been described. Mechanistically, Mendelian forms have large effects on blood pressure and offer effective treatment targets. SUMMARY Which genetic models will bring us improved therapies? Ongoing studies will answer that question. It behooves the clinician to follow this dynamic area of research.
Collapse
|
44
|
Bi W, Fritsche LG, Mukherjee B, Kim S, Lee S. A Fast and Accurate Method for Genome-Wide Time-to-Event Data Analysis and Its Application to UK Biobank. Am J Hum Genet 2020; 107:222-233. [PMID: 32589924 DOI: 10.1016/j.ajhg.2020.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/03/2020] [Indexed: 12/09/2022] Open
Abstract
With increasing biobanking efforts connecting electronic health records and national registries to germline genetics, the time-to-event data analysis has attracted increasing attention in the genetics studies of human diseases. In time-to-event data analysis, the Cox proportional hazards (PH) regression model is one of the most used approaches. However, existing methods and tools are not scalable when analyzing a large biobank with hundreds of thousands of samples and endpoints, and they are not accurate when testing low-frequency and rare variants. Here, we propose a scalable and accurate method, SPACox (a saddlepoint approximation implementation based on the Cox PH regression model), that is applicable for genome-wide scale time-to-event data analysis. SPACox requires fitting a Cox PH regression model only once across the genome-wide analysis and then uses a saddlepoint approximation (SPA) to calibrate the test statistics. Simulation studies show that SPACox is 76-252 times faster than other existing alternatives, such as gwasurvivr, 185-511 times faster than the standard Wald test, and more than 6,000 times faster than the Firth correction and can control type I error rates at the genome-wide significance level regardless of minor allele frequencies. Through the analysis of UK Biobank inpatient data of 282,871 white British European ancestry samples, we show that SPACox can efficiently analyze large sample sizes and accurately control type I error rates. We identified 611 loci associated with time-to-event phenotypes of 12 common diseases, of which 38 loci would be missed within a logistic regression framework with a binary phenotype defined as event occurrence status during the follow-up period.
Collapse
|
45
|
Yamazaki O, Hirohama D, Ishizawa K, Shibata S. Role of the Ubiquitin Proteasome System in the Regulation of Blood Pressure: A Review. Int J Mol Sci 2020; 21:E5358. [PMID: 32731518 PMCID: PMC7432568 DOI: 10.3390/ijms21155358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
The kidney and the vasculature play crucial roles in regulating blood pressure. The ubiquitin proteasome system (UPS), a multienzyme process mediating covalent conjugation of the 76-amino acid polypeptide ubiquitin to a substrate protein followed by proteasomal degradation, is involved in multiple cellular processes by regulating protein turnover in various tissues. Increasing evidence demonstrates the roles of UPS in blood pressure regulation. In the kidney, filtered sodium is reabsorbed through diverse sodium transporters and channels along renal tubules, and studies conducted till date have provided insights into the complex molecular network through which ubiquitin ligases modulate sodium transport in different segments. Components of these pathways include ubiquitin ligase neuronal precursor cell-expressed developmentally downregulated 4-2, Cullin-3, and Kelch-like 3. Moreover, accumulating data indicate the roles of UPS in blood vessels, where it modulates nitric oxide bioavailability and vasoconstriction. Cullin-3 not only regulates renal salt reabsorption but also controls vascular tone using different adaptor proteins that target distinct substrates in vascular smooth muscle cells. In endothelial cells, UPS can also contribute to blood pressure regulation by modulating endothelial nitric oxide synthase. In this review, we summarize current knowledge regarding the role of UPS in blood pressure regulation, focusing on renal sodium reabsorption and vascular function.
Collapse
Affiliation(s)
| | | | | | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (O.Y.); (D.H.); (K.I.)
| |
Collapse
|
46
|
Ercu M, Markó L, Schächterle C, Tsvetkov D, Cui Y, Maghsodi S, Bartolomaeus TU, Maass PG, Zühlke K, Gregersen N, Hübner N, Hodge R, Mühl A, Pohl B, Illas RM, Geelhaar A, Walter S, Napieczynska H, Schelenz S, Taube M, Heuser A, Anistan YM, Qadri F, Todiras M, Plehm R, Popova E, Langanki R, Eichhorst J, Lehmann M, Wiesner B, Russwurm M, Forslund SK, Kamer I, Müller DN, Gollasch M, Aydin A, Bähring S, Bader M, Luft FC, Klussmann E. Phosphodiesterase 3A and Arterial Hypertension. Circulation 2020; 142:133-149. [DOI: 10.1161/circulationaha.119.043061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
High blood pressure is the primary risk factor for cardiovascular death worldwide. Autosomal dominant hypertension with brachydactyly clinically resembles salt-resistant essential hypertension and causes death by stroke before 50 years of age. We recently implicated the gene encoding phosphodiesterase 3A (
PDE3A
); however, in vivo modeling of the genetic defect and thus showing an involvement of mutant PDE3A is lacking.
