1
|
Wenderholm K, Brunet T, Graf E, Arens M, Martens E, Winkelmann J, Hoefele J, Westphal DS. Variants that get straight to your heart - Cardiogenetic secondary findings in exome sequencing. Gene 2024; 935:149063. [PMID: 39486665 DOI: 10.1016/j.gene.2024.149063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Exome sequencing has been established as a fundamental tool in genetic diagnostics. It may also provide information about variants in genes unrelated to the primary purpose, so-called secondary findings. Especially, diagnoses of unnoticed inborn cardiac diseases are of high clinical relevance due to therapeutic options in context of prevention of sudden cardiac death. METHODS Exome data of 9962 individuals was analysed for relevant cardiogenetic findings. Genes were selected according to ACMG recommendations for secondary findings (v.3.1). First, a filter for (likely) pathogenic variants, published in the ClinVar database, was used. Second, exome data was screened for loss of function (LoF) variants in genes in which LoF is a known disease pathomechanism. All variants were evaluated by geneticists regarding their pathogenicity. RESULTS Pathogenic or likely pathogenic variants were identified in 136 different individuals (136/9962, 1.4%), with the Low-Density Lipoprotein Receptor gene (LDLR, 24/136, 17.6%) and the Titin gene (TTN, 24/136, 17.6%), being the most frequently affected ones. 31.6% (43/136) of the identified variants had been reported beforehand, while 47.1% (64/136) had not been reported. The remaining cases (29/136, 21.3%) were part of research projects with no written reports. In 26.5% (36/136), the finding would have been missed, if only index patients and not their parents had been screened for secondary findings in case of trio ES. CONCLUSION As demonstrated in our study, at least one or two out of one hundred people are likely to carry a pathogenic cardiogenetic variant. Counselling geneticist and clinicians need to be aware of these findings in exome and genome sequencing. Informed consent of the patient regarding the report of secondary findings should absolutely be obtained beforehand.
Collapse
Affiliation(s)
- Kirsten Wenderholm
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Marie Arens
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Eimo Martens
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany; Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany.
| |
Collapse
|
2
|
Morimoto J, Pietras Z. Differential amino acid usage leads to ubiquitous edge effect in proteomes across domains of life that can be explained by amino acid secondary structure propensities. Sci Rep 2024; 14:25544. [PMID: 39462053 PMCID: PMC11513089 DOI: 10.1038/s41598-024-77319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Amino acids are the building blocks of proteins and enzymes which are essential for life. Understanding amino acid usage offers insights into protein function and molecular mechanisms underlying life histories. However, genome-wide patterns of amino acid usage across domains of life remain poorly understood. Here, we analysed the proteomes of 5590 species across four domains and found that only a few amino acids are consistently the most and least used. This differential usage results in lower amino acid usage diversity at the most and least frequent ranks, creating a ubiquitous inverted U-shape pattern of amino acid diversity and rank which we call an 'edge effect' across proteomes and domains of life. This effect likely stems from protein secondary structural constraints, not the evolutionary chronology of amino acid incorporation into the genetic code, highlighting the functional rather than evolutionary influences on amino acid usage. We also tested other contemporary hypotheses regarding amino acid usage in proteomes and found that amino acid usage varies across life's domains and is only weakly influenced by growth temperature. Our findings reveal a novel and pervasive amino acid usage pattern across genomes with the potential to help us probe deep evolutionary relationships and advance synthetic biology.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Natural and Computing Sciences, Institute of Mathematics, University of Aberdeen, Fraser Noble Building, Aberdeen, AB24 3UE, UK.
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 82590-300, Brazil.
- Wissenschafskolleg zu Berlin, 10 Wallotstraße, Berlin, Germany.
| | - Zuzanna Pietras
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Mero IL, Orozco Rodriguez JM, Bjørgo K, Hankin RA, Krupinska E, Kulseth MA, Rossow MA, Knecht W. A mild skeletal phenotype with overlapping features of Miller syndrome and functional characterisation of two new variants of human dihydroorotate dehydrogenase. Heliyon 2024; 10:e38659. [PMID: 39430512 PMCID: PMC11489341 DOI: 10.1016/j.heliyon.2024.e38659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Dihydroorotate dehydrogenase (DHODH) catalyzes the fourth enzymatic reaction of the pyrimidine biosynthesis pathway. Miller syndrome, also known as postaxial acrofacial dysostosis, is caused by biallelic pathogenic variants in DHODH. We present a patient with a relatively mild skeletal phenotype carrying a novel variant of unknown significance in DHODH: c.829G > A, p.(D277N), in combination with a known variant, c.403C > T, p.(R135C). We functionally characterized the DHODH variant D277N in comparison to a very recently reported, but functionally uncharacterized variant P43L, that was found in a patient with more pronounced Miller syndrome features. Because both cases share the same DHODH variant R135C, we aimed to study the effect on enzyme activity of the two variants D277N and P43L to determine pathogenicity and possibly a genotype-phenotype relationship on the R135C background. We found a significant reduction in enzyme activity for both variants. The variant P43L showed a more pronounced loss of function in all assays compatible with other pathogenic variants reported in Miller, whereas the D277N variant showed milder changes that could reflect the mild phenotypic features in our patient. Yet due to a lack of a known threshold of residual enzyme activity to determine pathogenicity, this needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, PB 4956 Nydalen, 0424, Oslo, Norway
| | | | - Kathrine Bjørgo
- Department of Medical Genetics, Oslo University Hospital, PB 4956 Nydalen, 0424, Oslo, Norway
| | | | - Ewa Krupinska
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, PB 4956 Nydalen, 0424, Oslo, Norway
| | - Marvin Anthony Rossow
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| |
Collapse
|
4
|
Chundru VK, Zhang Z, Walter K, Lindsay SJ, Danecek P, Eberhardt RY, Gardner EJ, Malawsky DS, Wigdor EM, Torene R, Retterer K, Wright CF, Ólafsdóttir H, Guillen Sacoto MJ, Ayaz A, Akbeyaz IH, Türkdoğan D, Al Balushi AI, Bertoli-Avella A, Bauer P, Szenker-Ravi E, Reversade B, McWalter K, Sheridan E, Firth HV, Hurles ME, Samocha KE, Ustach VD, Martin HC. Federated analysis of autosomal recessive coding variants in 29,745 developmental disorder patients from diverse populations. Nat Genet 2024; 56:2046-2053. [PMID: 39313616 PMCID: PMC11525179 DOI: 10.1038/s41588-024-01910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2024] [Indexed: 09/25/2024]
Abstract
Autosomal recessive coding variants are well-known causes of rare disorders. We quantified the contribution of these variants to developmental disorders in a large, ancestrally diverse cohort comprising 29,745 trios, of whom 20.4% had genetically inferred non-European ancestries. The estimated fraction of patients attributable to exome-wide autosomal recessive coding variants ranged from ~2-19% across genetically inferred ancestry groups and was significantly correlated with average autozygosity. Established autosomal recessive developmental disorder-associated (ARDD) genes explained 84.0% of the total autosomal recessive coding burden, and 34.4% of the burden in these established genes was explained by variants not already reported as pathogenic in ClinVar. Statistical analyses identified two novel ARDD genes: KBTBD2 and ZDHHC16. This study expands our understanding of the genetic architecture of developmental disorders across diverse genetically inferred ancestry groups and suggests that improving strategies for interpreting missense variants in known ARDD genes may help diagnose more patients than discovering the remaining genes.
Collapse
Affiliation(s)
- V Kartik Chundru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | - Zhancheng Zhang
- GeneDx, Gaithersburg, MD, USA
- Deka Biosciences, Germantown, MD, USA
| | - Klaudia Walter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sarah J Lindsay
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Eugene J Gardner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- MRC Epidemiology Unit, Cambridge, UK
| | | | - Emilie M Wigdor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rebecca Torene
- GeneDx, Gaithersburg, MD, USA
- Geisinger, Danville, PA, USA
| | - Kyle Retterer
- GeneDx, Gaithersburg, MD, USA
- Geisinger, Danville, PA, USA
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | | | | | - Akif Ayaz
- Istanbul Medipol University, Medical School, Department of Medical Genetics, Istanbul, Turkey
| | - Ismail Hakki Akbeyaz
- Marmara University Medical Faculty, Pendik Training and Research Hospital, Department of Pediatric Neurology, Istanbul, Turkey
| | - Dilşad Türkdoğan
- Marmara University Medical Faculty, Pendik Training and Research Hospital, Department of Pediatric Neurology, Istanbul, Turkey
| | | | | | - Peter Bauer
- Medical Genetics, CENTOGENE GmbH, Rostock, Germany
- Clinic of Internal Medicine, Department of Hematology, Oncology, and Palliative Medicine, University Medicine Rostock, Rostock, Germany
| | | | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia
| | | | - Eamonn Sheridan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | | | - Kaitlin E Samocha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
5
|
Guan H, Zhao S, Li J, Wang Y, Niu P, Zhang Y, Zhang Y, Fang X, Miao R, Tian J. Exploring the design of clinical research studies on the efficacy mechanisms in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1363877. [PMID: 39371930 PMCID: PMC11449758 DOI: 10.3389/fendo.2024.1363877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
This review examines the complexities of Type 2 Diabetes Mellitus (T2DM), focusing on the critical role of integrating omics technologies with traditional experimental methods. It underscores the advancements in understanding the genetic diversity of T2DM and emphasizes the evolution towards personalized treatment modalities. The paper analyzes a variety of omics approaches, including genomics, methylation, transcriptomics, proteomics, metabolomics, and intestinal microbiomics, delineating their substantial contributions to deciphering the multifaceted mechanisms underlying T2DM. Furthermore, the review highlights the indispensable role of non-omics experimental techniques in comprehending and managing T2DM, advocating for their integration in the development of tailored medicine and precision treatment strategies. By identifying existing research gaps and suggesting future research trajectories, the review underscores the necessity for a comprehensive, multidisciplinary approach. This approach synergistically combines clinical insights with cutting-edge biotechnologies, aiming to refine the management and therapeutic interventions of T2DM, and ultimately enhancing patient outcomes. This synthesis of knowledge and methodologies paves the way for innovative advancements in T2DM research, fostering a deeper understanding and more effective treatment of this complex condition.
Collapse
Affiliation(s)
- Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ping Niu
- Department of Encephalopathy, The Affiliated Hospital of Changchun university of Chinese Medicine, Jilin, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Fellmann F, Saunders C, O’Donohue MF, Reid DW, McFadden KA, Montel-Lehry N, Yu C, Fang M, Zhang J, Royer-Bertrand B, Farinelli P, Karboul N, Willer JR, Fievet L, Bhuiyan ZA, Kleinhenz AL, Jadeau J, Fulbright J, Rivolta C, Renella R, Katsanis N, Beckmann JS, Nicchitta CV, Da Costa L, Davis EE, Gleizes PE. An atypical form of 60S ribosomal subunit in Diamond-Blackfan anemia linked to RPL17 variants. JCI Insight 2024; 9:e172475. [PMID: 39088281 PMCID: PMC11385091 DOI: 10.1172/jci.insight.172475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional, and biochemical dissection of 2 multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein-encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Further, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10%-20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.
