1
|
Mantoan Ritter L, Annear NMP, Baple EL, Ben-Chaabane LY, Bodi I, Brosson L, Cadwgan JE, Coslett B, Crosby AH, Davies DM, Daykin N, Dedeurwaerdere S, Dühring Fenger C, Dunlop EA, Elmslie FV, Girodengo M, Hambleton S, Jansen AC, Johnson SR, Kearley KC, Kingswood JC, Laaniste L, Lachlan K, Latchford A, Madsen RR, Mansour S, Mihaylov SR, Muhammed L, Oliver C, Pepper T, Rawlins LE, Schim van der Loeff I, Siddiqui A, Takhar P, Tatton-Brown K, Tee AR, Tibarewal P, Tye C, Ultanir SK, Vanhaesebroeck B, Zare B, Pal DK, Bateman JM. mTOR pathway diseases: challenges and opportunities from bench to bedside and the mTOR node. Orphanet J Rare Dis 2025; 20:256. [PMID: 40426219 PMCID: PMC12107773 DOI: 10.1186/s13023-025-03740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates key cellular processes including cell growth, autophagy and metabolism. Hyperactivation of the mTOR pathway causes a group of rare and ultrarare genetic diseases. mTOR pathway diseases have diverse clinical manifestations that are managed by distinct medical disciplines but share a common underlying molecular basis. There is a now a deep understanding of the molecular underpinning that regulates the mTOR pathway but effective treatments for most mTOR pathway diseases are lacking. Translating scientific knowledge into clinical applications to benefit the unmet clinical needs of patients is a major challenge common to many rare diseases. In this article we expound how mTOR pathway diseases provide an opportunity to coordinate basic and translational disease research across the group, together with industry, medical research foundations, charities and patient groups, by pooling expertise and driving progress to benefit patients. We outline the germline and somatic mutations in the mTOR pathway that cause rare diseases and summarise the prevalence, genetic basis, clinical manifestations, pathophysiology and current treatments for each disease in this group. We describe the challenges and opportunities for progress in elucidating the underlying mechanisms, improving diagnosis and prognosis, as well as the development and approval of new therapies for mTOR pathway diseases. We illustrate the crucial role of patient public involvement and engagement in rare disease and mTOR pathway disease research. Finally, we explain how the mTOR Pathway Diseases node, part of the Research Disease Research UK Platform, will address these challenges to improve the understanding, diagnosis and treatment of mTOR pathway diseases.
Collapse
Affiliation(s)
- Laura Mantoan Ritter
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
| | - Nicholas M P Annear
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | - Leila Y Ben-Chaabane
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Istvan Bodi
- King's College Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | | - Frances V Elmslie
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | - Marie Girodengo
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- The Francis Crick Institute, London, UK
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Simon R Johnson
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre and Biodiscovery Institute, Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Kelly C Kearley
- mTOR Node Advisory Panel (MAP), London, UK
- PTEN UK and Ireland Patient Group, London, UK
| | - John C Kingswood
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Katherine Lachlan
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew Latchford
- Polyposis Registry, St Mark's Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Sahar Mansour
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | | | | | - Tom Pepper
- PTEN Research, Cheltenham, Gloucestershire, UK
| | | | - Ina Schim van der Loeff
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ata Siddiqui
- King's College Hospital NHS Foundation Trust, London, UK
| | | | - Katrina Tatton-Brown
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | | | - Charlotte Tye
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | | | | | | | - Deb K Pal
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Joseph M Bateman
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK.
| |
Collapse
|
2
|
Jafari P, Drogan C, Keel E, Kupfer S, Hart J, Setia N. Screening at the scope: enhancing the role of pathologists in diagnosing gastrointestinal polyposis syndromes. Virchows Arch 2025:10.1007/s00428-025-04118-1. [PMID: 40358740 DOI: 10.1007/s00428-025-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Only a minority of patients at high likelihood of a gastrointestinal polyposis syndrome (GPS) are appropriately referred for workup. This proof-of-concept study evaluates a GPS screening rubric based exclusively on information in prior pathology reports and intended to facilitate pathologist engagement in GPS screening and referral. We sought to (1) identify patients who would benefit from further GPS workup, (2) assign a probable polyposis syndrome category (adenomatous, hamartomatous, serrated, or mixed), and (3) suggest a specific syndrome, such as familial adenomatous polyposis, whenever possible. We retrospectively tested the rubric against the pathology records of 108 patients (median, 6 reports/patient) with an established clinical diagnosis of GPS (adenomatous (N = 88), hamartomatous (N = 18), and mixed (N = 2) polyposis syndromes). Records were reviewed chronologically (mean, 4.4 min/patient) by a GI pathologist blinded to clinical history. Ninety-five patients (88%) had a positive GPS screen (N = 76 with an adenomatous polyposis syndrome, N = 17 with a hamartomatous polyposis syndrome, N = 2 with a mixed polyposis syndrome); all were assigned to the correct syndrome category. In a subset of cases, the histopathologic record suggested a specific syndrome (correct in 28 of 30 instances). Of 13 patients with a negative screen (failure to meet any rubric parameters), N = 6 (46.2%) had incomplete records. These findings demonstrate that when robust records are available, structured review of pathology reports is a sensitive and efficient tool for the identification of patients with a high suspicion of a GPS. While prospective studies are necessary, pathologists are indeed well positioned to play an expanded role in GPS screening.
Collapse
Affiliation(s)
- Pari Jafari
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 6101, Room S-638, IL 60637-1470, Chicago, USA.
| | - Christine Drogan
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, USA
| | - Emma Keel
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, USA
| | - Sonia Kupfer
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, USA
| | - John Hart
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 6101, Room S-638, IL 60637-1470, Chicago, USA
| | - Namrata Setia
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 6101, Room S-638, IL 60637-1470, Chicago, USA
| |
Collapse
|
3
|
Dhawan A, Baitamouni S, Liu D, Yehia L, Anthony K, McCarther A, Tischkowitz M, MacFarland SP, Ngeow J, Hoogerbrugge N, Eng C. Cancer and Overgrowth Manifestations of PTEN Hamartoma Tumor Syndrome: Management Recommendations from the International PHTS Consensus Guidelines Working Group. Clin Cancer Res 2025; 31:1754-1765. [PMID: 39937242 PMCID: PMC12010961 DOI: 10.1158/1078-0432.ccr-24-3819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE PTEN hamartoma tumor syndrome (PHTS) is an autosomal dominant cancer predisposition and overgrowth syndrome caused by pathogenic germline variants in the PTEN gene, with an increased risk of both benign and malignant tumors involving the breast, colon, endometrium, thyroid, skin, and kidney. The objective of these clinical guidelines was to use the latest knowledge to generate an international consensus resource for providers, researchers, and individuals with PHTS on the best practices in the surveillance and management of cancer and overgrowth in PHTS. EXPERIMENTAL DESIGN The International PHTS Cancer and Overgrowth Guidelines Working Group was established, comprising a core group of six international experts in the diagnosis and management of PHTS. The working group held joint meetings with individuals with PHTS and their advocates. Informed by the literature, the working group met regularly between 2022 and 2024 to produce guideline statements, refined through iterative feedback. A modified Delphi approach was used with an independent external panel of PHTS, genetics, and cancer experts to establish final consensus guidelines. RESULTS Clinical consensus recommendations for the surveillance and management of cancer and overgrowth in individuals with PHTS were formed. The guidelines encompass the recommended practices in cases of breast, colon, endometrial, thyroid, and kidney cancers, as well as overgrowths. CONCLUSIONS The clinical management of individuals with PHTS is complex and necessitates a multidisciplinary approach. We generated international consensus guidelines for the surveillance and management of cancer and overgrowth in PHTS, aiming at improving care for affected individuals and families.
Collapse
Affiliation(s)
- Andrew Dhawan
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sarah Baitamouni
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Darren Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kristin Anthony
- PTEN Hamartoma Tumor Syndrome Foundation, Huntsville, Alabama
| | | | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Suzanne P. MacFarland
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joanne Ngeow
- Genomic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
4
|
O’Neal N, Goold E, Zarei Haji Abadi F, Okojie J, Barrott J. Papillary Tumor of the Pineal Region Identified by DNA Methylation Leads to the Incidental Finding of Germline Mutation PTEN G132D Associated with PTEN Hamartoma Tumor Syndrome: A Case Report and Systematic Review. Curr Oncol 2025; 32:172. [PMID: 40136376 PMCID: PMC11941023 DOI: 10.3390/curroncol32030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Distinct subgroups of rare brain tumors can be molecularly classified using whole genome DNA methylation profiling and next-generation sequencing. Furthermore, these tools can identify germline mutations contributing to carcinogenesis. Access to molecular testing in the clinical setting is vital for pathology laboratories to make an accurate diagnosis. One molecularly unique brain tumor requiring such tools is the papillary tumor of the pineal region (PTPR). Herein, we present a case report of a 21-year-old male presenting with macrocephaly and obstructive hydrocephalus due to the PTPR. Next-generation sequencing identified a pathogenic PTEN p.G132D mutation in the tumor and matched germline findings further identified PTEN Hamartoma Tumor Syndrome (PHTS). The case report tumor was initially misdiagnosed as ependymoma while methylation profiling classified it more specifically as a PTPR, Group B. To better understand the current status of PTPRs, we conducted a systematic review of recent cases reporting on the diagnostics, treatments, and outcomes for PTPR patients. To our knowledge, this is the first case report for PTPRs revealing an association with PHTS. Our review revealed inconsistencies in diagnostics, treatments, and outcomes for PTPR, and an underutilization of definitive molecular testing.
Collapse
Affiliation(s)
- Nikole O’Neal
- SW Idaho Biomedical & Biosafety Center, Twin Falls, ID 83301, USA
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA
| | - Eric Goold
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT 84108, USA;
| | - Fatemeh Zarei Haji Abadi
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA;
| | - Jeffrey Okojie
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Jared Barrott
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
- Simmons Center for Cancer Research, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
5
|
Fuse A, Fukae J, Nakajima A, Mitsuhashi T, Kurita A, Teranishi K, Arai M, Shimo Y, Hattori N. Spinal Dural Arteriovenous Fistulas in a Patient with Cowden Syndrome and a Phosphatase and Tensin Homolog Mutation. Intern Med 2025; 64:763-767. [PMID: 39048366 PMCID: PMC11949654 DOI: 10.2169/internalmedicine.3809-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/21/2024] [Indexed: 07/27/2024] Open
Abstract
Cowden syndrome (CS) is an autosomal dominant syndrome characterized by the development of hamartomas and an increased cancer risk. Most CS patients harbor mutations in the phosphatase and tensin homolog (PTEN) gene. We herein report a 70-year-old patient with CS who presented with lower extremity weakness caused by multiple thoracic dural arteriovenous fistulas (AVFs). Genetic testing revealed a truncated PTEN mutation (c.485_487delACAinsCC and p.D162Afs*5). Vascular malformations are common in CS, particularly in the extremities. However, spinal dural AVFs are extremely rare. Furthermore, in our case, the number of AVFs increased, and both lower limbs became flaccid four months after embolization. Therefore, we suggest that physicians carefully observe the changes in symptoms for prolonged periods after embolization.
