1
|
Lacey SE, Pigino G. The intraflagellar transport cycle. Nat Rev Mol Cell Biol 2025; 26:175-192. [PMID: 39537792 DOI: 10.1038/s41580-024-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein. In this Review, we discuss recent structural and mechanistic insights on how the IFT complexes are first recruited to the base of the cilium, how they polymerize into an anterograde IFT train, and how this complex imports cargoes from the cytoplasm. We will describe insights into how kinesin-driven anterograde trains are carried to the ciliary tip, where they are remodelled into dynein-driven retrograde trains for cargo export. We will also present how the interplay between IFT-A and IFT-B complexes, motor proteins and cargo adaptors is regulated for bidirectional ciliary transport.
Collapse
|
2
|
Yusifov E, Schaettin M, Dumoulin A, Bachmann-Gagescu R, Stoeckli ET. The primary cilium gene CPLANE1 is required for peripheral nervous system development. Dev Biol 2025; 519:106-121. [PMID: 39694173 DOI: 10.1016/j.ydbio.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Ciliopathies are a group of neurodevelopmental disorders characterized by the dysfunction of the primary cilium. This small protrusion from most cells of our body serves as a signaling hub for cell-to-cell communication during development. Cell proliferation, differentiation, migration, and neural circuit formation have been demonstrated to depend on functional primary cilia. In the context of ciliopathies, the focus has been on the development of the central nervous system, while the peripheral nervous system has not been studied in depth. In line with phenotypes seen in patients, the absence of a functional primary cilium was shown to affect the migration of cranial and vagal neural crest cells, which contribute to the development of craniofacial features and the heart, respectively. We show here that the ciliopathy gene Cplane1 is required for the development of the peripheral nervous system. Loss of Cplane1 function in chicken embryos induces defects in dorsal root ganglia, which vary in size and fail to localize symmetrically along the spinal cord. These defects may help to understand the alteration in somatosensory perceptions described in some ciliopathy patients.
Collapse
Affiliation(s)
- Elkhan Yusifov
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Switzerland; University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of Zurich, Switzerland
| | - Martina Schaettin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Switzerland; University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of Zurich, Switzerland
| | - Alexandre Dumoulin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Switzerland; University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of Zurich, Switzerland; Institute of Medical Genetics, University of Zurich, Switzerland
| | - Esther T Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Switzerland; University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of Zurich, Switzerland.
| |
Collapse
|
3
|
Hong Z, Xiang S, Chen Z, Qiu X, Zhang L, Ma L, Wang M. Unveiling the Pathogenic Role of Novel CPLANE1 Compound Heterozygous Variants in Joubert Syndrome: Insights Into mRNA Stability and NMD Pathway. J Cell Mol Med 2025; 29:e70484. [PMID: 40074699 PMCID: PMC11903199 DOI: 10.1111/jcmm.70484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Joubert syndrome (JS) is a rare neurodevelopmental disorder associated with mutations in genes involved in ciliary function. Germline variants in CPLANE1 have been implicated in JS. In this study, we investigated a family with three adverse pregnancies characterised by fetal malformations consistent with JS. Whole-exome sequencing (WES) identified compound heterozygous variants in CPLANE1: c.8893C>T (p.Gln2965*) and c.203C>T (p.Thr68Ile). Sanger sequencing confirmed the variants in the family. Bioinformatics analysis predicted that the c.203C>T variant affects mRNA splicing and protein function. Functional studies using PBMCs demonstrated that the c.203C>T variant causes exon 3 skipping, resulting in a frameshift and premature termination codon, leading to potential nonsense-mediated mRNA degradation (NMD). The mRNA transcription and translation inhibition experiment, by treatment with actinomycin D and puromycin, indicated that the c.203C>T variant leads to accelerated mRNA degradation. Notably, the inhibition of SMG1, a key marker of the NMD pathway, partially rescued mRNA expression in mutated cells, providing further evidence of NMD activation. Based on these findings and ACMG guidelines, the c.203C>T variant was reclassified from a variant of uncertain significance (VUS) to likely pathogenic. This is the first report of novel CPLANE1 compound heterozygous variants contributing to JS in this family. Our study expands the known pathogenic variant spectrum of CPLANE1 in JS and provides new insights into the molecular mechanisms of this ciliopathy.
Collapse
Affiliation(s)
- Zhidan Hong
- Center for Reproductive MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiPeople's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei ProvinceWuhanHubeiPeople's Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth HealthWuhanHubeiPeople's Republic of China
| | - Sheng Xiang
- Department of Obstetrics and GynecologyHuangmei County People's HospitalHuanggangChina
| | - Zhiying Chen
- Center for Reproductive MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiPeople's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei ProvinceWuhanHubeiPeople's Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth HealthWuhanHubeiPeople's Republic of China
| | - Xueping Qiu
- Center for Gene Diagnosis, Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Li Zhang
- Maternal and Child Health Hospital of Hubei ProvinceWuhanHubeiPeople's Republic of China
| | - Ling Ma
- Center for Reproductive MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiPeople's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei ProvinceWuhanHubeiPeople's Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth HealthWuhanHubeiPeople's Republic of China
| | - Mei Wang
- Center for Reproductive MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiPeople's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei ProvinceWuhanHubeiPeople's Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth HealthWuhanHubeiPeople's Republic of China
| |
Collapse
|
4
|
Constable S, Ott CM, Lemire AL, White K, Xun Y, Lim A, Lippincott-Schwartz J, Mukhopadhyay S. Permanent cilia loss during cerebellar granule cell neurogenesis involves withdrawal of cilia maintenance and centriole capping. Proc Natl Acad Sci U S A 2024; 121:e2408083121. [PMID: 39705308 DOI: 10.1073/pnas.2408083121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/09/2024] [Indexed: 12/22/2024] Open
Abstract
Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles. Here, we identify molecular changes that accompany cilia deconstruction and centriole docking in GC neurons. We used single cell transcriptomic and immunocytological analyses to compare the transcript levels and subcellular localization of proteins between progenitor, differentiating, and mature GCs. Differentiating GCs lacked transcripts for key activators of premitotic cilia resorption, indicating that cilia disassembly in differentiating cells is distinct from premitotic cilia resorption. Instead, during differentiation, transcripts of many genes required for cilia maintenance-specifically those encoding components of intraflagellar transport, pericentrosomal material, and centriolar satellites-decreased. The abundance of several corresponding proteins in and around cilia and centrosomes also decreased. These changes coincided with downregulation of SHH signaling prior to differentiation, even in a mutant with excessive SHH activation. Finally, mother centrioles in maturing granule neurons recruited the cap complex protein, CEP97. These data suggest that a global, developmentally programmed decrease in cilium maintenance in differentiating GCs mediates cilia deconstruction, while capping of docked mother centrioles prevents cilia regrowth and dysregulated SHH signaling. Our study provides mechanistic insights expanding our understanding of permanent cilia loss in multiple tissue-specific contexts.
Collapse
Affiliation(s)
- Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yu Xun
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Amin Lim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
5
|
Kim SE, Kim HY, Wlodarczyk BJ, Finnell RH. Linkage between Fuz and Gpr161 genes regulates sonic hedgehog signaling during mouse neural tube development. Development 2024; 151:dev202705. [PMID: 39369306 PMCID: PMC11463954 DOI: 10.1242/dev.202705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/02/2024] [Indexed: 10/07/2024]
Abstract
Sonic hedgehog (Shh) signaling regulates embryonic morphogenesis utilizing the primary cilium, the cell's antenna, which acts as a signaling hub. Fuz, an effector of planar cell polarity signaling, regulates Shh signaling by facilitating cilia formation, and the G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling. The range of phenotypic malformations observed in mice bearing mutations in either of the genes encoding these proteins is similar; however, their functional relationship has not been previously explored. This study identified the genetic and biochemical linkage between Fuz and Gpr161 in mouse neural tube development. Fuz was found to be genetically epistatic to Gpr161 with respect to regulation of Shh signaling in mouse neural tube development. The Fuz protein biochemically interacts with Gpr161, and Fuz regulates Gpr161-mediated ciliary localization, a process that might utilize β-arrestin 2. Our study characterizes a previously unappreciated Gpr161-Fuz axis that regulates Shh signaling during mouse neural tube development.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX 78723, USA
| | | | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H. Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX 78723, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics, and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Atique Tacla M, de Mello Copelli M, Pairet E, Monlleó IL, Ribeiro EM, Lustosa Mendes E, Helaers R, Vieira TP, Vikkula M, Gil-da-Silva-Lopes VL. Molecular investigation in individuals with orofacial clefts and microphthalmia-anophthalmia-coloboma spectrum. Eur J Hum Genet 2024; 32:1257-1266. [PMID: 37932364 PMCID: PMC11499658 DOI: 10.1038/s41431-023-01488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
This study describes genomic findings among individuals with both orofacial clefts (OC) and microphthalmia/anophthalmia/coloboma (MAC) recorded in the Brazilian Database on Craniofacial Anomalies (BDCA). Chromosomal microarray analysis (CMA) and Whole Exome Sequencing (WES) were performed in 17 individuals with OC-MAC. Clinical interpretation of molecular findings was based on data available at the BDCA and on re-examination. No copy number variants (CNVs) classified as likely pathogenic or pathogenic were detected by CMA. WES allowed a conclusive diagnosis in six individuals (35.29%), two of them with variants in the CHD7 gene, and the others with variants in the TFAP2A, POMT1, PTPN11, and TP63 genes with the following syndromes: CHARGE, CHD7-spectrum, Branchiooculofacial, POMT1-spectrum, LEOPARD, and ADULT. Variants of uncertain significance (VUS) possibly associated to the phenotypes were found in six other individuals. Among the individuals with VUSes, three individuals presented variants in genes associated to defects of cilia structure and/or function, including DYNC2H1, KIAA0586, WDR34, INTU, RPGRIP1L, KIF7, and LMNA. These results show that WES was the most effective molecular approach for OC-MAC in this cohort. This study also reinforces the genetic heterogeneity of OC-MAC, and the importance of genes related to ciliopathies in this phenotype.
Collapse
Affiliation(s)
- Milena Atique Tacla
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Matheus de Mello Copelli
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eleonore Pairet
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Isabella Lopes Monlleó
- Clinical Genetics Service, University Hospital, Medical Genetics Sector, Faculty of Medicine, Federal University of Alagoas - UFAL, Maceió, AL, Brazil
| | | | | | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Tarsis Paiva Vieira
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Vera Lúcia Gil-da-Silva-Lopes
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
7
|
Vazquez N, Lee C, Valenzuela I, Phan TP, Derderian C, Chávez M, Mooney NA, Demeter J, Aziz-Zanjani MO, Cusco I, Codina M, Martínez-Gil N, Valverde D, Solarat C, Buel AL, Thauvin-Robinet C, Steichen E, Filges I, Joset P, De Geyter J, Vaidyanathan K, Gardner T, Toriyama M, Marcotte EM, Roberson EC, Jackson PK, Reiter JF, Tizzano EF, Wallingford JB. The human ciliopathy protein RSG1 links the CPLANE complex to transition zone architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614984. [PMID: 39386566 PMCID: PMC11463498 DOI: 10.1101/2024.09.25.614984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cilia are essential organelles and variants in genes governing ciliary function result in ciliopathic diseases. The Ciliogenesis and PLANar polarity Effectors (CPLANE) protein complex is essential for ciliogenesis in animals models but remains poorly defined. Notably, all but one subunit of the CPLANE complex have been implicated in human ciliopathy. Here, we identify three families in which variants in the remaining CPLANE subunit CPLANE2/RSG1 also cause ciliopathy. These patients display cleft palate, tongue lobulations and polydactyly, phenotypes characteristic of Oral-Facial-Digital Syndrome. We further show that these alleles disrupt two vital steps of ciliogenesis, basal body docking and recruitment of intraflagellar transport proteins. Moreover, APMS reveals that Rsg1 binds the CPLANE and also the transition zone protein Fam92 in a GTP-dependent manner. Finally, we show that CPLANE is generally required for normal transition zone architecture. Our work demonstrates that CPLANE2/RSG1 is a causative gene for human ciliopathy and also sheds new light on the mechanisms of ciliary transition zone assembly.
