1
|
Wang C, Xu L, Du C, Yun H, Wang K, Liu H, Ye M, Fan J, Zhou Y, Cheng H. CDK11 requires a critical activator SAP30BP to regulate pre-mRNA splicing. EMBO J 2023; 42:e114051. [PMID: 38059508 PMCID: PMC10711644 DOI: 10.15252/embj.2023114051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/08/2023] Open
Abstract
CDK11 is an emerging druggable target for cancer therapy due to its prevalent roles in phosphorylating critical transcription and splicing factors and in facilitating cell cycle progression in cancer cells. Like other cyclin-dependent kinases, CDK11 requires its cognate cyclin, cyclin L1 or cyclin L2, for activation. However, little is known about how CDK11 activities might be modulated by other regulators. In this study, we show that CDK11 forms a tight complex with cyclins L1/L2 and SAP30BP, the latter of which is a poorly characterized factor. Acute degradation of SAP30BP mirrors that of CDK11 in causing widespread and strong defects in pre-mRNA splicing. Furthermore, we demonstrate that SAP30BP facilitates CDK11 kinase activities in vitro and in vivo, through ensuring the stabilities and the assembly of cyclins L1/L2 with CDK11. Together, these findings uncover SAP30BP as a critical CDK11 activator that regulates global pre-mRNA splicing.
Collapse
Affiliation(s)
- Changshou Wang
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Lin Xu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Chen Du
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina§
| | - Hao Yun
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hui Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Jing Fan
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina§
| | - Hong Cheng
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| |
Collapse
|
2
|
Zabihi M, Lotfi R, Yousefi AM, Bashash D. Cyclins and cyclin-dependent kinases: from biology to tumorigenesis and therapeutic opportunities. J Cancer Res Clin Oncol 2023; 149:1585-1606. [PMID: 35781526 DOI: 10.1007/s00432-022-04135-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
The discussion on cell proliferation cannot be continued without taking a look at the cell cycle regulatory machinery. Cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) are valuable members of this system and their equilibrium guarantees the proper progression of the cell cycle. As expected, any dysregulation in the expression or function of these components can provide a platform for excessive cell proliferation leading to tumorigenesis. The high frequency of CDK abnormalities in human cancers, together with their druggable structure has raised the possibility that perhaps designing a series of inhibitors targeting CDKs might be advantageous for restricting the survival of tumor cells; however, their application has faced a serious concern, since these groups of serine-threonine kinases possess non-canonical functions as well. In the present review, we aimed to take a look at the biology of CDKs and then magnify their contribution to tumorigenesis. Then, by arguing the bright and dark aspects of CDK inhibition in the treatment of human cancers, we intend to reach a consensus on the application of these inhibitors in clinical settings.
Collapse
Affiliation(s)
- Mitra Zabihi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ou D, Chen L, He J, Rong Z, Gao J, Li Z, Liu L, Tang F, Li J, Deng Y, Sun L. CDK11 negatively regulates Wnt/β-catenin signaling in the endosomal compartment by affecting microtubule stability. Cancer Biol Med 2020; 17:328-342. [PMID: 32587772 PMCID: PMC7309457 DOI: 10.20892/j.issn.2095-3941.2019.0229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: Improper activation of Wnt/β-catenin signaling has been implicated in human diseases. Beyond the well-studied glycogen synthase kinase 3β (GSK3β) and casein kinase 1 (CK1), other kinases affecting Wnt/β-catenin signaling remain to be defined. Methods:To identify the kinases that modulate Wnt/β-catenin signaling, we applied a kinase small interfering RNA (siRNA) library screen approach. Luciferase assays, immunoblotting, and real-time polymerase chain reaction (PCR) were performed to confirm the regulation of the Wnt/β-catenin signaling pathway by cyclin-dependent kinase 11 (CDK11) and to investigate the underlying mechanism. Confocal immunofluorescence, coimmunoprecipitation (co-IP), and scratch wound assays were used to demonstrate colocalization, detect protein interactions, and explore the function of CDK11. Results: CDK11 was found to be a significant candidate kinase participating in the negative control of Wnt/β-catenin signaling. Down-regulation of CDK11 led to the accumulation of Wnt/β-catenin signaling receptor complexes, in a manner dependent on intact adenomatosis polyposis coli (APC) protein. Further analysis showed that CDK11 modulation of Wnt/β-catenin signaling engaged the endolysosomal machinery, and CDK11 knockdown enhanced the colocalization of Wnt/β-catenin signaling receptor complexes with early endosomes and decreased colocalization with lysosomes. Mechanistically, CDK11 was found to function in Wnt/β-catenin signaling by regulating microtubule stability. Depletion of CDK11 down-regulated acetyl-α-tubulin. Moreover, co-IP assays demonstrated that CDK11 interacts with the α-tubulin deacetylase SIRT2, whereas SIRT2 down-regulation in CDK11-depleted cells reversed the accumulation of Wnt/β-catenin signaling receptor complexes. CDK11 was found to suppress cell migration through altered Wnt/β-catenin signaling. Conclusions: CDK11 is a negative modulator of Wnt/β-catenin signaling that stabilizes microtubules, thus resulting in the dysregulation of receptor complex trafficking from early endosomes to lysosomes.
Collapse
Affiliation(s)
- Danmin Ou
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lin Chen
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiang He
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhuoxian Rong
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Gao
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Li
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,International Cooperation Base of Cancer Precision Therapy, Department of Science and Technology of Hunan Province, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China
| | - Liyu Liu
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Feiyu Tang
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiang Li
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuezhen Deng
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,International Cooperation Base of Cancer Precision Therapy, Department of Science and Technology of Hunan Province, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China
| | - Lunquan Sun
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,International Cooperation Base of Cancer Precision Therapy, Department of Science and Technology of Hunan Province, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| |
Collapse
|
4
|
Golyan FF, Druley TE, Abbaszadegan MR. Whole-exome sequencing of familial esophageal squamous cell carcinoma identified rare pathogenic variants in new predisposition genes. Clin Transl Oncol 2020; 22:681-693. [PMID: 31321674 DOI: 10.1007/s12094-019-02174-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/28/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is one of the most important causes of mortality in the developing world. Although hereditary forms arise from germ-line mutations in TP53, Rb, and the mismatch repair genes, many familial cases present with an unknown inherited cause. The new theory of rare, high-penetrance mutations in less known genes is a likely explanation for the underlying predisposition in some of these familial cases. METHODS Exome sequencing was performed in 9 patients with esophageal squamous cancer from 9 families with strong disease aggregation without mutations in known hereditary esophageal cancer genes. Data analysis was limited to only really rare variants (0-0.01%), producing a putative loss of function and located in genes with a role compatible with carcinogenesis. RESULTS Twenty-two final candidate variants were selected and validated by Sanger sequencing. Correct family segregation and somatic studies were used to categorize the most interesting variants in CDK11A, ARID1A, JMJD6, MAML3, CDKN2AIP, and PHLDA1. CONCLUSION Together, we identified new potential esophageal squamous cancer predisposition variants in genes which may have a role in cancer and are involved in chromatin remodeling and cell-cycle pathway, which could increase the risk of ESCC.
Collapse
Affiliation(s)
- F F Golyan
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - T E Druley
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M R Abbaszadegan
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Renshaw MJ, Panagiotou TC, Lavoie BD, Wilde A. CDK11 p58-cyclin L1β regulates abscission site assembly. J Biol Chem 2019; 294:18639-18649. [PMID: 31653703 DOI: 10.1074/jbc.ra119.009107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/10/2019] [Indexed: 01/22/2023] Open
Abstract
Rigorous spatiotemporal regulation of cell division is required to maintain genome stability. The final stage in cell division, when the cells physically separate (abscission), is tightly regulated to ensure that it occurs after cytokinetic events such as chromosome segregation. A key regulator of abscission timing is Aurora B kinase activity, which inhibits abscission and forms the major activity of the abscission checkpoint. This checkpoint prevents abscission until chromosomes have been cleared from the cytokinetic machinery. Here we demonstrate that the mitosis-specific CDK11p58 kinase specifically forms a complex with cyclin L1β that, in late cytokinesis, localizes to the stem body, a structure in the middle of the intercellular bridge that forms between two dividing cells. Depletion of CDK11 inhibits abscission, and rescue of this phenotype requires CDK11p58 kinase activity or inhibition of Aurora B kinase activity. Furthermore, CDK11p58 kinase activity is required for formation of endosomal sorting complex required for transport III filaments at the site of abscission. Combined, these data suggest that CDK11p58 kinase activity opposes Aurora B activity to enable abscission to proceed and result in successful completion of cytokinesis.