Collapse
Affiliation(s)
- Atsuhito Fuse
- Department of Neurology, Juntendo University Nerima Hospital, Japan
| | - Jiro Fukae
- Department of Neurology, Juntendo University Nerima Hospital, Japan
| | - Asuka Nakajima
- Department of Neurology, Juntendo University Nerima Hospital, Japan
| | | | - Ami Kurita
- Department of Clinical Laboratory, Juntendo University Nerima Hospital, Japan
| | - Kohsuke Teranishi
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Japan
| | - Masami Arai
- Department of Clinical Genetics, Juntendo University Graduate School of Medicine, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University Nerima Hospital, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Japan
| |
Collapse
|
6
|
Buchert R, Burkhalter MD, Huridou C, Sofan L, Roser T, Cremer K, Alvi JR, Efthymiou S, Froukh T, Gulieva S, Guliyeva U, Hamdallah M, Holder-Espinasse M, Kaiyrzhanov R, Klingler D, Koko M, Matthies L, Park J, Sturm M, Velic A, Spranger S, Sultan T, Engels H, Lerche H, Houlden H, Pagnamenta AT, Borggraefe I, Weber Y, Bonnen PE, Maroofian R, Riess O, Weber JJ, Philipp M, Haack TB. Bi-allelic KICS2 mutations impair KICSTOR complex-mediated mTORC1 regulation, causing intellectual disability and epilepsy. Am J Hum Genet 2025; 112:374-393. [PMID: 39824192 PMCID: PMC11866974 DOI: 10.1016/j.ajhg.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025] Open
Abstract
Nutrient-dependent mTORC1 regulation upon amino acid deprivation is mediated by the KICSTOR complex, comprising SZT2, KPTN, ITFG2, and KICS2, recruiting GATOR1 to lysosomes. Previously, pathogenic SZT2 and KPTN variants have been associated with autosomal recessive intellectual disability and epileptic encephalopathy. We identified bi-allelic KICS2 variants in eleven affected individuals presenting with intellectual disability and epilepsy. These variants partly affected KICS2 stability, compromised KICSTOR complex formation, and demonstrated a deleterious impact on nutrient-dependent mTORC1 regulation of 4EBP1 and S6K. Phosphoproteome analyses extended these findings to show that KICS2 variants changed the mTORC1 proteome, affecting proteins that function in translation, splicing, and ciliogenesis. Depletion of Kics2 in zebrafish resulted in ciliary dysfunction consistent with a role of mTORC1 in cilia biology. These in vitro and in vivo functional studies confirmed the pathogenicity of identified KICS2 variants. Our genetic and experimental data provide evidence that variants in KICS2 are a factor involved in intellectual disability due to its dysfunction impacting mTORC1 regulation and cilia biology.
Collapse
Affiliation(s)
- Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, Tübingen, Germany
| | - Chrisovalantou Huridou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Linda Sofan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Timo Roser
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, Institute of Child Health, Children's Hospital Lahore, Lahore, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | | | | | - Moath Hamdallah
- Pediatrics Department, An-Najah National University Hospital, Nablus, Palestine
| | - Muriel Holder-Espinasse
- Clinical Genetics Department, Guy's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Doreen Klingler
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lars Matthies
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ana Velic
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | | | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health, Children's Hospital Lahore, Lahore, Pakistan
| | - Hartmut Engels
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Yvonne Weber
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Penelope E Bonnen
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Center for Rare Disease, University of Tübingen, Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE)
| | - Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Center for Rare Disease, University of Tübingen, Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE).
| |
Collapse
|
7
|
Kratz CP. Re-envisioning genetic predisposition to childhood and adolescent cancers. Nat Rev Cancer 2025; 25:109-128. [PMID: 39627375 DOI: 10.1038/s41568-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Although cancer is rare in children and adolescents, it remains a leading cause of death within this age range, and genetic predisposition is the main known risk factor. Since the discovery of retinoblastoma-predisposing RB1 pathogenic germline variants in 1985, several additional high-penetrance cancer predisposition genes (CPGs) have been identified. Although few clinically recognizable genetic conditions display moderate cancer phenotypes, burden testing has revealed low-to-moderate penetrance CPGs. In addition to germline pathogenic variants in CPGs, postzygotic somatic mosaic CPG pathogenic variants acquired during embryonic development are increasingly recognized as factors that predispose children and adolescents to malignancies. Genome-wide association studies of various childhood and adolescent cancer types have identified some common low-risk cancer susceptibility alleles. Although the clinical utility of polygenic risk scores is currently limited in children and adolescents, polygenic risk scores developed for adults can predict subsequent cancer risks in childhood and adolescent cancer survivors. In this Review, I describe our current knowledge of genetic predisposition to childhood and adolescent cancers. Survival rates in children and adolescents with cancer and CPGs are often poor, necessitating better integration of genomic testing into clinical care to improve cancer prevention, surveillance and therapies.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Schultz KAP, MacFarland SP, Perrino MR, Mitchell SG, Kamihara J, Nelson AT, Mallinger PHR, Brzezinski JJ, Maxwell KN, Woodward ER, Gallinger B, Kim SY, Greer MLC, Schneider KW, Scollon SR, Das A, Wasserman JD, Eng C, Malkin D, Foulkes WD, Michaeli O, Bauer AJ, Stewart DR. Update on Pediatric Surveillance Recommendations for PTEN Hamartoma Tumor Syndrome, DICER1-Related Tumor Predisposition, and Tuberous Sclerosis Complex. Clin Cancer Res 2025; 31:234-244. [PMID: 39540884 PMCID: PMC11747828 DOI: 10.1158/1078-0432.ccr-24-1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Phosphate and tensin homolog hamartoma tumor syndrome, DICER1-related tumor predisposition, and tuberous sclerosis complex are rare conditions, which each increases risk for distinct spectra of benign and malignant neoplasms throughout childhood and adulthood. Surveillance considerations for each of these conditions focus on patient and family education, early detection, and multidisciplinary care. In this article, we present updated surveillance recommendations and considerations for children and adolescents with phosphate and tensin homolog hamartoma tumor syndrome, DICER1-related tumor predisposition, and tuberous sclerosis complex and provide suggestions for further research in each of these conditions.
Collapse
Affiliation(s)
- Kris Ann P. Schultz
- International Pleuropulmonary Blastoma/DICER1 Registry, Cancer and Blood Disorders, Children’s Minnesota, Minneapolis, MN
| | - Suzanne P. MacFarland
- Division of Oncology, The Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Melissa R. Perrino
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN
| | - Sarah G. Mitchell
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Junne Kamihara
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Alexander T. Nelson
- International Pleuropulmonary Blastoma/DICER1 Registry, Cancer and Blood Disorders, Children’s Minnesota, Minneapolis, MN
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Paige H. R. Mallinger
- International Pleuropulmonary Blastoma/DICER1 Registry, Cancer and Blood Disorders, Children’s Minnesota, Minneapolis, MN
| | - Jack J. Brzezinski
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON
| | - Kara N. Maxwell
- Department of Medicine, Division of Hematology/Oncology and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma R. Woodward
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Bailey Gallinger
- Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON
- Department of Molecular Genetics, The University of Toronto, Toronto, ON
| | - Sun Young Kim
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Mary-Louise C. Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, ON
| | - Kami Wolfe Schneider
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Sarah R. Scollon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Anirban Das
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON
| | - Jonathan D. Wasserman
- Division of Endocrinology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON
| | | | - Orli Michaeli
- Division of Hematology and Oncology, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
| | - Andrew J. Bauer
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Douglas R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
9
|
Ashadul Sk M, K H, Matada GSP, Pal R, B V M, Mounika S, E H, M P V, D A. Current developments in PI3K-based anticancer agents: Designing strategies, biological activity, selectivity, structure-activity correlation, and docking insight. Bioorg Chem 2025; 154:108011. [PMID: 39662340 DOI: 10.1016/j.bioorg.2024.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a critical intracellular signalling mechanism that is changed or amplified in a variety of cancers, including breast, gastric, ovarian, colorectal, prostate, glioma, and endometrial. PI3K signalling is important for cancer cell survival, angiogenesis, and metastasis, making it a promising therapeutic target. The PI3K kinases in their different isoforms, namely α, β, δ, and γ, encode PIK3CA, PIK3CB, PIK3CD, and PIK3CG genes. Specific gene mutation or overexpression of the protein is responsible for the therapeutic failure of current therapeutics. There are several current and completed clinical trials using PI3K inhibitors (pan, isoform-specific, and dual PI3K/mTOR) to develop effective PI3K inhibitors capable of overcoming resistance to existing drugs. However, the bulk of these inhibitors have had their indications revoked or voluntarily withdrawn due to concerns about their harmful consequences. Several inhibitors containing medicinally privileged scaffolds like thiazole, triazine, benzimidazole, podophyllotoxin, pyridine, quinazoline, thieno-triazole, pyrimidine, triazole, benzofuran, imidazo-pyridazine, oxazole, coumarin, and azepine derivatives have been explored to target the PI3K pathway and/or a specific isoform in the current overview. This article reviews the structure, biological activities, and clinical status of PI3K inhibitors. It focuses on the development techniques, docking insight, and structure-activity connections of PI3K-based inhibitors. The findings provide useful insights and future approaches for the development of promising PI3K-based inhibitors.
Collapse
Affiliation(s)
- Md Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Hemalatha K
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Manjushree B V
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Haripriya E
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Viji M P
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Anjan D
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| |
Collapse
|
10
|
Yassin O, Praveen B, Darawshi O, LaFramboise T, Shmuel M, Pattanayak SP, Law BK, Hatzoglou M, Tirosh B. Opposing regulation of endoplasmic reticulum retention under stress by ERp44 and PDIA6. Biochem J 2024; 481:1921-1935. [PMID: 39621446 DOI: 10.1042/bcj20240444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Conditions of endoplasmic reticulum (ER) stress reduce protein synthesis by provoking translation regulation, governed by the eIF2α kinase PERK. When PERK is inhibited during ER stress, retention of a selective subset of glycoproteins occurs, a phenomenon we termed selective ER retention (sERr). sERr clients are enriched with tyrosine kinase receptors (RTKs), which form large molecular weight disulfide bonded complexes in the ER. The protein disulfide isomerase ERp44 promotes sERr and increases the size of sERr complexes. Here we show that sERr is reversible upon washout. Pulse chase analyses show that upon recovery, only a small fraction of the sERr complexes disintegrates and contributes to the matured proteins, while most are newly synthesized. Sequential inductions of sERr and washouts demonstrate an accelerated recovery that is dependent on the unfolded protein response transducer IRE1. Since IRE1 regulates the expression level PDIA6, we analyzed its contribution to sERr. We found that PDIA6 and ERp44 constitutively interact by disulfides and have opposite effects on resumed recovery of trafficking following removal of sERr conditions. Deletion of ERp44 accelerates, while deletion of PDIA6 slows down recovery with a minimal effect on total protein synthesis. ERp44 is a primary interactor with sERr clients. When missing, PDIA6 partitions more into sERr complexes. Deletion of the tumor suppressor PTEN, which induces RTK signaling, promoted sERr formation kinetics, and accelerated the recovery, suggesting feedback between RTKs signaling and sERr. This study suggests that sERr, should develop physiologically or pathologically, is counteracted by adaptation responses that involve IRE1 and PDIA6.