Collapse
|
8
|
Caiaffa CD, Ambekar YS, Singh M, Lin YL, Wlodarczyk B, Aglyamov SR, Scarcelli G, Larin KV, Finnell RH. Disruption of Fuz in mouse embryos generates hypoplastic hindbrain development and reduced cranial nerve ganglia. Dev Dyn 2024; 253:846-858. [PMID: 38501709 PMCID: PMC11411014 DOI: 10.1002/dvdy.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The brain and spinal cord formation is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Environmental or genetic interferences can impair neurulation, resulting in clinically significant birth defects known collectively as neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, a macromolecular planar polarity effector required for ciliogenesis. Ablation of Fuz in mouse embryos results in exencephaly and spina bifida, including dysmorphic craniofacial structures due to defective cilia formation and impaired Sonic Hedgehog signaling. RESULTS We demonstrate that knocking Fuz out during embryonic mouse development results in a hypoplastic hindbrain phenotype, displaying abnormal rhombomeres with reduced length and width. This phenotype is associated with persistent reduction of ventral neuroepithelial stiffness in a notochord adjacent area at the level of the rhombomere 5. The formation of cranial and paravertebral ganglia is also impaired in these embryos. CONCLUSIONS This study reveals that hypoplastic hindbrain development, identified by abnormal rhombomere morphology and persistent loss of ventral neuroepithelial stiffness, precedes exencephaly in Fuz ablated murine mutants, indicating that the gene Fuz has a critical function sustaining normal neural tube development and neuronal differentiation.
Collapse
Affiliation(s)
- Carlo Donato Caiaffa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Bogdan Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Salavat R. Aglyamov
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
10
|
Singh S, Nampoothiri S, Narayanan DL, Chaudhry C, Salvankar S, Girisha KM. Biallelic loss of function variants in FUZ result in an orofaciodigital syndrome. Eur J Hum Genet 2024; 32:1022-1026. [PMID: 38702430 PMCID: PMC11291644 DOI: 10.1038/s41431-024-01619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
Orofaciodigital syndrome is a distinctive subtype of skeletal ciliopathies. Disease-causing variants in the genes encoding the CPLANE complex result in a wide variety of skeletal dysplasia with disturbed ciliary functions. The phenotypic spectrum includes orofaciodigital syndrome and short rib polydactyly syndrome. FUZ, as a part of the CPLANE complex, is involved in intraflagellar vesicular trafficking within primary cilia. Previously, the variants, c.98_111+9del and c.851G>T in FUZ were identified in two individuals with a skeletal ciliopathy, manifesting digital anomalies (polydactyly, syndactyly), orofacial cleft, short ribs and cardiac defects. Here, we present two novel variants, c.601G>A and c.625_636del in biallelic state, in two additional subjects exhibiting phenotypic overlap with the previously reported cases. Our findings underscore the association between biallelic loss of function variants in FUZ and skeletal ciliopathy akin to orofaciodigital syndrome.
Collapse
Affiliation(s)
- Swati Singh
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
- Suma Genomics Private Limited, Manipal, India.
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.
| |
Collapse
|
11
|
Gabriel GC, Ganapathiraju M, Lo CW. The Role of Cilia and the Complex Genetics of Congenital Heart Disease. Annu Rev Genomics Hum Genet 2024; 25:309-327. [PMID: 38724024 DOI: 10.1146/annurev-genom-121222-105345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Congenital heart disease (CHD) can affect up to 1% of live births, and despite abundant evidence of a genetic etiology, the genetic landscape of CHD is still not well understood. A large-scale mouse chemical mutagenesis screen for mutations causing CHD yielded a preponderance of cilia-related genes, pointing to a central role for cilia in CHD pathogenesis. The genes uncovered by the screen included genes that regulate ciliogenesis and cilia-transduced cell signaling as well as many that mediate endocytic trafficking, a cell process critical for both ciliogenesis and cell signaling. The clinical relevance of these findings is supported by whole-exome sequencing analysis of CHD patients that showed enrichment for pathogenic variants in ciliome genes. Surprisingly, among the ciliome CHD genes recovered were many that encoded direct protein-protein interactors. Assembly of the CHD genes into a protein-protein interaction network yielded a tight interactome that suggested this protein-protein interaction may have functional importance and that its disruption could contribute to the pathogenesis of CHD. In light of these and other findings, we propose that an interactome enriched for ciliome genes may provide the genomic context for the complex genetics of CHD and its often-observed incomplete penetrance and variable expressivity.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
| | - Madhavi Ganapathiraju
- Carnegie Mellon University in Qatar, Doha, Qatar
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
12
|
Tam PKH, Wells RG, Tang CSM, Lui VCH, Hukkinen M, Luque CD, De Coppi P, Mack CL, Pakarinen M, Davenport M. Biliary atresia. Nat Rev Dis Primers 2024; 10:47. [PMID: 38992031 PMCID: PMC11956545 DOI: 10.1038/s41572-024-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Biliary atresia (BA) is a progressive inflammatory fibrosclerosing disease of the biliary system and a major cause of neonatal cholestasis. It affects 1:5,000-20,000 live births, with the highest incidence in Asia. The pathogenesis is still unknown, but emerging research suggests a role for ciliary dysfunction, redox stress and hypoxia. The study of the underlying mechanisms can be conceptualized along the likely prenatal timing of an initial insult and the distinction between the injury and prenatal and postnatal responses to injury. Although still speculative, these emerging concepts, new diagnostic tools and early diagnosis might enable neoadjuvant therapy (possibly aimed at oxidative stress) before a Kasai portoenterostomy (KPE). This is particularly important, as timely KPE restores bile flow in only 50-75% of patients of whom many subsequently develop cholangitis, portal hypertension and progressive fibrosis; 60-75% of patients require liver transplantation by the age of 18 years. Early diagnosis, multidisciplinary management, centralization of surgery and optimized interventions for complications after KPE lead to better survival. Postoperative corticosteroid use has shown benefits, whereas the role of other adjuvant therapies remains to be evaluated. Continued research to better understand disease mechanisms is necessary to develop innovative treatments, including adjuvant therapies targeting the immune response, regenerative medicine approaches and new clinical tests to improve patient outcomes.
Collapse
Affiliation(s)
- Paul K H Tam
- Medical Sciences Division, Macau University of Science and Technology, Macau, China.
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Rebecca G Wells
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clara S M Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Vincent C H Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Maria Hukkinen
- Section of Paediatric Surgery, Paediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Carlos D Luque
- Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paolo De Coppi
- NIHR Biomedical Research Centre, Great Ormond Street Hospital for Children NHS Foundation Trust and Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cara L Mack
- Department of Paediatrics, Division of Paediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, USA
| | - Mikko Pakarinen
- Section of Paediatric Surgery, Paediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK
| |
Collapse
|
13
|
Engelhardt D, Marean A, McKean D, Petersen J, Niswander L. RSG1 is required for cilia-dependent neural tube closure. Genesis 2024; 62:e23602. [PMID: 38721990 PMCID: PMC11141724 DOI: 10.1002/dvg.23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/02/2024]
Abstract
Cilia play a key role in the regulation of signaling pathways required for embryonic development, including the proper formation of the neural tube, the precursor to the brain and spinal cord. Forward genetic screens were used to generate mouse lines that display neural tube defects (NTD) and secondary phenotypes useful in interrogating function. We describe here the L3P mutant line that displays phenotypes of disrupted Sonic hedgehog signaling and affects the initiation of cilia formation. A point mutation was mapped in the L3P line to the gene Rsg1, which encodes a GTPase-like protein. The mutation lies within the GTP-binding pocket and disrupts the highly conserved G1 domain. The mutant protein and other centrosomal and IFT proteins still localize appropriately to the basal body of cilia, suggesting that RSG1 GTPase activity is not required for basal body maturation but is needed for a downstream step in axonemal elongation.
Collapse
Affiliation(s)
- David Engelhardt
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO 80309
| | - Amber Marean
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus
| | - David McKean
- Cells, Stem Cells and Developmental Biology Graduate Program, University of Colorado Anschutz Medical Campus
| | - Juliette Petersen
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus
| | - Lee Niswander
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO 80309
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus
- Cells, Stem Cells and Developmental Biology Graduate Program, University of Colorado Anschutz Medical Campus
| |
Collapse
|
14
|
Cox RM, Papoulas O, Shril S, Lee C, Gardner T, Battenhouse AM, Lee M, Drew K, McWhite CD, Yang D, Leggere JC, Durand D, Hildebrandt F, Wallingford JB, Marcotte EM. Ancient eukaryotic protein interactions illuminate modern genetic traits and disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595818. [PMID: 38853926 PMCID: PMC11160598 DOI: 10.1101/2024.05.26.595818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.
Collapse
Affiliation(s)
- Rachael M Cox
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tynan Gardner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - David Yang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janelle C Leggere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue Pittsburgh, PA 15213, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
15
|
Yang Z, Zhang L, Zhang W, Tian X, Lai W, Lin D, Feng Y, Jiang W, Zhang Z, Zhang Z. Identification of the principal neuropeptide MIP and its action pathway in larval settlement of the echiuran worm Urechis unicinctus. BMC Genomics 2024; 25:337. [PMID: 38641568 PMCID: PMC11027379 DOI: 10.1186/s12864-024-10228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Larval settlement and metamorphosis represent critical events in the life history of marine benthic animals. Myoinhibitory peptide (MIP) plays a pivotal role in larval settlement of marine invertebrates. However, the molecular mechanisms of MIP involved in this process are not well understood. RESULTS In this study, we evaluated the effects of thirteen MIP mature peptides on triggering the larval settlement of Urechis unicinctus (Xenopneusta, Urechidae), and determined that MIP2 was the principal neuropeptide. Transcriptomic analysis was employed to identify differentially expressed genes (DEGs) between the MIP2-treated larvae and normal early-segmentation larvae. Both cAMP and calcium signaling pathways were enriched in the DEGs of the MIP2-treated larvae, and two neuropeptide receptor genes (Spr, Fmrfar) were up-regulated in the MIP2-treated larvae. The activation of the SPR-cAMP pathway by MIP2 was experimentally validated in HEK293T cells. Furthermore, fourteen cilia-related genes, including Tctex1d2, Cfap45, Ift43, Ift74, Ift22, Cav1 and Mns1, etc. exhibited down-regulated expression in the MIP2-treated larvae. Whole-mount in situ hybridization identified two selected ciliary genes, Tctex1d2 and Cfap45, were specially expressed in circumoral ciliary cells of the early-segmentation larvae. Knocking down Tctex1d2 mRNA levels by in vivo RNA interference significantly increased the larval settlement rate. CONCLUSION Our findings suggest that MIP2 inhibits the function of the cilia-related genes, such as Tctex1d2, through the SPR-cAMP-PKA pathway, thereby inducing larval settlement in U. unicinctus. The study contributes important data to the understanding of neuropeptide regulation in larval settlement.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Xinhua Tian
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenyuan Lai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China.