Collapse
Affiliation(s)
- Matthew J Renshaw
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Thomas C Panagiotou
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Brigitte D Lavoie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Andrew Wilde
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
6
|
Groß A, Schulz C, Kolb J, Koster J, Wehner S, Czaplinski S, Khilan A, Rohrer H, Harter PN, Klingebiel T, Langer JD, Geerts D, Schulte D. Tumorigenic and Antiproliferative Properties of the TALE-Transcription Factors MEIS2D and MEIS2A in Neuroblastoma. Cancer Res 2018; 78:1935-1947. [DOI: 10.1158/0008-5472.can-17-1860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/15/2017] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
|
7
|
The SDF-1 rs1801157 Polymorphism is Associated with Cancer Risk: An Update Pooled Analysis and FPRP Test of 17,876 Participants. Sci Rep 2016; 6:27466. [PMID: 27265091 PMCID: PMC4893747 DOI: 10.1038/srep27466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/17/2016] [Indexed: 02/05/2023] Open
Abstract
The stromal cell derived factor-1 (SDF-1) rs1801157 gene polymorphism has been implicated in susceptibility to cancer, but the results were inconclusive. The current study was to precisely investigate the association between SDF-1 rs1801157 polymorphism and cancer risk using meta-analysis and the false positive report probability (FPRP) test. All 17,876 participants were included in the study. The meta-analysis results indicated a significant association between the SDF-1 rs1801157 polymorphism and cancer risk. By subgroup analyses, the results detected that the SDF-1 rs1801157 polymorphism was associated with cancer susceptibility among Asians and Caucasians. Additionally, we also found significant associations between the SDF-1 rs1801157 polymorphism and susceptibility to different types of cancer. However, to avoid a "false positive report", we further investigated the significant associations observed in the present meta-analysis using the FPRP test. Interestingly, the results of the FPRP test indicated that only 4 gene models were truly associated with cancer risk, especially in Asians. Moreover, we confirmed that the SDF-1 rs1801157 gene polymorphism was only associated with lung and urologic cancer risk. In summary, this study suggested that the SDF-1 rs1801157 polymorphism may serve as a risk factor for cancer development among Asians, especially an increased risk of urologic and lung cancers.
Collapse
|
8
|
Masecchia S, Coco S, Barla A, Verri A, Tonini GP. Genome instability model of metastatic neuroblastoma tumorigenesis by a dictionary learning algorithm. BMC Med Genomics 2015; 8:57. [PMID: 26358114 PMCID: PMC4566396 DOI: 10.1186/s12920-015-0132-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/28/2015] [Indexed: 12/21/2022] Open
Abstract
Background Metastatic neuroblastoma (NB) occurs in pediatric patients as stage 4S or stage 4 and it is characterized by heterogeneous clinical behavior associated with diverse genotypes. Tumors of stage 4 contain several structural copy number aberrations (CNAs) rarely found in stage 4S. To date, the NB tumorigenesis is not still elucidated, although it is evident that genomic instability plays a critical role in the genesis of the tumor. Here we propose a mathematical approach to decipher genomic data and we provide a new model of NB metastatic tumorigenesis. Method We elucidate NB tumorigenesis using Enhanced Fused Lasso Latent Feature Model (E-FLLat) modeling the array comparative chromosome hybridization (aCGH) data of 190 metastatic NBs (63 stage 4S and 127 stage 4). This model for aCGH segmentation, based on the minimization of functional dictionary learning (DL), combines several penalties tailored to the specificities of aCGH data. In DL, the original signal is approximated by a linear weighted combination of atoms: the elements of the learned dictionary. Results The hierarchical structures for stage 4S shows at the first level of the oncogenetic tree several whole chromosome gains except to the unbalanced gains of 17q, 2p and 2q. Conversely, the high CNA complexity found in stage 4 tumors, requires two different trees. Both stage 4 oncogenetic trees are marked diverged, up to five sublevels and the 17q gain is the most common event at the first level (2/3 nodes). Moreover the 11q deletion, one of the major unfavorable marker of disease progression, occurs before 3p loss indicating that critical chromosome aberrations appear at early stages of tumorigenesis. Finally, we also observed a significant (p = 0.025) association between patient age and chromosome loss in stage 4 cases. Conclusion These results led us to propose a genome instability progressive model in which NB cells initiate with a DNA synthesis uncoupled from cell division, that leads to stage 4S tumors, primarily characterized by numerical aberrations, or stage 4 tumors with high levels of genome instability resulting in complex chromosome rearrangements associated with high tumor aggressiveness and rapid disease progression. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0132-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Simona Coco
- Lung Cancer Unit; IRCCS A.O.U. San Martino - IST, Genova, Italy.
| | - Annalisa Barla
- DIBRIS, Università degli Studi di Genova, Genova, Italy.
| | | | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Onco/Hematology Laboratory, Department of Woman and Child Health, University of Padua, Pediatric Research Institute, Fondazione Città della Speranza, Padua, Corso Stati Uniti, 4, 35127, Padua, Italy.
| |
Collapse
|
9
|
Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib. PLoS One 2015; 10:e0125232. [PMID: 25969993 PMCID: PMC4430383 DOI: 10.1371/journal.pone.0125232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/22/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown. MATERIALS AND METHODS Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed. RESULTS Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer. CONCLUSIONS Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non-small cell lung cancer, accompanying mutations in PIK3CA may confer gefitinib resistance.
Collapse
|
10
|
Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel) 2015; 7:179-237. [PMID: 25625291 PMCID: PMC4381256 DOI: 10.3390/cancers7010179] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.
Collapse
Affiliation(s)
- Marion Peyressatre
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Camille Prével
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Morgan Pellerano
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - May C Morris
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|
11
|
Acute lymphoblastic leukemia in a patient with constitutional chromosome 1pter-p36.31 duplication and 1q43-qter deletion. J Pediatr Hematol Oncol 2012; 34:217-21. [PMID: 22217494 DOI: 10.1097/mph.0b013e31823321e5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromosome 1 is the largest of all human chromosomes, containing 3141 genes. It is linked to 890 known genetic diseases including congenital hypothyroidism, hemochromatosis, and prostate cancer. Recognized deletion and duplication syndromes have been described. Deletions in the short arm (p) of the chromosome have been identified in tumors of the brain and kidneys. Duplications in the long (q) arm of the chromosome are reported in myelodysplastic syndromes. Solitary 1p36 deletion or 1q42 duplication are rarely reported entities and their associations with malignancy have not been characterized. We report a case of a child with constitutional 1pter-p36.31 duplication and 1q43-qter deletion who developed acute lymphoblastic leukemia (ALL). The patient's oncologic presentation and subsequent clinical course raise the question of the association of the underlying genetic abnormality and its malignant potential, specifically in relation to ALL. Acquired chromosome 1 deletions and duplications have been well described in other malignant diseases. Constitutional chromosome 1p duplication and 1q deletions have not been described with ALL.
Collapse
|
12
|
Zhang G, Jiang J, Luo S, Tang S, Liang J, Yao P. Analyses of CDC2L1 gene mutations in keloid tissue. Clin Exp Dermatol 2011; 37:277-83. [PMID: 22188294 DOI: 10.1111/j.1365-2230.2011.04225.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Keloid disease is the result of a deregulated wound-healing process. Loss of heterozygosity on chromosome 1p36 has been shown to be associated with keloid formation in humans. The cell division cycle 2-like 1 (CDC2L1) gene is known to be essential for eukaryotic cell-cycle control, and has also been mapped to 1p36. AIM To verify the possible association between keloid disease and somatic mutation of the CDC2L1 gene on chromosome 1p36. METHODS Mutations of the CDC2L1 gene in keloid and healthy skin tissues were screened by denaturing high-performance liquid chromatography, and confirmed by DNA sequencing analysis. RESULTS Of the 27 patients with keloid assessed, 21 had mutations. The most prevalent exon affected was exon 7, with 15 patients affected: 10 patients (37%) had a base G deletion at codon 247, and 12 patients (44.4%) had a base A insertion at codon 267 (6 patients (25.9%) had both mutations). The remaining six patients had mutations in exons 11 (codon 433; n = 3) and 14 (codon 520; n = 3). Comparing the keloid skin tissues with the healthy control skin tissues, significant differences were seen between the groups for the base G deletion at codon 247 and the base A insertion at codon 267. CONCLUSIONS We have identified a correlation between two exon 7 mutations of the CDC2L1 gene and keloid disease. A further study of protein-kinase activity should be conducted to confirm the functionality of the CDC2L1 gene in the prevention of scar formation.