Collapse
Affiliation(s)
- Florence Fellmann
- The ColLaboratory, University of Lausanne, Lausanne, Switzerland
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Carol Saunders
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, USA
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | | | - David W. Reid
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Kelsey A. McFadden
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Nathalie Montel-Lehry
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Cong Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Pietro Farinelli
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | - Jason R. Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Lorraine Fievet
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Zahurul Alam Bhuiyan
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Alissa L.W. Kleinhenz
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Julie Jadeau
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Joy Fulbright
- Division of Hematology/Oncology, Children’s Mercy Hospital and Clinics, Kansas City, Missouri, USA
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Raffaele Renella
- Division of Pediatrics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Jacques S. Beckmann
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Clinical Bioinformatics, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christopher V. Nicchitta
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique, Hôpital Robert Debré, Paris, France
- Université Paris Cité, Paris, France
- Hematim EA4666, CURS, CHU Amiens, Amiens, France
- LABEX GR-EX, Paris, France
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
7
|
Pei Y, Tanguy M, Giess A, Dixit A, Wilson LC, Gibbons RJ, Twigg SRF, Elgar G, Wilkie AOM. A Comparison of Structural Variant Calling from Short-Read and Nanopore-Based Whole-Genome Sequencing Using Optical Genome Mapping as a Benchmark. Genes (Basel) 2024; 15:925. [PMID: 39062704 PMCID: PMC11276380 DOI: 10.3390/genes15070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The identification of structural variants (SVs) in genomic data represents an ongoing challenge because of difficulties in reliable SV calling leading to reduced sensitivity and specificity. We prepared high-quality DNA from 9 parent-child trios, who had previously undergone short-read whole-genome sequencing (Illumina platform) as part of the Genomics England 100,000 Genomes Project. We reanalysed the genomes using both Bionano optical genome mapping (OGM; 8 probands and one trio) and Nanopore long-read sequencing (Oxford Nanopore Technologies [ONT] platform; all samples). To establish a "truth" dataset, we asked whether rare proband SV calls (n = 234) made by the Bionano Access (version 1.6.1)/Solve software (version 3.6.1_11162020) could be verified by individual visualisation using the Integrative Genomics Viewer with either or both of the Illumina and ONT raw sequence. Of these, 222 calls were verified, indicating that Bionano OGM calls have high precision (positive predictive value 95%). We then asked what proportion of the 222 true Bionano SVs had been identified by SV callers in the other two datasets. In the Illumina dataset, sensitivity varied according to variant type, being high for deletions (115/134; 86%) but poor for insertions (13/58; 22%). In the ONT dataset, sensitivity was generally poor using the original Sniffles variant caller (48% overall) but improved substantially with use of Sniffles2 (36/40; 90% and 17/23; 74% for deletions and insertions, respectively). In summary, we show that the precision of OGM is very high. In addition, when applying the Sniffles2 caller, the sensitivity of SV calling using ONT long-read sequence data outperforms Illumina sequencing for most SV types.
Collapse
Affiliation(s)
- Yang Pei
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| | - Melanie Tanguy
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Adam Giess
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Abhijit Dixit
- Clinical Genetics Service, Nottingham University Hospitals NHS Foundation Trust, City Hospital, Nottingham NG5 1PB, UK
| | - Louise C. Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Richard J. Gibbons
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| | - Greg Elgar
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| |
Collapse
|
8
|
Van Roey VL, Irvine WF. Optimal Diagnostic and Treatment Practices for Facial Dysostosis Syndromes: A Clinical Consensus Statement Among European Experts. J Craniofac Surg 2024; 35:1315-1324. [PMID: 38801252 PMCID: PMC11198962 DOI: 10.1097/scs.0000000000010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Facial dysostosis syndromes (FDS) are rare congenital conditions impacting facial development, often leading to diverse craniofacial abnormalities. This study addresses the scarcity of evidence on these syndromes about optimal diagnostic and treatment practices. To overcome this scarcity, European experts from ERN CRANIO collaborated to develop a clinical consensus statement through the Delphi consensus method. A systematic search of Embase, MEDLINE/PubMed, Cochrane, and Web of Science databases was conducted until February 2023. The quality of evidence was evaluated using various tools depending on the study design. Statements were subsequently formed based on literature and expert opinion, followed by a Delphi process with expert health care providers and patient representatives. In total, 92 experts from various specialties and three patient representatives were involved in the Delphi process. Over 3 voting rounds, consensus was achieved on 92 (46.9%), 58 (59.2%), and 19 (70.4%) statements, respectively. These statements cover the topics of general care; craniofacial reconstruction; the eyes and lacrimal system; upper airway management; genetics; hearing; speech; growth, feeding, and swallowing; dental treatment and orthodontics; extracranial anomalies; and psychology and cognition. The current clinical consensus statement provides valuable insights into optimal diagnostic and treatment practices and identifies key research opportunities for FDS. This consensus statement represents a significant advancement in FDS care, underlining the commitment of health care professionals to improve the understanding and management of these rare syndromes in Europe.
Collapse
Affiliation(s)
- Victor L. Van Roey
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- European Reference Network for Rare and/or Complex Craniofacial Anomalies and Ear, Nose, and Throat Disorders, Rotterdam, The Netherlands
| | - Willemijn F.E. Irvine
- Department of Pediatric Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Evidence-Based Medicine and Methodology, Qualicura Healthcare Support Agency, Breda, The Netherlands
| |
Collapse
|
9
|
Mao D, Liu C, Wang L, Ai-Ouran R, Deisseroth C, Pasupuleti S, Kim SY, Li L, Rosenfeld JA, Meng L, Burrage LC, Wangler MF, Yamamoto S, Santana M, Perez V, Shukla P, Eng CM, Lee B, Yuan B, Xia F, Bellen HJ, Liu P, Liu Z. AI-MARRVEL - A Knowledge-Driven AI System for Diagnosing Mendelian Disorders. NEJM AI 2024; 1:10.1056/aioa2300009. [PMID: 38962029 PMCID: PMC11221788 DOI: 10.1056/aioa2300009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
BACKGROUND Diagnosing genetic disorders requires extensive manual curation and interpretation of candidate variants, a labor-intensive task even for trained geneticists. Although artificial intelligence (AI) shows promise in aiding these diagnoses, existing AI tools have only achieved moderate success for primary diagnosis. METHODS AI-MARRVEL (AIM) uses a random-forest machine-learning classifier trained on over 3.5 million variants from thousands of diagnosed cases. AIM additionally incorporates expert-engineered features into training to recapitulate the intricate decision-making processes in molecular diagnosis. The online version of AIM is available at https://ai.marrvel.org. To evaluate AIM, we benchmarked it with diagnosed patients from three independent cohorts. RESULTS AIM improved the rate of accurate genetic diagnosis, doubling the number of solved cases as compared with benchmarked methods, across three distinct real-world cohorts. To better identify diagnosable cases from the unsolved pools accumulated over time, we designed a confidence metric on which AIM achieved a precision rate of 98% and identified 57% of diagnosable cases out of a collection of 871 cases. Furthermore, AIM's performance improved after being fine-tuned for targeted settings including recessive disorders and trio analysis. Finally, AIM demonstrated potential for novel disease gene discovery by correctly predicting two newly reported disease genes from the Undiagnosed Diseases Network. CONCLUSIONS AIM achieved superior accuracy compared with existing methods for genetic diagnosis. We anticipate that this tool may aid in primary diagnosis, reanalysis of unsolved cases, and the discovery of novel disease genes. (Funded by the NIH Common Fund and others.).
Collapse
Affiliation(s)
- Dongxue Mao
- Department of Pediatrics, Baylor College of Medicine, Houston
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Chaozhong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Graduate School of Biomedical Sciences, Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston
| | - Linhua Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Graduate School of Biomedical Sciences, Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston
| | - Rami Ai-Ouran
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Department of Data Science and AI, Al Hussein Technical University, Amman, Jordan
| | - Cole Deisseroth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Sasidhar Pasupuleti
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Seon Young Kim
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Lucian Li
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
| | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | | | | | | | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Human Genome Sequencing Center, Baylor College of Medicine, Houston
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Department of Neuroscience, Baylor College of Medicine, Houston
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| |
Collapse
|
10
|
Wang L, Kranzler HR, Gelernter J, Zhou H. Multi-ancestry Whole-exome Sequencing Study of Alcohol Use Disorder in Two Cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.05.24305412. [PMID: 38645055 PMCID: PMC11030482 DOI: 10.1101/2024.04.05.24305412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. There has been substantial progress in identifying genetic variants underlying AUD. However, there are few whole-exome sequencing (WES) studies of AUD. We analyzed WES of 4,530 samples from the Yale-Penn cohort and 469,835 samples from the UK Biobank (UKB). After quality control, 1,420 AUD cases and 619 controls of European ancestry (EUR) and 1,142 cases and 608 controls of African ancestry (AFR) from Yale-Penn were retained for subsequent analyses. WES data from 415,617 EUR samples (12,861 cases), 6,142 AFR samples (130 cases) and 4,607 South Asian (SAS) samples (130 cases) from UKB were also analyzed. Single-variant association analysis identified the well-known functional variant rs1229984 in ADH1B ( P =4.88×10 -31 ) and several other common variants in ADH1C . Gene-based tests identified ADH1B ( P =1.00×10 -31 ), ADH1C ( P =5.23×10 -7 ), CNST ( P =1.19×10 -6 ), and IFIT5 (3.74×10 -6 ). This study extends our understanding of the genetic basis of AUD.
Collapse
|
11
|
Alfayyadh MM, Maksemous N, Sutherland HG, Lea RA, Griffiths LR. Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches. Genes (Basel) 2024; 15:443. [PMID: 38674378 PMCID: PMC11049430 DOI: 10.3390/genes15040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies have improved the diagnosis and our understanding of the molecular pathophysiology of HM. Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However, approximately 75% of HM patients are negative for these mutations, indicating there are other genes involved in disease causation. In this review, we explored our current understanding of the genetics of HM. The evidence presented herein summarises the current knowledge of the genetics of HM, which can be expanded further to explain the remaining heritability of this debilitating condition. Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; (M.M.A.); (N.M.); (H.G.S.); (R.A.L.)
| |
Collapse
|
12
|
Hiatt SM, Lawlor JM, Handley LH, Latner DR, Bonnstetter ZT, Finnila CR, Thompson ML, Boston LB, Williams M, Nunez IR, Jenkins J, Kelley WV, Bebin EM, Lopez MA, Hurst ACE, Korf BR, Schmutz J, Grimwood J, Cooper GM. Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.22.24304633. [PMID: 38585854 PMCID: PMC10996728 DOI: 10.1101/2024.03.22.24304633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Variant detection from long-read genome sequencing (lrGS) has proven to be considerably more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare disease that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, eight of which (8/96, 8.33%) harbored pathogenic or likely pathogenic variants. Newly identified variants were visible in both srGS and lrGS in nine probands (~9.4%) and resulted from changes to interpretation mostly from recent gene-disease association discoveries. Seven cases included variants that were only interpretable in lrGS, including copy-number variants, an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either: not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality-control and filtration. Thus, while reanalysis of older data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS datasets grow allowing for better variant frequency annotation, the additional lrGS-only rare disease yield will grow over time.