Collapse
Affiliation(s)
- Olaya Yassin
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bellam Praveen
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Odai Darawshi
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Miriam Shmuel
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shakti P Pattanayak
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Brian K Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, U.S.A
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, U.S.A
| |
Collapse
|
11
|
Ilic N, Mitrovic N, Radeta R, Krasić S, Vukomanović V, Samardzija G, Vasic M, Vlahovic A, Sarajlija A. Phenotypic Variability of Cowden Syndrome Within a Single Family: Impact on Diagnosis, Management and Genetic Counselling. Balkan J Med Genet 2024; 27:95-100. [PMID: 40070859 PMCID: PMC11892943 DOI: 10.2478/bjmg-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Cowden syndrome (CS) represents a rare autosomal dominant disorder caused by mutations in the PTEN gene located on chromosome 10q23.3. This entity belongs to the PTEN hamartoma tumor syndrome (PHTS) spectrum. The PTEN gene encodes a tumor suppressor protein crucial for regulating cell growth, survival, and apoptosis. Pathogenic mutations in PTEN result in dysregulated cell proliferation, manifesting clinically as benign and malignant growths across various tissues. CS is characterized by a predisposition to multiple hamartomas and an elevated risk of cancers, most notably in the skin, soft tissues, thyroid, breast, and gastrointestinal tract. In pediatric patients, macrocephaly is frequently the earliest feature, often accompanied by developmental delays and neurological deficits. This case series details the clinical evolution and multidisciplinary management of two siblings with CS and normal psychomotor development. Genetic testing identified a familial PTEN mutation, with multiple affected relatives, including the siblings' father, paternal aunt and paternal grandfather, each displaying distinct phenotype. This familial clustering highlights the autosomal dominant inheritance of CS and points out the critical importance of early genetic testing, vigilant surveillance, and tailored counselling for at-risk relatives. Phenotypic variability observed between members of the same family points out the difficulties in predicting transgenerational outcomes and complicates genetic counselling.
Collapse
Affiliation(s)
- N Ilic
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070Belgrade, Serbia
| | - N Mitrovic
- Department of Clinical Pathology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”,, 11070Belgrade, Serbia
| | - R Radeta
- Department for the Diagnosis and Treatment of Hematological and Oncological Diseases, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070Belgrade, Serbia
| | - S Krasić
- Department of Cardiology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070Belgrade, Serbia
- Faculty of Medicine, Department of Pediatrics, University of Belgrade, 11070Belgrade, Serbia
| | - V Vukomanović
- Department of Cardiology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070Belgrade, Serbia
- Faculty of Medicine, Department of Pediatrics, University of Belgrade, 11070Belgrade, Serbia
| | - G Samardzija
- Department of Clinical Pathology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”,, 11070Belgrade, Serbia
| | - M Vasic
- Department of Plastic and Reconstructive Surgery, Mother and Child Health Institute of Serbia “Dr Vukan Cupic”, 11070Belgrade, Serbia
| | - A Vlahovic
- Faculty of Medicine, Department of Pediatrics, University of Belgrade, 11070Belgrade, Serbia
- Department of Plastic and Reconstructive Surgery, Mother and Child Health Institute of Serbia “Dr Vukan Cupic”, 11070Belgrade, Serbia
| | - A Sarajlija
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070Belgrade, Serbia
- Faculty of Medicine, Department of Pediatrics, University of Belgrade, 11070Belgrade, Serbia
| |
Collapse
|
12
|
Hiramoto K, Oikawa H. Momordica charantia Extract Ameliorates Melanoma Cell Proliferation and Invasion into Mouse Lungs by Suppressing PAX3 Expression. Int J Mol Sci 2024; 25:12800. [PMID: 39684511 PMCID: PMC11640897 DOI: 10.3390/ijms252312800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Melanomas, which develop on malignant transformations of melanocytes, are highly malignant and prone to metastasis; therefore, effective drugs are required. The Momordica charantia (MC) extract has been shown to suppress cancer cell proliferation and invasion; however, the effect of the MC extract on melanoma in living organisms remains unclear. In this study, we investigated the mechanism underlying the amelioration of melanoma cell extravasation into mouse lungs by the MC extract. Male C57BL/6j mice (aged 8 weeks) were injected with B16 melanoma cells (1 × 105 cells/mouse). Subsequently, they were orally administered the MC extract daily for 2 weeks; mouse lung samples were obtained on the final day and analyzed. The MC extract ameliorated melanoma proliferation and infiltration into the lungs caused by melanoma cell treatment. It also increased phosphatase and tensin homolog deletion from chromosome 10 and suppressed paired box gene 3 (PAX3) and the phosphatidylinositol trisphosphate/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin complex 1 signaling. Furthermore, it decreased microphthalmia-associated transcription factors and induced the suppression of cyclin-dependent kinase 2, hepatocyte growth factor receptor, B-cell/CLL lymphoma 2, and Ras-related proteins. Our findings suggest that the MC extract suppresses tumor survival genes by regulating PAX3, thereby ameliorating melanoma proliferation and invasion.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka 513-8607, Japan;
| | | |
Collapse
|
13
|
Cai C, Shen J. The roles of migrasomes in immunity, barriers, and diseases. Acta Biomater 2024; 189:88-102. [PMID: 39284502 DOI: 10.1016/j.actbio.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
Migrasomes are recently identified extracellular vesicles and organelles formed in conjunction with cell migration. They are situated at the rear of migrating cells, exhibit a circular or elliptical membrane-enclosed structure, and function as a new organelle. Migrasomes selectively sort intercellular components, mediating a cell migration-dependent release mechanism known as migracytosis and modulating cell-cell communication. Accumulated evidence clarifies migrasome formation processes and indicates their diverse functional roles. Migrasomes may also be potentially correlated with the occurrence, progression, and prognosis of certain diseases. Migrasomes' involvement in physiological and pathological processes highlights their potential for expanding our understanding of biological procedures and as a target in clinical therapy. However, the precise mechanisms and full extent of their involvement in immunity, barriers, and diseases remain unclear. This review aimed to provide a comprehensive overview of the roles of migrasomes in human immunity and barriers, in addition to providing insights into their impact on human diseases. STATEMENT OF SIGNIFICANCE: Migrasomes, newly identified extracellular vesicles and organelles, form during cell migration and are located at the rear of migrating cells. These circular or elliptical structures mediate migracytosis, selectively sorting intercellular components and modulating cell-cell communication. Evidence suggests diverse functional roles for migrasomes, including potential links to disease occurrence, progression, and prognosis. Their involvement in physiological and pathological processes highlights their significance in understanding biological procedures and potential clinical therapies. However, their exact mechanisms in immunity, barriers, and diseases remain unclear. This review provides an overview of migrasomes' roles in human immunity and barriers, and their impact on diseases.
Collapse
Affiliation(s)
- Changsheng Cai
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China.
| |
Collapse
|
14
|
Sun Y, Wan B, Liu X, Dong J, Yin S, Wu Y. Breast cancer and neoplasms of the thyroid gland: a bidirectional two-sample Mendelian randomization study. Front Oncol 2024; 14:1422009. [PMID: 39469634 PMCID: PMC11513776 DOI: 10.3389/fonc.2024.1422009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Background With the rising incidence of breast cancer (BC) and neoplasms of the thyroid gland, a potential link between the two has drawn increasing attention. However, the causal relationship remains unclear due to various confounding factors. This study aims to investigate the causality between BC and thyroid tumors using Mendelian Randomization (MR) analysis. Methods We conducted a bidirectional two-sample MR analysis, utilizing breast cancer-associated single nucleotide polymorphisms (SNPs) from the Breast Cancer Association Consortium (BCAC) and thyroid tumor-related SNPs from the FinnGen (https://www.finngen.fi/) database. First, we performed univariable MR (UVMR) to assess the causal relationship between BC and both malignant and benign thyroid tumors, followed by reverse causality analysis. To account for potential confounders, we applied multivariable MR (MVMR). The inverse-variance weighted (IVW) method was primarily used, with secondary analyses performed using the weighted median and MR-Egger regression approaches. Results UVMR analysis revealed a significant positive causal relationship between BC and malignant thyroid tumors (odds ratio [OR] and 95% confidence interval [CI]: 1.291, 1.143-1.458, P = 3.90×10-5). No causal relationship was found between BC and benign thyroid tumors. The MVMR analysis, adjusting for confounding factors such as smoking, drinking, and body mass index (BMI), confirmed the robustness of the results. Conclusion This study provides genetic evidence supporting a causal relationship between BC and malignant thyroid tumors. These findings highlight the importance of thyroid cancer screening in BC patients. However, further MR studies or randomized controlled trials (RCTs) are necessary to assess small effects accurately.
Collapse
Affiliation(s)
- Yiqi Sun
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bohan Wan
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Liu
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianguo Dong
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjie Yin
- Department of Medical Oncology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Yiqi Wu
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Ćuk M, Unal B, Hayes CP, Walker M, Bevanda A, Antolović V, Ghazani AA. Whole genome joint analysis reveals ATM:C.1564_1565del variant segregating with Ataxia-Telangiectasia and breast cancer. Cancer Genet 2024; 286-287:43-47. [PMID: 39067332 DOI: 10.1016/j.cancergen.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/20/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
ATM gene is implicated in the development of breast cancer in the heterozygous state, and Ataxia-telangiectasia (A-T) in a homozygous or compound heterozygous state. Ataxia-telangiectasia (A-T) is a rare cerebellar ataxia syndrome presenting with progressive neurologic impairment, telangiectasia, and an increased risk of leukemia and lymphoma. Although the role of ATM, separately, in association with A-T and breast cancer is well documented, there is a limited number of studies investigating ATM variants when segregating with both phenotypes in the same family. Here, using joint analysis and whole genome sequencing, we investigated ATM c.1564_1565del in a family with one homozygous member presenting with A-T (OMIM # 208900) and three heterozygous members, of whom one had breast cancer (OMIM #114480). To our knowledge, this is the first study of ATM c.1564_1565del segregation with both A-T and breast cancer phenotypes within the same kindred. This study highlights the need for a comprehensive genomic approach in the appropriate cancer risk management of heterozygote carriers of ATM in families with A-T.