Methods:
We used genetic mapping, sequencing, transgenic technology, CRISPR-Cas9 gene editing, immunoblotting, and fluorescence resonance energy transfer. We identified new patients, performed extensive animal phenotyping, and explored new signaling pathways.
Results:
We describe a novel mutation within a 15 base pair (bp) region of the
PDE3A
gene and define this segment as a mutational hotspot in hypertension with brachydactyly. The mutations cause an increase in enzyme activity. A CRISPR/Cas9-generated rat model, with a 9-bp deletion within the hotspot analogous to a human deletion, recapitulates hypertension with brachydactyly. In mice, mutant transgenic PDE3A overexpression in smooth muscle cells confirmed that mutant PDE3A causes hypertension. The mutant PDE3A enzymes display consistent changes in their phosphorylation and an increased interaction with the 14-3-3θ adaptor protein. This aberrant signaling is associated with an increase in vascular smooth muscle cell proliferation and changes in vessel morphology and function.
Conclusions:
The mutated
PDE3A
gene drives mechanisms that increase peripheral vascular resistance causing hypertension. We present 2 new animal models that will serve to elucidate the underlying mechanisms further. Our findings could facilitate the search for new antihypertensive treatments.
Collapse
Affiliation(s)
- Maria Ercu
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
| | - Lajos Markó
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Carolin Schächterle
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Yingqiu Cui
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Sara Maghsodi
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Theda U.P. Bartolomaeus
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Philipp G. Maass
- Genetics and Genome Biology Program, Sickkids Research Institute and Department of Molecular Genetics, University of Toronto, ON, Canada (P.G.M.)
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Nerine Gregersen
- Auckland District Health Board (ADHB), Genetic Health Service New Zealand – Northern Hub (N.G.)
| | - Norbert Hübner
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
| | - Russell Hodge
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Astrid Mühl
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Bärbel Pohl
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Rosana Molé Illas
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Andrea Geelhaar
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Stephan Walter
- Abteilung für Nephrologie/Hypertensiologie, St. Vincenz Krankenhaus, Limburg, Germany (S.W.)
| | - Hanna Napieczynska
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Stefanie Schelenz
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Martin Taube
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Yoland-Marie Anistan
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Division of Nephrology and Intensive Care Medicine, Medical Department, Charité-Universitätsmedizin, Berlin, Germany (Y.-M.A., M.G.)
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Ralph Plehm
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Elena Popova
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Reika Langanki
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Jenny Eichhorst
- Leibniz-Forschingsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L., B.W.)
| | - Martin Lehmann
- Leibniz-Forschingsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L., B.W.)
| | - Burkhard Wiesner
- Leibniz-Forschingsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L., B.W.)
| | - Michael Russwurm
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät MA N1, Ruhr-Universität Bochum, Germany (M.R.)
| | - Sofia K. Forslund
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, Germany (L.M., T.U.P.B., N.H., Y.-M.A., S.K.F.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
- Berlin Institute of Health (BIH), Germany (S.K.F.)
| | - Ilona Kamer
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Dominik N. Müller
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Maik Gollasch
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
- Division of Nephrology and Intensive Care Medicine, Medical Department, Charité-Universitätsmedizin, Berlin, Germany (Y.-M.A., M.G.)
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (M.G.)
| | - Atakan Aydin
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
| | - Sylvia Bähring
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
- Institute for Biology, University of Lübeck, Germany (M.B.)
| | - Friedrich C. Luft
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany (L.M., C.S., D.T., Y.C., T.U.P.B., R.M.I., S.K.F., I.K., D.N.M., M.G., S.B., F.C.L.)
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (M.E., C.S., S.M., K.Z., N.H., R.H., A.M., B.P., A.G., H.N., S.S., M. Taube, A.H., F.Q., M. Todiras, R.P., E.P., R.L., S.K.F., D.N.M., A.A., M.B., F.C.L., E.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (M.E., L.M., C.S., T.U.P.B., N.H., S.K.F., D.N.M., M.B., E.K.)