Collapse
Affiliation(s)
- Susan M. Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Lori H. Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Donald R. Latner
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | | | | | - Lori Beth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Melissa Williams
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - E. Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Michael A. Lopez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Anna C. E. Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | |
Collapse
|
13
|
Popova L, Carabetta VJ. The use of next-generation sequencing in personalized medicine. ARXIV 2024:arXiv:2403.03688v1. [PMID: 38495572 PMCID: PMC10942477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The revolutionary progress in development of next-generation sequencing (NGS) technologies has made it possible to deliver accurate genomic information in a timely manner. Over the past several years, NGS has transformed biomedical and clinical research and found its application in the field of personalized medicine. Here we discuss the rise of personalized medicine and the history of NGS. We discuss current applications and uses of NGS in medicine, including infectious diseases, oncology, genomic medicine, and dermatology. We provide a brief discussion of selected studies where NGS was used to respond to wide variety of questions in biomedical research and clinical medicine. Finally, we discuss the challenges of implementing NGS into routine clinical use.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden NJ, 08103
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden NJ, 08103
| |
Collapse
|
14
|
Li P, Zhang Z, Sun P. DOT1L promotes expression of CD44 through the Wnt/β-catenin signaling pathway in early gastric carcinoma. J Cancer 2024; 15:2276-2291. [PMID: 38495505 PMCID: PMC10937288 DOI: 10.7150/jca.90170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
To assess telomere silencing 1-like (DOTIL) gene expression within gastric cancer (GC) tissues as well as its function of promoting cancer stem cell (CSC)-mediated epithelial-mesenchymal switching, tissue samples from 8 patients each in 3 stages (normal, low-grade intraepithelial neoplasia (LGIN), as well as early gastric carcinoma (EGC)) were collected for whole-exome sequencing, which revealed differentially expressed genes (DEGs). The DEGs and their prognostic value were verified through TCGA and GTEx analyses. We also verified the role of DOT1L in EGC development. We collected samples from three patients each with LGIN and EGC for single-cell sequencing. We conducted single-cell transcriptomic analysis, DEG analysis, cell‒cell interaction analysis, and pseudotime analysis using R language. Sites and levels of DOT1L, CD44 and DOT1L expression were verified by IF. We found 703 deleterious mutation sites in the LGIN group and 389 deleterious mutation sites in the EGC group. The LGIN as well as EGC categories exhibited increased levels of DOT1L expression compared to the standard category (P<0.05) in TCGA and GTEx. DOT1L also correlated significantly with TMB (P=8.45E-06), MSI (P=0.001), and tumor proliferation index (P=7.17E-09) in the TCGA and GTEx datasets. In single cells, we found that DOT1L promotes CD44 expression via the Wnt/β-catenin signaling pathway and the development for stemness properties within GC. In addition, we found that DOT1L, CD44 and CTNNB1 colocalize and correlate positively. In conclusion, one important CSC regulator in GC, DOT1L may be crucial in coordinating the expression of genes specific to a certain lineage during MSC development.
Collapse
Affiliation(s)
- Ping Li
- Department of Pathology, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214002, PR China
- Department of Pathology, Wuxi No.2 People's Hospital, Wuxi, Jiangsu Province 214002, PR China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214002, PR China
| | - Zhou Zhang
- Department of Clinical Laboratory, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, Jiangsu Province 214000, PR China
| | - Ping Sun
- Department of Pathology, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214002, PR China
- Department of Pathology, Wuxi No.2 People's Hospital, Wuxi, Jiangsu Province 214002, PR China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214002, PR China
| |
Collapse
|
15
|
Yuan X, Su J, Wang J, Dai B, Sun Y, Zhang K, Li Y, Chuan J, Tang C, Yu Y, Gong Q. Refined preferences of prioritizers improve intelligent diagnosis for Mendelian diseases. Sci Rep 2024; 14:2845. [PMID: 38310124 PMCID: PMC10838329 DOI: 10.1038/s41598-024-53461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 02/05/2024] Open
Abstract
Phenotype-guided gene prioritizers have proved a highly efficient approach to identifying causal genes for Mendelian diseases. In our previous study, we preliminarily evaluated the performance of ten prioritizers. However, all the selected software was run based on default settings and singleton mode. With a large-scale family dataset from Deciphering Developmental Disorders (DDD) project (N = 305) and an in-house trio cohort (N = 152), the four optimal performers in our prior study including Exomiser, PhenIX, AMELIE, and LIRCIAL were further assessed through parameter optimization and/or the utilization of trio mode. The in-depth assessment revealed high diagnostic yields of the four prioritizers with refined preferences, each alone or together: (1) 83.3-91.8% of the causal genes were presented among the first ten candidates in the final ranking lists of the four tools; (2) Over 97.7% of the causal genes were successfully captured within the top 50 by either of the four software. Exomiser did best in directly hitting the target (ranking the causal gene at the very top) while LIRICAL displayed a predominant overall detection capability. Besides, cases affected by low-penetrance and high-frequency pathogenic variants were found misjudged during the automated prioritization process. The discovery of the limitations shed light on the specific directions of future enhancement for causal-gene ranking tools.
Collapse
Affiliation(s)
- Xiao Yuan
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Jieqiong Su
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Jing Wang
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Bing Dai
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Yanfang Sun
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Keke Zhang
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Yinghua Li
- Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, Guangdong, China
| | - Jun Chuan
- Genetalks Biotech. Co., Ltd., Changsha, Hunan, China
| | - Chunyan Tang
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Yan Yu
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China.
| | - Qiang Gong
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China.
| |
Collapse
|
16
|
Zhang R, Xie J, Yuan X, Yu Y, Zhuang Y, Zhang F, Hou J, Liu Y, Huang W, Zhang M, Li J, Gong Q, Peng X. Newly discovered variants in unexplained neonatal encephalopathy. Mol Genet Genomic Med 2024; 12:e2354. [PMID: 38284441 PMCID: PMC10795097 DOI: 10.1002/mgg3.2354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The genetic background of neonatal encephalopathy (NE) is complicated and early diagnosis is beneficial to optimizing therapeutic strategy for patients. METHODS NE Patients with unclear etiology received regular clinical tests including ammonia test, metabolic screening test, amplitude-integrated electroencephalographic (aEEG) monitoring, brain Magnetic Resonance Imaging (MRI) scanning, and genetic test. The protein structure change was predicted using Dynamut2 and RoseTTAFold. RESULTS 15 out of a total of 113 NE Patients were detected with newly reported pathogenic variants. In this sub-cohort, (1) seizure was the primary initial symptoms; (2) four patients had abnormal metabolic screening results, and two of them were also diagnosed with excessive blood ammonia concentration; (3) the brain MRI results were irregular in three infants and the brain waves were of moderate-severe abnormality in about a half of the patients. The novel pathogenic variants discovered in this study belonged to 12 genes, and seven of them were predicted to introduce a premature translation termination. In-silicon predictions showed that four variants were destructive to the protein structure of KCNQ2. CONCLUSION Our study expands the mutation spectrum of genes associated with NE and introduces new evidence for molecular diagnosis in this newborn illness.
Collapse
Affiliation(s)
- Rong Zhang
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Jingjing Xie
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Xiao Yuan
- Department of Laboratory DiagnosisChangsha Kingmed Center for Clinical LaboratoryChangshaHunanChina
| | - Yan Yu
- Department of Laboratory DiagnosisChangsha Kingmed Center for Clinical LaboratoryChangshaHunanChina
| | - Yan Zhuang
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Fan Zhang
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Jianfei Hou
- Department of Laboratory DiagnosisChangsha Kingmed Center for Clinical LaboratoryChangshaHunanChina
| | - Yanqin Liu
- Department of Laboratory DiagnosisChangsha Kingmed Center for Clinical LaboratoryChangshaHunanChina
| | - Weiqing Huang
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Min Zhang
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Junshuai Li
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| | - Qiang Gong
- Department of Laboratory DiagnosisChangsha Kingmed Center for Clinical LaboratoryChangshaHunanChina
| | - Xiaoming Peng
- Department of NeonatologyHunan Children's HospitalChangshaHunanChina
| |
Collapse
|
17
|
Nassogne MC, Marie S, Dewulf JP. Neurological presentations of inborn errors of purine and pyrimidine metabolism. Eur J Paediatr Neurol 2024; 48:69-77. [PMID: 38056117 DOI: 10.1016/j.ejpn.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Purines and pyrimidines are essential components as they are the building blocks of vital molecules, such as nucleic acids, coenzymes, signalling molecules, as well as energy transfer molecules. Purine and pyrimidine metabolism defects are characterised by abnormal concentrations of purines, pyrimidines and/or their metabolites in cells or body fluids. This phenomenon is due to a decreased or an increased activity of enzymes involved in this metabolism and has been reported in humans for over 60 years. This review provides an overview of neurological presentations of inborn errors of purine and pyrimidine metabolism. These conditions can lead to psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscular symptoms. Clinical signs are often nonspecific and thus overlooked, but some diseases are treatable and early diagnosis may improve the child's future. Although these metabolic hereditary diseases are rare, they are most probably under-diagnosed. When confronted with suggestive clinical or laboratory signs, clinicians should prescribe genetic testing in association with a biochemical screening including thorough purine and pyrimidine metabolites analysis and/or specific enzyme evaluation. This is most likely going to increase the number of confirmed patients.
Collapse
Affiliation(s)
- Marie-Cécile Nassogne
- Service de Neurologie Pédiatrique, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium; Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium.
| | - Sandrine Marie
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium.
| | - Joseph P Dewulf
- Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium; Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium.
| |
Collapse
|
18
|
Zhao Z, Aoi Y, Philips CN, Meghani KA, Gold SR, Yu Y, John LS, Qian J, Zeidner JM, Meeks JJ, Shilatifard A. Somatic mutations of MLL4/COMPASS induce cytoplasmic localization providing molecular insight into cancer prognosis and treatment. Proc Natl Acad Sci U S A 2023; 120:e2310063120. [PMID: 38113256 PMCID: PMC10756272 DOI: 10.1073/pnas.2310063120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Cancer genome sequencing consortiums have recently catalogued an abundance of somatic mutations, across a wide range of human cancers, in the chromatin-modifying enzymes that regulate gene expression. Defining the molecular mechanisms underlying the potentially oncogenic functions of these epigenetic mutations could serve as the basis for precision medicine approaches to cancer therapy. MLL4 encoded by the KMT2D gene highly mutated in a large number of human cancers, is a key histone lysine monomethyltransferase within the Complex of Proteins Associated with Set1 (COMPASS) family that regulates gene expression through enhancer function, potentially functioning as a tumor suppressor. We report that the KMT2D mutations which cause MLL4 protein truncation also alter MLL4's subcellular localization, resulting in loss-of-function in the nucleus and gain-of-function in the cytoplasm. We demonstrate that isogenic correction of KMT2D truncation mutation rescues the aberrant localization phenotype and restores multiple regulatory functions of MLL4, including COMPASS integrity/stabilization, histone H3K4 mono-methylation, enhancer activation, and therefore transcriptional regulation. Moreover, isogenic correction diminishes the sensitivity of KMT2D-mutated cancer cells to targeted metabolic inhibition. Using immunohistochemistry, we identified that cytoplasmic MLL4 is unique to the tissue of bladder cancer patients with KMT2D truncation mutations. Using a preclinical carcinogen model of bladder cancer in mouse, we demonstrate that truncated cytoplasmic MLL4 predicts response to targeted metabolic inhibition therapy for bladder cancer and could be developed as a biomarker for KMT2D-mutated cancers. We also highlight the broader potential for prognosis, patient stratification and treatment decision-making based on KMT2D mutation status in MLL4 truncation-relevant diseases, including human cancers and Kabuki Syndrome.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yuki Aoi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Cassandra N. Philips
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Khyati A. Meghani
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Sarah R. Gold
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yanni Yu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Luke St John
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Jun Qian
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Jacob M. Zeidner
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Joshua J. Meeks
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
19
|
D'Gama AM, Agrawal PB. Genomic medicine in neonatal care: progress and challenges. Eur J Hum Genet 2023; 31:1357-1363. [PMID: 37789085 PMCID: PMC10689757 DOI: 10.1038/s41431-023-01464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
During the neonatal period, many genetic disorders present and contribute to neonatal morbidity and mortality. Genomic medicine-the use of genomic information in clinical care- has the potential to significantly reduce morbidity and mortality in the neonatal period and improve outcomes for this population. Diagnostic genomic testing for symptomatic newborns, especially rapid testing, has been shown to be feasible and have diagnostic and clinical utility, particularly in the short-term. Ongoing studies are assessing the feasibility and utility, including personal utility, of implementation in diverse populations. Genomic screening for asymptomatic newborns has also been studied, and the acceptability and feasibility of such an approach remains an active area of investigation. Emerging precision therapies, with examples even at the "n-of-1" level, highlight the promise of precision diagnostics to lead to early intervention and improve outcomes. To sustainably implement genomic medicine in neonatal care in an ethical, effective, and equitable manner, we need to ensure access to genetics and genomics knowledge, access to genomic tests, which is currently limited by payors, feasible processes for ordering these tests, and access to follow up in the clinical and research realms. Future studies will provide further insight into enablers and barriers to optimize implementation strategies.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Holtz Children's Hospital, Jackson Health System, Miami, FL, USA.