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
16
|
Sharma R, Kalot R, Levin Y, Babayeva S, Kachurina N, Chung CF, Liu KJ, Bouchard M, Torban E. The CPLANE protein Fuzzy regulates ciliogenesis by suppressing actin polymerization at the base of the primary cilium via p190A RhoGAP. Development 2024; 151:dev202322. [PMID: 38546045 PMCID: PMC11006408 DOI: 10.1242/dev.202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 04/12/2024]
Abstract
The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice. Here, we show that the loss of Fuzzy in mice results in defects of primary cilia, accompanied by increased RhoA activity and excessive actin polymerization at the basal body. We discovered that, mechanistically, Fuzzy interacts with and recruits the negative actin regulator ARHGAP35 (also known as p190A RhoGAP) to the basal body. We identified genetic interactions between the two genes and found that a mutant ArhGAP35 allele increases the severity of phenotypic defects observed in Fuzzy-/- mice. Based on our findings, we propose that Fuzzy regulates ciliogenesis by recruiting ARHGAP35 to the basal body, where the latter likely restricts actin polymerization and modifies the actin network. Our study identifies a mechanism whereby CPLANE proteins control both actin polymerization and primary cilium formation.
Collapse
Affiliation(s)
- Rhythm Sharma
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Yossef Levin
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Sima Babayeva
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| | - Nadezda Kachurina
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| | - Chen-Feng Chung
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Maxime Bouchard
- Rosalind and Morris Goodman Cancer Institute, Department of Medicine of the McGill University,McGill University, Montreal H3A 1A3, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| |
Collapse
|
17
|
Bozhinovski G, Terzikj M, Kubelka-Sabit K, Plaseska-Karanfilska D. High Incidence of CPLANE1-Related Joubert Syndrome in the Products of Conceptions from Early Pregnancy Losses. Balkan Med J 2024; 41:97-104. [PMID: 38351681 PMCID: PMC10913109 DOI: 10.4274/balkanmedj.galenos.2024.2023-10-72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Background The fetal monogenic causes of early pregnancy losses (EPLs) are mainly unknown, with only a few articles on the subject published. In our previous study of EPLs using whole-exome sequencing analysis, we confirmed a genetic diagnosis of CPLANE1-related Joubert syndrome (JS) in three EPLs from two couples and identified a relatively common CPLANE1 allele among our population (NM_001384732.1:c.1819delT;c.7817T>A, further after referred as “complex allele”). Pathogenic variants in the CPLANE1 (C5orf42) gene are reported to cause JS type 17, a primary ciliopathy with various system defects. Aims To examine the hypothesis that the CPLANE1 “complex allele,” whether homozygous or compound heterozygous, is a common cause of EPLs in our population. Study Design Cohort study/case-control study.ontrol study. Methods In this study, we used polymerase chain reaction-based methods to screen for CPLANE1 “complex allele” presence among 246 euploid EPLs (< 12 gestational weeks) from families in North Macedonia. We also investigated the impact of this allele in 650 women with EPLs versus 646 women with no history of pregnancy loss and at least one livebirth, matched by ethnic origin. Results We found a high incidence of JS in the total study group of EPLs (2.03%), with a considerably higher incidence among Albanian families (6.25%). Although not statistically significant, women with EPLs had a higher allele frequency of the CPLANE1 “complex allele” (AF = 1.38%) than the controls (AF = 0.85%; p = 0.2). Albanian women had significantly higher frequency of the “complex allele” than the Macedonians (AF = 1.65% and 0.39%, respectively; p = 0.003). Conclusion To the best of our knowledge, this is the highest reported incidence of fetal monogenic disease that might cause EPLs. Targeted screening for the CPLANE1 “complex allele” would be warranted in Albanian ethnic couples because it would detect one JS in every 16 euploid EPLs. Our findings have a larger impact on the pathogenesis of pregnancy loss and contribute to a better understanding of the pathogenicity of the variants in the CPLANE1 gene.
Collapse
Affiliation(s)
- Gjorgji Bozhinovski
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Marija Terzikj
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Katerina Kubelka-Sabit
- Department of Laboratory for Histopathology and Cytology, Clinical Hospital Acıbadem Sistina, Skopje, North Macedonia
- Faculty of Medical Sciences, Goce Delchev University, Stip, North Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| |
Collapse
|
18
|
Tessier CE, Dupuy AMM, Pelé T, Juin PP, Lees JA, Guen VJ. EMT and primary ciliogenesis: For better or worse in sickness and in health. Genesis 2024; 62:e23568. [PMID: 37946671 DOI: 10.1002/dvg.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Epithelial-mesenchymal transition (EMT) and primary ciliogenesis are two cell-biological programs that are essential for development of multicellular organisms and whose abnormal regulation results in many diseases (i.e., developmental anomalies and cancers). Emerging studies suggest an intricate interplay between these two processes. Here, we discuss physiological and pathological contexts in which their interconnections promote normal development or disease progression. We describe underlying molecular mechanisms of the interplay and EMT/ciliary signaling axes that influence EMT-related processes (i.e., stemness, motility and invasion). Understanding the molecular and cellular mechanisms of the relationship between EMT and primary ciliogenesis may provide new insights in the etiology of diseases related to EMT and cilia dysfunction.
Collapse
Affiliation(s)
- Camille E Tessier
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Aurore M M Dupuy
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Thomas Pelé
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Philippe P Juin
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- ICO René Gauducheau, Saint Herblain, France
| | - Jacqueline A Lees
- Koch Institute for Integrative Cancer Research @ MIT, Cambridge, Massachusetts, USA
| | - Vincent J Guen
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| |
Collapse
|
19
|
Kalot R, Sentell Z, Kitzler TM, Torban E. Primary cilia and actin regulatory pathways in renal ciliopathies. FRONTIERS IN NEPHROLOGY 2024; 3:1331847. [PMID: 38292052 PMCID: PMC10824913 DOI: 10.3389/fneph.2023.1331847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Ciliopathies are a group of rare genetic disorders caused by defects to the structure or function of the primary cilium. They often affect multiple organs, leading to brain malformations, congenital heart defects, and anomalies of the retina or skeletal system. Kidney abnormalities are among the most frequent ciliopathic phenotypes manifesting as smaller, dysplastic, and cystic kidneys that are often accompanied by renal fibrosis. Many renal ciliopathies cause chronic kidney disease and often progress to end-stage renal disease, necessitating replacing therapies. There are more than 35 known ciliopathies; each is a rare hereditary condition, yet collectively they account for a significant proportion of chronic kidney disease worldwide. The primary cilium is a tiny microtubule-based organelle at the apex of almost all vertebrate cells. It serves as a "cellular antenna" surveying environment outside the cell and transducing this information inside the cell to trigger multiple signaling responses crucial for tissue morphogenesis and homeostasis. Hundreds of proteins and unique cellular mechanisms are involved in cilia formation. Recent evidence suggests that actin remodeling and regulation at the base of the primary cilium strongly impacts ciliogenesis. In this review, we provide an overview of the structure and function of the primary cilium, focusing on the role of actin cytoskeleton and its regulators in ciliogenesis. We then describe the key clinical, genetic, and molecular aspects of renal ciliopathies. We highlight what is known about actin regulation in the pathogenesis of these diseases with the aim to consider these recent molecular findings as potential therapeutic targets for renal ciliopathies.
Collapse
Affiliation(s)
- Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Zachary Sentell
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M. Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Health Center, Montreal, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
20
|
Gabriel GC, Lo CW. Molecular Pathways and Animal Models of Defects in Situs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:719-738. [PMID: 38884745 DOI: 10.1007/978-3-031-44087-8_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Left-right patterning is among the least well understood of the three axes defining the body plan, and yet it is no less important, with left-right patterning defects causing structural birth defects with high morbidity and mortality, such as complex congenital heart disease, biliary atresia, or intestinal malrotation. The cell signaling pathways governing left-right asymmetry are highly conserved and involve multiple components of the TGF-β superfamily of cell signaling molecules. Central to left-right patterning is the differential activation of Nodal on the left, and BMP signaling on the right. In addition, a plethora of other cell signaling pathways including Shh, FGF, and Notch also contribute to the regulation of left-right patterning. In vertebrate embryos such as the mouse, frog, or zebrafish, the specification of left-right identity requires the left-right organizer (LRO) containing cells with motile and primary cilia that mediate the left-sided propagation of Nodal signaling, followed by left-sided activation of Lefty and then Pitx2, a transcription factor that specifies visceral organ asymmetry. While this overall scheme is well conserved, there are striking species differences, including the finding that motile cilia do not play a role in left-right patterning in some vertebrates. Surprisingly, the direction of heart looping, one of the first signs of organ left-right asymmetry, was recently shown to be specified by intrinsic cell chirality, not Nodal signaling, possibly a reflection of the early origin of Nodal signaling in radially symmetric organisms. How this intrinsic chirality interacts with downstream molecular pathways regulating visceral organ asymmetry will need to be further investigated to elucidate how disturbance in left-right patterning may contribute to complex CHD.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Owens JW, Hopkin RJ, Martin LJ, Kodani A, Simpson BN. Phenotypic variability in Joubert syndrome is partially explained by ciliary pathophysiology. Ann Hum Genet 2024; 88:86-100. [PMID: 37921557 DOI: 10.1111/ahg.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Joubert syndrome (JS) arises from defects of primary cilia resulting in potential malformations of the brain, kidneys, eyes, liver, and limbs. Several of the 35+ genes associated with JS have recognized genotype/phenotype correlations, but most genes have not had enough reported individuals to draw meaningful conclusions. METHODS A PubMed literature review identified 688 individuals with JS across 32 genes and 112 publications to bolster known genotype/phenotype relationships and identify new correlations. All included patients had the "molar tooth sign" and a confirmed genetic diagnosis. Individuals were categorized by age, ethnicity, sex and the presence of developmental disability/intellectual disability, hypotonia, abnormal eye movements, ataxia, visual impairment, renal impairment, polydactyly, and liver abnormalities. RESULTS Most genes demonstrated unique phenotypic profiles. Grouping proteins based on physiologic interactions established stronger phenotypic relationships that reflect known ciliary pathophysiology. Age-stratified data demonstrated that end-organ disease is progressive in JS. Most genes demonstrated a significant skew towards having variants with either residual protein function or no residual protein function. CONCLUSION This cohort demonstrates that clinically meaningful genotype/phenotype relationships exist within most JS-related genes and can be referenced to allow for more personalized clinical care.