Collapse
Affiliation(s)
- Mario Ćuk
- Department of Pediatrics, University Hospital Centre Zagreb and University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Busra Unal
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Connor P Hayes
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - McKenzie Walker
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Arezou A Ghazani
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Cummings K, Dias RP, Hart R, Welham A. Behavioural, developmental and psychological characteristics in children with germline PTEN mutations: a carer report study. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2024; 68:916-931. [PMID: 38505951 DOI: 10.1111/jir.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND PTEN is primarily known as a tumour suppressor gene. However, research describes higher rates of difficulties including intellectual disability and difficulties relating to autism spectrum conditions (ASCs) in people with germline PTEN mutations. Other psychological characteristics/experiences are less often reported and are explored in this study. METHODS The parents of 20 children with PTEN mutations completed an online survey exploring adaptive behaviour, ASC-associated behaviours, anxiety, mood, hypermobility, behaviours that challenge, sensory experiences, quality of life and parental wellbeing. Published normative data and data from groups of individuals with other genetic neurodevelopmental conditions were used to contextualise findings. RESULTS Overall levels of adaptive behaviour were below the 'typical' range, and no marked relative differences were noted between domains. Higher levels of ASC-related difficulties, including sensory experiences, were found in comparison with 'typically developing' children, with a possible peak in restrictive/repetitive behaviour; ASC and sensory processing atypicality also strongly correlated with reported joint hypermobility. A relative preservation of social motivation was noted. Anxiety levels were found to be elevated overall (and to relate to sensory processing and joint hypermobility), with the exception of social anxiety, which was comparable with normative data. Self-injurious behaviour was common. CONCLUSIONS Results suggest a wide range of possible difficulties in children with PTEN mutations, including elevated anxiety. Despite elevated ASC phenomenology, social motivation may remain relatively strong. Firm conclusions are restricted by a small sample size and potential recruitment bias, and future research is required to further explore the relationships between such characteristics.
Collapse
Affiliation(s)
- K Cummings
- Department of Psychological Services, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - R P Dias
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - R Hart
- Department of Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - A Welham
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Ribeiro-Santos P, Martins Vieira C, Viana Veloso GG, Vieira Giannecchini G, Parenza Arenhardt M, Müller Gomes L, Zanuncio P, Silva Brandão F, Nogueira-Rodrigues A. Tailoring Endometrial Cancer Treatment Based on Molecular Pathology: Current Status and Possible Impacts on Systemic and Local Treatment. Int J Mol Sci 2024; 25:7742. [PMID: 39062983 PMCID: PMC11276773 DOI: 10.3390/ijms25147742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Endometrial cancer (EC) is a heterogeneous disease with a rising incidence worldwide. The understanding of its molecular pathways has evolved substantially since The Cancer Genome Atlas (TCGA) stratified endometrial cancer into four subgroups regarding molecular features: POLE ultra-mutated, microsatellite instability (MSI) hypermutated, copy-number high with TP53 mutations, and copy-number low with microsatellite stability, also known as nonspecific molecular subtype (NSMP). More recently, the International Federation of Gynecology and Obstetrics (FIGO) updated their staging classification to include information about POLE mutation and p53 status, as the prognosis differs according to these characteristics. Other biomarkers are being identified and their prognostic and predictive role in response to therapies are being evaluated. However, the incorporation of molecular aspects into treatment decision-making is challenging. This review explores the available data and future directions on tailoring treatment based on molecular subtypes, alongside the challenges associated with their testing.
Collapse
Affiliation(s)
- Pedro Ribeiro-Santos
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Carolina Martins Vieira
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Gilson Gabriel Viana Veloso
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Department of Oncology, Santa Casa de Belo Horizonte, Belo Horizonte 30150-221, Brazil
| | - Giovanna Vieira Giannecchini
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Martina Parenza Arenhardt
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Larissa Müller Gomes
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Pedro Zanuncio
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Department of Radiotherapy, Hospital Beneficência Portuguesa de São Paulo, São Paulo 01323-001, Brazil
| | - Flávio Silva Brandão
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Department of Oncology, Santa Casa de Belo Horizonte, Belo Horizonte 30150-221, Brazil
| | - Angélica Nogueira-Rodrigues
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
- Department of Medicine, Federal University of Minas Gerais—UFMG, Belo Horizonte 30130-100, Brazil
- DOM Oncologia, Belo Horizonte 30190-111, Brazil
| |
Collapse
|
18
|
Geng L, Bai Z, Wen X, Liu H, Xie H, Wang Y, Wu W, Zeng Z, Zheng K. PTEN-Long inhibits the biological behaviors of glioma cells. Am J Transl Res 2024; 16:2840-2851. [PMID: 39114725 PMCID: PMC11301513 DOI: 10.62347/qhca5842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES PTEN-Long is a translational variant of phosphatase and tensin homolog (PTEN). This study aimed to assess the effect of PTEN-Long on the biological characteristics of glioma cells and related mechanisms. METHODS A vector stably expressing PTEN-Long was established and transfected into cells, serving as the overexpression group, while a set of empty vectors served as the negative control group. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blot were used to detect the expression of PTEN-Long and phosphatidylinositol 3-kinase, Protein kinase B, andnuclear factor-κB (PI3K-AKT-NF-κB). Cell proliferation was assessed with the Cell Counting Kit 8 (CCK8) assay, migration through the scratch test, and invasion by the transwell chamber assay. Cell cycle analysis was performed using flow cytometry. The volume and weight of subcutaneous tumors in nude mice were also evaluated. RESULTS PTEN-Long expression led to downregulation of p-Akt, NF-κB p65, p-NF-κB p65, and Bcl-xl, and up-regulation of IκBα. In addition, it inhibited glioma cell proliferation, induced cell cycle arrest in the G0/G1 phase, and reduced cell migration and invasion. Moreover, PTEN-Long inhibited the growth of subcutaneous glioma in nude mice. CONCLUSIONS PTEN-Long inhibits the proliferation, migration, and invasion and induces apoptosis in glioma cells by inhibiting PI3K-AKT-NF-κb signaling, implying that PTEN-Long may be a new target for glioma treatment.
Collapse
Affiliation(s)
- Lianting Geng
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Zetong Bai
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Haipeng Liu
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Haipeng Xie
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Yan Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Wensong Wu
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330000, Jiangxi, China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| |
Collapse
|
19
|
Chang C, Chavarro VS, Gerstl JVE, Blitz SE, Spanehl L, Dubinski D, Valdes PA, Tran LN, Gupta S, Esposito L, Mazzetti D, Gessler FA, Arnaout O, Smith TR, Friedman GK, Peruzzi P, Bernstock JD. Recurrent Glioblastoma-Molecular Underpinnings and Evolving Treatment Paradigms. Int J Mol Sci 2024; 25:6733. [PMID: 38928445 PMCID: PMC11203521 DOI: 10.3390/ijms25126733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most common and lethal central nervous system malignancy with a median survival after progression of only 6-9 months. Major biochemical mechanisms implicated in glioblastoma recurrence include aberrant molecular pathways, a recurrence-inducing tumor microenvironment, and epigenetic modifications. Contemporary standard-of-care (surgery, radiation, chemotherapy, and tumor treating fields) helps to control the primary tumor but rarely prevents relapse. Cytoreductive treatment such as surgery has shown benefits in recurrent glioblastoma; however, its use remains controversial. Several innovative treatments are emerging for recurrent glioblastoma, including checkpoint inhibitors, chimeric antigen receptor T cell therapy, oncolytic virotherapy, nanoparticle delivery, laser interstitial thermal therapy, and photodynamic therapy. This review seeks to provide readers with an overview of (1) recent discoveries in the molecular basis of recurrence; (2) the role of surgery in treating recurrence; and (3) novel treatment paradigms emerging for recurrent glioblastoma.
Collapse
Affiliation(s)
- Christopher Chang
- Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
| | - Velina S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Lennard Spanehl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Daniel Dubinski
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Lily N. Tran
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA;
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luisa Esposito
- Department of Medicine and Surgery, Unicamillus University, 00131 Rome, Italy;
| | - Debora Mazzetti
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Florian A. Gessler
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Division of Pediatrics, Neuro-Oncology Section, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Martín-Valbuena J, Gestoso-Uzal N, Justel-Rodríguez M, Isidoro-García M, Marcos-Vadillo E, Lorenzo-Hernández SM, Criado-Muriel MC, Prieto-Matos P. PTEN hamartoma tumor syndrome: Clinical and genetic characterization in pediatric patients. Childs Nerv Syst 2024; 40:1689-1697. [PMID: 38407606 PMCID: PMC11111493 DOI: 10.1007/s00381-024-06301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The aim of this study was to provide a full characterization of a cohort of 11 pediatric patients diagnosed with PTEN hamartoma tumor syndrome (PHTS). PATIENTS AND METHODS Eleven patients with genetic diagnostic of PHTS were recruited between February 2019 and April 2023. Clinical, imaging, demographic, and genetic data were retrospectively collected from their hospital medical history. RESULTS Regarding clinical manifestations, macrocephaly was the leading sign, present in all patients. Frontal bossing was the most frequent dysmorphism. Neurological issues were present in most patients. Dental malformations were described for the first time, being present in 27% of the patients. Brain MRI showed anomalies in 57% of the patients. No tumoral lesions were present at the time of the study. Regarding genetics, 72% of the alterations were in the tensin-type C2 domain of PTEN protein. We identified four PTEN genetic alterations for the first time. CONCLUSIONS PTEN mutations appear with a wide variety of clinical signs and symptoms, sometimes associated with phenotypes which do not fit classical clinical diagnostic criteria for PHTS. We recommend carrying out a genetic study to establish an early diagnosis in children with significant macrocephaly. This facilitates personalized monitoring and enables anticipation of potential PHTS-related complications.
Collapse
Affiliation(s)
| | - Nerea Gestoso-Uzal
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | | | - María Isidoro-García
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Clinical Biochemistry Department, University Hospital of Salamanca, Salamanca, Spain
| | - Elena Marcos-Vadillo
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Clinical Biochemistry Department, University Hospital of Salamanca, Salamanca, Spain
| | | | - M Carla Criado-Muriel
- Department of Pediatrics, University Hospital of Salamanca, Salamanca, Spain.
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain.
| | - Pablo Prieto-Matos
- Department of Pediatrics, University Hospital of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
| |
Collapse
|
21
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
22
|
Church J. The Natural History of Hereditary Colorectal Cancer Syndromes: From Phenotype to Genotype? Where Do We Stand and What Does the Future Hold? Clin Colon Rectal Surg 2024; 37:127-132. [PMID: 38606050 PMCID: PMC11006442 DOI: 10.1055/s-0043-1770380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Applying the concept of a "natural history" to hereditary colorectal cancer is an interesting exercise because the way the syndromes are approached has changed so drastically. However, the exercise is instructive as it forces us to think in depth about where we are, where we have been, and, most helpfully, about where we may be going. In this article the diagnosis, along with endoscopic and surgical management of hereditary colorectal cancer are discussed in the context of their history and the changes in genomics and technology that have occurred over the last one hundred years.