| |
Collapse
|
20
|
Freke GM, Martins T, Davies RJ, Beyer T, Seda M, Peskett E, Haq N, Prasai A, Otto G, Jeyabalan Srikaran J, Hernandez V, Diwan GD, Russell RB, Ueffing M, Huranova M, Boldt K, Beales PL, Jenkins D. De-Suppression of Mesenchymal Cell Identities and Variable Phenotypic Outcomes Associated with Knockout of Bbs1. Cells 2023; 12:2662. [PMID: 37998397 PMCID: PMC10670506 DOI: 10.3390/cells12222662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is an archetypal ciliopathy caused by dysfunction of primary cilia. BBS affects multiple tissues, including the kidney, eye and hypothalamic satiety response. Understanding pan-tissue mechanisms of pathogenesis versus those which are tissue-specific, as well as gauging their associated inter-individual variation owing to genetic background and stochastic processes, is of paramount importance in syndromology. The BBSome is a membrane-trafficking and intraflagellar transport (IFT) adaptor protein complex formed by eight BBS proteins, including BBS1, which is the most commonly mutated gene in BBS. To investigate disease pathogenesis, we generated a series of clonal renal collecting duct IMCD3 cell lines carrying defined biallelic nonsense or frameshift mutations in Bbs1, as well as a panel of matching wild-type CRISPR control clones. Using a phenotypic screen and an unbiased multi-omics approach, we note significant clonal variability for all assays, emphasising the importance of analysing panels of genetically defined clones. Our results suggest that BBS1 is required for the suppression of mesenchymal cell identities as the IMCD3 cell passage number increases. This was associated with a failure to express epithelial cell markers and tight junction formation, which was variable amongst clones. Transcriptomic analysis of hypothalamic preparations from BBS mutant mice, as well as BBS patient fibroblasts, suggested that dysregulation of epithelial-to-mesenchymal transition (EMT) genes is a general predisposing feature of BBS across tissues. Collectively, this work suggests that the dynamic stability of the BBSome is essential for the suppression of mesenchymal cell identities as epithelial cells differentiate.
Collapse
Affiliation(s)
- Grace Mercedes Freke
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Tiago Martins
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Rosalind Jane Davies
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Tina Beyer
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (T.B.); (M.U.); (K.B.)
| | - Marian Seda
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Emma Peskett
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Naila Haq
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Avishek Prasai
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic (M.H.)
| | - Georg Otto
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Jeshmi Jeyabalan Srikaran
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Victor Hernandez
- Life Sciences Department, CHMLS, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK;
| | - Gaurav D. Diwan
- BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; (G.D.D.); (R.B.R.)
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Robert B. Russell
- BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; (G.D.D.); (R.B.R.)
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (T.B.); (M.U.); (K.B.)
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic (M.H.)
| | - Karsten Boldt
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (T.B.); (M.U.); (K.B.)
| | - Philip L. Beales
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Dagan Jenkins
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| |
Collapse
|
21
|
Tu T, Fang Z, Cheng Z, Spasic S, Palepu A, Stankovic KM, Natarajan V, Peltz G. Genetic Discovery Enabled by A Large Language Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566468. [PMID: 37986848 PMCID: PMC10659415 DOI: 10.1101/2023.11.09.566468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Artificial intelligence (AI) has been used in many areas of medicine, and recently large language models (LLMs) have shown potential utility for clinical applications. However, since we do not know if the use of LLMs can accelerate the pace of genetic discovery, we used data generated from mouse genetic models to investigate this possibility. We examined whether a recently developed specialized LLM (Med-PaLM 2) could analyze sets of candidate genes generated from analysis of murine models of biomedical traits. In response to free-text input, Med-PaLM 2 correctly identified the murine genes that contained experimentally verified causative genetic factors for six biomedical traits, which included susceptibility to diabetes and cataracts. Med-PaLM 2 was also able to analyze a list of genes with high impact alleles, which were identified by comparative analysis of murine genomic sequence data, and it identified a causative murine genetic factor for spontaneous hearing loss. Based upon this Med-PaLM 2 finding, a novel bigenic model for susceptibility to spontaneous hearing loss was developed. These results demonstrate Med-PaLM 2 can analyze gene-phenotype relationships and generate novel hypotheses, which can facilitate genetic discovery.
Collapse
Affiliation(s)
- Tao Tu
- Google Research, Mountain View, CA, USA
| | - Zhouqing Fang
- Department of Anesthesiology, Pain and Perioperative Medicine
| | - Zhuanfen Cheng
- Department of Anesthesiology, Pain and Perioperative Medicine
| | - Svetolik Spasic
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Konstantina M Stankovic
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Gary Peltz
- Department of Anesthesiology, Pain and Perioperative Medicine
| |
Collapse
|
22
|
Yadav D, Patil-Takbhate B, Khandagale A, Bhawalkar J, Tripathy S, Khopkar-Kale P. Next-Generation sequencing transforming clinical practice and precision medicine. Clin Chim Acta 2023; 551:117568. [PMID: 37839516 DOI: 10.1016/j.cca.2023.117568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized the field of genomics and is rapidly transforming clinical diagnosis and precision medicine. This advanced sequencing technology enables the rapid and cost-effective analysis of large-scale genomic data, allowing comprehensive exploration of the genetic landscape of diseases. In clinical diagnosis, NGS has proven to be a powerful tool for identifying disease-causing variants, enabling accurate and early detection of genetic disorders. Additionally, NGS facilitates the identification of novel disease-associated genes and variants, aiding in the development of targeted therapies and personalized treatment strategies. NGS greatly benefits precision medicine by enhancing our understanding of disease mechanisms and enabling the identification of specific molecular markers for disease subtypes, thus enabling tailored medical interventions based on individual characteristics. Furthermore, NGS contributes to the development of non-invasive diagnostic approaches, such as liquid biopsies, which can monitor disease progression and treatment response. The potential of NGS in clinical diagnosis and precision medicine is vast, yet challenges persist in data analysis, interpretation, and protocol standardization. This review highlights NGS applications in disease diagnosis, prognosis, and personalized treatment strategies, while also addressing challenges and future prospects in fully harnessing genomic potential within clinical practice.
Collapse
Affiliation(s)
- Deepali Yadav
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India; Department of Biotechnology, Dr. D. Y. Patil Arts Science and Commerce College, Pimpri Pune 411018, India
| | - Bhagyashri Patil-Takbhate
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India
| | - Anil Khandagale
- Department of Biotechnology, Dr. D. Y. Patil Arts Science and Commerce College, Pimpri Pune 411018, India
| | - Jitendra Bhawalkar
- Department of Community Medicine, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India
| | - Srikanth Tripathy
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India.
| | - Priyanka Khopkar-Kale
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India.
| |
Collapse
|
23
|
Hartley T, Gillespie MK, Graham ID, Hayeems RZ, Li S, Sampson M, Boycott KM, Potter BK. Exome and genome sequencing for rare genetic disease diagnosis: A scoping review and critical appraisal of clinical guidance documents produced by genetics professional organizations. Genet Med 2023; 25:100948. [PMID: 37551668 DOI: 10.1016/j.gim.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
PURPOSE Exome and genome sequencing have rapidly transitioned from research methods to widely used clinical tests for diagnosing rare genetic diseases. We sought to synthesize the topics covered and appraise the development processes of clinical guidance documents generated by genetics professional organizations. METHODS We conducted a scoping review of guidance documents published since 2010, systematically identified in peer-reviewed and gray literature, using established methods and reporting guidelines. We coded verbatim recommendations by topic using content analysis and critically appraised documents using the Appraisal of Guidelines Research and Evaluation (AGREE) II tool. RESULTS We identified 30 guidance documents produced by 8 organizations (2012-2022), yielding 611 recommendations covering 21 topics. The most common topic related to findings beyond the primary testing indication. Mean AGREE II scores were low across all 6 quality domains; scores for items related to rigor of development were among the lowest. More recently published documents generally received higher scores. CONCLUSION Guidance documents included a broad range of recommendations but were of low quality, particularly in their rigor of development. Developers should consider using tools such as AGREE II and basing recommendations on living knowledge syntheses to improve guidance development in this evolving space.
Collapse
Affiliation(s)
- Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ottawa, Ontario, Canada.
| | - Meredith K Gillespie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Ian D Graham
- University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Robin Z Hayeems
- Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Sheena Li
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Margaret Sampson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | |
Collapse
|
24
|
Zhuang J, Liu S, Wang J, Chen Y, Zhang H, Jiang Y, Wang G, Chen C. Prenatal whole exome sequencing identified two rare compound heterozygous variants in EVC2 causing Ellis-van Creveld syndrome. Mol Genet Genomic Med 2023; 11:e2242. [PMID: 37485807 PMCID: PMC10568384 DOI: 10.1002/mgg3.2242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Pathogenic mutations in EVC or EVC2 gene can lead to Ellis-van Creveld (EvC) syndrome, which is a rare autosomal recessive skeletal dysplasia disorder. This study aimed to determine pathogenic gene variations associated with EvC syndrome in fetuses showing ultrasound anomalies. METHODS A 32-year-old pregnant woman from Quanzhou, China was investigated. In her pregnancy examination, the fetus exhibited multiple fetal malformations, including a narrow thorax, short limbs, postaxial polydactyly, cardiac malformations, and separation of double renal pelvis. Karyotype, chromosomal microarray analysis and whole exome sequencing were performed for prenatal genetic etiology analysis. RESULTS Chromosome abnormalities and copy number variants were not observed in the fetus using karyotype and chromosomal microarray analysis. Using whole exome sequencing, two compound heterozygous variants NM_147127.5:c.[2484G>A(p.Trp828Ter)];[871-2_894del] in EVC2 gene were identified in the fetus as pathogenic variants inherited from parents. CONCLUSIONS The study is the first to identify two rare compound variants in EVC2 gene in a Chinese family using whole exome sequencing. The application of whole-exome sequencing would be helpful in fetal etiological diagnosis with ultrasound anomalies.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis CenterQuanzhou Women's and Children's HospitalQuanzhouChina
| | - Shufen Liu
- Department of NeurologyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Junyu Wang
- Prenatal Diagnosis CenterQuanzhou Women's and Children's HospitalQuanzhouChina
| | - Yu'e Chen
- Department of UltrasoundQuanzhou Women's and Children's HospitalQuanzhouChina
| | - Hegan Zhang
- Department of GynecologyQuanzhou Women's and Children's HospitalQuanzhouChina
| | - Yuying Jiang
- Prenatal Diagnosis CenterQuanzhou Women's and Children's HospitalQuanzhouChina
| | - Gaoxiong Wang
- Quanzhou Women's and Children's HospitalQuanzhouChina
| | - Chunnuan Chen
- Department of NeurologyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| |
Collapse
|
25
|
Tesi B, Boileau C, Boycott KM, Canaud G, Caulfield M, Choukair D, Hill S, Spielmann M, Wedell A, Wirta V, Nordgren A, Lindstrand A. Precision medicine in rare diseases: What is next? J Intern Med 2023; 294:397-412. [PMID: 37211972 DOI: 10.1111/joim.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular diagnostics is a cornerstone of modern precision medicine, broadly understood as tailoring an individual's treatment, follow-up, and care based on molecular data. In rare diseases (RDs), molecular diagnoses reveal valuable information about the cause of symptoms, disease progression, familial risk, and in certain cases, unlock access to targeted therapies. Due to decreasing DNA sequencing costs, genome sequencing (GS) is emerging as the primary method for precision diagnostics in RDs. Several ongoing European initiatives for precision medicine have chosen GS as their method of choice. Recent research supports the role for GS as first-line genetic investigation in individuals with suspected RD, due to its improved diagnostic yield compared to other methods. Moreover, GS can detect a broad range of genetic aberrations including those in noncoding regions, producing comprehensive data that can be periodically reanalyzed for years to come when further evidence emerges. Indeed, targeted drug development and repurposing of medicines can be accelerated as more individuals with RDs receive a molecular diagnosis. Multidisciplinary teams in which clinical specialists collaborate with geneticists, genomics education of professionals and the public, and dialogue with patient advocacy groups are essential elements for the integration of precision medicine into clinical practice worldwide. It is also paramount that large research projects share genetic data and leverage novel technologies to fully diagnose individuals with RDs. In conclusion, GS increases diagnostic yields and is a crucial step toward precision medicine for RDs. Its clinical implementation will enable better patient management, unlock targeted therapies, and guide the development of innovative treatments.