Collapse
Affiliation(s)
- Joshua W Owens
- UPMC Children's Hospital of Pittsburgh Division of Genetic and Genomic Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert J Hopkin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa J Martin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrew Kodani
- Department of Cell and Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brittany N Simpson
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Chen ZS, Ou M, Taylor S, Dafinca R, Peng SI, Talbot K, Chan HYE. Mutant GGGGCC RNA prevents YY1 from binding to Fuzzy promoter which stimulates Wnt/β-catenin pathway in C9ALS/FTD. Nat Commun 2023; 14:8420. [PMID: 38110419 PMCID: PMC10728118 DOI: 10.1038/s41467-023-44215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
The GGGGCC hexanucleotide repeat expansion mutation in the chromosome 9 open reading frame 72 (C9orf72) gene is a major genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). In this study, we demonstrate that the zinc finger (ZF) transcriptional regulator Yin Yang 1 (YY1) binds to the promoter region of the planar cell polarity gene Fuzzy to regulate its transcription. We show that YY1 interacts with GGGGCC repeat RNA via its ZF and that this interaction compromises the binding of YY1 to the FuzzyYY1 promoter sites, resulting in the downregulation of Fuzzy transcription. The decrease in Fuzzy protein expression in turn activates the canonical Wnt/β-catenin pathway and induces synaptic deficits in C9ALS/FTD neurons. Our findings demonstrate a C9orf72 GGGGCC RNA-initiated perturbation of YY1-Fuzzy transcriptional control that implicates aberrant Wnt/β-catenin signalling in C9ALS/FTD-associated neurodegeneration. This pathogenic cascade provides a potential new target for disease-modifying therapy.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Mingxi Ou
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Stephanie Taylor
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Shaohong Isaac Peng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
23
|
Glessner JT, Ningappa MB, Ngo KA, Zahid M, So J, Higgs BW, Sleiman PMA, Narayanan T, Ranganathan S, March M, Prasadan K, Vaccaro C, Reyes-Mugica M, Velazquez J, Salgado CM, Ebrahimkhani MR, Schmitt L, Rajasundaram D, Paul M, Pellegrino R, Gittes GK, Li D, Wang X, Billings J, Squires R, Ashokkumar C, Sharif K, Kelly D, Dhawan A, Horslen S, Lo CW, Shin D, Subramaniam S, Hakonarson H, Sindhi R. Biliary atresia is associated with polygenic susceptibility in ciliogenesis and planar polarity effector genes. J Hepatol 2023; 79:1385-1395. [PMID: 37572794 PMCID: PMC10729795 DOI: 10.1016/j.jhep.2023.07.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND & AIMS Biliary atresia (BA) is poorly understood and leads to liver transplantation (LT), with the requirement for and associated risks of lifelong immunosuppression, in most children. We performed a genome-wide association study (GWAS) to determine the genetic basis of BA. METHODS We performed a GWAS in 811 European BA cases treated with LT in US, Canadian and UK centers, and 4,654 genetically matched controls. Whole-genome sequencing of 100 cases evaluated synthetic association with rare variants. Functional studies included whole liver transcriptome analysis of 64 BA cases and perturbations in experimental models. RESULTS A GWAS of common single nucleotide polymorphisms (SNPs), i.e. allele frequencies >1%, identified intronic SNPs rs6446628 in AFAP1 with genome-wide significance (p = 3.93E-8) and rs34599046 in TUSC3 at sub-threshold genome-wide significance (p = 1.34E-7), both supported by credible peaks of neighboring SNPs. Like other previously reported BA-associated genes, AFAP1 and TUSC3 are ciliogenesis and planar polarity effectors (CPLANE). In gene-set-based GWAS, BA was associated with 6,005 SNPs in 102 CPLANE genes (p = 5.84E-15). Compared with non-CPLANE genes, more CPLANE genes harbored rare variants (allele frequency <1%) that were assigned Human Phenotype Ontology terms related to hepatobiliary anomalies by predictive algorithms, 87% vs. 40%, p <0.0001. Rare variants were present in multiple genes distinct from those with BA-associated common variants in most BA cases. AFAP1 and TUSC3 knockdown blocked ciliogenesis in mouse tracheal cells. Inhibition of ciliogenesis caused biliary dysgenesis in zebrafish. AFAP1 and TUSC3 were expressed in fetal liver organoids, as well as fetal and BA livers, but not in normal or disease-control livers. Integrative analysis of BA-associated variants and liver transcripts revealed abnormal vasculogenesis and epithelial tube formation, explaining portal vein anomalies that co-exist with BA. CONCLUSIONS BA is associated with polygenic susceptibility in CPLANE genes. Rare variants contribute to polygenic risk in vulnerable pathways via unique genes. IMPACT AND IMPLICATIONS Liver transplantation is needed to cure most children born with biliary atresia, a poorly understood rare disease. Transplant immunosuppression increases the likelihood of life-threatening infections and cancers. To improve care by preventing this disease and its progression to transplantation, we examined its genetic basis. We find that this disease is associated with both common and rare mutations in highly specialized genes which maintain normal communication and movement of cells, and their organization into bile ducts and blood vessels during early development of the human embryo. Because defects in these genes also cause other birth defects, our findings could lead to preventive strategies to lower the incidence of biliary atresia and potentially other birth defects.
Collapse
Affiliation(s)
- Joseph T Glessner
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mylarappa B Ningappa
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kim A Ngo
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, USA
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juhoon So
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandon W Higgs
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick M A Sleiman
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tejaswini Narayanan
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, USA
| | - Sarangarajan Ranganathan
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael March
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krishna Prasadan
- Rangos Research Center Animal Imaging Core, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Courtney Vaccaro
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miguel Reyes-Mugica
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy Velazquez
- Department of Pathology, School of Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia M Salgado
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, School of Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lori Schmitt
- Histology Core Laboratory Manager, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan Paul
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renata Pellegrino
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George K Gittes
- Surgeon-in-Chief Emeritus, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dong Li
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiang Wang
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Billings
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Squires
- Pediatric Gastroenterology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Chethan Ashokkumar
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khalid Sharif
- Paediatric Liver Unit Including Intestinal Transplantation, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Deirdre Kelly
- Paediatric Liver Unit Including Intestinal Transplantation, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Center and MowatLabs, NHS Foundation Trust, King's College Hospital, London, UK
| | - Simon Horslen
- Pediatric Gastroenterology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, and Nanoengineering, University of California, San Diego, San Diego, La Jolla, CA, USA.
| | - Hakon Hakonarson
- Divisions of Human Genetics and Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Quadri N, Upadhyai P. Primary cilia in skeletal development and disease. Exp Cell Res 2023; 431:113751. [PMID: 37574037 DOI: 10.1016/j.yexcr.2023.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton. We discuss how signaling effectors in mechanotransduction and bone development, such as Hedgehog, Wnt, Fibroblast growth factor and second messenger pathways operate at least in part at the primary cilium. The relevance of primary cilia in bone formation and maintenance is underscored by a growing list of rare genetic skeletal ciliopathies. We collate these findings and summarize the current understanding of molecular factors and mechanisms governing primary ciliogenesis and ciliary function in skeletal development and disease.
Collapse
Affiliation(s)
- Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
25
|
Bruel AL, Ganga AK, Nosková L, Valenzuela I, Martinovic J, Duffourd Y, Zikánová M, Majer F, Kmoch S, Mohler M, Sun J, Sweeney LK, Martínez-Gil N, Thauvin-Robinet C, Breslow DK. Pathogenic RAB34 variants impair primary cilium assembly and cause a novel oral-facial-digital syndrome. Hum Mol Genet 2023; 32:2822-2831. [PMID: 37384395 PMCID: PMC10481091 DOI: 10.1093/hmg/ddad109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
Oral-facial-digital syndromes (OFDS) are a group of clinically and genetically heterogeneous disorders characterized by defects in the development of the face and oral cavity along with digit anomalies. Pathogenic variants in over 20 genes encoding ciliary proteins have been found to cause OFDS through deleterious structural or functional impacts on primary cilia. We identified by exome sequencing bi-allelic missense variants in a novel disease-causing ciliary gene RAB34 in four individuals from three unrelated families. Affected individuals presented a novel form of OFDS (OFDS-RAB34) accompanied by cardiac, cerebral, skeletal and anorectal defects. RAB34 encodes a member of the Rab GTPase superfamily and was recently identified as a key mediator of ciliary membrane formation. Unlike many genes required for cilium assembly, RAB34 acts selectively in cell types that use the intracellular ciliogenesis pathway, in which nascent cilia begin to form in the cytoplasm. We find that the protein products of these pathogenic variants, which are clustered near the RAB34 C-terminus, exhibit a strong loss of function. Although some variants retain the ability to be recruited to the mother centriole, cells expressing mutant RAB34 exhibit a significant defect in cilium assembly. While many Rab proteins have been previously linked to ciliogenesis, our studies establish RAB34 as the first small GTPase involved in OFDS and reveal the distinct clinical manifestations caused by impairment of intracellular ciliogenesis.
Collapse
Affiliation(s)
- Ange-Line Bruel
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
| | - Anil Kumar Ganga
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute,08035 Barcelona, Spain
| | - Jelena Martinovic
- Unit of Embryo-Fetal Pathology, AP-HP, Antoine Béclère Hospital, Paris Saclay University, 92141 Clamart, France
| | - Yannis Duffourd
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
| | - Marie Zikánová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Filip Majer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Markéta Mohler
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava 708 52, Czech Republic
| | - Jingbo Sun
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Lauren K Sweeney
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Núria Martínez-Gil
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute,08035 Barcelona, Spain
| | - Christel Thauvin-Robinet
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
- Centre de Génétique et Centre de référence maladies rares ‘Anomalies du Développement et Syndromes Malformatifs’, FHU-TRANSLAD, Hôpital d'Enfants, CHU Dijon Bourgogne, 21079 Dijon, France
| | - David K Breslow
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
26
|
Caiaffa CD, Ambekar YS, Singh M, Lin YL, Wlodarczyk B, Aglyamov SR, Scarcelli G, Larin KV, Finnell R. Disruption of Fuz in mouse embryos generates hypoplastic hindbrain development and reduced cranial nerve ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552068. [PMID: 37577618 PMCID: PMC10418252 DOI: 10.1101/2023.08.04.552068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The formation of the brain and spinal cord is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Convergent and extension movements transforms a flat sheet of ectodermal cells into a narrow and elongated line of neuroepithelia, while a major source of Sonic Hedgehog signaling from the notochord induces the overlying neuroepithelial cells to form two apposed neural folds. Afterward, neural tube closure occurs by synchronized coordination of the surface ectoderm and adjacent neuroepithelial walls at specific axial regions known as neuropores. Environmental or genetic interferences can impair neurulation resulting in neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, which is a macromolecular planar polarity effector required for ciliogenesis. Ablation of Fuz in mouse embryos results in exencephaly and spina bifida, including dysmorphic craniofacial structures due to defective cilia formation and impaired Sonic Hedgehog signaling. In this work, we demonstrate that knocking Fuz out during embryonic mouse development results in a hypoplastic hindbrain phenotype, displaying abnormal rhombomeres with reduced length and width. This phenotype is associated with persistent loss of ventral neuroepithelial stiffness, in a notochord adjacent area at the level of the rhombomere 5, preceding the development of exencephaly in Fuz ablated mutants. The formation of cranial and paravertebral ganglia is also impaired in these embryos, indicating that Fuz has a critical function sustaining normal neural tube development and neuronal differentiation. SIGNIFICANCE STATEMENT Neural tube defects (NTDs) are a common cause of disability in children, representing the second most common congenital structural malformation in humans following only congenital cardiovascular malformations. NTDs affect approximately 1 to 2 pregnancies per 1000 births every year worldwide, when the mechanical forces folding the neural plate fails to close at specific neuropores located anteriorly (cranial) or posteriorly (caudal) along the neural tube, in a process known as neurulation, which happens throughout the third and fourth weeks of human pregnancy.