Collapse
Affiliation(s)
- G Zhang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China.
| | | | | | | | | | | |
Collapse
|
13
|
Wilkinson S, Croft DR, O'Prey J, Meedendorp A, O'Prey M, Dufès C, Ryan KM. The cyclin-dependent kinase PITSLRE/CDK11 is required for successful autophagy. Autophagy 2011; 7:1295-301. [PMID: 21808150 PMCID: PMC3242795 DOI: 10.4161/auto.7.11.16646] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 12/12/2022] Open
Abstract
(Macro)autophagy is a membrane-trafficking process that serves to sequester cellular constituents in organelles termed autophagosomes, which target their degradation in the lysosome. Autophagy operates at basal levels in all cells where it serves as a homeostatic mechanism to maintain cellular integrity. The levels and cargoes of autophagy can, however, change in response to a variety of stimuli, and perturbations in autophagy are known to be involved in the aetiology of various human diseases. Autophagy must therefore be tightly controlled. We report here that the Drosophila cyclin-dependent kinase PITSLRE is a modulator of autophagy. Loss of the human PITSLRE orthologue, CDK11, initially appears to induce autophagy, but at later time points CDK11 is critically required for autophagic flux and cargo digestion. Since PITSLRE/CDK11 regulates autophagy in both Drosophila and human cells, this kinase represents a novel phylogenetically conserved component of the autophagy machinery.
Collapse
Affiliation(s)
- Simon Wilkinson
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Hao Y, Kong X, Ruan Y, Gan H, Chen H, Zhang C, Ren S, Gu J. CDK11p46 and RPS8 associate with each other and suppress translation in a synergistic manner. Biochem Biophys Res Commun 2011; 407:169-74. [PMID: 21371428 DOI: 10.1016/j.bbrc.2011.02.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/26/2011] [Indexed: 12/31/2022]
Abstract
CDK11p46, a 46kDa isoform of the PITSLRE kinase family, is a key mediator of cell apoptosis, while the precise mechanism remains to be elucidated. By using His pull-down and mass spectrometry analysis, we identified the ribosomal protein S8 (RPS8), a member of the small subunit ribosome, as an interacting partner of CDK11p46. Further analysis confirmed the association of CDK11p46 and RPS8 in vitro and in vivo, and revealed that RPS8 was not a substrate of CDK11p46. Moreover, RPS8 and CDK11p46 synergize to inhibit the translation process both in cap- and internal ribosomal entry site (IRES)-dependent way, and sensitize cells to Fas ligand-induced apoptosis. Taken together, our results provide evidence for the novel role of CDK11p46 in the regulation of translation and cell apoptosis.
Collapse
Affiliation(s)
- Yuqing Hao
- Department of Biochemistry and Molecular Biology, Shanghai, Medical College, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kong X, Gan H, Hao Y, Cheng C, Jiang J, Hong Y, Yang J, Zhu H, Chi Y, Yun X, Gu J. CDK11p58 phosphorylation of PAK1 Ser174 promotes DLC2 binding and roles on cell cycle progression. J Biochem 2009; 146:417-27. [PMID: 19520772 DOI: 10.1093/jb/mvp089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CDK11(p58), a CDK11 family Ser/Thr kinase, is a G2/M specific protein and contributed to regulation of cell cycle, transcription and apoptotic signal transduction. Recently, CDK11(p58) has been reported to exert important functions in mitotic process, such as the regulation of bipolar spindle formation and sister chromatid cohesion. Here, we identified p21 activated kinase 1 (PAK1) as a new CDK11(p58) substrate and we mapped a new phosphorylation site of Ser174 on PAK1. By mutagenesis, we created PAK1(174A) and PAK1(174E), which mimic the dephosphorylated and phosphorylated form of PAK1; further analysis showed PAK1(174E) could be recruited to myosin V motor complex through binding to dynein light chain 2 (DLC2). PAK1(174E) could accelerate the mitosis progression in a nocodazole blocked cell model, while PAK1(174A) exhibited an opposite role. Our results indicated PAK1 may serve as a downstream effector of CDK11(p58) during mitosis progression.
Collapse
Affiliation(s)
- Xiangfei Kong
- Gene Research Center, Key Laboratory of Glycoconjugate Research Ministry of Public Health, Shanghai Medical College of Fudan University, Shanghai, P.R. China, 200032
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Zong H, Chi Y, Hong Y, Yang Y, Zou W, Yun X, Gu J. Repression of estrogen receptor alpha by CDK11p58 through promoting its ubiquitin-proteasome degradation. J Biochem 2009; 145:331-43. [PMID: 19122208 DOI: 10.1093/jb/mvn177] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptor alpha (ERalpha) is a ligand-dependent transcription factor that mediates physiological responses to 17beta-estradiol (E(2)). These responses of cells to estrogen are regulated in part by degradation of ERalpha. In this report, we found that CDK11(p58) repressed ERalpha transcriptional activity. And we further demonstrated that ERalpha protein level was down-regulated by CDK11(p58) in mammalian cells in a ligand independent manner. This effect could be abrogated by treatment with proteasome inhibitor MG132. Our results indicated that the ubiquitin/proteasome-mediated degradation of ERalpha was promoted by CDK11(p58). Furthermore, the interaction between ERalpha and CDK11(p58) was detected. This interaction was necessary for the polyubiquitination and degradation of ERalpha. On the contrary, the other isoform of CDK11, CDK11(p110) and the kinase dead mutant of CDK11(p58), D224N, did not associate with ERalpha and failed to reduce the ERalpha protein level. These data identified a new negative regulatory protein of ERalpha and provided a new pathway by which CDK11(p58) negatively regulated cells.
Collapse
Affiliation(s)
- Yanlin Wang
- Gene Research Center, Shanghai Medical College and Institutes of Biomedical, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E, Rao PH, Ruggero D. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 2008; 456:971-5. [PMID: 19011615 PMCID: PMC2880952 DOI: 10.1038/nature07449] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 09/16/2008] [Indexed: 11/09/2022]
Abstract
The Myc oncogene regulates the expression of multiple components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, Pol III, and rDNA1,2. An outstanding question is whether and how increasing the cellular protein synthesis capacity can affect the multi-step process leading to cancer. We utilized ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Eμ–Myc/+ transgenic mice to normal levels and show that in this context Myc's oncogenic potential is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a novel paradigm that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation employed to regulate the expression of selective mRNAs. We show that an aberrant increase in cap-dependent translation downstream Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (p58-PITSLRE)3-5, which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Eμ–Myc/+ mice. When accurate translational control is re-established in Eμ–Myc/+ mice, genome instability is suppressed. Our findings reveal how perturbations in translational control provide a highly specific outcome on gene expression, genome stability, and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.
Collapse
Affiliation(s)
- Maria Barna
- Department of Biochemistry & Biophysics, University of California San Francisco, Rock Hall Room 384C, 1550 Fourth Street, San Francisco, California 94158-2517, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wei JS, Song YK, Durinck S, Chen QR, Cheuk ATC, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, Khan J. The MYCN oncogene is a direct target of miR-34a. Oncogene 2008; 27:5204-13. [PMID: 18504438 PMCID: PMC2562938 DOI: 10.1038/onc.2008.154] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 03/18/2008] [Accepted: 04/04/2008] [Indexed: 01/07/2023]
Abstract
Loss of 1p36 heterozygosity commonly occurs with MYCN amplification in neuroblastoma tumors, and both are associated with an aggressive phenotype. Database searches identified five microRNAs that map to the commonly deleted region of 1p36 and we hypothesized that the loss of one or more of these microRNAs contributes to the malignant phenotype of MYCN-amplified tumors. By bioinformatic analysis, we identified that three out of the five microRNAs target MYCN and of these miR-34a caused the most significant suppression of cell growth through increased apoptosis and decreased DNA synthesis in neuroblastoma cell lines with MYCN amplification. Quantitative RT-PCR showed that neuroblastoma tumors with 1p36 loss expressed lower level of miR-34a than those with normal copies of 1p36. Furthermore, we demonstrated that MYCN is a direct target of miR-34a. Finally, using a series of mRNA expression profiling experiments, we identified other potential direct targets of miR-34a, and pathway analysis demonstrated that miR-34a suppresses cell-cycle genes and induces several neural-related genes. This study demonstrates one important regulatory role of miR-34a in cell growth and MYCN suppression in neuroblastoma.