Collapse
Affiliation(s)
- Bianca Tesi
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Catherine Boileau
- Département de Génétique, APHP, Hôpital Bichat-Claude Bernard, Université Paris Cité, Paris, France
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Guillaume Canaud
- INSERM U1151, Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, Université Paris Cité, AP-HP, Paris, France
| | - Mark Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Daniela Choukair
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sue Hill
- Chief Scientific Officer, NHS England, London, UK
| | - Malte Spielmann
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel, Germany
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institutet of Technology, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Babai A, Irving M. Orofacial Clefts: Genetics of Cleft Lip and Palate. Genes (Basel) 2023; 14:1603. [PMID: 37628654 PMCID: PMC10454293 DOI: 10.3390/genes14081603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Orofacial clefting is considered one of the commonest birth defects worldwide. It presents as cleft lip only, isolated cleft palate or cleft lip and palate. The condition has a diverse genetic background influenced by gene-gene and gene-environment interaction, resulting in two main types, syndromic and nonsyndromic orofacial clefts. Orofacial clefts lead to significant physiological difficulties that affect feeding, speech and language development and other developmental aspects, which results in an increased social and financial burden on the affected individuals and their families. The management of cleft lip and palate is solely based on following a multidisciplinary team approach. In this narrative review article, we briefly summarize the different genetic causes of orofacial clefts and discuss some of the common syndromes and the approach to the management of orofacial clefts.
Collapse
Affiliation(s)
- Arwa Babai
- Department of Clinical Genetics, Guy’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK;
| | | |
Collapse
|
27
|
Simpson CL, Kimble DC, Chandrasekharappa SC, Alqosayer K, Holzinger E, Carrington B, McElderry J, Sood R, Al‐Souqi G, Albacha‐Hejazi H, Bailey‐Wilson JE. A novel de novo TP63 mutation in whole-exome sequencing of a Syrian family with Oral cleft and ectrodactyly. Mol Genet Genomic Med 2023; 11:e2179. [PMID: 37070724 PMCID: PMC10422068 DOI: 10.1002/mgg3.2179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Oral clefts and ectrodactyly are common, heterogeneous birth defects. We performed whole-exome sequencing (WES) analysis in a Syrian family. The proband presented with both orofacial clefting and ectrodactyly but not ectodermal dysplasia as typically seen in ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome-3. A paternal uncle with only an oral cleft was deceased and unavailable for analysis. METHODS Variant annotation, Mendelian inconsistencies, and novel variants in known cleft genes were examined. Candidate variants were validated using Sanger sequencing, and pathogenicity assessed by knocking out the tp63 gene in zebrafish to evaluate its role during zebrafish development. RESULTS Twenty-eight candidate de novo events were identified, one of which is in a known oral cleft and ectrodactyly gene, TP63 (c.956G > T, p.Arg319Leu), and confirmed by Sanger sequencing. CONCLUSION TP63 mutations are associated with multiple autosomal dominant orofacial clefting and limb malformation disorders. The p.Arg319Leu mutation seen in this patient is de novo but also novel. Two known mutations in the same codon (c.956G > A, p.(Arg319His; rs121908839, c.955C > T), p.Arg319Cys) cause ectrodactyly, providing evidence that mutating this codon is deleterious. While this TP63 mutation is the best candidate for the patient's clinical presentation, whether it is responsible for the entire phenotype is unclear. Generation and characterization of tp63 knockout zebrafish showed necrosis and rupture of the head at 3 days post-fertilization (dpf). The embryonic phenotype could not be rescued by injection of zebrafish or human messenger RNA (mRNA). Further functional analysis is needed to determine what proportion of the phenotype is due to this mutation.
Collapse
Affiliation(s)
- Claire L. Simpson
- Computational and Statistical Genomics Branch, National Human Genome Research InstituteNational Institutes of HealthBaltimoreMaryland21224USA
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennessee38163USA
| | - Danielle C. Kimble
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research InstituteNational Institutes of HealthBethesdaMaryland20814USA
| | - Settara C. Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research InstituteNational Institutes of HealthBethesdaMaryland20814USA
| | | | | | - Emily Holzinger
- Computational and Statistical Genomics Branch, National Human Genome Research InstituteNational Institutes of HealthBaltimoreMaryland21224USA
| | - Blake Carrington
- Zebrafish Core, National Human Genome Research InstituteNational Institutes of HealthBethesdaMaryland20892USA
| | - John McElderry
- Zebrafish Core, National Human Genome Research InstituteNational Institutes of HealthBethesdaMaryland20892USA
| | - Raman Sood
- Zebrafish Core, National Human Genome Research InstituteNational Institutes of HealthBethesdaMaryland20892USA
| | | | | | - Joan E. Bailey‐Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research InstituteNational Institutes of HealthBaltimoreMaryland21224USA
| |
Collapse
|
28
|
Guo L, Salian S, Xue JY, Rath N, Rousseau J, Kim H, Ehresmann S, Moosa S, Nakagawa N, Kuroda H, Clayton-Smith J, Wang J, Wang Z, Banka S, Jackson A, Zhang YM, Wei ZJ, Hüning I, Brunet T, Ohashi H, Thomas MF, Bupp C, Miyake N, Matsumoto N, Mendoza-Londono R, Costain G, Hahn G, Di Donato N, Yigit G, Yamada T, Nishimura G, Ansel KM, Wollnik B, Hrabě de Angelis M, Mégarbané A, Rosenfeld JA, Heissmeyer V, Ikegawa S, Campeau PM. Null and missense mutations of ERI1 cause a recessive phenotypic dichotomy in humans. Am J Hum Genet 2023; 110:1068-1085. [PMID: 37352860 PMCID: PMC10357479 DOI: 10.1016/j.ajhg.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023] Open
Abstract
ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.
Collapse
Affiliation(s)
- Long Guo
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center of Medical Genetics, Northwest Women's and Children's Hospital, the Affiliated Northwest Women's and Children's Hospital of Xi'an Jiaotong University Health Science Center, Xi'an 710003, China.
| | - Smrithi Salian
- Department of Pediatrics, CHU Sainte Justine Research Center, University of Montreal, 3175 Cote-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Jing-Yi Xue
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China; Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Nicola Rath
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, German Research Center for Environmental Health, D-81377 Munich, Germany
| | - Justine Rousseau
- Department of Pediatrics, CHU Sainte Justine Research Center, University of Montreal, 3175 Cote-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Hyunyun Kim
- Department of Pediatrics, CHU Sainte Justine Research Center, University of Montreal, 3175 Cote-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Sophie Ehresmann
- Molecular Biology Program, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Shahida Moosa
- Division of Molecular Biology and Human Genetics, Stellenbosch University and Medical Genetics, Tygerberg Hospital, Tygerberg 7505, South Africa
| | - Norio Nakagawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; Department of Pediatrics, North Medical Center, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroshi Kuroda
- Department of Pediatrics, Kyoto City Hospital, Kyoto 604-8845, Japan
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Foundation NHS Trust, Health Innovation Manchester, M13 9WL Manchester, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL Manchester, UK
| | - Juan Wang
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Foundation NHS Trust, Health Innovation Manchester, M13 9WL Manchester, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL Manchester, UK
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Foundation NHS Trust, Health Innovation Manchester, M13 9WL Manchester, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL Manchester, UK
| | - Yan-Min Zhang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710082, China
| | - Zhen-Jie Wei
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Irina Hüning
- Institute of Human Genetics, University of Lübeck, 23538 Lübeck, Germany
| | - Theresa Brunet
- Institute of Human Genetics, School of Medicine, Technical University Munich, 80333 Munich, Germany; Department of Paediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig Maximilian University of Munich, 80539 Munich, Germany
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Hospital, Saitama 330-8777, Japan
| | - Molly F Thomas
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caleb Bupp
- Spectrum Health, Grand Rapids, MI 49503, USA
| | - Noriko Miyake
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Program in Genetics and Genome Biology, SickKids Research Institute, and Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Gregory Costain
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Gabriele Hahn
- Institute for Radiological Diagnostics, Universitätsklinikum Carl Gustav Carus Dresden, Technische Universität, 01307 Dresden, Germany
| | - Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01069 Dresden, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
| | - Takahiro Yamada
- Department of Medical Ethics and Medical Genetics, Kyoto University School of Public Health, Kyoto 606-8501, Japan
| | - Gen Nishimura
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - K Mark Ansel
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, 85354 Freising, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - André Mégarbané
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, 1102-2801, Lebanon and Institut Jerome Lejeune, 75015 Paris, France
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, German Research Center for Environmental Health, D-81377 Munich, Germany; Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, 82152 Planegg-Martinsried, Germany
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Philippe M Campeau
- Department of Pediatrics, CHU Sainte Justine Research Center, University of Montreal, 3175 Cote-Sainte-Catherine, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
29
|
Ma Q, Che L, Chen Y, Gu Z. Identification of five novel variants of ADAR1 in dyschromatosis symmetrica hereditaria by next-generation sequencing. Front Pediatr 2023; 11:1161502. [PMID: 37476031 PMCID: PMC10354868 DOI: 10.3389/fped.2023.1161502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Background Dyschromatosis symmetrica hereditaria (DSH) is a rare autosomal dominant inherited pigmentary dermatosis characterized by a mixture of hyperpigmented and hypopigmented freckles on the dorsal aspect of the distal extremities. To date, pathogenic mutations causing DSH have been identified in the adenosine deaminase acting on RNA1 gene (ADAR1), which is mapped to chromosome 1q21. Objective The present study aimed to investigate the underlying pathological mechanism in 14 patients with DSH from five unrelated Chinese families. Next-generation sequencing (NGS) and direct sequencing were performed on a proband with DSH to identify causative mutations. All coding, adjacent intronic, and 5'- and 3'-untranslated regions of ADAR1 were screened, and variants were identified. Result These mutations consisted of three missense mutations (NM_001025107: c.716G>A, NM_001111.5: c.3384G>C, and NM_001111.5: c.3385T>G), one nonsense mutation (NM_001111.5:c.511G>T), and one splice-site mutation (NM_001111.5: c.2080-1G>T) located in exon 2, exon 14, and the adjacent intronic region according to recommended Human Genome Variation Society (HGVS) nomenclature. Moreover, using polymerase chain reaction and Sanger sequencing, we identified five novel ADAR1 variants, which can be predicted to be pathogenic by in silico genome sequence analysis. Among the mutations, the missense mutations had no significant effect on the spatial structure of the protein, while the stop codon introduced by the nonsense mutation truncated the protein. Conclusion Our results highlighted that the advent of NGS has facilitated high-throughput screening for the identification of disease-causing mutations with high accuracy, stability, and specificity. Five novel genetic mutations were found in five unrelated families, thereby extending the pathogenic mutational spectrum of ADAR1 in DSH and providing new insights into this complex genetic disorder.