Collapse
Affiliation(s)
- James Church
- Division of Colorectal Surgery, Department of Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
23
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
24
|
Li D, Yue Y, Feng X, Lv W, Fan Y, Sha P, Zhao T, Lin Y, Xiong X, Li J, Xiong Y. MicroRNA-542-3p targets Pten to inhibit the myoblasts proliferation but suppresses myogenic differentiation independent of targeted Pten. BMC Genomics 2024; 25:325. [PMID: 38561670 PMCID: PMC10983626 DOI: 10.1186/s12864-024-10260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Non-coding RNA is a key epigenetic regulation factor during skeletal muscle development and postnatal growth, and miR-542-3p was reported to be conserved and highly expressed in the skeletal muscle among different species. However, its exact functions in the proliferation of muscle stem cells and myogenesis remain to be determined. METHODS Transfection of proliferative and differentiated C2C12 cells used miR-542-3p mimic and inhibitor. RT-qPCR, EdU staining, immunofluorescence staining, cell counting kit 8 (CCK-8), and Western blot were used to evaluate the proliferation and myogenic differentiation caused by miR-542-3p. The dual luciferase reporter analysis and rescued experiment of the target gene were used to reveal the molecular mechanism. RESULTS The data shows overexpression of miR-542-3p downregulation of mRNA and protein levels of proliferation marker genes, reduction of EdU+ cells, and cellular vitality. Additionally, knocking it down promoted the aforementioned phenotypes. For differentiation, the miR-542-3p gain-of-function reduced both mRNA and protein levels of myogenic genes, including MYOG, MYOD1, et al. Furthermore, immunofluorescence staining immunized by MYHC antibody showed that the myotube number, fluorescence intensity, differentiation index, and myotube fusion index all decreased in the miR-542-3p mimic group, compared with the control group. Conversely, these phenotypes exhibited an increased trend in the miR-542-3p inhibitor group. Mechanistically, phosphatase and tensin homolog (Pten) was identified as the bona fide target gene of miR-542-3p by dual luciferase reporter gene assay, si-Pten combined with miR-542-3p inhibitor treatments totally rescued the promotion of proliferation by loss-function of miR-542-3p. CONCLUSIONS This study indicates that miR-542-3p inhibits the proliferation and differentiation of myoblast and Pten is a dependent target gene of miR-542-3p in myoblast proliferation, but not in differentiation.
Collapse
Grants
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Yongqi Yue
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Xinxin Feng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- Chongxin County Animal Husbandry and Veterinary Center, Pingliang, 744200, China
| | - Weibing Lv
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Yilin Fan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Peiran Sha
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Te Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China.
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Yeo NKW, Lim CK, Yaung KN, Khoo NKH, Arkachaisri T, Albani S, Yeo JG. Genetic interrogation for sequence and copy number variants in systemic lupus erythematosus. Front Genet 2024; 15:1341272. [PMID: 38501057 PMCID: PMC10944961 DOI: 10.3389/fgene.2024.1341272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Early-onset systemic lupus erythematosus presents with a more severe disease and is associated with a greater genetic burden, especially in patients from Black, Asian or Hispanic ancestries. Next-generation sequencing techniques, notably whole exome sequencing, have been extensively used in genomic interrogation studies to identify causal disease variants that are increasingly implicated in the development of autoimmunity. This Review discusses the known casual variants of polygenic and monogenic systemic lupus erythematosus and its implications under certain genetic disparities while suggesting an age-based sequencing strategy to aid in clinical diagnostics and patient management for improved patient care.
Collapse
Affiliation(s)
- Nicholas Kim-Wah Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Che Kang Lim
- Duke-NUS Medical School, Singapore, Singapore
- Department of Clinical Translation Research, Singapore General Hospital, Singapore, Singapore
| | - Katherine Nay Yaung
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nicholas Kim Huat Khoo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| |
Collapse
|
26
|
Trinh VH, Nguyen Huu T, Sah DK, Choi JM, Yoon HJ, Park SC, Jung YS, Lee SR. Redox Regulation of PTEN by Reactive Oxygen Species: Its Role in Physiological Processes. Antioxidants (Basel) 2024; 13:199. [PMID: 38397797 PMCID: PMC10886030 DOI: 10.3390/antiox13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumor suppressor due to its ability to regulate cell survival, growth, and proliferation by downregulating the PI3K/AKT signaling pathway. In addition, PTEN plays an essential role in other physiological events associated with cell growth demands, such as ischemia-reperfusion, nerve injury, and immune responsiveness. Therefore, recently, PTEN inhibition has emerged as a potential therapeutic intervention in these situations. Increasing evidence demonstrates that reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), are produced and required for the signaling in many important cellular processes under such physiological conditions. ROS have been shown to oxidize PTEN at the cysteine residue of its active site, consequently inhibiting its function. Herein, we provide an overview of studies that highlight the role of the oxidative inhibition of PTEN in physiological processes.
Collapse
Affiliation(s)
- Vu Hoang Trinh
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
- Department of Oncology, Department of Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea;
| | - Yu Seok Jung
- Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| |
Collapse
|
27
|
De Leo A, Ruscelli M, Maloberti T, Coluccelli S, Repaci A, de Biase D, Tallini G. Molecular pathology of endocrine gland tumors: genetic alterations and clinicopathologic relevance. Virchows Arch 2024; 484:289-319. [PMID: 38108848 PMCID: PMC10948534 DOI: 10.1007/s00428-023-03713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/19/2023]
Abstract
Tumors of the endocrine glands are common. Knowledge of their molecular pathology has greatly advanced in the recent past. This review covers the main molecular alterations of tumors of the anterior pituitary, thyroid and parathyroid glands, adrenal cortex, and adrenal medulla and paraganglia. All endocrine gland tumors enjoy a robust correlation between genotype and phenotype. High-throughput molecular analysis demonstrates that endocrine gland tumors can be grouped into molecular groups that are relevant from both pathologic and clinical point of views. In this review, genetic alterations have been discussed and tabulated with respect to their molecular pathogenetic role and clinicopathologic implications, addressing the use of molecular biomarkers for the purpose of diagnosis and prognosis and predicting response to molecular therapy. Hereditary conditions that play a key role in determining predisposition to many types of endocrine tumors are also discussed.
Collapse
Affiliation(s)
- Antonio De Leo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Martina Ruscelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
| | - Thais Maloberti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Sara Coluccelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Andrea Repaci
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Dario de Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126, Bologna, Italy
| | - Giovanni Tallini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy.
| |
Collapse
|
28
|
Pakyari M, Mahadevan NR, Russell-Goldman E. Concurrent PTEN and PDGFRB Alterations Characterize Storiform Collagenoma. Am J Surg Pathol 2024; 48:150-156. [PMID: 37899509 DOI: 10.1097/pas.0000000000002146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Storiform collagenoma is a rare mesenchymal skin tumor that is composed of thickened collagen bundles arranged in a characteristic storiform pattern with a relatively hypocellular CD34-positive spindle cell component. Storiform collagenoma is most often sporadic, but multiple lesions can occur in Cowden syndrome, which is characterized by germline alterations in PTEN (phosphatase and tensin homolog) on chromosome 10. Here, we investigated the molecular pathogenesis of storiform collagenoma using a targeted next-generation DNA sequencing platform, including 5 sporadic cases and one case associated with Cowden syndrome. Recurrent PTEN alterations were identified in all cases, with biallelic PTEN inactivation observed in the case associated with Cowden syndrome and one sporadic case. Unexpectedly, we also identified recurrent activating mutations in the platelet-derived growth factor receptor beta ( PDGFRB ) gene. This included a missense substitution in the D5 Ig-like domain of PDGFRB in the Cowden syndrome-associated case. In addition, we report missense alterations in the juxtamembrane domain of PDGFRB in 4 of 5 (80%) sporadic cases, including mutations that have been previously described in sporadic myofibroma and myopericytoma. Therefore, we confirm the neoplastic nature of storiform collagenoma, we expand the spectrum of reported PDGFRB alterations in mesenchymal tumors and we suggest a possible collaborative role for PTEN and PDGFRB in the pathogenesis of storiform collagenoma.
Collapse
|
29
|
Sun M, Zhao M, Li R, Zhang Y, Shi X, Ding C, Ma C, Lu J, Yue X. SHMT2 promotes papillary thyroid cancer metastasis through epigenetic activation of AKT signaling. Cell Death Dis 2024; 15:87. [PMID: 38272883 PMCID: PMC10811326 DOI: 10.1038/s41419-024-06476-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Cancer cells alter their metabolism and epigenetics to support cancer progression. However, very few modulators connecting metabolism and epigenetics have been uncovered. Here, we reveal that serine hydroxymethyltransferase-2 (SHMT2) generates S-adenosylmethionine (SAM) to epigenetically repress phosphatase and tensin homolog (PTEN), leading to papillary thyroid cancer (PTC) metastasis depending on activation of AKT signaling. SHMT2 is elevated in PTC, and is associated with poor prognosis. Overexpressed SHMT2 promotes PTC metastasis both in vitro and in vivo. Proteomic enrichment analysis shows that AKT signaling is activated, and is positively associated with SHMT2 in PTC specimens. Blocking AKT activation eliminates the effects of SHMT2 on promoting PTC metastasis. Furthermore, SHMT2 expression is negatively associated with PTEN, a negative AKT regulator, in PTC specimens. Mechanistically, SHMT2 catalyzes serine metabolism and produces activated one-carbon units that can generate SAM for the methylation of CpG islands in PTEN promoter for PTEN suppression and following AKT activation. Importantly, interference with PTEN expression affects SHMT2 function by promoting AKT signaling activation and PTC metastasis. Collectively, our research demonstrates that SHMT2 connects metabolic reprogramming and epigenetics, contributing to the poor progression of PTC.
Collapse
Affiliation(s)
- Min Sun
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mingjian Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ruowen Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaojia Shi
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo Medical College of Medicine, Shandong University, Jinan, 250012, China
| | - Changyuan Ding
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Medicine, Shandong University, Jinan, 250012, China
| | - Jinghui Lu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo Medical College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
30
|
Hitomi M, Venegas J, Kang SC, Eng C. Differential cell cycle checkpoint evasion by PTEN germline mutations associated with dichotomous phenotypes of cancer versus autism spectrum disorder. Oncogene 2023; 42:3698-3707. [PMID: 37907589 DOI: 10.1038/s41388-023-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Individuals with a PTEN germline mutation receive the molecular diagnosis of PTEN hamartoma tumor syndrome (PHTS). PHTS displays a complex spectrum of clinical phenotypes including harmartomas, predisposition to cancers, and autism spectrum disorder (ASD). Clear-cut genotype-phenotype correlations are yet to be established due to insufficient information on the PTEN function being impacted by mutations. To fill this knowledge gap, we compared functional impacts of two selected missense PTEN mutant alleles, G132D and M134R, each respectively being associated with distinct clinical phenotype, ASD or thyroid cancer without ASD using gene-edited human induced pluripotent stem cells (hiPSCs). In homozygous hiPSCs, PTEN expression was severely reduced by M134R mutation due to shortened protein half-life. G132D suppressed PTEN expression to a lesser extent than Μ134R mutation without altering protein half-life. When challenged with γ-irradiation, G132D heterozygous cells exited radiation-induced G2 arrest earlier than wildtype and M134R heterozygous hiPSCs despite the similar DNA damage levels as the latter two. Immunoblotting analyses suggested that γ-irradiation induced apoptosis in G132D heterozygous cells to lesser degrees than in the hiPSCs of other genotypes. These data suggest that ASD-associated G132D allele promotes genome instability by premature cell cycle reentry with incomplete DNA repair.