Collapse
Affiliation(s)
- Jun Stephen Wei
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Young Kook Song
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Steffen Durinck
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Qing-Rong Chen
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
- The Advanced Biomedical Computing Center, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Adam Tai Chi Cheuk
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Patricia Tsang
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Quangeng Zhang
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Carol Jean Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andrew Slack
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason Shohet
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| |
Collapse
|
19
|
Chandramouli A, Shi J, Feng Y, Holubec H, Shanas RM, Bhattacharyya AK, Zheng W, Nelson MA. Haploinsufficiency of the cdc2l gene contributes to skin cancer development in mice. Carcinogenesis 2007; 28:2028-2035. [PMID: 17389615 DOI: 10.1093/carcin/bgm066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cdc2L gene encodes for the cyclin-dependent kinase 11 (CDK11) protein. Loss of one allele of Cdc2L and reduced CDK11 expression has been observed in several cancers, implicating its association with carcinogenesis. To directly investigate the role of CDK11 in carcinogenesis, we first generated cdc2l haploinsufficient mice by gene trap technology and then studied the susceptibility of these gene-trapped (cdc2l(GT)) mice to chemical-mediated skin carcinogenesis in the 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced two-stage skin carcinogenesis model. Wild-type and cdc2l(GT) mice were subjected to a single topical application of initiation by DMBA and promotion twice a week for 19 weeks with TPA. At 19 weeks, 70% of the cdc2l(GT) mice and 60% of the cdc2l+/+ mice developed benign papillomas. However, there was an overall 3-fold increase in the average number of tumors per mouse observed in cdc2l(GT) mice as compared with cdc2l+/+ mice. There was also an increased frequency of larger papillomas in cdc2l(GT) mice. By using the polymerase chain reaction-restriction fragment length polymorphism assay, we found A to T transversion mutations at the 61st codon of H-ras gene in the papilloma tissue of both cdc2l(GT) mice and cdc2l+/+ mice. Ki-67 staining revealed increased proliferation in the papillomas of cdc2l(GT) (77.75%) as compared with cdc2l+/+ (30.84%) tumors. These studies are the first to show that loss of one allele of cdc2l gene, encoding CDK11, facilitates DMBA/TPA-induced skin carcinogenesis in vivo.
Collapse
Affiliation(s)
- Anupama Chandramouli
- Department of Pathology, Arizona Cancer Center, University of Arizona, 1501 North Campbell Avenue, LSN 550, Tucson, AZ, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gingras S, Pelletier S, Boyd K, Ihle JN. Characterization of a family of novel cysteine- serine-rich nuclear proteins (CSRNP). PLoS One 2007; 2:e808. [PMID: 17726538 PMCID: PMC1950078 DOI: 10.1371/journal.pone.0000808] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 08/07/2007] [Indexed: 11/30/2022] Open
Abstract
Gene array analysis has been widely used to identify genes induced during T cell activation. Our studies identified an immediate early gene that is strongly induced in response to IL-2 in mouse T cells which we named cysteine- serine-rich nuclear protein-1 (CSRNP-1). The human ortholog was previously identified as an AXIN1 induced gene (AXUD1). The protein does not contain sequence defined domains or motifs annotated in public databases, however the gene is a member of a family of three mammalian genes that share conserved regions, including cysteine- and serine-rich regions and a basic domain, they encode nuclear proteins, possess transcriptional activation domain and bind the sequence AGAGTG. Consequently we propose the nomenclature of CSRNP-1, -2 and -3 for the family. To elucidate the physiological functions of CSRNP-1, -2 and -3, we generated mice deficient for each of these genes by homologous recombination in embryonic stem cells. Although the CSRNP proteins have the hallmark of transcription factors and CSRNP-1 expression is highly induced by IL-2, deletion of the individual genes had no obvious consequences on normal mouse development, hematopoiesis or T cell functions. However, combined deficiencies cause partial neonatal lethality suggesting that the genes have redundant functions.
Collapse
Affiliation(s)
- Sébastien Gingras
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Stéphane Pelletier
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Kelli Boyd
- Animal Resource Center, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - James N. Ihle
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Zong H, Chi Y, Wang Y, Yang Y, Zhang L, Chen H, Jiang J, Li Z, Hong Y, Wang H, Yun X, Gu J. Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Mol Cell Biol 2007; 27:7125-42. [PMID: 17698582 PMCID: PMC2168904 DOI: 10.1128/mcb.01753-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Androgen receptor (AR) is essential for the maintenance of the male reproductive systems and is critical for the carcinogenesis of human prostate cancers (PCas). D-type cyclins are closely related to the repression of AR function. It has been well documented that cyclin D1 inhibits AR function through multiple mechanisms, but the mechanism of how cyclin D3 exerts its repressive role in the AR signaling pathway remains to be identified. In the present investigation, we demonstrate that cyclin D3 and the 58-kDa isoform of cyclin-dependent kinase 11 (CDK11p58) repressed AR transcriptional activity as measured by reporter assays of transformed cells and prostate-specific antigen expression in PCa cells. AR, cyclin D3, and CDK11p58 formed a ternary complex in cells and were colocalized in the luminal epithelial layer of the prostate. AR activity is controlled by phosphorylation at specific sites. We found that AR was phosphorylated at Ser-308 by cyclin D3/CDK11p58 in vitro and in vivo, leading to the repressed activity of AR transcriptional activation unit 1 (TAU1). Furthermore, androgen-dependent proliferation of PCa cells was inhibited by cyclin D3/CDK11p58 through AR repression. These data suggest that cyclin D3/CDK11p58 signaling is involved in the negative regulation of AR function.
Collapse
Affiliation(s)
- Hongliang Zong
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Gene Research Center, Shanghai Medical College, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang Q, Diskin S, Rappaport E, Attiyeh E, Mosse Y, Shue D, Seiser E, Jagannathan J, Shusterman S, Bansal M, Khazi D, Winter C, Okawa E, Grant G, Cnaan A, Zhao H, Cheung NK, Gerald W, London W, Matthay KK, Brodeur GM, Maris JM. Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number. Cancer Res 2006; 66:6050-62. [PMID: 16778177 DOI: 10.1158/0008-5472.can-05-4618] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is remarkable for its clinical heterogeneity and is characterized by genomic alterations that are strongly correlated with tumor behavior. The specific genes that influence neuroblastoma biology and are targeted by genomic alterations remain largely unknown. We quantified mRNA expression in a highly annotated series of 101 prospectively collected diagnostic neuroblastoma primary tumors using an oligonucleotide-based microarray. Genomic copy number status at the prognostically relevant loci 1p36, 2p24 (MYCN), 11q23, and 17q23 was determined by PCR and was aberrant in 26, 20, 40, and 38 cases, respectively. In addition, 72 diagnostic neuroblastoma primary tumors assayed in a different laboratory were used as an independent validation set. Unsupervised hierarchical clustering showed that gene expression was highly correlated with genomic alterations and clinical markers of tumor behavior. The vast majority of samples with MYCN amplification and 1p36 loss of heterozygosity (LOH) clustered together on a terminal node of the sample dendrogram, whereas the majority of samples with 11q deletion clustered separately and both of these were largely distinct from the copy number neutral group of tumors. Genes involved in neurodevelopment were broadly overrepresented in the more benign tumors, whereas genes involved in RNA processing and cellular proliferation were highly represented in the most malignant cases. By combining transcriptomic and genomic data, we showed that LOH at 1p and 11q was associated with significantly decreased expression of 122 (61%) and 88 (27%) of the genes mapping to 1p35-36 and all of 11q, respectively, suggesting that multiple genes may be targeted by LOH events. A total of 71 of the 1p35-36 genes were also differentially expressed in the independent validation data set, providing a prioritized list of candidate neuroblastoma suppressor genes. Taken together, these data are consistent with the hypotheses that the neuroblastoma transcriptome is a sensitive marker of underlying tumor biology and that chromosomal deletion events in this cancer likely target multiple genes through alteration in mRNA dosage. Lead positional candidates for neuroblastoma suppressor genes can be inferred from these data, but the potential multiplicity of transcripts involved has significant implications for ongoing gene discovery strategies.