Collapse
Affiliation(s)
- Qian Ma
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Lingyi Che
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Zhao Z, Cao K, Watanabe J, Philips CN, Zeidner JM, Ishi Y, Wang Q, Gold SR, Junkins K, Bartom ET, Yue F, Chandel NS, Hashizume R, Ben-Sahra I, Shilatifard A. Therapeutic targeting of metabolic vulnerabilities in cancers with MLL3/4-COMPASS epigenetic regulator mutations. J Clin Invest 2023; 133:e169993. [PMID: 37252797 PMCID: PMC10313365 DOI: 10.1172/jci169993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Epigenetic status-altering mutations in chromatin-modifying enzymes are a feature of human diseases, including many cancers. However, the functional outcomes and cellular dependencies arising from these mutations remain unresolved. In this study, we investigated cellular dependencies, or vulnerabilities, that arise when enhancer function is compromised by loss of the frequently mutated COMPASS family members MLL3 and MLL4. CRISPR dropout screens in MLL3/4-depleted mouse embryonic stem cells (mESCs) revealed synthetic lethality upon suppression of purine and pyrimidine nucleotide synthesis pathways. Consistently, we observed a shift in metabolic activity toward increased purine synthesis in MLL3/4-KO mESCs. These cells also exhibited enhanced sensitivity to the purine synthesis inhibitor lometrexol, which induced a unique gene expression signature. RNA-Seq identified the top MLL3/4 target genes coinciding with suppression of purine metabolism, and tandem mass tag proteomic profiling further confirmed upregulation of purine synthesis in MLL3/4-KO cells. Mechanistically, we demonstrated that compensation by MLL1/COMPASS was underlying these effects. Finally, we demonstrated that tumors with MLL3 and/or MLL4 mutations were highly sensitive to lometrexol in vitro and in vivo, both in culture and in animal models of cancer. Our results depicted a targetable metabolic dependency arising from epigenetic factor deficiency, providing molecular insight to inform therapy for cancers with epigenetic alterations secondary to MLL3/4 COMPASS dysfunction.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Kaixiang Cao
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Jun Watanabe
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Cassandra N. Philips
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Jacob M. Zeidner
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Yukitomo Ishi
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Sarah R. Gold
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Katherine Junkins
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Navdeep S. Chandel
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rintaro Hashizume
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| |
Collapse
|
31
|
D'Gama AM, Agrawal PB. Role of genomic medicine and implementing equitable access for critically ill infants in neonatal intensive care units. J Perinatol 2023; 43:963-967. [PMID: 36774516 PMCID: PMC9918837 DOI: 10.1038/s41372-023-01630-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/13/2023]
Abstract
Genetic disorders are a leading cause of morbidity and mortality in infants admitted to neonatal intensive care units. This population has immense potential to benefit from genomic medicine, as early precision diagnosis is critical to early personalized management. However, the implementation of genomic medicine in neonatology thus far has arguably worsened health inequities, and strategies are urgently needed to achieve equitable access to genomics in neonatal care. In this perspective, we demonstrate the utility of genomic sequencing in critically ill infants and highlight three key recommendations to advance equitable access: recruitment of underrepresented populations, education of non-genetics providers to empower practice of genomic medicine, and development of innovative infrastructure to implement genomic medicine across diverse settings.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Neonatal Genomics Program, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Pankaj B Agrawal
- Neonatal Genomics Program, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
32
|
Rahpeyma M, Sabermoghaddam A, Kiarudi MY, Aghabozorgi AS, Pasdar A. Role of Abelson Helper Integration Site 1, Nebulin, and Paired Box 3 Genes in the Development of Nonsyndromic Strabismus in a Series of Iranian Families: Sequence Analysis and Systematic Review of the Genetics of Nonsyndromic Strabismus. J Curr Ophthalmol 2023; 35:216-225. [PMID: 38681684 PMCID: PMC11047811 DOI: 10.4103/joco.joco_53_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 05/01/2024] Open
Abstract
Purpose To look for causative genetic mutations in a series of Iranian families with strabismus. In addition, we systematically reviewed all the published articles regarding the role of genetic variations in primary and nonsyndromic comitant strabismus. Methods Four families with a history of multiple cases of primary and nonsyndromic comitant strabismus were enrolled in this study. Polymerase chain reaction and Sanger sequencing of exons 23, 11, and 3 of the Abelson helper integration site 1 (AHI1), nebulin (NEB), and paired box 3 (PAX3) genes were performed, respectively. One offspring of a consanguineous marriage underwent whole-exome sequencing (WES) to look for possible causative variants. To conduct a systematic review, we thoroughly searched PubMed, Scopus, and ISI Web of Knowledge extracting relevant publications, released by April 2021. Results We examined four Iranian strabismus pedigrees with multiple affected offspring in different generations. Among these 17 participants, 10 family members had strabismus and 7 were healthy. Sanger sequencing did not reveal a causative mutation. Therefore, to further investigate, one affected offspring was chosen for WES. The WES study demonstrated two possible variants in MYO5B and DHODH genes. These genetic variants showed high allele frequency in our population and are thought to be polymorphisms in our series of Iranian families. Conclusions We demonstrated that mutations in AHI1, NEB, and PAX3 genes were not common in a series of Iranian patients with familial strabismus. Moreover, by performing WES, we revealed that two variants of uncertain significance as possible causative variants for strabismus are not related to this disease in our population.
Collapse
Affiliation(s)
- Maliheh Rahpeyma
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Arab F, Ahangari N, Malek H, Doosti M, Najarzadeh Torbati P, Ghayoor Karimiani E. Limb-Girdle Muscular Dystrophy Type 2B (LGMD2B) caused by Pathogenic Splice and Missense Variants of DYSF Gene among Iranians with Muscular Dystrophy. Adv Biomed Res 2023; 12:150. [PMID: 37564451 PMCID: PMC10410417 DOI: 10.4103/abr.abr_131_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 08/12/2023] Open
Abstract
Background The phenotypic range of limb-girdle muscular dystrophies (LGMDs) varies significantly because of genetic heterogeneity ranging from very mild to severe forms. Molecular analysis of the DYSF gene is challenging due to the wide range of mutations and associated complications in interpretations of novel DYSF variants with uncertain significance. Thus, in the current study, we performed the NGS analysis and its results are confirmed with Sanger sequencing to find the plausible disease-causing variants in patients with muscular dystrophy and their relatives via segregation analysis. Materials and Methods Nine patients with LGMD type 2B (LGMD2B) characteristics were screened for putative mutations by the whole-exome sequencing (WES) test. Either the patients themselves or their parents and first relatives were investigated in the segregation analysis through Sanger sequencing. The majority of variants were classified as pathogenic through American College of Medical Genetics and Genomics (ACMG) guidelines, segregation results, and in silico predictions. Results Results revealed eight variants in DYSF gene, including three splicing (c.1149+4A>G, c.2864+1G>A, and c.5785-7G>A), two nonsense (p.Gln112Ter and p.Trp2084Ter), two missense (p.Thr1546Pro and p.Tyr1032Cys), and one frameshift (p.Asp1067Ilefs), among nine Iranian families. One of the eight identified variants was novel, including p.Asp1067Ilefs, which was predicted to be likely pathogenic based on the ACMG guidelines. Notably, prediction tools suggested the damaging effects of studied variants on dysferlin structure. Conclusion Conclusively, the current report introduced eight variants including a novel frameshift in DYSF gene with noticeable pathogenic effects. This study significantly can broaden the diagnostic spectrum of LGMD2B in combination with previous reports about DYSF mutations and may pave the way for a rapidly high-ranked identification of the accurate type of dysferlinopathy.
Collapse
Affiliation(s)
- Fatemeh Arab
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Ahangari
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hadis Malek
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Mohammad Doosti
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | | | - Ehsan Ghayoor Karimiani
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, United Kingdom, Iran
| |
Collapse
|
34
|
Chinnici A, Beneforti L, Pegoraro F, Trambusti I, Tondo A, Favre C, Coniglio ML, Sieni E. Approaching hemophagocytic lymphohistiocytosis. Front Immunol 2023; 14:1210041. [PMID: 37426667 PMCID: PMC10324660 DOI: 10.3389/fimmu.2023.1210041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Hemophagocytic Lymphohistiocytosis (HLH) is a rare clinical condition characterized by sustained but ineffective immune system activation, leading to severe and systemic hyperinflammation. It may occur as a genetic or sporadic condition, often triggered by an infection. The multifaceted pathogenesis results in a wide range of non-specific signs and symptoms, hampering early recognition. Despite a great improvement in terms of survival in the last decades, a considerable proportion of patients with HLH still die from progressive disease. Thus, prompt diagnosis and treatment are crucial for survival. Faced with the complexity and the heterogeneity of syndrome, expert consultation is recommended to correctly interpret clinical, functional and genetic findings and address therapeutic decisions. Cytofluorimetric and genetic analysis should be performed in reference laboratories. Genetic analysis is mandatory to confirm familial hemophagocytic lymphohistiocytosis (FHL) and Next Generation Sequencing is increasingly adopted to extend the spectrum of genetic predisposition to HLH, though its results should be critically discussed with specialists. In this review, we critically revise the reported laboratory tools for the diagnosis of HLH, in order to outline a comprehensive and widely available workup that allows to reduce the time between the clinical suspicion of HLH and its final diagnosis.
Collapse
Affiliation(s)
- Aurora Chinnici
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Linda Beneforti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Francesco Pegoraro
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Irene Trambusti
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Maria Luisa Coniglio
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Elena Sieni
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| |
Collapse
|
35
|
Larizza L, Cubellis MV. Rare Diseases: Implementation of Molecular Diagnosis, Pathogenesis Insights and Precision Medicine Treatment. Int J Mol Sci 2023; 24:ijms24109064. [PMID: 37240412 DOI: 10.3390/ijms24109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Rare Diseases (RD) do not have an exact definition since local authorities define the criteria in different ways, from fewer than 5 people in 10,000, according to the European Union, to the standard world average of 40 cases per 100,000 people [...].
Collapse
Affiliation(s)
- Lidia Larizza
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, 20145 Milan, Italy
| | - Maria Vittoria Cubellis
- Dipartimento di Biologia, Università Federico II, 80126 Naples, Italy
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Istituto di Chimica Biomolecolare-CNR, 80078 Pozzuoli, Italy
| |
Collapse
|
36
|
Yang K, Fu LM, Chu XY, Zhang J, Chen WQ, Yan YS, Wang YP, Zhang DL, Yin CH, Guo Q. Assessment of a novel variation in DHODH gene causing Miller syndrome: The first report in Chinese population. Mol Genet Genomic Med 2023:e2186. [PMID: 37120754 DOI: 10.1002/mgg3.2186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Miller syndrome is a rare type of postaxial acrofacial dysostosis caused by biallelic mutations in the DHODH gene, which is characterized mainly by craniofacial malformations of micrognathia, orofacial clefts, cup-shaped ears, and malar hypoplasia, combined with postaxial limb deformities like the absence of fifth digits. METHODS In this study, a prenatal case with multiple orofacial-limb abnormities was enrolled, and a thorough clinical and imaging examination was performed. Subsequently, genetic detection with karyotyping, chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) was carried out. In vitro splicing analysis was also conducted to clarify the impact of one novel variant. RESULTS The affected fetus displayed typical manifestations of Miller syndrome, and WES identified a diagnostic compound heterozygous variation in DHODH, consisting of two variants: exon(1-3)del and c.819 + 5G > A. We conducted a further in vitro validation with minigene system, and the result indicated that the c.819 + 5G > A variant would lead to an exon skipping in mRNA splicing. CONCLUSIONS These findings provided with the first exonic deletion and first splice site variant in DHODH, which expanded the mutation spectrum of Miller syndrome and offered reliable evidence for genetic counseling to the affected family.