| |
Collapse
|
47
|
Li X, Li Z, Chen P, Wang Y, Wang DW, Wang DW. Whole-exome sequencing identifies a de novo PDE3A variant causing autosomal dominant hypertension with brachydactyly type E syndrome: a case report. BMC MEDICAL GENETICS 2020; 21:144. [PMID: 32631253 PMCID: PMC7336660 DOI: 10.1186/s12881-020-01077-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 06/25/2020] [Indexed: 12/02/2022]
Abstract
Background Autosomal dominant hypertension with brachydactyly type E syndrome caused by pathogenic variants in the PDE3A gene was first reported in 2015. To date, there are only a few reports of this kind of syndrome. Other patients still lack a genetic diagnosis. Case presentation Whole-exome sequencing was performed in an 18-year-old female proband with a clinical diagnosis of hypertension with brachydactyly syndrome. Quantitative real-time PCR was used to identify pathogenic copy number variations (CNVs). After bioinformatics analysis and healthy control database filtering, we revealed a heterozygous missense PDE3A variant (c.1346G > A, p.Gly449Asp). The variant was absent in the ExAC database and located in a highly evolutionarily conserved cluster of reported PDE3A pathogenic variants. Importantly, this variant was predicted to affect protein function by both SIFT (score = 0) and PolyPhen-2 (score = 1). After Sanger sequencing, the variant was determined to be absent in the healthy parents of the proband as well as 800 ethnically and geographically matched healthy controls. Conclusion We present a report linking a de novo PDE3A variant to autosomal dominant hypertension with brachydactyly type E syndrome.
Collapse
Affiliation(s)
- Xianqing Li
- Division of Cardiology, Department of Internal Medicine and Genetic Diagnosis Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Zongzhe Li
- Division of Cardiology, Department of Internal Medicine and Genetic Diagnosis Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Chen
- Division of Cardiology, Department of Internal Medicine and Genetic Diagnosis Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine and Genetic Diagnosis Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Genetic Diagnosis Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wu Wang
- State Key Laboratory of Reproductive Medicine, The Centre for Clinical Reproductive Medicine and Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P. R. China.
| |
Collapse
|
48
|
Lauffer P, Miranda-Laferte E, van Duyvenvoorde HA, van Haeringen A, Werner F, Boudin E, Schmidt H, Mueller TD, Kuhn M, van der Kaay DCM. An Activating Deletion Variant in the Submembrane Region of Natriuretic Peptide Receptor-B Causes Tall Stature. J Clin Endocrinol Metab 2020; 105:5819532. [PMID: 32282051 PMCID: PMC7450217 DOI: 10.1210/clinem/dgaa190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
CONTEXT C-type natriuretic peptide (CNP) is critically involved in endochondral bone growth. Variants in the genes encoding CNP or its cyclic guanosine monophosphate (cGMP)-forming receptor (natriuretic peptide receptor-B [NPR-B], gene NPR2) cause monogenic growth disorders. Here we describe a novel gain-of-function variant of NPR-B associated with tall stature and macrodactyly of the great toes (epiphyseal chondrodysplasia, Miura type). DESIGN History and clinical characteristics of 3 family members were collected. NPR2 was selected for sequencing. Skin fibroblasts and transfected HEK-293 cells were used to compare mutant versus wild-type NPR-B activities. Homology modeling was applied to understand the molecular consequences of the variant. RESULTS Mother's height was +2.77 standard deviation scores (SDS). The heights of her 2 daughters were +1.96 SDS at 7 years and +1.30 SDS at 4 years of age. Skeletal surveys showed macrodactyly of the great toes and pseudo-epiphyses of the mid- and proximal phalanges. Sequencing identified a novel heterozygous variant c.1444_1449delATGCTG in exon 8 of NPR2, predicted to result in deletion of 2 amino acids Met482-Leu483 within the submembrane region of NPR-B. In proband's skin fibroblasts, basal cGMP levels and CNP-stimulated cGMP production were markedly increased compared with controls. Consistently, assays with transfected HEK-293 cells showed markedly augmented baseline and ligand-dependent activity of mutant NPR-B. CONCLUSIONS We report the second activating variant within the intracellular submembrane region of NPR-B resulting in tall stature and macrodactyly. Our functional and modeling studies suggest that this domain plays a critical role in the baseline conformation and ligand-dependent structural rearrangement of NPR-B required for cGMP production.
Collapse
Affiliation(s)
- Peter Lauffer
- Department of Clinical Genetics, Leiden University Medical Center, ZA Leiden, the Netherlands
- Department of Paediatric Endocrinology, Emma Children’s Hospital, Amsterdam University Medical Center, AZ Amsterdam, the Netherlands
- Correspondence and Reprint Requests: Peter Lauffer, Emma Children’s Hospital, Amsterdam University Medical Center, Department of Paediatric Endocrinology, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. E-mail:
| | | | | | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, ZA Leiden, the Netherlands
| | - Franziska Werner
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Eveline Boudin
- Centre of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
49
|
Bardsley EN, Paterson DJ. Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J Physiol 2020; 598:2957-2976. [PMID: 30307615 PMCID: PMC7496613 DOI: 10.1113/jp276962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiac sympathetic overactivity is a well-established contributor to the progression of neurogenic hypertension and heart failure, yet the underlying pathophysiology remains unclear. Recent studies have highlighted the importance of acutely regulated cyclic nucleotides and their effectors in the control of intracellular calcium and exocytosis. Emerging evidence now suggests that a significant component of sympathetic overactivity and enhanced transmission may arise from impaired cyclic nucleotide signalling, resulting from compromised phosphodiesterase activity, as well as alterations in receptor-coupled G-protein activation. In this review, we address some of the key cellular and molecular pathways that contribute to sympathetic overactivity in hypertension and discuss their potential for therapeutic targeting.