Collapse
Affiliation(s)
- Qun Wang
- Division of Oncology, Children's Hospital of Philadelphia, PA 19104-4399, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ejeskär K, Krona C, Carén H, Zaibak F, Li L, Martinsson T, Ioannou PA. Introduction of in vitro transcribed ENO1 mRNA into neuroblastoma cells induces cell death. BMC Cancer 2005; 5:161. [PMID: 16359544 PMCID: PMC1327688 DOI: 10.1186/1471-2407-5-161] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 12/16/2005] [Indexed: 11/10/2022] Open
Abstract
Background Neuroblastoma is a solid tumour of childhood often with an unfavourable outcome. One common genetic feature in aggressive tumours is 1p-deletion. The α-enolase (ENO1) gene is located in chromosome region 1p36.2, within the common region of deletion in neuroblastoma. One alternative translated product of the ENO1 gene, known as MBP-1, acts as a negative regulator of the c-myc oncogene, making the ENO1 gene a candidate as a tumour suppressor gene. Methods Methods used in this study are transfection of cDNA-vectors and in vitro transcribed mRNA, cell growth assay, TUNEL-assay, real-time RT-PCR (TaqMan) for expression studies, genomic sequencing and DHPLC for mutation detection. Results Here we demonstrate that transfection of ENO1 cDNA into 1p-deleted neuroblastoma cell lines causes' reduced number of viable cells over time compared to a negative control and that it induces apoptosis. Interestingly, a similar but much stronger dose-dependent reduction of cell growth was observed by transfection of in vitro transcribed ENO1 mRNA into neuroblastoma cells. These effects could also be shown in non-neuroblastoma cells (293-cells), indicating ENO1 to have general tumour suppressor activity. Expression of ENO1 is detectable in primary neuroblastomas of all different stages and no difference in the level of expression can be detected between 1p-deleted and 1p-intact tumour samples. Although small numbers (11 primary neuroblastomas), there is some evidence that Stage 4 tumours has a lower level of ENO1-mRNA than Stage 2 tumours (p = 0.01). However, mutation screening of 44 primary neuroblastomas of all different stages, failed to detect any mutations. Conclusion Our studies indicate that ENO1 has tumour suppressor activity and that high level of ENO1 expression has growth inhibitory effects.
Collapse
Affiliation(s)
- Katarina Ejeskär
- Dept. Clinical Genetics, University of Gothenburg, Sahlgrenska University Hospital/East, SE-416 85 Gothenburg, Sweden
- Murdoch Children's Research Institute, Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Cecilia Krona
- Dept. Clinical Genetics, University of Gothenburg, Sahlgrenska University Hospital/East, SE-416 85 Gothenburg, Sweden
| | - Helena Carén
- Dept. Clinical Genetics, University of Gothenburg, Sahlgrenska University Hospital/East, SE-416 85 Gothenburg, Sweden
| | - Faten Zaibak
- Murdoch Children's Research Institute, Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Lingli Li
- Murdoch Children's Research Institute, Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Tommy Martinsson
- Dept. Clinical Genetics, University of Gothenburg, Sahlgrenska University Hospital/East, SE-416 85 Gothenburg, Sweden
| | - Panayiotis A Ioannou
- Murdoch Children's Research Institute, Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| |
Collapse
|
24
|
Niu Z, Shen A, Shen H, Jiang J, Zong H, Gu J. Protein expression pattern of CDK11(p58) during testicular development in the mouse. Mol Cell Biochem 2005; 270:99-106. [PMID: 15792358 DOI: 10.1007/s11010-005-5265-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Protein kinases are important signalling molecules critical for normal cell growth and development. CDK11(p58) is a p34(cdc2) related protein kinase, and plays an important role in normal cell cycle progression. In this study, we mainly characterized the protein expression of CDK11(p58) during postnatal development in mouse testes and examined the cellular localization of CDK11(p58) and cyclinD3, which was associated with CDK11(p58) in mammalian cells. Western blot analysis revealed that CDK11(p58) was present in the early stages of development. It gradually increased and reached a peak in adult testes. The protein expression of CDK11(p58) was further analysed by immunohistochemistry due to its developmentally regulated expression. The variable immunostaining patterns of CDK11(p58) were visualized during different developmental periods and, in adult mouse, different stages of seminiferous tubules. CDK11(p58) expression was detected in proliferating germ cells in the early stages of developing testes. In adult testes, the protein was expressed in pachytene primary spermatocytes from stage VII to XI of spermatogenesis and in postmeiotic spermatids in all stages at different levels. The colocalization of CDK11(p58) and cyclinD3 in the adult testis was revealed by immunofluorescence analysis.
Collapse
Affiliation(s)
- Ziyue Niu
- State Key Laboratory of Genetic Engineering & Gene Research Center, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Li Z, Wang H, Zong H, Sun Q, Kong X, Jiang J, Gu J. Downregulation of beta1,4-galactosyltransferase 1 inhibits CDK11(p58)-mediated apoptosis induced by cycloheximide. Biochem Biophys Res Commun 2005; 327:628-36. [PMID: 15629159 DOI: 10.1016/j.bbrc.2004.12.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Indexed: 11/22/2022]
Abstract
Cyclin-dependent kinase 11 (CDK11; also named PITSLRE) is part of the large family of p34(cdc2)-related kinases whose functions appear to be linked with cell cycle progression, tumorigenesis, and apoptotic signaling. The mechanism that CDK11(p58) induces apoptosis is not clear. Some evidences suggested beta1,4-galactosyltransferase 1 (beta1,4-GT 1) might participate in apoptosis induced by CDK11(p58). In this study, we demonstrated that ectopically expressed beta1,4-GT 1 increased CDK11(p58)-mediated apoptosis induced by cycloheximide (CHX). In contrast, RNAi-mediated knockdown of beta1,4-GT 1 effectively inhibited apoptosis induced by CHX in CDK11(p58)-overexpressing cells. For example, the cell morphological and nuclear changes were reduced; the loss of cell viability was prevented and the number of cells in sub-G1 phase was decreased. Knock down of beta1,4-GT 1 also inhibited the release of cytochrome c from mitochondria and caspase-3 processing. Therefore, the cleavage of CDK11(p58) by caspase-3 was reduced. We proposed that beta1,4-GT 1 might contribute to the pro-apoptotic effect of CDK11(p58). This may represent a new mechanism of beta1,4-GT 1 in CHX-induced apoptosis of CDK11(p58)-overexpressing cells.
Collapse
Affiliation(s)
- Zejuan Li
- State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Box 103, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Mikolajczyk M, Nelson M. Regulation of stability of cyclin-dependent kinase CDK11p110 and a caspase-processed form, CDK11p46, by Hsp90. Biochem J 2004; 384:461-7. [PMID: 15344906 PMCID: PMC1134131 DOI: 10.1042/bj20040848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 08/20/2004] [Accepted: 09/02/2004] [Indexed: 11/17/2022]
Abstract
CDK11p110 (cyclin-dependent kinase 11p110, formerly known as PITSLRE) is a member of the CDK superfamily. It associates with cyclin L and is involved in the regulation of transcription and in premRNA splicing. During staurosporine-, Fas- and tumour necrosis factor a-induced apoptosis, CDK11p110, is cleaved by caspases to generate smaller 46-50 kDa proteins containing the catalytic kinase domain. Ectopic expression of the caspase-processed form CDK11p46 induces apoptosis. The mechanisms that regulate activation and stability of CDK11 isoforms are still unclear. In the present study, we demonstrate that in human melanoma cells CDK11p110 and CDK11p46 interact with Hsp90 (heat-shock protein 90) and its co-chaperone cdc37. Furthermore, we show that the treatment of cells with the Hsp90-specific inhibitor geldanamycin leads to ubiquitination and enhanced degradation of both CDK11p110 and CDK11p46 through a proteasome-dependent pathway. We also determined that geldanamycin-triggered degradation of CDK11p46 slows down the progression of apoptosis. These results indicate that Hsp90 and cdc37 stabilize CDK11 kinase, and suggest that this stabilization is crucial for its pro-apoptotic function.
Collapse
Affiliation(s)
- Monika Mikolajczyk
- Department of Pathology, Arizona Cancer Center, College of Medicine, University of Arizona, Tucson, AZ 85724, U.S.A
| | - Mark A. Nelson
- Department of Pathology, Arizona Cancer Center, College of Medicine, University of Arizona, Tucson, AZ 85724, U.S.A
| |
Collapse
|
27
|
Kahle A, Feng Y, A Nelson M. Isolation and characterization of the human Cdc2L1 gene promoter. Gene 2004; 344:53-60. [PMID: 15656972 DOI: 10.1016/j.gene.2004.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 10/12/2004] [Accepted: 10/21/2004] [Indexed: 11/17/2022]
Abstract
CDK11 (cyclin-dependent kinase 11, formerly known as PITSLRE) is a member of the p34cdc2-related kinases. It has been previously shown to be involved in a variety of different cellular processes including RNA processing, apoptosis, and cell cycle progression. It is encoded by two different but highly similar genes, Cdc2L1 (cell division control 2 like 1) and Cdc2L2 (cell division control 2 like 2). Previous studies from our group identified and characterized the transcriptional regulation of the human Cdc2L2 gene promoter. The current studies identify and characterize the Cdc2L1 gene promoter. We cloned the promoter and elucidated the different transcriptional regulatory elements that reside within the 5' region of the gene. Deletion analysis of the promoter showed a region of nucleotides -152 to +11 to be necessary for basal transcription of the Cdc2L1 gene. Sequencing analysis found this region of the promoter to be highly GC-rich but is lacking both TATA and CAAT boxes. There are several different transcription factor binding sites that are consensus or near consensus found within this region. The potential binding sites include two Ets-1 sites, one Skn-1 site, and one E2F-1 site. Transfection studies of various site-directed mutagenesis clones for these different sites revealed that both Ets-1 sites play critical roles in sustained transcriptional activity as well as Skn-1. Chromatin immunoprecipitation of the endogenous promoter with Ets-1 and Skn-1 verified an in vivo association of Ets-1 and Skn-1 transcription factors with the endogenous promoter. These results, in addition to our Cdc2L2 results, lead to the further comprehension of the fundamental mechanisms dictating CDK11 gene expression through the Cdc2L1 gene promoter.