Collapse
Affiliation(s)
- Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Juan Venegas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Shin Chung Kang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Science, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
31
|
Liu X, Wang ZZ, Meng S, Zang F, Zhang H, Wang J, Chen YZ. Systematic analysis reveals distinct roles of USF family proteins in various cancer types. Int J Biol Markers 2023; 38:243-252. [PMID: 37846061 DOI: 10.1177/03936155231206135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
BACKGROUND Upstream stimulatory factors (USFs) are members of the basic helix-loop-helix leucine zipper transcription factor family, including USF1, USF2, and USF3. The first two members have been well studied compared to the third member, USF3, which has received scarce attention in cancer research to date. Despite a recently reported association of its alteration with thyroid carcinoma, its expression has not been previously analyzed. METHODS We comprehensively analyzed differential levels of USFs expression, genomic alteration, DNA methylation, and their prognostic value across different cancer types and the possible correlation with tumor-infiltrating immune cells and drug response by using different bioinformatics tools. RESULTS Our findings established that USFs play an important role in cancers related to the urinary system and justify the necessity for further investigation. We implemented and offer a useful ShinyApp to facilitate researchers' efforts to inquire about any other gene of interest and to perform the analysis of drug response in a user-friendly fashion at http://zzdlab.com:3838/Drugdiscovery/.
Collapse
Affiliation(s)
- Xia Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zhuo-Zhi Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Shuai Meng
- Department of Pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Fenglin Zang
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yong-Zi Chen
- Laboratory of Tumor Cell Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Wu S, Zhong B, Yang Y, Wang Y, Pan Z. ceRNA networks in gynecological cancers progression and resistance. J Drug Target 2023; 31:920-930. [PMID: 37724808 DOI: 10.1080/1061186x.2023.2261079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/14/2023] [Indexed: 09/21/2023]
Abstract
Gynecological cancers are the second most common types of cancer in women. Clinical diagnosis of these cancers is often delayed or misdiagnosed due to lack of insight into their tumorigenesis mechanism and specific diagnostic biomarkers. Many studies have demonstrated that competing endogenous RNAs (ceRNAs) modulate the progression and resistance of gynecological cancer through microRNA (miRNA)-mediated mechanisms, which affect gene expression in multiple cancer-related pathways. Here we review studies on the involvement of the ceRNA hypothesis in the progression and resistance of gynaecological cancers to validate some ceRNAs as therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Shuqin Wu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Baoshan Zhong
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuxin Yang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yurou Wang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zezheng Pan
- Faculty of Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
34
|
Abstract
Background: Very little was known about the molecular pathogenesis of thyroid cancer until the late 1980s. As part of the Centennial celebration of the American Thyroid Association, we review the historical discoveries that contributed to our current understanding of the genetic underpinnings of thyroid cancer. Summary: The pace of discovery was heavily dependent on scientific breakthroughs in nucleic acid sequencing technology, cancer biology, thyroid development, thyroid cell signaling, and growth regulation. Accordingly, we attempt to link the primary observations on thyroid cancer molecular genetics with the methodological and scientific advances that made them possible. Conclusions: The major genetic drivers of the common forms of thyroid cancer are now quite well established and contribute to a significant extent to how we diagnose and treat the disease. However, many challenges remain. Future work will need to unravel the complexity of thyroid cancer ecosystems, which is likely to be a major determinant of their biological behavior and on how they respond to therapy.
Collapse
Affiliation(s)
- James A. Fagin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yuri E. Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Rodgers SJ, Mitchell CA, Ooms LM. The mechanisms of class 1A PI3K and Wnt/β-catenin coupled signaling in breast cancer. Biochem Soc Trans 2023; 51:1459-1472. [PMID: 37471270 PMCID: PMC10586779 DOI: 10.1042/bst20220866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
The class IA PI3K signaling pathway is activated by growth factor stimulation and regulates a signaling cascade that promotes diverse events including cell growth, proliferation, migration and metabolism. PI3K signaling is one of the most commonly hyperactivated pathways in breast cancer, leading to increased tumor growth and progression. PI3K hyperactivation occurs via a number of genetic and epigenetic mechanisms including mutation or amplification of PIK3CA, the gene encoding the p110α subunit of PI3Kα, as well as via dysregulation of the upstream growth factor receptors or downstream signaling effectors. Over the past decade, extensive efforts to develop therapeutics that suppress oncogenic PI3K signaling have been undertaken. Although FDA-approved PI3K inhibitors are now emerging, their clinical success remains limited due to adverse effects and negative feedback mechanisms which contribute to their reduced efficacy. There is an emerging body of evidence demonstrating crosstalk between the PI3K and Wnt/β-catenin pathways in breast cancer. However, PI3K exhibits opposing effects on Wnt/β-catenin signaling in distinct tumor subsets, whereby PI3K promotes Wnt/β-catenin activation in ER+ cancers, but paradoxically suppresses this pathway in ER- breast cancers. This review discusses the molecular mechanisms for PI3K-Wnt crosstalk in breast cancer, and how Wnt-targeted therapies have the potential to contribute to treatment regimens for breast cancers with PI3K dysregulation.
Collapse
Affiliation(s)
- Samuel J. Rodgers
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christina A. Mitchell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lisa M. Ooms
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
36
|
Caroleo AM, Rotulo S, Agolini E, Macchiaiolo M, Boccuto L, Antonelli M, Colafati GS, Cacchione A, Megaro G, Carai A, De Ioris MA, Lodi M, Tornesello A, Simone V, Torroni F, Cinalli G, Mastronuzzi A. SHH medulloblastoma and very early onset of bowel polyps in a child with PTEN hamartoma tumor syndrome. Front Mol Neurosci 2023; 16:1228389. [PMID: 37692099 PMCID: PMC10483120 DOI: 10.3389/fnmol.2023.1228389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) hamartoma tumor syndrome (PHTS) is a cancer predisposition syndrome characterized by an increased risk of developing benign and malignant tumors, caused by germline pathogenic variants of the PTEN tumour suppressor gene. PTEN gene variants often present in childhood with macrocephaly, developmental delay, and/or autism spectrum disorder while tumors and intestinal polyps are commonly detected in adults. PHTS is rarely associated with childhood brain tumors with only two reported cases of medulloblastoma (MB). We report the exceptional case of an infant carrying a germline and somatic pathogenic variant of PTEN and a germline and somatic pathogenic variant of CHEK2 who developed a MB SHH in addition to intestinal polyposis.
Collapse
Affiliation(s)
- Anna Maria Caroleo
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Silvia Rotulo
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luigi Boccuto
- School of Nursing, College of Behavioral, Social and Health Sciences Healthcare Genetics Interdisciplinary Doctoral Program, Clemson University, Clemson, SC, United States
| | - Manila Antonelli
- Faculty of Medicine and Dentistry, Department of Radiological, Oncological, and Pathological Anatomy Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Antonella Cacchione
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Giacomina Megaro
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Maria Antonietta De Ioris
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | - Mariachiara Lodi
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| | | | - Valeria Simone
- Pediatric Oncology Unit, Ospedale Vito Fazzi, Lecce, Italy
| | - Filippo Torroni
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Giuseppe Cinalli
- Pediatric Neurosurgery Unit, Department of Neuroscience, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
| |
Collapse
|
37
|
Thomsen MK, Busk M. Pre-Clinical Models to Study Human Prostate Cancer. Cancers (Basel) 2023; 15:4212. [PMID: 37686488 PMCID: PMC10486646 DOI: 10.3390/cancers15174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer is a common cancer among men and typically progresses slowly for several decades before becoming aggressive and spreading to other organs, leaving few treatment options. While large animals have been studied, the dog's prostate is anatomically similar to humans and has been used to study spontaneous prostate cancer. However, most research currently focuses on the mouse as a model organism due to the ability to genetically modify their prostatic tissues for molecular analysis. One milestone in this research was the identification of the prostate-specific promoter Probasin, which allowed for the prostate-specific expression of transgenes. This has led to the generation of mice with aggressive prostatic tumors through overexpression of the SV40 oncogene. The Probasin promoter is also used to drive Cre expression and has allowed researchers to generate prostate-specific loss-of-function studies. Another landmark moment in the process of modeling prostate cancer in mice was the orthoptic delivery of viral particles. This technology allows the selective overexpression of oncogenes from lentivirus or the use of CRISPR to generate complex loss-of-function studies. These genetically modified models are complemented by classical xenografts of human prostate tumor cells in immune-deficient mice. Overall, pre-clinical models have provided a portfolio of model systems to study and address complex mechanisms in prostate cancer for improved treatment options. This review will focus on the advances in each technique.
Collapse
Affiliation(s)
| | - Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
38
|
Sirhan Z, Alojair R, Thyagarajan A, Sahu RP. Therapeutic Implications of PTEN in Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2090. [PMID: 37631304 PMCID: PMC10458395 DOI: 10.3390/pharmaceutics15082090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer remains one of the major human malignancies affecting both men and women worldwide, with non-small cell lung cancer (NSCLC) being the most prevalent type. Multiple mechanisms have been identified that favor tumor growth as well as impede the efficacy of therapeutic regimens in lung cancer patients. Among tumor suppressor genes that play critical roles in regulating cancer growth, the phosphatase and tensin homolog (PTEN) constitutes one of the important family members implicated in controlling various functional activities of tumor cells, including cell proliferation, apoptosis, angiogenesis, and metastasis. Notably, clinical studies have also documented that lung tumors having an impaired, mutated, or loss of PTEN are associated with low survival or high tumor recurrence rates. To that end, PTEN has been explored as a promising target for anti-cancer agents. Importantly, the ability of PTEN to crosstalk with several signaling pathways provides new approaches to devise effective treatment options for lung cancer treatment. The current review highlights the significance of PTEN and its implications in therapeutic approaches against NSCLC.