Collapse
|
27
|
Kong D, Wei M, Liu D, Zhang Z, Ma Y, Zhang Z. Morphological Observation and Transcriptome Analysis of Ciliogenesis in Urechis unicinctus (Annelida, Echiura). Int J Mol Sci 2023; 24:11537. [PMID: 37511295 PMCID: PMC10380512 DOI: 10.3390/ijms241411537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
During the early development of marine invertebrates, planktic larvae usually occur, and their body surfaces often form specific types of cilia that are involved in locomotion and feeding. The echiuran worm Urechis unicinctus sequentially undergoes the formation and disappearance of different types of body surface cilia during embryonic and larval development. The morphological characteristics and molecular mechanisms involved in the process remain unclear. In this study, we found that body surface cilia in U. unicinctus embryos and larvae can be distinguished into four types: body surface short cilia, apical tufts, circumoral cilia and telotrochs. Further, distribution and genesis of the body surface cilia were characterized using light microscope and electron microscope. To better understand the molecular mechanism during ciliogenesis, we revealed the embryonic and larval transcriptome profile of the key stages of ciliogenesis in U. unicinctus using RNA-Seq technology. A total of 29,158 differentially expressed genes (DEGs) were obtained from 24 cDNA libraries by RNA-Seq. KEGG pathway enrichment results showed that Notch, Wnt and Ca2+ signaling pathways were significantly enriched during the occurrence of apical tufts and circumoral cilia. Furthermore, all DEGs were classified according to their expression pattern, and DEGs with similar expression pattern were grouped into a module. All DEG co-expression modules were correlated with traits (body surface short cilia, apical tufts, circumoral cilia and telotrochs) by WGCNA, the results showed DEGs were divided into 13 modules by gene expression patterns and that the genes in No. 7, No. 8 and No. 10 modules were to be highly correlated with the occurrence of apical tufts, circumoral cilia and telotrochs. The top 10 hub genes in the above three modules were identified to be highly correlated with ciliogenesis, including the reported cilium-related gene Cnbd2 and unreported cilium-related candidate genes FAM181B, Capsl, Chst3, TMIE and Innexin. Notably, Innexin was included in the top10 hub genes of the two modules (No. 7 and No. 8), suggesting that Innexin may play an important role in U. unicinctus apical tufts, circumoral cilia and telotrochs genesis. This study revealed the characteristics of ciliogenesis on the body surface of U. unicinctus embryos and larvae, providing basic data for exploring the molecular mechanism of ciliogenesis on the body surface.
Collapse
Affiliation(s)
- Dexu Kong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| |
Collapse
|
28
|
Herrmann E, Schäfer JH, Wilmes S, Ungermann C, Moeller A, Kümmel D. Structure of the metazoan Rab7 GEF complex Mon1-Ccz1-Bulli. Proc Natl Acad Sci U S A 2023; 120:e2301908120. [PMID: 37155863 PMCID: PMC10193976 DOI: 10.1073/pnas.2301908120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
The endosomal system of eukaryotic cells represents a central sorting and recycling compartment linked to metabolic signaling and the regulation of cell growth. Tightly controlled activation of Rab GTPases is required to establish the different domains of endosomes and lysosomes. In metazoans, Rab7 controls endosomal maturation, autophagy, and lysosomal function. It is activated by the guanine nucleotide exchange factor (GEF) complex Mon1-Ccz1-Bulli (MCBulli) of the tri-longin domain (TLD) family. While the Mon1 and Ccz1 subunits have been shown to constitute the active site of the complex, the role of Bulli remains elusive. We here present the cryo-electron microscopy (cryo-EM) structure of MCBulli at 3.2 Å resolution. Bulli associates as a leg-like extension at the periphery of the Mon1 and Ccz1 heterodimers, consistent with earlier reports that Bulli does not impact the activity of the complex or the interactions with recruiter and substrate GTPases. While MCBulli shows structural homology to the related ciliogenesis and planar cell polarity effector (Fuzzy-Inturned-Wdpcp) complex, the interaction of the TLD core subunits Mon1-Ccz1 and Fuzzy-Inturned with Bulli and Wdpcp, respectively, is remarkably different. The variations in the overall architecture suggest divergent functions of the Bulli and Wdpcp subunits. Based on our structural analysis, Bulli likely serves as a recruitment platform for additional regulators of endolysosomal trafficking to sites of Rab7 activation.
Collapse
Affiliation(s)
- Eric Herrmann
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149Münster, Germany
| | - Jan-Hannes Schäfer
- Department of Biology/Chemistry, Structural Biology section, Osnabrück University, 49076Osnabrück, Germany
| | - Stephan Wilmes
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149Münster, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry section, Osnabrück University, 49076Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück, Osnabrück University, 49076Osnabrück, Germany
| | - Arne Moeller
- Department of Biology/Chemistry, Structural Biology section, Osnabrück University, 49076Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück, Osnabrück University, 49076Osnabrück, Germany
| | - Daniel Kümmel
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149Münster, Germany
| |
Collapse
|
29
|
Higashijima T, Shirozu H, Saitsu H, Sonoda M, Fujita A, Masuda H, Yamamoto T, Matsumoto N, Kameyama S. Incomplete hippocampal inversion in patients with mutations in genes involved in sonic hedgehog signaling. Heliyon 2023; 9:e14712. [PMID: 37012904 PMCID: PMC10066535 DOI: 10.1016/j.heliyon.2023.e14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Sonic hedgehog (Shh) signaling pathways are known to play an important role in the morphological development of the hippocampus in vivo, but their actual roles in humans have not been clarified. Hypothalamic hamartoma (HH) is known to be associated with germline or somatic gene mutations of Shh signaling. We hypothesized that patients with HH and mutations of Shh-related genes also show hippocampal maldevelopment and an abnormal hippocampal infolding angle (HIA). We analyzed 45 patients (age: 1-37 years) with HH who underwent stereotactic radiofrequency thermocoagulation and found Shh-related gene mutations in 20 patients. In addition, 44 pediatric patients without HH (age: 2-25 years) who underwent magnetic resonance imaging (MRI) examinations under the same conditions during the same period were included in this study as a control group. HIA evaluated on MRI was compared between patients with gene mutations and the control group. The median HIA at the cerebral peduncle slice in patients with the gene mutation was 74.36° on the left and 76.11° on the right, and these values were significantly smaller than the corresponding values in the control group (80.46° and 80.56°, respectively, p < 0.01). Thus, mutations of Shh-related genes were correlated to incomplete hippocampal inversion. The HIA, particularly at the cerebral peduncle slice, is a potential indicator of abnormalities of the Shh-signaling pathway.
Collapse
|
30
|
Wang H, Nie W, Wang C, Wang Z, Zheng Y. Novel CPLANE1 c.8948dupT (p.P2984Tfs*7) variant in a child patient with Joubert syndrome. Open Life Sci 2023; 18:20220542. [PMID: 36789003 PMCID: PMC9896164 DOI: 10.1515/biol-2022-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 02/04/2023] Open
Abstract
Joubert syndrome (JBTS) is a class of heterogeneous ciliopathy genetically associated with CPLANE1 mutations. The characteristics of clinical phenotypes and CPLANE1 variants were analyzed in a 2-month-old patient. A 2-month-old patient with JBTS was diagnosed after clinical evaluation including family history, physical examination, cerebral MRI, ultrasonography imaging, VEGG, ocular fundus examination, and comprehensive blood and urine testing. Whole exome sequencing (WES) was performed to detect CPLANE1 variants, and Sanger sequencing was used to confirm the variants. This JBTS patient presented with oculomotor apraxia, dysregulation of breathing pattern, and ataxia. MRI revealed poor continuity of cerebelli, batwing appearance, and molar tooth sign. This patient was noted with abnormal hematology, dysregulation of hepatic function, thyroid function, immunity, and renal function, and encephalopathy. CPLANE1 (c.8948dupT (p.P2984Tfs*7) and c.247G > T (p.G83X)) variants were noticed in the patient as a pathogenic variant and caused autosomal recessive inheritance. The JBTS patient with mutations in CPLANE1 (c.8948dupT (p.P2984Tfs*7) and c.247G > T (p.G83X)) developed JBTS phenotypes. The novel CPLANE1 c.8948dupT (p.P2984Tfs*7) variant will assist clinicians and geneticists in reaching a precise diagnosis for JBTS.
Collapse
Affiliation(s)
- Huiping Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Wensha Nie
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Chunxia Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Zuohua Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Yuxia Zheng
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| |
Collapse
|
31
|
Aslanyan MG, Doornbos C, Diwan GD, Anvarian Z, Beyer T, Junger K, van Beersum SEC, Russell RB, Ueffing M, Ludwig A, Boldt K, Pedersen LB, Roepman R. A targeted multi-proteomics approach generates a blueprint of the ciliary ubiquitinome. Front Cell Dev Biol 2023; 11:1113656. [PMID: 36776558 PMCID: PMC9908615 DOI: 10.3389/fcell.2023.1113656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Establishment and maintenance of the primary cilium as a signaling-competent organelle requires a high degree of fine tuning, which is at least in part achieved by a variety of post-translational modifications. One such modification is ubiquitination. The small and highly conserved ubiquitin protein possesses a unique versatility in regulating protein function via its ability to build mono and polyubiquitin chains onto target proteins. We aimed to take an unbiased approach to generate a comprehensive blueprint of the ciliary ubiquitinome by deploying a multi-proteomics approach using both ciliary-targeted ubiquitin affinity proteomics, as well as ubiquitin-binding domain-based proximity labelling in two different mammalian cell lines. This resulted in the identification of several key proteins involved in signaling, cytoskeletal remodeling and membrane and protein trafficking. Interestingly, using two different approaches in IMCD3 and RPE1 cells, respectively, we uncovered several novel mechanisms that regulate cilia function. In our IMCD3 proximity labeling cell line model, we found a highly enriched group of ESCRT-dependent clathrin-mediated endocytosis-related proteins, suggesting an important and novel role for this pathway in the regulation of ciliary homeostasis and function. In contrast, in RPE1 cells we found that several structural components of caveolae (CAV1, CAVIN1, and EHD2) were highly enriched in our cilia affinity proteomics screen. Consistently, the presence of caveolae at the ciliary pocket and ubiquitination of CAV1 specifically, were found likely to play a role in the regulation of ciliary length in these cells. Cilia length measurements demonstrated increased ciliary length in RPE1 cells stably expressing a ubiquitination impaired CAV1 mutant protein. Furthermore, live cell imaging in the same cells revealed decreased CAV1 protein turnover at the cilium as the possible cause for this phenotype. In conclusion, we have generated a comprehensive list of cilia-specific proteins that are subject to regulation via ubiquitination which can serve to further our understanding of cilia biology in health and disease.