Collapse
Affiliation(s)
- E. N. Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| | - D. J. Paterson
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| |
Collapse
|
50
|
Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, Huffman JE, Assimes TL, Lorenz K, Zhu X, Hilliard AT, Judy RL, Huang J, Lee KM, Klarin D, Pyarajan S, Danesh J, Melander O, Rasheed A, Mallick NH, Hameed S, Qureshi IH, Afzal MN, Malik U, Jalal A, Abbas S, Sheng X, Gao L, Kaestner KH, Susztak K, Sun YV, DuVall SL, Cho K, Lee JS, Gaziano JM, Phillips LS, Meigs JB, Reaven PD, Wilson PW, Edwards TL, Rader DJ, Damrauer SM, O'Donnell CJ, Tsao PS, Chang KM, Voight BF, Saleheen D. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet 2020; 52:680-691. [PMID: 32541925 PMCID: PMC7343592 DOI: 10.1038/s41588-020-0637-y] [Citation(s) in RCA: 437] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
We investigated type 2 diabetes (T2D) genetic susceptibility via multi-ethnic meta-analysis of 228,499 cases and 1,178,783 controls in the Million Veteran Program, DIAMANTE, Biobank Japan, and other studies. We report 568 associations, including 286 autosomal, 7 X chromosomal, and 25 identified in ancestry-specific analyses that were previously unreported. Transcriptome-wide association analysis detected 3,568 T2D-associations with genetically predicted gene expression in 687 novel genes; of these, 54 are known to interact with FDA-approved drugs. A polygenic risk score was strongly associated with increased risk of T2D-related retinopathy and modestly associated with chronic kidney disease (CKD), peripheral artery disease (PAD), and neuropathy. We investigated the genetic etiology of T2D-related vascular outcomes in MVP and observed statistical SNP-T2D interactions at 13 variants, including coronary heart disease, CKD, PAD, and neuropathy. These findings may help to identify potential therapeutic targets for T2D and genomic pathways that link T2D to vascular outcomes.
Collapse
Affiliation(s)
- Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacob M Keaton
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA.,College of Nursing and Health Sciences, University of Massachusetts, Lowell, MA, USA
| | - Donald R Miller
- Edith Nourse Rogers Memorial VA Hospital, Bedford, MA, USA.,Center for Population Health, University of Massachusetts, Lowell, MA, USA
| | - Jin Zhou
- Phoenix VA Health Care System, Phoenix, AZ, USA.,Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kimberly Lorenz
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiang Zhu
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Statistics, Stanford University, Stanford, CA, USA
| | - Austin T Hilliard
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Renae L Judy
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jie Huang
- VA Boston Healthcare System, Boston, MA, USA.,Department of Global Health, Peking University School of Public Health, Beijing, China
| | - Kyung M Lee
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Derek Klarin
- VA Boston Healthcare System, Boston, MA, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Vascular Surgery and Endovascular Therapy, University of Florida School of Medicine, Gainesville, FL, USA
| | - Saiju Pyarajan
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
| | | | - Shahid Hameed
- Punjab Institute of Cardiology, Lahore, Punjab, Pakistan
| | - Irshad H Qureshi
- Department of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan.,Mayo Hospital, Lahore, Punjab, Pakistan
| | - Muhammad Naeem Afzal
- Department of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan.,Mayo Hospital, Lahore, Punjab, Pakistan
| | - Uzma Malik
- Department of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan.,Mayo Hospital, Lahore, Punjab, Pakistan
| | - Anjum Jalal
- Department of Cardiology, Faisalabad Institute of Cardiology, Faisalabad, Punjab, Pakistan
| | - Shahid Abbas
- Department of Cardiology, Faisalabad Institute of Cardiology, Faisalabad, Punjab, Pakistan
| | - Xin Sheng
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Long Gao
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan V Sun
- Atlanta VA Medical Center, Decatur, GA, USA.,Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Scott L DuVall
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Jennifer S Lee
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - J Michael Gaziano
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Lawrence S Phillips
- Atlanta VA Medical Center, Decatur, GA, USA.,Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA.,College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - Peter W Wilson
- Atlanta VA Medical Center, Decatur, GA, USA.,Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd L Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Nashville VA Medical Center, Nashville, TN, USA
| | - Daniel J Rader
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Boston, MA, USA.,Department of Medicine, Brigham Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Benjamin F Voight
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA. .,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan. .,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA. .,Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|