Collapse
Affiliation(s)
- Amber Kahle
- Department of Pathology, Room 5208, Arizona Cancer Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, United States
| | | | | |
Collapse
|
28
|
Gajecka M, Yu W, Ballif BC, Glotzbach CD, Bailey KA, Shaw CA, Kashork CD, Heilstedt HA, Ansel DA, Theisen A, Rice R, Rice DPC, Shaffer LG. Delineation of mechanisms and regions of dosage imbalance in complex rearrangements of 1p36 leads to a putative gene for regulation of cranial suture closure. Eur J Hum Genet 2004; 13:139-49. [PMID: 15483646 DOI: 10.1038/sj.ejhg.5201302] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Structural chromosome abnormalities have aided in gene identification for over three decades. Delineation of the deletion sizes and rearrangements allows for phenotype/genotype correlations and ultimately assists in gene identification. In this report, we have delineated the precise rearrangements in four subjects with deletions, duplications, and/or triplications of 1p36 and compared the regions of imbalance to two cases recently published. Fluorescence in situ hybridization (FISH) analysis revealed the size, order, and orientation of the duplicated/triplicated segments in each subject. We propose a premeiotic model for the formation of these complex rearrangements in the four newly ascertained subjects, whereby a deleted chromosome 1 undergoes a combination of multiple breakage-fusion-bridge (BFB) cycles and inversions to produce a chromosome arm with a complex rearrangement of deleted, duplicated and triplicated segments. In addition, comparing the six subjects' rearrangements revealed a region of overlap that when triplicated is associated with craniosynostosis and when deleted is associated with large, late-closing anterior fontanels. Within this region are the MMP23A and -B genes. We show MMP23 gene expression at the cranial sutures and we propose that haploinsufficiency results in large, late-closing anterior fontanels and overexpression results in craniosynostosis. These data emphasize the important role of cytogenetics in investigating and uncovering the etiologies of human genetic disease, particularly cytogenetic imbalances that reveal potentially dosage-sensitive genes.
Collapse
Affiliation(s)
- Marzena Gajecka
- Health Research and Education Center, Washington State University, Spokane, WA 99210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Trembley JH, Loyer P, Hu D, Li T, Grenet J, Lahti JM, Kidd VJ. Cyclin Dependent Kinase 11 in RNA Transcription and Splicing. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY VOLUME 77 2004; 77:263-88. [PMID: 15196895 DOI: 10.1016/s0079-6603(04)77007-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Janeen H Trembley
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105 USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Calhoun ES, Jones JB, Ashfaq R, Adsay V, Baker SJ, Valentine V, Hempen PM, Hilgers W, Yeo CJ, Hruban RH, Kern SE. BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1255-60. [PMID: 14507635 PMCID: PMC1868306 DOI: 10.1016/s0002-9440(10)63485-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recognition of biologically distinct tumor subsets is fundamental to understanding tumorigenesis. This study investigated the mutational status of the serine/threonine kinase BRAF and the cyclin E regulator FBXW7 (CDC4, FBW7, AGO, SEL10) related to two distinct pancreatic carcinoma subsets: the medullary KRAS2-wild-type and the cyclin E overexpressing tumors, respectively. Among KRAS2-wild-type carcinomas, 33% (3 of 9) contained BRAF V599E mutations; one of which was identified in the pancreatic cancer cell line COLO357. Among 74 KRAS2-mutant carcinomas, no BRAF mutations were identified. Among the KRAS2/BRAF wild-type carcinomas, no mutations within pathway members MEK1, MEK2, ERK1, ERK2, RAP1B, or BAD were found. Using pancreatic cancer microarrays and immunohistochemistry, we determined that 6% (4 of 46 and 5 of 100 in two independent panels) of pancreatic adenocarcinomas overexpress cyclin E. We identified two potential mechanisms for this overexpression including the amplification/gain of CCNE1 gene copies in the Panc-1 and Su86.86 cell lines and a novel somatic homozygous mutation (H460R, in one of 11 pancreatic cancer xenografts having allelic loss) in FBXW7, which was accompanied by cyclin E overexpression by immunohistochemistry. Both BRAF and FBXW7 mutations functionally activate kinase effectors important in pancreatic cancer and extend the potential options for therapeutic targeting of kinases in the treatment of phenotypically distinct pancreatic adenocarcinoma subsets.
Collapse
Affiliation(s)
- Eric S Calhoun
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Viardot AA, Barth TFE, Möller P, Döhner H, Bentz M. Cytogenetic evolution of follicular lymphoma. Semin Cancer Biol 2003; 13:183-90. [PMID: 12959349 DOI: 10.1016/s1044-579x(03)00014-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Follicular lymphoma (FL) is closely associated with the chromosomal translocation t(14;18)(q32;q21), which results in an overexpression of the anti-apoptotic bcl-2 gene product leading to a survival advantage of B-lymphocytes. However, in animal models, this genomic aberration is not sufficient for the initiation of the malignant phenotype. Additional genomic rearrangements are required for disease progression. In this review, the most important additional aberrations and possible candidate genes in the respective genomic regions are discussed. In addition, relevant data regarding their role in disease progression as well as the association with clinical presentation and clinical course are presented.
Collapse
|
32
|
Chen S, Yin X, Zhu X, Yan J, Ji S, Chen C, Cai M, Zhang S, Zong H, Hu Y, Yuan Z, Shen Z, Gu J. The C-terminal kinase domain of the p34cdc2-related PITSLRE protein kinase (p110C) associates with p21-activated kinase 1 and inhibits its activity during anoikis. J Biol Chem 2003; 278:20029-36. [PMID: 12624090 DOI: 10.1074/jbc.m300818200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PITSLRE protein kinases are parts of the large family of p34cdc2-related kinases. During apoptosis induced by some stimuli, specific PITSLRE isoforms are cleaved by caspase to produce a protein that contains the C-terminal kinase domain of the PITSLRE proteins (p110C). The p110C induces apoptosis when it is ectopically expressed in Chinese hamster ovary cells. In our study, similar induction of this p110C was observed during anoikis in NIH3T3 cells. To investigate the molecular mechanism of apoptosis mediated by p110C, we used the yeast two-hybrid system to screen a human fetal liver cDNA library and identified p21-activated kinase 1 (PAK1) as an interacting partner of p110C. The association of p110C with PAK1 was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscope analysis. The interaction of p110C with PAK1 occurred within the residues 210-332 of PAK1. Neither association between p58PITSLRE or p110PITSLRE and PAK1 nor association between p110C and PAK2 or PAK3 was observed. Anoikis was increased and PAK1 activity was inhibited when NIH3T3 cells were transfected with p110C. Furthermore, the binding of p110C with PAK1 and inhibition of PAK1 activity were also observed during anoikis. Taken together, these data suggested that PAK1 might participate in the apoptotic pathway mediated by p110C.
Collapse
Affiliation(s)
- She Chen
- Department of Biochemistry, Shanghai Medical Center, Fudan University (formerly the Shanghai Medical University), People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang S, Cai M, Zhang S, Xu S, Chen S, Chen X, Chen C, Gu J. Interaction of p58(PITSLRE), a G2/M-specific protein kinase, with cyclin D3. J Biol Chem 2002; 277:35314-22. [PMID: 12082095 DOI: 10.1074/jbc.m202179200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p58(PITSLRE) is a p34(cdc2)-related protein kinase that plays an important role in normal cell cycle progression. Elevated expression of p58(PITSLRE) in eukaryotic cells prevents them from undergoing normal cytokinesis and appears to delay them in late telophase. To investigate the molecular mechanism of p58(PITSLRE) action, we used the yeast two-hybrid system, screened a human fetal liver cDNA library, and identified cyclin D3 as an interacting partner of p58(PITSLRE). In vitro binding assay, in vivo coimmunoprecipitation, and immunofluorescence cell staining further confirmed the association of p58(PITSLRE) with cyclin D3. This binding was observed only in the G(2)/M phase but not in the G(1)/S phase of the cell cycle; meanwhile, no interaction between p110(PITSLRE) and cyclin D3 was observed in all the cell cycle. The overexpression of cyclin D3 in 7721 cells leads to an exclusively accumulation of p58(PITSLRE) in the nuclear region, affecting its cellular distribution. Histone H1 kinase activity of p58(PITSLRE) was greatly enhanced upon interaction with cyclin D3. Furthermore, kinase activity of p58(PITSLRE) was found to increase greatly in the presence of cyclin D3 using a specific substrate, beta-1,4-galactosyltransferase 1. These data provide a new clue to our understanding of the cellular function of p58(PITSLRE) and cyclin D3.