Collapse
Affiliation(s)
- Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cenna Doornbos
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaurav D. Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Zeinab Anvarian
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Sylvia E. C. van Beersum
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Robert B. Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Alexander Ludwig
- School of Biological Sciences, NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Lotte B. Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
32
|
Hesketh SJ, Mukhopadhyay AG, Nakamura D, Toropova K, Roberts AJ. IFT-A structure reveals carriages for membrane protein transport into cilia. Cell 2022; 185:4971-4985.e16. [PMID: 36462505 DOI: 10.1016/j.cell.2022.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
Intraflagellar transport (IFT) trains are massive molecular machines that traffic proteins between cilia and the cell body. Each IFT train is a dynamic polymer of two large complexes (IFT-A and -B) and motor proteins, posing a formidable challenge to mechanistic understanding. Here, we reconstituted the complete human IFT-A complex and obtained its structure using cryo-EM. Combined with AlphaFold prediction and genome-editing studies, our results illuminate how IFT-A polymerizes, interacts with IFT-B, and uses an array of β-propeller and TPR domains to create "carriages" of the IFT train that engage TULP adaptor proteins. We show that IFT-A⋅TULP carriages are essential for cilia localization of diverse membrane proteins, as well as ICK-the key kinase regulating IFT train turnaround. These data establish a structural link between IFT-A's distinct functions, provide a blueprint for IFT-A in the train, and shed light on how IFT evolved from a proto-coatomer ancestor.
Collapse
Affiliation(s)
- Sophie J Hesketh
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| | - Aakash G Mukhopadhyay
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| | - Dai Nakamura
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| | - Katerina Toropova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK.
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK.
| |
Collapse
|
33
|
Das S, Sharma C, Gothwal M, Tada N. Whole exome sequencing, clinical exome or targeted gene panels: what to choose for suspected lethal skeletal dysplasia (short rib thoracic dysplasia type IV). BMJ Case Rep 2022; 15:e251118. [PMID: 36123010 PMCID: PMC9486215 DOI: 10.1136/bcr-2022-251118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Lethal skeletal dysplasias (SDs) are a heterogeneous group of rare but important genetic disorders characterised by abnormal growth and development of bone and cartilage. The phenotypic variation of SD highlights the complex aetiology for this group of disorders. Short rib polydactyly syndrome (SRPS) types I-IV are a group of rare congenital autosomal recessive types of SD.We report a case of a non-consanguineous couple whose two successive pregnancies were diagnosed with multiple congenital anomalies in fetuses suggestive of lethal SD (likely SRPS type IV) at 24 and 19 weeks period of gestation, respectively. Pregnancy was terminated, and the whole exome sequencing of the abortus for genetic analysis in the second pregnancy confirmed an autosomal recessive type of short rib thoracic dysplasia-4 (SRTD-4) also called SRPS in homozygous condition. Our case is unique as it was also associated with cystic hygroma which is a rare association with SRPS/SRTD-4.
Collapse
Affiliation(s)
- Shreya Das
- Obstetrics and Gynaecology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Charu Sharma
- Obstetrics and Gynaecology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Meenakshi Gothwal
- Obstetrics and Gynaecology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Nayan Tada
- Paediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
34
|
Chan HYE, Chen ZS. Multifaceted investigation underlies diverse mechanisms contributing to the downregulation of Hedgehog pathway-associated genes INTU and IFT88 in lung adenocarcinoma and uterine corpus endometrial carcinoma. Aging (Albany NY) 2022; 14:7794-7823. [PMID: 36084949 PMCID: PMC9596204 DOI: 10.18632/aging.204262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022]
Abstract
Hedgehog (Hh) signaling primarily functions in the control of mammalian embryonic development but also has roles in cancer. The Hh activation depends on ciliogenesis, a cellular process that describes outgrowth of the primary cilium from cell membrane. Ciliogenesis initiation requires a set of proteins known as planar cell polarity (PCP) effectors. Inturned (INTU) is a PCP effector that reportedly functions synergistically with Hh signaling in basal cell carcinoma, suggesting that INTU has an oncogenic role. In this study, we carried out a pan-cancer investigation on the prognostic significance of INTU in different types of cancer. We demonstrated that INTU downregulation correlated with reduced survival probabilities in lung adenocarcinoma (LUAD) and uterine corpus endometrial carcinoma (UCEC) patients. Similar expression patterns and prognostic values were identified for intraflagellar transport 88 (IFT88), another Hh pathway-associated gene. We elucidated multiple mechanisms at transcriptional, post-transcriptional and translational levels that involved transcription factor 4 and non-coding RNAs-associated regulatory networks contributing to the reduction of INTU and IFT88 levels in LUAD and UCEC samples. Taken together, this study demonstrates the prognostic significance of the Hh-related genes INTU and IFT88 in LUAD and UCEC and further delineates multifaceted mechanisms leading to INTU and IFT88 downregulation in tumor samples.
Collapse
Affiliation(s)
- Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
35
|
Hibbard JVK, Vázquez N, Wallingford JB. Cilia proteins getting to work - how do they commute from the cytoplasm to the base of cilia? J Cell Sci 2022; 135:jcs259444. [PMID: 36073764 PMCID: PMC9482345 DOI: 10.1242/jcs.259444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cilia are multifunctional organelles that originated with the last eukaryotic common ancestor and play central roles in the life cycles of diverse organisms. The motile flagella that move single cells like sperm or unicellular organisms, the motile cilia on animal multiciliated cells that generate fluid flow in organs, and the immotile primary cilia that decorate nearly all cells in animals share many protein components in common, yet each also requires specialized proteins to perform their specialized functions. Despite a now-advanced understanding of how such proteins are transported within cilia, we still know very little about how they are transported from their sites of synthesis through the cytoplasm to the ciliary base. Here, we review the literature concerning this underappreciated topic in ciliary cell biology. We discuss both general mechanisms, as well as specific examples of motor-driven active transport and passive transport via diffusion-and-capture. We then provide deeper discussion of specific, illustrative examples, such as the diverse array of protein subunits that together comprise the intraflagellar transport (IFT) system and the multi-protein axonemal dynein motors that drive beating of motile cilia. We hope this Review will spur further work, shedding light not only on ciliogenesis and ciliary signaling, but also on intracellular transport in general.
Collapse
Affiliation(s)
| | | | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78751, USA
| |
Collapse
|
36
|
Zhang J, Wang L, Chen W, Duan J, Meng Y, Yang H, Guo Q. Whole exome sequencing facilitated the diagnosis in four Chinese pediatric cases of Joubert syndrome related disorders. Am J Transl Res 2022; 14:5088-5097. [PMID: 35958498 PMCID: PMC9360900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Joubert syndrome is a spectrum of rare genetic disorders, mainly characterized by a distinctive cerebellar and brain stem malformation called the "molar tooth sign" (MTS), hypotonia, and intellectual disability/developmental delay. METHODS In this study, 4 pediatric cases with developmental delay and oculomotor abnormities were recruited, and submitted to a clinical evaluation and magnetic resonance imaging (MRI) examination. Afterwards, genetic detection with whole exome sequencing (WES) was conducted on the 4 patients. RESULTS Imaging results demonstrated cerebellar dysplasia in all probands, yet the MTS findings varied in severity. WES detected diagnostic variations in all four probands, which were distributed in four genes, namely CC2D2A, NPHP1, AHI1, and C5orf42. Two variants were novelly identified, which were the CC2D2A: c.2444delC (p.P815fs*2) and the AIH1: exon (15-17) del. In silico analysis supported the pathogenicity of the variations in this study. CONCLUSIONS Our findings expanded the mutation spectrum of Joubert syndrome related disorders, and provided solid evidence to the affected families for further genetic counseling and pregnancy guidance.
Collapse
Affiliation(s)
- Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Lihui Wang
- Neurology Department, Children’s Hospital of Hebei Province, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Wenqi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Jun Duan
- Radiology Department, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Yanxin Meng
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Huafang Yang
- Neurology Department, Children’s Hospital of Hebei Province, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Qing Guo
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| |
Collapse
|
37
|
Walczak-Sztulpa J, Wawrocka A, Doornbos C, van Beek R, Sowińska-Seidler A, Jamsheer A, Bukowska-Olech E, Latos-Bieleńska A, Grenda R, Bongers EMHF, Schmidts M, Obersztyn E, Krawczyński MR, Oud MM. Identical IFT140 Variants Cause Variable Skeletal Ciliopathy Phenotypes—Challenges for the Accurate Diagnosis. Front Genet 2022; 13:931822. [PMID: 35873489 PMCID: PMC9300986 DOI: 10.3389/fgene.2022.931822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ciliopathies are rare congenital disorders, caused by defects in the cilium, that cover a broad clinical spectrum. A subgroup of ciliopathies showing significant phenotypic overlap are known as skeletal ciliopathies and include Jeune asphyxiating thoracic dysplasia (JATD), Mainzer-Saldino syndrome (MZSDS), cranioectodermal dysplasia (CED), and short-rib polydactyly (SRP). Ciliopathies are heterogeneous disorders with >187 associated genes, of which some genes are described to cause more than one ciliopathy phenotype. Both the clinical and molecular overlap make accurate diagnosing of these disorders challenging. We describe two unrelated Polish patients presenting with a skeletal ciliopathy who share the same compound heterozygous variants in IFT140 (NM_014,714.4) r.2765_2768del; p.(Tyr923Leufs*28) and exon 27–30 duplication; p.(Tyr1152_Thr1394dup). Apart from overlapping clinical symptoms the patients also show phenotypic differences; patient 1 showed more resemblance to a Mainzer-Saldino syndrome (MZSDS) phenotype, while patient 2 was more similar to the phenotype of cranioectodermal dysplasia (CED). In addition, functional testing in patient-derived fibroblasts revealed a distinct cilium phenotyps for each patient, and strikingly, the cilium phenotype of CED-like patient 2 resembled that of known CED patients. Besides two variants in IFT140, in depth exome analysis of ciliopathy associated genes revealed a likely-pathogenic heterozygous variant in INTU for patient 2 that possibly affects the same IFT-A complex to which IFT140 belongs and thereby could add to the phenotype of patient 2. Taken together, by combining genetic data, functional test results, and clinical findings we were able to accurately diagnose patient 1 with “IFT140-related ciliopathy with MZSDS-like features” and patient 2 with “IFT140-related ciliopathy with CED-like features”. This study emphasizes that identical variants in one ciliopathy associated gene can lead to a variable ciliopathy phenotype and that an in depth and integrated analysis of clinical, molecular and functional data is necessary to accurately diagnose ciliopathy patients.
Collapse
Affiliation(s)
| | - Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Cenna Doornbos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald van Beek
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics, Poznan, Poland
| | | | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, Freiburg University, Freiburg, Germany
| | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Maciej R. Krawczyński
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics, Poznan, Poland
| | - Machteld M. Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Machteld M. Oud,
| |
Collapse
|
38
|
Martín-Salazar JE, Valverde D. CPLANE Complex and Ciliopathies. Biomolecules 2022; 12:biom12060847. [PMID: 35740972 PMCID: PMC9221175 DOI: 10.3390/biom12060847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Primary cilia are non-motile organelles associated with the cell cycle, which can be found in most vertebrate cell types. Cilia formation occurs through a process called ciliogenesis, which involves several mechanisms including planar cell polarity (PCP) and the Hedgehog (Hh) signaling pathway. Some gene complexes, such as BBSome or CPLANE (ciliogenesis and planar polarity effector), have been linked to ciliogenesis. CPLANE complex is composed of INTU, FUZ and WDPCP, which bind to JBTS17 and RSG1 for cilia formation. Defects in these genes have been linked to a malfunction of intraflagellar transport and defects in the planar cell polarity, as well as defective activation of the Hedgehog signalling pathway. These faults lead to defective cilium formation, resulting in ciliopathies, including orofacial-digital syndrome (OFDS) and Bardet-Biedl syndrome (BBS). Considering the close relationship, between the CPLANE complex and cilium formation, it can be expected that defects in the genes that encode subunits of the CPLANE complex may be related to other ciliopathies.