Collapse
Affiliation(s)
- Kai Yang
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Li-Man Fu
- Ultrasonic Department, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, China
| | - Xiao-Yang Chu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, China
| | - Wen-Qi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, China
| | - You-Sheng Yan
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Yi-Peng Wang
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Dong-Liang Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| | - Cheng-Hong Yin
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Qing Guo
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, China
| |
Collapse
|
37
|
Feng J, Lin S, Wang W, Chen Q, Wang W, Li J, Wang X. Thyroid hormone resistance resulting from a novel mutation in the THRB gene in a Chinese child: A case report. Medicine (Baltimore) 2023; 102:e33587. [PMID: 37115071 PMCID: PMC10145980 DOI: 10.1097/md.0000000000033587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Thyroid hormone resistance (RTH) (mim # 188570) is a rare autosomal dominant genetic disorder characterized by reduced thyroid hormone response in target tissues. The clinical manifestations of RTH vary from no symptoms to symptoms of thyroid hormone deficiency to symptoms of thyroid hormone excess. PATIENT CONCERN AND CLINICAL FINDINGS A 24-month-old girl presented with growth retardation, tachycardia, and persistently elevated thyroid hormones despite antithyroid treatment. DIAGNOSIS/INTERVENTION/OUTCOMES The patient was diagnosed with RTH, after whole exon gene sequencing, found a de novo missense mutation (c.1375T > G,p.Phe459Val) in a novel locus of the thyroid hormone receptor beta gene. She had only mild growth retardation, so the decision was made to monitor her development without intervention. At her last follow-up at 5 years and 8 months of age, she continued to show growth retardation (-2 standard deviation below age-appropriate levels), in addition to delayed language development. Her comprehension ability and heart rate have remained normal. CONCLUSIONS We report a mild case of RTH caused by a novel thyroid hormone receptor beta gene mutation. RTH should be considered in the differential diagnosis of abnormal serum thyroxine levels during neonatal screening.
Collapse
Affiliation(s)
- Jinhua Feng
- Diagnosis and Treatment Center for Children, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Shuangzhu Lin
- Diagnosis and Treatment Center for Children, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Wei Wang
- Diagnosis and Treatment Center for Children, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Qiandui Chen
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Wanqi Wang
- Pediatrics of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Jiayi Li
- Pediatrics of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Xinyao Wang
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| |
Collapse
|
38
|
Huang R, Fu F, Zhou H, Zhang L, Lei T, Cheng K, Yan S, Guo F, Wang Y, Ma C, Li R, Yu Q, Deng Q, Li L, Yang X, Han J, Li D, Liao C. Prenatal diagnosis in the fetal hyperechogenic kidneys: assessment using chromosomal microarray analysis and exome sequencing. Hum Genet 2023; 142:835-847. [PMID: 37095353 DOI: 10.1007/s00439-023-02545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/26/2023]
Abstract
Fetal hyperechogenic kidneys (HEK) is etiologically a heterogeneous disorder. The aim of this study was to identify the genetic causes of HEK using prenatal chromosomal microarray analysis (CMA) and exome sequencing (ES). From June 2014 to September 2022, we identified 92 HEK fetuses detected by ultrasound. We reviewed and documented other ultrasound anomalies, microscopic and submicroscopic chromosomal abnormalities, and single gene disorders. We also analyzed the diagnostic yield of CMA and ES and the clinical impact the diagnosis had on pregnancy management. In our cohort, CMA detected 27 pathogenic copy number variations (CNVs) in 25 (25/92, 27.2%) fetuses, with the most common CNV being 17q12 microdeletion syndrome. Among the 26 fetuses who underwent further ES testing, we identified 7 pathogenic/likely pathogenic variants and 8 variants of uncertain significance in 9 genes in 12 fetuses. Four novel variants were first reported herein, expanding the mutational spectra for HEK-related genes. Following counseling, 52 families chose to continue the pregnancy, and in 23 of them, postnatal ultrasound showed no detectable renal abnormalities. Of these 23 cases, 15 had isolated HEK on prenatal ultrasound. Taken together, our study showed a high rate of detectable genetic etiologies in cases with fetal HEK at the levels of chromosomal (aneuploidy), sub-chromosomal (microdeletions/microduplications), and single gene (point mutations). Therefore, we speculate that combined CMA and ES testing for fetal HEK is feasible and has good clinical utility. When no genetic abnormalities are identified, the findings can be transient, especially in the isolated HEK group.
Collapse
Affiliation(s)
- Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Lu Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Tingying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Ken Cheng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fei Guo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - You Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Qiuxia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Qiong Deng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Lushan Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China.
| |
Collapse
|
39
|
Ye B, Tang X, Liao S, Ding K. A comparison of algorithms for identifying copy number variants in family-based whole-exome sequencing data and its implications in inheritance pattern analysis. Gene 2023; 861:147237. [PMID: 36731620 DOI: 10.1016/j.gene.2023.147237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
There remain challenges in accurately identifying constitutional or germline copy number variants (gCNVs) based on whole-exome sequencing data that have implications for genetic diagnosis for 'rare undiagnosed disease' in the clinical setting. Although multiple algorithms have been proposed, a systematic comparison of these algorithms for calling gCNVs and analyzing inherited pattern have yet to be fully conducted. Therefore, we empirically compared seven exome-based algorithms, including XHMM, CLAMMS, CODEX2, ExomeDepth, DECoN, CN.MOPS, and GATK gCNV, for calling gCNVs in 151 individuals from 44 pedigrees, together with the gold standard of genotyping-derived gCNVs in the same cohort for the performance assessment. These algorithms demonstrated varied powers in identifying gCNVs, although the distribution of gCNVs size was similar. The number of shared gCNVs across these algorithms was limited (e.g., only four gCNVs shared among seven algorithms); however, several algorithms showed varying degrees of consistency (e.g., 1,843 gCNVs shared between DECoN and ExomeDepth). CLAMMS and CODEX2 outperformed the remaining algorithms according to a relatively higher F-score (i.e., 0.145 and 0.152, respectively). In addition, these algorithms exhibited different Mendelian inconsistencies of gCNVs and significant challenges remained in inheritance pattern analysis. In conclusion, selecting good algorithms may have important implications in gCNVs-based inheritance pattern analysis for family-based studies.
Collapse
Affiliation(s)
- Bo Ye
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xia Tang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, PR China.
| | - Keyue Ding
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, PR China; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
40
|
Huang R, Zhou H, Ma C, Fu F, Cheng K, Wang Y, Li R, Lei T, Yu Q, Wang D, Yan S, Yang X, Li D, Liao C. Whole exome sequencing improves genetic diagnosis of fetal clubfoot. Hum Genet 2023; 142:407-418. [PMID: 36566310 DOI: 10.1007/s00439-022-02516-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/16/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This retrospective study aimed to investigate the value of whole exome sequencing (WES) for clubfoot (CF) fetuses with or without other structural abnormalities and to further explore the genetic causes of fetal CF. METHODS this study included 83 singleton pregnancies diagnosed with fetal CF referred to our center between January 2016 and March 2022; cases were divided into two groups: isolated CF and non-isolated CF. After excluding cases with positive karyotyping and chromosomal microarray analysis results, WES was performed for the eligible fetuses and parents. Monogenic variants detected by WES and perinatal outcomes were recorded and evaluated at postnatal follow-up. RESULTS overall, clinically significant variations were identified in 12.0% (10/83) of fetuses, and the detection rate was significantly higher in the non-isolated than in the isolated CF group (8/36, 22.2% vs. 2/47, 4.3%, p = 0.031). We additionally detected eight (9.6%) fetuses harboring variants of unknown significance. We identified 11 clinically significant variations correlating with clinical phenotypes in nine genes from ten fetuses, with KLHL40 being the most frequent (n = 2). Furthermore, we observed a significant difference in termination and survival rates between isolated and non-isolated CF cases (27.6 vs. 77.8% and 59.6 vs. 19.4%, p < 0.001 for both). CONCLUSION our data indicate that WES has a high additional diagnostic yield for the molecular diagnosis of fetal CF, markedly enhancing existing prenatal diagnostic capabilities and expanding our understanding of intrauterine genetic disorders, thus assisting us to better interpret fetal phenotype in the future.
Collapse
Affiliation(s)
- Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China.,The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Ken Cheng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - You Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China.,The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Tingying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Qiuxia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Dan Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, 510620, Guangdong, China.
| |
Collapse
|
41
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
42
|
RNA G-quadruplex in live cells lighted-up by a thiazole orange analogue for SCA36 identification. Int J Biol Macromol 2023; 229:724-731. [PMID: 36572080 DOI: 10.1016/j.ijbiomac.2022.12.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
SCA36 is a neurodegenerative disease mainly caused by the abnormal expansion of the GGGCCT repeat sequence in intron 1 of NOP56. The RNA sequences of this gene are expected to form large amounts of G-quadruplexes in the cytoplasm, which may be a potential intervention and detection target for SCA36. Here, we have developed a small-molecular compound named TCB-1, which shows good selectivity to the G-quadruplex structure, and its fluorescence can be enhanced by hundreds of folds. Interestingly, TCB-1 can avoid lysosome capture, evenly disperse in the cytoplasm, and selectively light up the cytoplasmic RNA G-quadruplexes. This property allows TCB-1 to sensitively detect the increased formation of cytoplasmic RNA G-quadruplexes in SCA36 model cells. This work not only provides new ideas for the design of small-molecule compounds targeting RNA G-quadruplexes in living cells, but also intuitively demonstrates the increased formation of RNA G-quadruplexes caused by NOP56 gene mutation, providing a possible tool for the detection of SCA36.
Collapse
|
43
|
Hui EKY, Yam JCS, Rahman F, Pang CP, Kumaramanickavel G. Ophthalmic genetic counselling: emerging trends in practice perspectives in Asia. J Community Genet 2023; 14:81-89. [PMID: 36322374 PMCID: PMC9947206 DOI: 10.1007/s12687-022-00616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Genetic counselling (GC) provides information to the patient and the family to make informed choices. Among the advanced Western countries and a few Asian countries, there are certified or trained professionals who perform GC. The Human Genome Project and next-generation sequencing diagnostics have provided an opportunity for increased genetic testing in the field of ophthalmology. The recent interventional therapeutic research strategies have also generated additional interest to seek GC globally, including in Asia. However, GC has several barriers to practise in the developing countries in Asia, namely, (a) shortage of qualified or trained genetic counsellors, (b) poor knowledge and reluctance in clinical adoption of genomics among the physicians in clinical practice, (c) overstretched public health services, and (d) negligible ophthalmic GC-related research and publications. The GC inadequacy in Asia is glaring in the most populous countries like China and India. Cultural differences, religious beliefs, misogyny, genetic discrimination, and a multitude of languages in Asia create unique challenges that counsellors in the West may only encounter with the immigrant minorities. Since there are currently 500 or more specific Mendelian genetic eye disorders, it is important for genetic counsellors to translate the genetic results at a level that the patient and family understand. There is therefore a need for governmental and healthcare organisations to train genetic counsellors in Asia and especially this practice must be included in the routine comprehensive ophthalmic care practice.
Collapse
Affiliation(s)
- Esther K. Y. Hui
- Department of Ophthalmology, University College London, London, UK
| | - Jason C. S. Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Farhana Rahman
- Department of Pharmacology, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, India.
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | | |
Collapse
|
44
|
Abstract
Exome sequencing (ES) and genome sequencing (GS) have radically transformed the diagnostic approach to undiagnosed rare/ultrarare Mendelian diseases. Next-generation sequencing (NGS), the technology integral for ES, GS, and most large (100+) gene panels, has enabled previously unimaginable diagnoses, changes in medical management, new treatments, and accurate reproductive risk assessments for patients, as well as new disease gene discoveries. Yet, challenges remain, as most individuals remain undiagnosed with current NGS. Improved NGS technology has resulted in long-read sequencing, which may resolve diagnoses in some patients who do not obtain a diagnosis with current short-read ES and GS, but its effectiveness is unclear, and it is expensive. Other challenges that persist include the resolution of variants of uncertain significance, the urgent need for patients with ultrarare disorders to have access to therapeutics, the need for equity in patient access to NGS-based testing, and the study of ethical concerns. However, the outlook for undiagnosed disease resolution is bright, due to continual advancements in the field.