Collapse
Affiliation(s)
- Songwen Zhang
- Gene Research Center, Fudan University Medical Center (Former Shanghai Medical University), Shanghai, People's Republic of China 200032
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Feng Y, Shi J, Goldstein AM, Tucker MA, Nelson MA. Analysis of mutations and identification of several polymorphisms in the putative promoter region of the P34CDC2-related CDC2L1 gene located at 1P36 in melanoma cell lines and melanoma families. Int J Cancer 2002; 99:834-838. [PMID: 12115485 DOI: 10.1002/ijc.10422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chromosome 1 abnormalities are the most commonly detected aberrations in many cancers including malignant melanoma. Partial deletions and an allelic loss of the chromosome 1p36 region observed in melanoma indicate the presence of putative tumor suppressor gene(s) in this region. A candidate gene, CDC2L1, which encodes PITSLRE proteins related to p34(cdc2), is mapped to 1p36. To determine whether CDC2L1 mutation is involved in melanoma development, we examined 20 melanoma cell lines and 11 members of melanoma-prone families linked to chromosome 1p36. Mutation analysis throughout the entire coding region of the CDC2L1 gene revealed only 1 mutation (C-->T at nucleotide location 97 of exon 7, Ser-->Leu) in the melanoma cell line UACC 903 out of 20 melanoma cell lines and 6 melanoma cases. However, 4 polymorphic nucleotide changes, C-48T, G-53C, T-103C and T-210C, in the putative promoter region of CDC2L1 were identified. The 4 variants were located within or beside the conserved binding sites of transcription factors TCF11, MZF1 and TAAC box, indicating their potential effects on the regulation of CDC2L1 expression. No aberrant methylation of the CDC2L1 CpG island in the promoter region was observed by sodium bisulfite genomic sequencing. These results indicate that mutations are rare in the CDC2L1 gene in these melanoma cell lines and melanoma families and that the aberrant cytosine methylation of the CDC2L1 CpG island is not the mechanism of CDC2L1 repression in melanoma. The contribution of 4 promoter polymorphisms to the transcriptional regulation of the gene and its association with melanoma warrants further investigation.
Collapse
|
35
|
Campbell MJ, Wollish WS, Lobo M, Esserman LJ. Epithelial and fibroblast cell lines derived from a spontaneous mammary carcinoma in a MMTV/neu transgenic mouse. In Vitro Cell Dev Biol Anim 2002; 38:326-33. [PMID: 12513120 DOI: 10.1290/1071-2690(2002)038<0326:eafcld>2.0.co;2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Female murine mammary tumor virus (MMTV)/neu transgenic mice, expressing a wild-type rat neu oncogene driven by an MMTV promoter, develop focal mammary adenocarcinomas that are pathologically very similar to human breast tumors. Two new cell lines were established from a mammary tumor that arose in a female MMTV/neu transgenic mouse. One of these lines, mammary carcinoma from Neu transgenic mouse A (MCNeuA), has an epithelial morphology, is cytokeratin positive, and expresses high levels of the neu transgene. Karyotyping and comparative genomic hybridization analyses demonstrated genomic alterations in the MCNeuA cell line. The other line, N202Fb3, has a fibroblast morphology, is cytokeratin negative, and expresses the neu transgene at a very low level. This cell line also expresses smooth muscle alpha-actin, suggesting that it is a myofibroblast line. The MCNeuA cell line is tumorigenic when injected into syngeneic MMTV/neu transgenic mice, with an in vivo doubling time of about 14 d. The rationale for establishing this tumor cell line was to provide a tumor transplantation system for rapidly assessing immunotherapeutic interventions before testing in the more cumbersome model of spontaneous tumor development in the MMTV/neu transgenic mice. Mice immunized with a Neu extracellular domain protein vaccine were protected against a subsequent inoculation of MCNeuA cells, indicating that this cell line will be useful for evaluating cancer vaccine strategies. This tumor cell line may also prove useful in studying the biological properties of the neu oncogene and its role in the malignant process. In addition, the tumor-derived fibroblast line may be useful for studying tumor-stromal cell interactions.
Collapse
Affiliation(s)
- Michael J Campbell
- Department of Surgery, University of California San Francisco/Mount Zion Medical Center, 1600 Divisadero, San Francisco, CA 94115, USA.
| | | | | | | |
Collapse
|
36
|
Yang HW, Chen YZ, Takita J, Soeda E, Piao HY, Hayashi Y. Genomic structure and mutational analysis of the human KIF1B gene which is homozygously deleted in neuroblastoma at chromosome 1p36.2. Oncogene 2001; 20:5075-83. [PMID: 11526494 DOI: 10.1038/sj.onc.1204456] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Revised: 03/01/2001] [Accepted: 03/07/2001] [Indexed: 11/08/2022]
Abstract
In order to clone candidate tumor suppressor genes whose loss contributes to the pathogenesis of neuroblastoma (NB), we performed polymerase chain reaction (PCR) screening using a high-density sequence tagged site-content map within a commonly deleted region (chromosome band 1p36) in 24 NB cell lines. We found a approximately 480 kb homozygously deleted region at chromosome band 1p36.2 in one of the 24 NB cell lines, NB-1, and cloned the human homologue (KIF1B-beta) of the mouseKif1B-beta gene in this region. The KIF1B-beta gene had at least 47 exons, all of which had a classic exon-intron boundary structure. Mouse Kif1B is a microtubule-based putative anterograde motor protein for the transport of mitochondria in neural cells. We performed mutational analysis of the KIF1B-beta gene in 23 cell lines using 46 sets of primers and also an allelic imbalance (AI) analysis of KIF1B-beta in 50 fresh NB samples. A missense mutation at codon 1554, GTG (Gly) to ATG (Met), silent mutations at codon 409 (ACG to ACA) and codon 1721 (ACC to ACT), and polymorphisms at codon 170, GAT (Asp) to GAA (Glu), and at codon 1087, TAT (Tyr), to TGT (Cys), were all identified, although their functional significances remain to be determined. The AI for KIF1B-beta was slightly higher (38%) than those for the other two markers (D1S244, D1S1350) (35 and 32%) within the commonly deleted region (1p36). Reverse transcriptase-PCR analysis of the KIF1B-beta gene revealed obvious expression in all NB cell lines except NB-1, although decreased expression of the KIF1B-beta gene was found in a subset of early- and advanced-stage NBs. These results suggest that the KIF1B-beta gene may not be a candidate for tumor suppressor gene of NB.
Collapse
Affiliation(s)
- H W Yang
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Poetsch M, Dittberner T, Woenckhaus C. Does the PITSLRE gene complex contribute to the pathogenesis of malignant melanoma of the skin? A study of patient-derived tumor samples? CANCER GENETICS AND CYTOGENETICS 2001; 128:181-2. [PMID: 11478303 DOI: 10.1016/s0165-4608(01)00481-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Abstract
We have isolated and characterised a novel human protein kinase, Cdc2-related kinase with an arginine/serine-rich (RS) domain (CrkRS), that is most closely related to the cyclin-dependent kinase (CDK) family. CrkRS is a 1490 amino acid protein, the largest CDK-related kinase so far isolated. The protein kinase domain of CrkRS is 89% identical to the 46 kDa CHED protein kinase, but outside the kinase domains the two proteins are completely unrelated. CrkRS has extensive proline-rich regions that match the consensus for SH3 and WW domain binding sites, and an RS domain that is predominantly found in splicing factors. CrkRS is ubiquitously expressed in tissues, and maps to a single genetic locus. There are closely related protein kinases in both the Drosophila and Caenorhabditis elegans genomes. Consistent with the presence of an RS domain, anti-CrkRS antibodies stain nuclei in a speckled pattern, overlapping with spliceosome components and the hyperphosphorylated form of RNA polymerase II. Like RNA polymerase II, CrkRS is a constitutive MPM-2 antigen throughout the cell cycle. Anti-CrkRS immunoprecipitates phosphorylate the C-terminal domain of RNA polymerase II in vitro. Thus CrkRS may be a novel, conserved link between the transcription and splicing machinery.