Collapse
Affiliation(s)
| | | | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (Z.S.); (R.A.)
| | - Ravi P. Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (Z.S.); (R.A.)
| |
Collapse
|
39
|
Liu J, Pan Y, Liu Y, Wei W, Hu X, Xin W, Chen N. The regulation of PTEN: Novel insights into functions as cancer biomarkers and therapeutic targets. J Cell Physiol 2023; 238:1693-1715. [PMID: 37334436 DOI: 10.1002/jcp.31053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
This review summarizes the implications of the primary tumor suppressor protein phosphatase and tensin homolog (PTEN) in aggressive cancer development. PTEN interacts with other cellular proteins or factors suggesting the existence of an intricate molecular network that regulates their oncogenic function. Accumulating evidence has shown that PTEN exists and plays a role in the cytoplasmic organelles and in the nucleus. PTEN blocks phosphoinositide 3-kinases (PI3K)-protein kinase B-mammalian target of rapamycin signaling pathway by dephosphorylating phosphatidylinositol (PI)-3,4,5-triphosphate to PI-4,5-bisphosphate thus counteracting PI3K function. Studies have shown that PTEN expression is tightly regulated at transcriptional, posttranscriptional, and posttranslational levels (including protein-protein interactions and posttranslational modifications). Despite recent advances in PTEN research, the regulation and function of the PTEN gene remain largely unknown. How mutation or loss of specific exons in the PTEN gene occurs and involves in cancer development is not clear. This review illustrates the regulatory mechanisms of PTEN expression and discusses how PTEN participates in tumor development and/or suppression. Future prospects for the clinical applications are also highlighted.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yongli Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Yuheng Liu
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoping Hu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Nan Chen
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
40
|
Chang M, Gao F, Pontigon D, Gnawali G, Xu H, Wang W. Bioorthogonal PROTAC Prodrugs Enabled by On-Target Activation. J Am Chem Soc 2023; 145:14155-14163. [PMID: 37327395 PMCID: PMC11249063 DOI: 10.1021/jacs.3c05159] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although proteolysis targeting chimeras (PROTACs) have become promising therapeutic modalities, important concerns exist about the potential toxicity of the approach owing to uncontrolled degradation of proteins and undesirable ligase-mediated off-target effects. Precision manipulation of degradation activity of PROTACs could minimize potential toxicity and side effects. As a result, extensive efforts have been devoted to developing cancer biomarker activating prodrugs of PROTACs. In this investigation, we developed a bioorthogonal on-demand prodrug strategy (termed click-release "crPROTACs") that enables on-target activation of PROTAC prodrugs and release of PROTACs in cancer cells selectively. Inactive PROTAC prodrugs TCO-ARV-771 and TCO-DT2216 are rationally designed by conjugating a bioorthogonal trans-cyclooctenes (TCO) group into the ligand of the VHL E3 ubiquitin ligase. The tetrazine (Tz)-modified RGD peptide, c(RGDyK)-Tz, which targets integrin αvβ3 biomarker in cancer cells, serves as the activation component for click-release of the PROTAC prodrugs to achieve targeted degradation of proteins of interest (POIs) in cancer cells versus noncancerous normal cells. The results of studies accessing the viability of this strategy show that the PROTAC prodrugs are selectively activated in an integrin αvβ3-dependent manner to produce PROTACs, which degrade POIs in cancer cells. The crPROTAC strategy might be a general, abiotic approach to induce selective cancer cell death through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Feng Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Devin Pontigon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Hang Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
41
|
El-Tanani M, Nsairat H, Aljabali AA, Serrano-Aroca Á, Mishra V, Mishra Y, Naikoo GA, Alshaer W, Tambuwala MM. Role of mammalian target of rapamycin (mTOR) signalling in oncogenesis. Life Sci 2023; 323:121662. [PMID: 37028545 DOI: 10.1016/j.lfs.2023.121662] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
The signalling system known as mammalian target of rapamycin (mTOR) is believed to be required for several biological activities involving cell proliferation. The serine-threonine kinase identified as mTOR recognises PI3K-AKT stress signals. It is well established in the scientific literature that the deregulation of the mTOR pathway plays a crucial role in cancer growth and advancement. This review focuses on the normal functions of mTOR as well as its abnormal roles in cancer development.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Walhan Alshaer
- Cell Therapy Center, the University of Jordan, Amman 11942, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom.
| |
Collapse
|
42
|
Chen J, Ji P, Gnawali G, Chang M, Gao F, Xu H, Wang W. Building bioorthogonal click-release capable artificial receptors on cancer cell surface for imaging, drug targeting and delivery. Acta Pharm Sin B 2023; 13:2736-2746. [PMID: 37425049 PMCID: PMC10326247 DOI: 10.1016/j.apsb.2022.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
The current targeting drug delivery mainly relies on cancer cell surface receptors. However, in many cases, binding affinities between protein receptors and homing ligands is relatively low and the expression level between cancer and normal cells is not significant. Distinct from conventional targeting strategies, we have developed a general cancer targeting platform by building artificial receptor on cancer cell surface via a chemical remodeling of cell surface glycans. A new tetrazine (Tz) functionalized chemical receptor has been designed and efficiently installed on cancer cell surface as "overexpressed" biomarker through a metabolic glycan engineering. Different from the reported bioconjugation for drug targeting, the tetrazine labeled cancer cells not only locally activate TCO-caged prodrugs but also release active drugs via the unique bioorthogonal Tz-TCO click-release reaction. The studies have demonstrated that the new drug targeting strategy enables local activation of prodrug, which ultimately leads to effective and safe cancer therapy.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Peng Ji
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Feng Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Hang Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Wei Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
43
|
Agarwal P, Sachan A, Goel V, Jindal S, Jain P. Cowden Syndrome With Gall Bladder Polyps and Incidental Gall Bladder Carcinoma. Cureus 2023; 15:e39794. [PMID: 37398799 PMCID: PMC10313238 DOI: 10.7759/cureus.39794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Cowden syndrome is an uncommon autosomal dominant disorder characterized by multiple hamartomas in various tissues. It is associated with germline mutation in the phosphatase and tensin homolog (PTEN) gene. It has an increased risk of malignancies of various organs (commonly breast, thyroid, and endometrium) and benign overgrowth of tissues like skin, colon, and thyroid. Here, we present a case of Cowden syndrome in a middle-aged female who presented with acute cholecystitis with gall bladder polyps along with intestinal polyps. She underwent total proctocolectomy with ileal pouch-anal anastomosis (IPAA) with diversion ileostomy and cholecystectomy, which was further proceeded to completion of radical cholecystectomy based on the final histopathology report as incidental gall bladder carcinoma. To the best of our knowledge, this association is seen for the first time in the literature. In Cowden syndrome, patients should be counseled for regular follow-up and instructed to be aware of the signs and symptoms of different types of cancers with higher incidence.
Collapse
Affiliation(s)
- Praveen Agarwal
- Surgical Gastroenterology, Fortis Hospital, Shalimar Bagh, Delhi, IND
| | - Ashish Sachan
- Surgical Gastroenterology, Fortis Hospital, Shalimar Bagh, Delhi, IND
| | - Vivek Goel
- Surgical Gastroenterology, Fortis Hospital, Shalimar Bagh, Delhi, IND
| | - Sourabh Jindal
- Surgical Gastroenterology, Fortis Hospital, Shalimar Bagh, Delhi, IND
| | - Pradeep Jain
- Surgical Gastroenterology, Fortis Hospital, Shalimar Bagh, Delhi, IND
| |
Collapse
|
44
|
Cao Y, Evenson MJ, Corliss MM, Schroeder MC, Heusel JW, Neidich JA. Co-existence of 2 clinically significant variants causing disorders of somatic mosaicism. GENETICS IN MEDICINE OPEN 2023; 1:100807. [PMID: 39669237 PMCID: PMC11613713 DOI: 10.1016/j.gimo.2023.100807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 12/14/2024]
Abstract
Purpose Disorders of somatic mosaicism (DoSM) are a heterogeneous group of conditions caused by postzygotic variants in genes within the PI3K/AKT/mTOR and RAS/MAPK signaling pathway. The co-existence of 2 activating variants in this disease group is extremely rare. Methods A deep sequencing next-generation sequencing assay for the molecular diagnosis of DoSM was run on 936 individuals with DoSM. Results A single pathogenic or likely pathogenic (P/LP) variant was identified in 584 of 617 (94.8%) positive cases; 33 of 617 (5.2%) cases carried 2 P/LP variants. Of these 33 cases, 22 carried 2 P/LP variants in the same gene, including 8 associated with a loss-of-function disease mechanism and 14 associated with a gain-of-function disease mechanism. Eleven cases had P/LP variants in 2 different genes, including PIKC3A variants in 7 cases and 4 cases with 2 P/LP variants in non-PIK3CA genes. Conclusion To our knowledge, this is the largest cohort with the co-existence of 2 P/LP somatic variants causing DoSM. The study of the co-existence of 2 clinically significant variants in DoSM requires unique considerations regarding variant allelic fractions, the combination of variants, affected tissue types, and the severity of the disease. Investigations into this unique cohort may further our understanding of the disease mechanism and potential therapeutic options.
Collapse
Affiliation(s)
- Yang Cao
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Michael J. Evenson
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Meagan M. Corliss
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Molly C. Schroeder
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Jonathan W. Heusel
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Julie A. Neidich
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
45
|
Nguyen TT, Hamdan D, Angeli E, Feugeas JP, Le QV, Pamoukdjian F, Bousquet G. Genomics of Breast Cancer Brain Metastases: A Meta-Analysis and Therapeutic Implications. Cancers (Basel) 2023; 15:cancers15061728. [PMID: 36980614 PMCID: PMC10046845 DOI: 10.3390/cancers15061728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023] Open
Abstract
Breast cancer brain metastases are a challenging daily practice, and the biological link between gene mutations and metastatic spread to the brain remains to be determined. Here, we performed a meta-analysis on genomic data obtained from primary tumors, extracerebral metastases and brain metastases, to identify gene alterations associated with metastatic processes in the brain. Articles with relevant findings were selected using Medline via PubMed, from January 1999 up to February 2022. A critical review was conducted according to the Preferred Reporting Items for Systematic Review and Meta-analysis statement (PRISMA). Fifty-seven publications were selected for this meta-analysis, including 37,218 patients in all, 11,906 primary tumor samples, 5541 extracerebral metastasis samples, and 1485 brain metastasis samples. We report the overall and sub-group prevalence of gene mutations, including comparisons between primary tumors, extracerebral metastases and brain metastases. In particular, we identified six genes with a higher mutation prevalence in brain metastases than in extracerebral metastases, with a potential role in metastatic processes in the brain: ESR1, ERBB2, EGFR, PTEN, BRCA2 and NOTCH1. We discuss here the therapeutic implications. Our results underline the added value of obtaining biopsies from brain metastases to fully explore their biology, in order to develop personalized treatments.
Collapse
Affiliation(s)
- Thuy Thi Nguyen
- National Cancer Hospital, Ha Noi 100000, Vietnam
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
- Department of Pediatrics, Hanoi Medical University, Ha Noi 100000, Vietnam
- Institut Galilée, Université Sorbonne Paris Nord, 93439 Villetaneuse, France
| | - Diaddin Hamdan
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
- Hôpital La Porte Verte, 78000 Versailles, France
| | - Eurydice Angeli
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
- Institut Galilée, Université Sorbonne Paris Nord, 93439 Villetaneuse, France
- Service d’Oncologie Médicale, Hôpital Avicenne, Assistance Publique Hôpitaux de Paris, 93000 Bobigny, France
| | - Jean-Paul Feugeas
- INSERM U1098, 25030 Besançon, France
- Laboratoire de Biochimie Hôpital Jean Minjoz, Université de Franche-Comté, 25000 Besançon, France
- Correspondence: (J.-P.F.); (G.B.)
| | - Quang Van Le
- National Cancer Hospital, Ha Noi 100000, Vietnam
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
| | - Frédéric Pamoukdjian
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
- Institut Galilée, Université Sorbonne Paris Nord, 93439 Villetaneuse, France
- Service de Médecine Gériatrique, Hôpital Avicenne, Assistance Publique Hôpitaux de Paris, 93000 Bobigny, France
| | - Guilhem Bousquet
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
- Institut Galilée, Université Sorbonne Paris Nord, 93439 Villetaneuse, France
- Service d’Oncologie Médicale, Hôpital Avicenne, Assistance Publique Hôpitaux de Paris, 93000 Bobigny, France
- Correspondence: (J.-P.F.); (G.B.)
| |
Collapse
|
46
|
Significance of miRNAs on the thyroid cancer progression and resistance to treatment with special attention to the role of cross-talk between signaling pathways. Pathol Res Pract 2023; 243:154371. [PMID: 36791561 DOI: 10.1016/j.prp.2023.154371] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. It has many types, the Papillary thyroid cancer (PTC)(most common and follicular thyroid carcinoma (FTC). Several risk factors have been associated with TC radiation exposure, autoimmunity, and genetics. Microribonucleic acids (miRNAs) are the most important genetic determinants of TC. They are small chains of nucleic acids that are able to inhibit the expression of several target genes. They could target several genes involved in TC proliferation, angiogenesis, apoptosis, development, and even resistance to therapy. Besides, they could influence the stemness of TC. Moreover, they could regulate several signaling pathways such as WNT/β-catenin, PI3K/AKT/mTOR axis, JAK/STAT, TGF- β, EGFR, and P53. Besides signaling pathways, miRNAs are also involved in the resistance of TC to major treatments such as surgery, thyroid hormone-inhibiting therapy, radioactive iodine, and adjuvant radiation. The stability and sensitivity of several miRNAs might be exploited as an approach for the usage of miRNAs as diagnostic and/or prognostic tools in TC.