Collapse
Affiliation(s)
| | - Diana Valverde
- CINBIO, Biomedical Research Centre, University of Vigo, 36310 Vigo, Spain;
- Galicia Sur Health Research Institute (IIS-GS), 36310 Vigo, Spain
- Correspondence:
| |
Collapse
|
39
|
Abstract
Primary cilia play a key role in the ability of cells to respond to extracellular stimuli, such as signaling molecules and environmental cues. These sensory organelles are crucial to the development of many organ systems, and defects in primary ciliogenesis lead to multisystemic genetic disorders, known as ciliopathies. Here, we review recent advances in the understanding of several key aspects of the regulation of ciliogenesis. Primary ciliogenesis is thought to take different pathways depending on cell type, and some recent studies shed new light on the cell-type-specific mechanisms regulating ciliogenesis at the apical surface in polarized epithelial cells, which are particularly relevant for many ciliopathies. Furthermore, recent findings have demonstrated the importance of actin cytoskeleton dynamics in positively and negatively regulating multiple stages of ciliogenesis, including the vesicular trafficking of ciliary components and the positioning and docking of the basal body. Finally, studies on the formation of motile cilia in multiciliated epithelial cells have revealed requirements for actin remodeling in this process too, as well as showing evidence of an additional alternative ciliogenesis pathway.
Collapse
Affiliation(s)
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
40
|
Roberts KJ, Ariza AJ, Selvaraj K, Quadri M, Mangarelli C, Neault S, Davis EE, Binns HJ. Testing for rare genetic causes of obesity: findings and experiences from a pediatric weight management program. Int J Obes (Lond) 2022; 46:1493-1501. [PMID: 35562395 PMCID: PMC9105591 DOI: 10.1038/s41366-022-01139-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Genetic screening for youth with obesity in the absence of syndromic findings has not been part of obesity management. For children with early onset obesity, genetic screening is recommended for those having clinical features of genetic obesity syndromes (including hyperphagia). OBJECTIVES The overarching goal of this work is to report the findings and experiences from one pediatric weight management program that implemented targeted sequencing analysis for genes known to cause rare genetic disorders of obesity. SUBJECTS/METHODS This exploratory study evaluated youth tested over an 18-month period using a panel of 40-genes in the melanocortin 4 receptor pathway. Medical records were reviewed for demographic and visit information, including body mass index (BMI) percent of 95th percentile (%BMIp95) and two eating behaviors. RESULTS Of 117 subjects: 51.3% were male; 53.8% Hispanic; mean age 10.2 years (SD 3.8); mean %BMIp95 157% (SD 29%). Most subjects were self- or caregiver-reported to have overeating to excess or binge eating (80.3%) and sneaking food or eating in secret (59.0%). Among analyzed genes, 72 subjects (61.5%) had at least one variant reported; 50 (42.7%) had a single variant reported; 22 (18.8%) had 2-4 variants reported; most variants were rare (<0.05% minor allele frequency [MAF]), and of uncertain significance; all variants were heterozygous. Nine subjects (7.7%) had a variant reported as PSCK1 "risk" or MC4R "likely pathogenic"; 39 (33.3%) had a Bardet-Biedl Syndrome (BBS) gene variant (4 with "pathogenic" or "likely pathogenic" variants). Therefore, 9 youth (7.7%) had gene variants previously identified as increasing risk for obesity and 4 youth (3.4%) had BBS carrier status. CONCLUSIONS Panel testing identified rare variants of uncertain significance in most youth tested, and infrequently identified variants previously reported to increase the risk for obesity. Further research in larger cohorts is needed to understand how genetic variants influence the expression of non-syndromic obesity.
Collapse
Affiliation(s)
- Karyn J Roberts
- College of Nursing, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI, 53201-0413, USA. .,Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Adolfo J Ariza
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kavitha Selvaraj
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Maheen Quadri
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Caren Mangarelli
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Sarah Neault
- Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Erica E Davis
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Helen J Binns
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
41
|
Langousis G, Cavadini S, Boegholm N, Lorentzen E, Kempf G, Matthias P. Structure of the ciliogenesis-associated CPLANE complex. SCIENCE ADVANCES 2022; 8:eabn0832. [PMID: 35427153 PMCID: PMC9012472 DOI: 10.1126/sciadv.abn0832] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Dysfunctional cilia cause pleiotropic human diseases termed ciliopathies. These hereditary maladies are often caused by defects in cilia assembly, a complex event that is regulated by the ciliogenesis and planar polarity effector (CPLANE) proteins Wdpcp, Inturned, and Fuzzy. CPLANE proteins are essential for building the cilium and are mutated in multiple ciliopathies, yet their structure and molecular functions remain elusive. Here, we show that mammalian CPLANE proteins comprise a bona fide complex and report the near-atomic resolution structures of the human Wdpcp-Inturned-Fuzzy complex and of the mouse Wdpcp-Inturned-Fuzzy complex bound to the small guanosine triphosphatase Rsg1. Notably, the crescent-shaped CPLANE complex binds phospholipids such as phosphatidylinositol 3-phosphate via multiple modules and a CPLANE ciliopathy mutant exhibits aberrant lipid binding. Our study provides critical structural and functional insights into an enigmatic ciliogenesis-associated complex as well as unexpected molecular rationales for ciliopathies.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Niels Boegholm
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
42
|
Zhao H, Sun J, Insinna C, Lu Q, Wang Z, Nagashima K, Stauffer J, Andresson T, Specht S, Perera S, Daar IO, Westlake CJ. Male infertility-associated Ccdc108 regulates multiciliogenesis via the intraflagellar transport machinery. EMBO Rep 2022; 23:e52775. [PMID: 35201641 PMCID: PMC8982597 DOI: 10.15252/embr.202152775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Motile cilia on the cell surface generate movement and directional fluid flow that is crucial for various biological processes. Dysfunction of these cilia causes human diseases such as sinopulmonary disease and infertility. Here, we show that Ccdc108, a protein linked to male infertility, has an evolutionarily conserved requirement in motile multiciliation. Using Xenopus laevis embryos, Ccdc108 is shown to be required for the migration and docking of basal bodies to the apical membrane in epidermal multiciliated cells (MCCs). We demonstrate that Ccdc108 interacts with the IFT‐B complex, and the ciliation requirement for Ift74 overlaps with Ccdc108 in MCCs. Both Ccdc108 and IFT‐B proteins localize to migrating centrioles, basal bodies, and cilia in MCCs. Importantly, Ccdc108 governs the centriolar recruitment of IFT while IFT licenses the targeting of Ccdc108 to the cilium. Moreover, Ccdc108 is required for the centriolar recruitment of Drg1 and activated RhoA, factors that help establish the apical actin network in MCCs. Together, our studies indicate that Ccdc108 and IFT‐B complex components cooperate in multiciliogenesis.
Collapse
Affiliation(s)
- Huijie Zhao
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jian Sun
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christine Insinna
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Quanlong Lu
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ziqiu Wang
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Kunio Nagashima
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jimmy Stauffer
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory (PCL) Mass Spectrometry Center, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne Specht
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sumeth Perera
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
43
|
Primary Cilia and Their Role in Acquired Heart Disease. Cells 2022; 11:cells11060960. [PMID: 35326411 PMCID: PMC8946116 DOI: 10.3390/cells11060960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
Primary cilia are non-motile plasma membrane extrusions that display a variety of receptors and mechanosensors. Loss of function results in ciliopathies, which have been strongly linked with congenital heart disease, as well as abnormal development and function of most organ systems. Adults with congenital heart disease have high rates of acquired heart failure, and usually die from a cardiac cause. Here we explore primary cilia’s role in acquired heart disease. Intraflagellar Transport 88 knockout results in reduced primary cilia, and knockout from cardiac endothelium produces myxomatous degeneration similar to mitral valve prolapse seen in adult humans. Induced primary cilia inactivation by other mechanisms also produces excess myocardial hypertrophy and altered scar architecture after ischemic injury, as well as hypertension due to a lack of vascular endothelial nitric oxide synthase activation and the resultant left ventricular dysfunction. Finally, primary cilia have cell-to-cell transmission capacity which, when blocked, leads to progressive left ventricular hypertrophy and heart failure, though this mechanism has not been fully established. Further research is still needed to understand primary cilia’s role in adult cardiac pathology, especially heart failure.
Collapse
|
44
|
Grant CW, Barreto EF, Kumar R, Kaddurah-Daouk R, Skime M, Mayes T, Carmody T, Biernacka J, Wang L, Weinshilboum R, Trivedi MH, Bobo WV, Croarkin PE, Athreya AP. Multi-Omics Characterization of Early- and Adult-Onset Major Depressive Disorder. J Pers Med 2022; 12:jpm12030412. [PMID: 35330412 PMCID: PMC8949112 DOI: 10.3390/jpm12030412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023] Open
Abstract
Age at depressive onset (AAO) corresponds to unique symptomatology and clinical outcomes. Integration of genome-wide association study (GWAS) results with additional “omic” measures to evaluate AAO has not been reported and may reveal novel markers of susceptibility and/or resistance to major depressive disorder (MDD). To address this gap, we integrated genomics with metabolomics using data-driven network analysis to characterize and differentiate MDD based on AAO. This study first performed two GWAS for AAO as a continuous trait in (a) 486 adults from the Pharmacogenomic Research Network-Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS), and (b) 295 adults from the Combining Medications to Enhance Depression Outcomes (CO-MED) study. Variants from top signals were integrated with 153 p180-assayed metabolites to establish multi-omics network characterizations of early (<age 18) and adult-onset depression. The most significant variant (p = 8.77 × 10−8) localized to an intron of SAMD3. In silico functional annotation of top signals (p < 1 × 10−5) demonstrated gene expression enrichment in the brain and during embryonic development. Network analysis identified differential associations between four variants (in/near INTU, FAT1, CNTN6, and TM9SF2) and plasma metabolites (phosphatidylcholines, carnitines, biogenic amines, and amino acids) in early- compared with adult-onset MDD. Multi-omics integration identified differential biosignatures of early- and adult-onset MDD. These biosignatures call for future studies to follow participants from childhood through adulthood and collect repeated -omics and neuroimaging measures to validate and deeply characterize the biomarkers of susceptibility and/or resistance to MDD development.