Collapse
Affiliation(s)
- Jennifer A Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Rebecca C Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| |
Collapse
|
45
|
Lozano-Terol G, Gallego-Jara J, Sola-Martínez RA, Ortega Á, Martínez Vivancos A, Cánovas Díaz M, de Diego Puente T. Regulation of the pyrimidine biosynthetic pathway by lysine acetylation of E. coli OPRTase. FEBS J 2023; 290:442-464. [PMID: 35989594 PMCID: PMC10087573 DOI: 10.1111/febs.16598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023]
Abstract
The de novo pyrimidine biosynthesis pathway is an important route due to the relevance of its products, its implications in health and its conservation among organisms. Here, we investigated the regulation by lysine acetylation of this pathway. To this aim, intracellular and extracellular metabolites of the route were quantified, revealing a possible blockage of the pathway by acetylation of the OPRTase enzyme (orotate phosphoribosyltransferase). Chemical acetylation of OPRTase by acetyl-P involved a decrease in enzymatic activity. To test the effect of acetylation in this enzyme, K26 and K103 residues were selected to generate site-specific acetylated proteins. Several differences were observed in kinetic parameters, emphasizing that the kcat of these mutants showed a strong decrease of 300 and 150-fold for OPRTase-103AcK and 19 and 6.3-fold for OPRTase-26AcK, for forward and reverse reactions. In vivo studies suggested acetylation of this enzyme by a nonenzymatic acetyl-P-dependent mechanism and a reversion of this process by the CobB deacetylase. A complementation assay of a deficient strain in the pyrE gene with OPRTase-26AcK and OPRTase-103AcK was performed, and curli formation, stoichiometric parameters and orotate excretion were measured. Complementation with acetylated enzymes entailed a profile very similar to that of the ∆pyrE strain, especially in the case of complementation with OPRTase-103AcK. These results suggest regulation of the de novo pyrimidine biosynthesis pathway by lysine acetylation of OPRTase in Escherichia coli. This finding is of great relevance due to the essential role of this route and the OPRTase enzyme as a target for antimicrobial, antiviral and cancer treatments.
Collapse
Affiliation(s)
- Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Rosa Alba Sola-Martínez
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Adrián Martínez Vivancos
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| |
Collapse
|
46
|
Muacevic A, Adler JR, Verma R, Shah SD, Vattikuti B, Khan AZ, Shahzadi A, Abdi P, Anthony M, Farkouh CS, Farkouh M, Santiago N, Zepeda D, Nunez A. Non-syndromic Intellectual Disability: An Experimental In-Depth Exploration of Inheritance Pattern, Phenotypic Presentation, and Genomic Composition. Cureus 2023; 15:e34085. [PMID: 36843831 PMCID: PMC9946902 DOI: 10.7759/cureus.34085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Background Intellectual disability (ID), also termed mental retardation (MR), is a neurodevelopmental disorder characterized by an intelligence quotient (IQ) of 70 or below and a deficit in at least two behaviors associated with adaptive functioning. The condition is further classified into syndromic intellectual disability (S-ID) and non-syndromic intellectual disability (NS-ID). This study highlights the genes associated with NS-ID. Objectives A genetic study was performed on two Pakistani families to know the inheritance patterns, clinical phenotypes, and molecular genetics of affected individuals with NS-ID. Methodology Samples were collected from two families: families A and B. All affected individuals in both families were diagnosed by a neurologist. Written informed consent was taken from the affected individuals and guardians before collecting the data and sample. Family A belongs to the Swabi District of Pakistan having four affected individuals, out of whom three were male and one was female. Family B also belongs to the Swabi District of Pakistan having two affected individuals, out of whom one was male and one was female. A total of 10 candidate genes were selected and were further screened by microarray analysis. Results In family A, this analysis identified a region of 9.6 Mb on chromosome 17q11.2-q12 between the single nucleotide polymorphisms (SNPs) rs953527 and rs2680398. The region was genotyped using microsatellite markers to confirm the haplotypes in all family members. Based on the phenotype-genotype relationship, 10 possible candidate genes were selected out of more than 140 genes in this critical region of 9.6 Mb. In family B, homozygosity mapping through microarray identified four homozygous areas of affected individuals: two (27,324,822-59,122,062 and 96,423,252123,656,241) on chromosome 8, one (14,785,224-19,722,760) on chromosome 9, and one (126173647-126215644) on chromosome 11. Conclusion An autosomal recessive pattern was found in the pedigrees of both families A and B. Phenotypically affected individuals showed IQ levels below 70. Three genes, CDK5R1, OMG, and EV12A, were found on chromosome 17q11.2-q12 region of affected individuals in family A with high expression in the frontal cortex of the brain, hippocampus, and spinal cord, respectively. Other regions on chromosomes 8, 9, and 11 as evident from the affected individuals in family B can also contribute to the non-syndromic autosomal recessive intellectual disability (NS-ARID). Further research is needed to find the association of these genes with intelligence and other neuropsychiatric conditions.
Collapse
|
47
|
Exploring the Genetic Causality of Discordant Phenotypes in Familial Apparently Balanced Translocation Cases Using Whole Exome Sequencing. Genes (Basel) 2022; 14:genes14010082. [PMID: 36672823 PMCID: PMC9859009 DOI: 10.3390/genes14010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Familial apparently balanced translocations (ABTs) are usually not associated with a phenotype; however, rarely, ABTs segregate with discordant phenotypes in family members carrying identical rearrangements. The current study was a follow-up investigation of four familial ABTs, where whole exome sequencing (WES) was implemented as a diagnostic tool to identify the underlying genetic aetiology of the patients' phenotypes. Data were analysed using an in-house bioinformatics pipeline alongside VarSome Clinical. WES findings were validated with Sanger sequencing, while the impact of splicing and missense variants was assessed by reverse-transcription PCR and in silico tools, respectively. Novel candidate variants were identified in three families. In family 1, it was shown that the de novo pathogenic STXBP1 variant (NM_003165.6:c.1110+2T>G) affected splicing and segregated with the patient's phenotype. In family 2, a likely pathogenic TUBA1A variant (NM_006009.4:c.875C>T, NP_006000.2:p.(Thr292Ile)) could explain the patient's symptoms. In family 3, an SCN1A variant of uncertain significance (NM_006920.6:c.5060A>G, NP_008851.3:p.(Glu1687Gly)) required additional evidence to sufficiently support causality. This first report of WES application in familial ABT carriers with discordant phenotypes supported our previous findings describing such rearrangements as coincidental. Thus, WES can be recommended as a complementary test to find the monogenic cause of aberrant phenotypes in familial ABT carriers.
Collapse
|
48
|
Linkowska K, Malyarchuk BA, Derenko MV, Grzybowski T. An association between copy number variation of enhancer involved in craniofacial development and biogeographic ancestry. ARCHIVES OF FORENSIC MEDICINE AND CRIMINOLOGY 2022. [DOI: 10.4467/16891716amsik.22.008.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human facial morphology is a combination of many complex traits and is determined by a large number of genes and enhancers. Here, we report a Copy Number Variation (CNV) study of enhancer hs1431 in populations of Central European and South Siberian ancestry. Central European samples included 97 Poles, while South Siberian samples included 78 Buryats and 27 Tuvinians. CNVs were detected by real-time PCR, using ViiA™ 7 Real-Time PCR System (Applied Biosystems). We revealed significant differences in CNV of hs1431 enhancer between Polish and Buryat population (p=0.0378), but not between Central European and South Siberian population (p=0.1225). Our results suggest that an increase in copy number variation of hs1431 enhancer is associated with biogeographic ancestry. However, this result needs extending and replicating in larger cohorts. This is the first study revealing the presence of copy number variation of enhancer hs1431 in humans.
Collapse
Affiliation(s)
- Katarzyna Linkowska
- Department of Forensic Medicine, Division of Molecular & Forensic Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Boris A. Malyarchuk
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Sciences, Magadan, Russia
| | | | - Tomasz Grzybowski
- Department of Forensic Medicine, Division of Molecular & Forensic Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
49
|
Lee DJ, Kwon T, Lee HJ, Oh YH, Kim JH, Lee TH. NGSpop: A desktop software that supports population studies by identifying sequence variations from next-generation sequencing data. PLoS One 2022; 17:e0260908. [PMCID: PMC9671411 DOI: 10.1371/journal.pone.0260908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 10/29/2022] [Indexed: 11/18/2022] Open
Abstract
Next-generation sequencing (NGS) is widely used in all areas of genetic research, such as genetic disease diagnosis and breeding, and it can produce massive amounts of data. The identification of sequence variants is an important step when processing large NGS datasets; however, currently, the process is complicated, repetitive, and requires concentration, which can be taxing on the researcher. Therefore, to support researchers who are not familiar enough with bioinformatics to identify sequence variations regularly from large datasets, we have developed a fully automated desktop software, NGSpop. NGSpop includes functionalities for all the variant calling and visualization procedures used when processing NGS data, such as quality control, mapping, filtering details, and variant calling. In the variant calling step, the user can select the GATK or DeepVariant algorithm for variant calling. These algorithms can be executed using pre-set pipelines and options or customized with the user-specified options. NGSpop is implemented using JavaFX (version 1.8) and can thus be run on Unix-like operating systems such as Ubuntu Linux (version 16.04, 18.0.4). Although several pipelines and visualization tools are available for NGS data analysis, most integrated environments do not support batch processes; thus, variant detection cannot be automated for population-level studies. The NGSpop software developed in this study has an easy-to-use interface and helps in rapid analysis of multiple NGS data from population studies. According to a benchmark test, it effectively reduced the carbon footprint in bioinformatics analysis by expending the least central processing unit heat and power. Additionally, this software makes it possible to use the GATK and DeepVariant algorithms more flexibly and efficiently than other programs by allowing users to choose between the algorithms. As a limitation, NGSpop currently supports only the sequencing reads in fastq format produced by the Illumina platform. NGSpop is freely available at https://sourceforge.net/projects/ngspop/.
Collapse
Affiliation(s)
- Dong-Jun Lee
- Genomics Division, National Institute of Agricultural Science, Jeonju, Republic of Korea
- * E-mail:
| | - Taesoo Kwon
- Corporate R&D Center, Cloud9, Cheongju-si, Republic of Korea
| | - Hye-Jin Lee
- Genomics Division, National Institute of Agricultural Science, Jeonju, Republic of Korea
| | - Yun-Ho Oh
- Genomics Division, National Institute of Agricultural Science, Jeonju, Republic of Korea
| | - Jin-Hyun Kim
- Genomics Division, National Institute of Agricultural Science, Jeonju, Republic of Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Science, Jeonju, Republic of Korea
| |
Collapse
|
50
|
Boharoon H, Grossman A. A New Medical Therapy for Multiple Endocrine Neoplasia Type 1? TOUCHREVIEWS IN ENDOCRINOLOGY 2022; 18:86-88. [PMID: 36694894 PMCID: PMC9838189 DOI: 10.17925/ee.2022.18.2.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic neuroendocrine tumours (pNETs) are a major manifestation of multiple endocrine neoplasia type 1 (MEN1), and the most significant cause of morbidity and mortality in this disorder. There is some evidence that the early use of somatostatin analogues can retard progression, especially of small non-functioning tumours, but there are no other prophylactic therapies for patients, and the treatment of metastatic disease is similar to that for sporadic pNETs. A recent study has shown that in cell line and animal models, MEN1 mutations lead to an upregulation of the enzyme dihydroorotate dehydrogenase (DHODH), which is involved in increasing precursor metabolites for the synthesis of pyrimidines. In these studies, blockade of this pathway by various means, including the DHODH inhibitor leflunomide, attenuates cell growth and tumour progression, suggesting a critical dependence on DHODH specifically in MEN1-mutated tissue. Preliminary clinical studies in three patients with MEN1 and pNETs have indicated some therapeutic potential of this drug, which has previously been used for some years in patients with rheumatoid arthritis. It is suggested that further clinical trials of this re-purposed drug are indicated to evaluate its potential for the treatment of patients with MEN1 and pNETS. This article describes the clinical problem of MEN1 and pNETs, and reviews the recent publication reporting on these initial results.
Collapse
Affiliation(s)
- Hessa Boharoon
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Ashley Grossman
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| |
Collapse
|