Collapse
|
47
|
Chevarin M, Alcantara D, Albuisson J, Collonge-Rame MA, Populaire C, Selmani Z, Baurand A, Sawka C, Bertolone G, Callier P, Duffourd Y, Jonveaux P, Bignon YJ, Coupier I, Cornelis F, Cordier C, Mozelle-Nivoix M, Rivière JB, Kuentz P, Thauvin C, Boidot R, Ghiringhelli F, O'Driscoll M, Faivre L, Nambot S. The "extreme phenotype approach" applied to male breast cancer allows the identification of rare variants of ATR as potential breast cancer susceptibility alleles. Oncotarget 2023; 14:111-125. [PMID: 36749285 PMCID: PMC9904323 DOI: 10.18632/oncotarget.28358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
In oncogenetics, some patients could be considered as "extreme phenotypes", such as those with very early onset presentation or multiple primary malignancies, unusually high numbers of cancers of the same spectrum or rare cancer types in the same parental branch. For these cases, a genetic predisposition is very likely, but classical candidate gene panel analyses often and frustratingly remains negative. In the framework of the EX2TRICAN project, exploring unresolved extreme cancer phenotypes, we applied exome sequencing on rare familial cases with male breast cancer, identifying a novel pathogenic variant of ATR (p.Leu1808*). ATR has already been suspected as being a predisposing gene to breast cancer in women. We next identified 3 additional ATR variants in a cohort of both male and female with early onset and familial breast cancers (c.7762-2A>C; c.2078+1G>A; c.1A>G). Further molecular and cellular investigations showed impacts on transcripts for variants affecting splicing sites and reduction of ATR expression and phosphorylation of the ATR substrate CHEK1. This work further demonstrates the interest of an extended genetic analysis such as exome sequencing to identify very rare variants that can play a role in cancer predisposition in extreme phenotype cancer cases unexplained by classical cancer gene panels testing.
Collapse
Affiliation(s)
- Martin Chevarin
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Unité Fonctionnelle Innovation diagnostique dans les maladies rares, laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon Bourgogne, Dijon, France
| | - Diana Alcantara
- Human DNA Damage Response Disorders Group, University of Sussex, Genome Damage and Stability Centre, Brighton, United Kingdom
| | - Juliette Albuisson
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Département de biologie et pathologie des tumeurs, Centre Georges François Leclerc, Dijon, France
| | | | - Céline Populaire
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
| | - Zohair Selmani
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
| | - Amandine Baurand
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Caroline Sawka
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Geoffrey Bertolone
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Patrick Callier
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Unité Fonctionnelle Innovation diagnostique dans les maladies rares, laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Yannis Duffourd
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Philippe Jonveaux
- Laboratoire de Génétique Médicale, INSERM U954, Hôpitaux de Brabois, Vandoeuvre les Nancy, France
| | - Yves-Jean Bignon
- Laboratoire d’Oncologie Moléculaire, Centre Jean Perrin, Clermont-Ferrand, France
| | | | - François Cornelis
- Université Bordeaux, IMB, UMR 5251, Talence, France
- Service d’imagerie diagnostique et interventionnelle de l’adulte, Hôpital Pellegrin, CHU de Bordeaux, France
| | | | | | - Jean-Baptiste Rivière
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Paul Kuentz
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Christel Thauvin
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Romain Boidot
- Département de biologie et pathologie des tumeurs, Centre Georges François Leclerc, Dijon, France
| | - François Ghiringhelli
- Département d’oncologie médicale, INSERM LNC U1231, Centre Georges François Leclerc, Dijon, France
| | - Marc O'Driscoll
- Human DNA Damage Response Disorders Group, University of Sussex, Genome Damage and Stability Centre, Brighton, United Kingdom
| | - Laurence Faivre
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Sophie Nambot
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
48
|
Prieto R, Hofecker V, Corbacho C. Coexisting lipomatous meningioma and glioblastoma in Cowden syndrome: A unique tumor association. Neuropathology 2023; 43:110-116. [PMID: 36003032 DOI: 10.1111/neup.12858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023]
Abstract
Cowden syndrome (CS) is a rare hereditary hamartoma-cancer disorder related to germline mutations in the tumor suppressor phosphatase and tensin homolog (PTEN) gene. Association of CS with intracranial tumors, apart from Lhermitte-Duclos disease (LDD), is not well recognized. We present an exceptional instance of concomitant meningioma and glioblastoma in CS, the first case ever reported. Following a new-onset seizure, a 62-year-old male harboring the PTEN gene germline mutation c.334C > G was diagnosed with multiple brain tumors, which were erroneously thought to correspond to metastases. Because no primary cancer was found, an operation was proposed for histopathological diagnosis. Examination of surgical specimens obtained from the two lesions removed, one extra-axial and the other intracerebral, demonstrated a metaplastic meningioma with a lipomatous appearance and an isocitrate dehydrogenase wild-type glioblastoma, respectively. Loss of the PTEN gene expression was demonstrated immunohistochemically in both lesions, a finding that supports their relation to CS. A thorough literature review revealed only 25 additional CS patients with intracranial tumors other than LDD. All of them corresponded to primary lesions, with meningiomas accounting for 76% of the cases (19 patients), followed by pituitary tumors (three cases) and glioblastomas (two patients from the same family). Our report and literature review highlight the association between CS and primary brain tumors rather than metastasis. For judicious management of a CS patient with multiple intracranial tumors, different primary brain pathological entities should also be suspected first before considering metastasis. Close neurological monitoring and brain magnetic resonance imaging are advocated as part of the cancer screening in CS patients, particularly in cases with a family history of intracranial tumors.
Collapse
Affiliation(s)
- Ruth Prieto
- Department of Neurosurgery, Puerta de Hierro University Hospital, Madrid, Spain
| | - Verena Hofecker
- Pathologisch-anatomische Sammlung Im Narrenturm - NHM, Vienna, Austria
| | - Cesáreo Corbacho
- Department of Pathology, Puerta de Hierro University Hospital, Madrid, Spain
| |
Collapse
|
49
|
PTEN phosphatase inhibits metastasis by negatively regulating the Entpd5/IGF1R pathway through ATF6. iScience 2023; 26:106070. [PMID: 36824269 PMCID: PMC9942123 DOI: 10.1016/j.isci.2023.106070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
PTEN encodes a tumor suppressor with lipid and protein phosphatase activities whose dysfunction has been implicated in melanomagenesis; less is known about how its phosphatases regulate melanoma metastasis. We demonstrate that PTEN expression negatively correlates with metastatic progression in human melanoma samples and a PTEN-deficient mouse melanoma model. Wildtype PTEN expression inhibited melanoma cell invasiveness and metastasis in a dose-dependent manner, behaviors that specifically required PTEN protein phosphatase activity. PTEN phosphatase activity regulated metastasis through Entpd5. Entpd5 knockdown reduced metastasis and IGF1R levels while promoting ER stress. In contrast, Entpd5 overexpression promoted metastasis and enhanced IGF1R levels while reducing ER stress. Moreover, Entpd5 expression was regulated by the ER stress sensor ATF6. Altogether, our data indicate that PTEN phosphatase activity inhibits metastasis by negatively regulating the Entpd5/IGF1R pathway through ATF6, thereby identifying novel candidate therapeutic targets for the treatment of PTEN mutant melanoma.
Collapse
|
50
|
Cummings S, Alfonso A, Hughes E, Kucera M, Mabey B, Singh N, Eng C. Cancer Risk Associated With PTEN Pathogenic Variants Identified Using Multigene Hereditary Cancer Panel Testing. JCO Precis Oncol 2023; 7:e2200415. [PMID: 36634299 PMCID: PMC9928870 DOI: 10.1200/po.22.00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE PTEN-associated clinical syndromes such as Cowden syndrome (CS) increase cancer risk and have historically been diagnosed based upon phenotypic criteria. Because not all patients clinically diagnosed with CS have PTEN pathogenic variants (PVs), and not all patients with PTEN PVs have been clinically diagnosed with CS, the cancer risk conferred by PTEN PVs calculated from cohorts of patients with clinical diagnoses of CS/CS-like phenotypes may be inaccurate. METHODS We assessed a consecutive cohort of 727,091 individuals tested clinically for hereditary cancer risk, with a multigene panel between September 2013 and February 2022. Multivariable logistic regression models accounting for personal and family cancer history, age, sex, and ancestry were used to quantify disease risks associated with PTEN PVs. RESULTS PTEN PVs were detected in 0.027% (193/727,091) of the study population, and were associated with a high risk of female breast cancer (odds ratio [OR], 7.88; 95% CI, 5.57 to 11.16; P = 2.3 × 10-31), endometrial cancer (OR, 13.51; 95% CI, 8.77 to 20.83; P = 4.2 × 10-32), thyroid cancer (OR, 4.88; 95% CI, 2.64 to 9.01; P = 4.0 × 10-7), and colon polyposis (OR, 31.60; CI, 15.60 to 64.02; P = 9.0 × 10-22). We observed modest evidence suggesting that PTEN PVs may be associated with ovarian cancer risk (OR, 3.77; 95% CI, 1.71 to 8.32; P = 9.9 × 10-4). Among patients with similar personal/family history and ancestry, every 5-year increase in age of diagnosis decreased the likelihood of detecting a PTEN PV by roughly 60%. CONCLUSION We demonstrate that PTEN PVs are associated with significantly increased risk for a range of cancers. Together with the observation that PTEN PV carriers had earlier disease onset relative to otherwise comparable noncarriers, our results may guide screening protocols, inform risk-management strategies, and warrant enhanced surveillance approaches that improve clinical outcomes for PTEN PV carriers, regardless of their clinical presentation.
Collapse
Affiliation(s)
- Shelly Cummings
- Myriad Genetics Inc, Salt Lake City, UT,Shelly Cummings, MS, 320 Wakara Way, Salt Lake City, UT 84108; e-mail:
| | | | | | | | | | | | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care, Cleveland, OH,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH,Department of Genetics and Genome Sciences, and CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|