Collapse
Grants
- R01 MH124655 NIMH NIH HHS
- R01 MH113700 NIMH NIH HHS
- K23 AI143882 NIAID NIH HHS
- U19GM61388, R01GM028157, R01AA027486, R01MH108348, R24GM078233, RC2GM092729, U19AG063744, N01MH90003, R01AG04617, U01AG061359, RF1AG051550, R01MH113700, R01MH124655, K23AI143882 NIH HHS
Collapse
Affiliation(s)
- Caroline W. Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Erin F. Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN 55901, USA;
| | - Rakesh Kumar
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27701, USA;
- Department of Medicine, Duke University, Durham, NC 27708, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Taryn Mayes
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - Thomas Carmody
- Department Population and Data Sciences, University of Texas Southwestern Medical Center in Dallas, Dallas, TX 75390, USA;
| | - Joanna Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55901, USA;
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Madhukar H. Trivedi
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - William V. Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| | - Arjun P. Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| |
Collapse
|
45
|
Barrell WB, Adel Al-Lami H, Goos JAC, Swagemakers SMA, van Dooren M, Torban E, van der Spek PJ, Mathijssen IMJ, Liu KJ. Identification of a novel variant of the ciliopathic gene FUZZY associated with craniosynostosis. Eur J Hum Genet 2022; 30:282-290. [PMID: 34719684 PMCID: PMC8904458 DOI: 10.1038/s41431-021-00988-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Craniosynostosis is a birth defect occurring in approximately one in 2000 live births, where premature fusion of the cranial bones inhibits growth of the skull during critical periods of brain development. The resulting changes in skull shape can lead to compression of the brain, causing severe complications. While we have some understanding of the molecular pathology of craniosynostosis, a large proportion of cases are of unknown genetic aetiology. Based on studies in mouse, we previously proposed that the ciliopathy gene Fuz should be considered a candidate craniosynostosis gene. Here, we report a novel variant of FUZ (c.851 G > C, p.(Arg284Pro)) found in monozygotic twins presenting with craniosynostosis. To investigate whether Fuz has a direct role in regulating osteogenic fate and mineralisation, we cultured primary osteoblasts and mouse embryonic fibroblasts (MEFs) from Fuz mutant mice. Loss of Fuz resulted in increased osteoblastic mineralisation. This suggests that FUZ protein normally acts as a negative regulator of osteogenesis. We then used Fuz mutant MEFs, which lose functional primary cilia, to test whether the FUZ p.(Arg284Pro) variant could restore FUZ function during ciliogenesis. We found that expression of the FUZ p.(Arg284Pro) variant was sufficient to partially restore cilia numbers, but did not mediate a comparable response to Hedgehog pathway activation. Together, this suggests the osteogenic effects of FUZ p.(Arg284Pro) do not depend upon initiation of ciliogenesis.
Collapse
Affiliation(s)
- William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Hadeel Adel Al-Lami
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marieke van Dooren
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Elena Torban
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
46
|
Quatredeniers M, Bienaimé F, Ferri G, Isnard P, Porée E, Billot K, Birgy E, Mazloum M, Ceccarelli S, Silbermann F, Braeg S, Nguyen-Khoa T, Salomon R, Gubler MC, Kuehn EW, Saunier S, Viau A. The renal inflammatory network of nephronophthisis. Hum Mol Genet 2022; 31:2121-2136. [PMID: 35043953 DOI: 10.1093/hmg/ddac014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Renal ciliopathies are the leading cause of inherited kidney failure. In autosomal dominant polycystic kidney disease (ADPKD), mutations in the ciliary gene PKD1 lead to the induction of CCL2, which promotes macrophage infiltration in the kidney. Whether or not mutations in genes involved in other renal ciliopathies also lead to immune cells recruitment is controversial. Through the parallel analysis of patients derived material and murine models, we investigated the inflammatory components of nephronophthisis (NPH), a rare renal ciliopathy affecting children and adults. Our results show that NPH mutations lead to kidney infiltration by neutrophils, macrophages and T cells. Contrary to ADPKD, this immune cell recruitment does not rely on the induction of CCL2 in mutated cells, which is dispensable for disease progression. Through an unbiased approach, we identified a set of inflammatory cytokines that are upregulated precociously and independently of CCL2 in murine models of NPH. The majority of these transcripts is also upregulated in NPH patient renal cells at a level exceeding those found in common non-immune chronic kidney diseases. This study reveals that inflammation is a central aspect in NPH and delineates a specific set of inflammatory mediators that likely regulates immune cell recruitment in response to NPH genes mutations.
Collapse
Affiliation(s)
- Marceau Quatredeniers
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Frank Bienaimé
- Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
- Université de Paris, Paris 75006, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
| | - Giulia Ferri
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Pierre Isnard
- Université de Paris, Paris 75006, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
- Department of Pathology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Esther Porée
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Katy Billot
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Eléonore Birgy
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Manal Mazloum
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
| | - Salomé Ceccarelli
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Flora Silbermann
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Simone Braeg
- Renal Department, University Medical Center, Freiburg 79106, Germany
| | - Thao Nguyen-Khoa
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
- Laboratory of Biochemistry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Centre Université de Paris, Paris 75015, France
| | - Rémi Salomon
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
- Université de Paris, Paris 75006, France
- Department of Pediatry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Marie-Claire Gubler
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - E Wolfgang Kuehn
- Renal Department, University Medical Center, Freiburg 79106, Germany
- Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Amandine Viau
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| |
Collapse
|
47
|
Wang IY, Chung CF, Babayeva S, Sogomonian T, Torban E. Loss of Planar Cell Polarity Effector Fuzzy Causes Renal Hypoplasia by Disrupting Several Signaling Pathways. J Dev Biol 2021; 10:jdb10010001. [PMID: 35076510 PMCID: PMC8788523 DOI: 10.3390/jdb10010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
In vertebrates, the planar cell polarity (PCP) pathway regulates tissue morphogenesis during organogenesis, including the kidney. Mutations in human PCP effector proteins have been associated with severe syndromic ciliopathies. Importantly, renal hypoplasia has been reported in some patients. However, the developmental disturbance that causes renal hypoplasia is unknown. Here, we describe the early onset of profound renal hypoplasia in mice homozygous for null mutation of the PCP effector gene, Fuzzy. We found that this phenotype is caused by defective branching morphogenesis of the ureteric bud (UB) in the absence of defects in nephron progenitor specification or in early steps of nephrogenesis. By using various experimental approaches, we show that the loss of Fuzzy affects multiple signaling pathways. Specifically, we found mild involvement of GDNF/c-Ret pathway that drives UB branching. We noted the deficient expression of molecules belonging to the Bmp, Fgf and Shh pathways. Analysis of the primary cilia in the UB structures revealed a significant decrease in ciliary length. We conclude that renal hypoplasia in the mouse Fuzzy mutants is caused by defective UB branching associated with dysregulation of ciliary and non-ciliary signaling pathways. Our work suggests a PCP effector-dependent pathogenetic mechanism that contributes to renal hypoplasia in mice and humans.
Collapse
Affiliation(s)
- Irene-Yanran Wang
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Tamara Sogomonian
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Elena Torban
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
48
|
Patel TN, Dhanyamraju PK. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies. J Biomed Res 2021; 36:1-9. [PMID: 34963676 PMCID: PMC8894283 DOI: 10.7555/jbr.35.20210139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Development is a sophisticated process maintained by various signal transduction pathways, including the Hedgehog (Hh) pathway. Several important functions are executed by the Hh signaling cascade such as organogenesis, tissue regeneration, and tissue homeostasis, among various others. Considering the multiple functions carried out by this pathway, any mutation causing aberrant Hh signaling may lead to myriad developmental abnormalities besides cancers. In the present review article, we explored a wide range of diseases caused by aberrant Hh signaling, including developmental defects and cancers. Finally, we concluded this mini-review with various treatment strategies for Hh-induced diseases.
Collapse
Affiliation(s)
- Trupti N Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Pavan Kumar Dhanyamraju
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA.,Penn State Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
49
|
Al-Hamed MH, Kurdi W, Khan R, Tulbah M, AlNemer M, AlSahan N, AlMugbel M, Rafiullah R, Assoum M, Monies D, Shah Z, Rahbeeni Z, Derar N, Hakami F, Almutairi G, AlOtaibi A, Ali W, AlShammasi A, AlMubarak W, AlDawoud S, AlAmri S, Saeed B, Bukhari H, Ali M, Akili R, Alquayt L, Hagos S, Elbardisy H, Akilan A, Almuhana N, AlKhalifah A, Abouelhoda M, Ramzan K, Sayer JA, Imtiaz F. Prenatal exome sequencing and chromosomal microarray analysis in fetal structural anomalies in a highly consanguineous population reveals a propensity of ciliopathy genes causing multisystem phenotypes. Hum Genet 2021; 141:101-126. [PMID: 34853893 DOI: 10.1007/s00439-021-02406-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022]
Abstract
Fetal abnormalities are detected in 3% of all pregnancies and are responsible for approximately 20% of all perinatal deaths. Chromosomal microarray analysis (CMA) and exome sequencing (ES) are widely used in prenatal settings for molecular genetic diagnostics with variable diagnostic yields. In this study, we aimed to determine the diagnostic yield of trio-ES in detecting the cause of fetal abnormalities within a highly consanguineous population. In families with a history of congenital anomalies, a total of 119 fetuses with structural anomalies were recruited and DNA from invasive samples were used together with parental DNA samples for trio-ES and CMA. Data were analysed to determine possible underlying genetic disorders associated with observed fetal phenotypes. The cohort had a known consanguinity of 81%. Trio-ES led to diagnostic molecular genetic findings in 59 fetuses (with pathogenic/likely pathogenic variants) most with multisystem or renal abnormalities. CMA detected chromosomal abnormalities compatible with the fetal phenotype in another 7 cases. Monogenic ciliopathy disorders with an autosomal recessive inheritance were the predominant cause of multisystem fetal anomalies (24/59 cases, 40.7%) with loss of function variants representing the vast majority of molecular genetic abnormalities. Heterozygous de novo pathogenic variants were found in four fetuses. A total of 23 novel variants predicted to be associated with the phenotype were detected. Prenatal trio-ES and CMA detected likely causative molecular genetic defects in a total of 55% of families with fetal anomalies confirming the diagnostic utility of trio-ES and CMA as first-line genetic test in the prenatal diagnosis of multisystem fetal anomalies including ciliopathy syndromes.
Collapse
Affiliation(s)
- Mohamed H Al-Hamed
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia.
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia.
| | - Wesam Kurdi
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rubina Khan
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha AlNemer
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Nada AlSahan
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maisoon AlMugbel
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rafiullah Rafiullah
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Mirna Assoum
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Dorota Monies
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Zeeshan Shah
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Medical Genetics Department, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Nada Derar
- Medical Genetics Department, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Fahad Hakami
- King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Science, Jeddah, Saudi Arabia
| | - Gawaher Almutairi
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Afaf AlOtaibi
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Wafaa Ali
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Amal AlShammasi
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Wardah AlMubarak
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Samia AlDawoud
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Saja AlAmri
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Bashayer Saeed
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Hanifa Bukhari
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Mohannad Ali
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rana Akili
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Laila Alquayt
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Samia Hagos
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Hadeel Elbardisy
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Asma Akilan
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Nora Almuhana
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Abrar AlKhalifah
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Mohamed Abouelhoda
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - John A Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Tyne and Wear, Newcastle upon Tyne, NE4 5PL, UK
| | - Faiqa Imtiaz
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia.
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia.
| |
Collapse
|
50
|
Quidwai T, Wang J, Hall EA, Petriman NA, Leng W, Kiesel P, Wells JN, Murphy LC, Keighren MA, Marsh JA, Lorentzen E, Pigino G, Mill P. A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. eLife 2021; 10:e69786. [PMID: 34734804 PMCID: PMC8754431 DOI: 10.7554/elife.69786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
Collapse
Affiliation(s)
- Tooba Quidwai
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Emma A Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Narcis A Petriman
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Human TechnopoleMilanItaly
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|