Collapse
Affiliation(s)
- T K Ko
- Wellcome/CRC Institute, Cambridge, UK
| | | | | |
Collapse
|
39
|
Yang HW, Chen YZ, Piao HY, Takita J, Soeda E, Hayashi Y. DNA fragmentation factor 45 (DFF45) gene at 1p36.2 is homozygously deleted and encodes variant transcripts in neuroblastoma cell line. Neoplasia 2001; 3:165-9. [PMID: 11420752 PMCID: PMC1505420 DOI: 10.1038/sj.neo.7900141] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2000] [Accepted: 11/21/2000] [Indexed: 11/08/2022] Open
Abstract
Recently, loss of heterozygosity (LOH) studies suggest that more than two tumor suppressor genes lie on the short arm of chromosome 1 (1p) in neuroblastoma (NB). To identify candidate tumor suppressor genes in NB, we searched for homozygous deletions in 20 NB cell lines using a high-density STS map spanning chromosome 1p36, a common LOH region in NB. We found that the 45-kDa subunit of the DNA fragmentation factor (DFF45) gene was homozygously deleted in an NB cell line, NB-1. DFF45 is the chaperon of DFF40, and both molecules are necessary for caspase 3 to induce apoptosis. DFF35, a splicing variant of DFF45, is an inhibitor of DFF40. We examined 20 NB cell lines for expression and mutation of DFF45 gene by reverse transcription (RT)-polymerase chain reaction (PCR) and RT-PCR-single-strand conformation polymorphism. Some novel variant transcripts of the DFF45 gene were found in NB cell lines, but not in normal adrenal gland and peripheral blood. These variants may not serve as chaperons of DFF40, but as inhibitors like DFF35, thus disrupting the balance between DFF45 and DFF40. No mutations of the DFF45 gene were found in any NB cell line, suggesting that the DFF45 is not a tumor suppressor gene for NB. However, homozygous deletion of the DFF45 gene in the NB-1 cell line may imply the presence of unknown tumor suppressor genes in this region.
Collapse
Affiliation(s)
- Hong Wei Yang
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Pediatric Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ying Zhang Chen
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Gene Bank, Tsukuba Institute, Institute of Physical and Chemical Research (RIKEN), Tsukuba, Japan
| | - Hui Ying Piao
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Pediatric Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Eiichi Soeda
- Gene Bank, Tsukuba Institute, Institute of Physical and Chemical Research (RIKEN), Tsukuba, Japan
| | - Yasuhide Hayashi
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Abstract
The mitogen-activated protein kinases (MAPKs) and the cyclin-dependent kinases (CDKs) are key mediators of cell proliferation in response to extracellular signals. Recent additions to each of these families and the identification of kinases with structural features of both have provided insights into fundamental processes, such as cell division and differentiation. To identify novel serine kinases with features of MAPKs or CDKs, a degenerate PCR-based amplification approach was undertaken. The 57- and 52-kDa isoforms of a novel protein kinase, termed NKIATRE, were molecularly cloned from rat brain and jejunum cDNA libraries. Like the MAPKs, NKIATRE has a Thr-Xaa-Tyr motif in kinase subdomain VIII. NKIATRE also shows close homology to the cyclin-dependent kinase class of protein kinases and the cdc2-related kinases NKIAMRE, KKIALRE, and KKIAMRE, containing both conserved inhibitory phosphorylation sites and a putative cyclin-binding domain. Two isoforms of NKIATRE that differ in their carboxy-terminal ends have been identified. A functional nuclear localization signal is specific to the longer 57-kDa alpha isoform. Sequence similarity to the putative human tumor suppressor gene NKIAMRE, which is lost in leukemic patients with chromosome 5q deletions, suggests that NKIATRE may have a role in restricting cell growth or maintaining differentiation.
Collapse
Affiliation(s)
- R Haq
- Institute of Medical Science, University of Toronto, Ontario, M5G 2M9, Canada
| | | | | | | | | |
Collapse
|
41
|
White PS, Thompson PM, Seifried BA, Sulman EP, Jensen SJ, Guo C, Maris JM, Hogarty MD, Allen C, Biegel JA, Matise TC, Gregory SG, Reynolds CP, Brodeur GM. Detailed molecular analysis of 1p36 in neuroblastoma. MEDICAL AND PEDIATRIC ONCOLOGY 2001; 36:37-41. [PMID: 11464901 DOI: 10.1002/1096-911x(20010101)36:1<37::aid-mpo1010>3.0.co;2-l] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Several lines of evidence es tablish that chromosome band 1p36 is frequently deleted in neuroblastoma primary tumors and cell lines, suggesting that a tumor suppressor gene within this region is involved in the development of this tumor. PROCEDURE We analyzed the status of 1p36 in primary neuroblastomas and cell lines to define the region of consistent rearrangement. RESULTS Loss of heterozygosity (LOH) studies of primary neuro blastomas identified allelic loss in 135 of 503 tumors (27%), with the smallest region of overlap (SRO) defined distal to D15214 (1p36.3). No homozygous deletions were detected at 120 loci mapping to 1p36.1-p36.3 in a panel of 46 neuroblastoma cell lines. A recently identified patient with neuroblastoma was found to have a constitutional deletion within 1p36.2-p36.3, and this deletion, when combined with the LOH results, defined a smaller SRO of one megabase within 1p36.3. We constructed a comprehensive integrated map of chromosome 1 containing 11,000 markers and large-insert clones, a high-resolution radiation hybrid (RH) map of 1p36, and a P1-artificial chromosome (PAC) contig spanning the SRO, to further characterize the region of interest. Over 768 kb (75%) of the SRO has been sequenced to completion. Further analysis of distal 1p identified 113 transcripts localizing to 1p36, 21 of which were mapped within the SRO. CONCLUSION This analysis will identify suitable positional candidate transcripts for mutational screening and subsequent identification of the 1p36.3 neuroblastoma suppressor gene.
Collapse
Affiliation(s)
- P S White
- Division of Oncology, Children's Hospital of Philadelphia, Pennsylvania 19104-4318, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ohira M, Kageyama H, Mihara M, Furuta S, Machida T, Shishikura T, Takayasu H, Islam A, Nakamura Y, Takahashi M, Tomioka N, Sakiyama S, Kaneko Y, Toyoda A, Hattori M, Sakaki Y, Ohki M, Horii A, Soeda E, Inazawa J, Seki N, Kuma H, Nozawa I, Nakagawara A. Identification and characterization of a 500-kb homozygously deleted region at 1p36.2-p36.3 in a neuroblastoma cell line. Oncogene 2000; 19:4302-7. [PMID: 10980605 DOI: 10.1038/sj.onc.1203786] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of heterozygosity of the distal region of chromosome 1p where tumor suppressor gene(s) might harbor is frequently observed in many human cancers including neuroblastoma (NBL) with MYCN amplification and poor prognosis. We have identified for the first time a homozygously deleted region at the marker D1S244 within the smallest region of overlap at 1p36.2-p36.3 in two NBL cell lines, NB-1 and NB-C201 (MASS-NB-SCH1), although our genotyping has suggested the possibility that both lines are derived from the same origin. The 800-kb PAC contig covering the entire region of homozygous deletion was made and partially sequenced (about 60%). The estimated length of the deleted region was 500 kb. We have, thus far, identified six genes within the region which include three known genes (DFF45, PGD, and CORT) as well as three other genes which have been reported during processing our present project for the last 3(1/2) years (HDNB1/UFD2, KIAA0591F/KIF1B-beta, and PEX14). They include the genes related to apoptosis, glucose metabolism, ubiquitin-proteasome pathway, a neuronal microtubule-associated motor molecule and biogenesis of peroxisome. At least three genes (HDNB1/UFD2, KIAA0591F/KIF1B-beta, and PEX14) were differentially expressed at high levels in favorable and at low levels in unfavorable subsets of primary neuroblastoma. Since the 1p distal region is reported to be imprinted, those differentially expressed genes could be the new members of the candidate NBL suppressor, although RT-PCR-SSCP analysis has demonstrated infrequent mutation of the genes so far identified. Full-sequencing and gene prediction for the region of homozygous deletion would elucidate more detailed structure of this region and might lead to discovery of additional candidate genes. Oncogene (2000) 19, 4302 - 4307
Collapse
Affiliation(s)
- M Ohira
- Division of Biochemistry, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nomoto S, Haruki N, Tatematsu Y, Konishi H, Mitsudomi T, Takahashi T, Takahashi T. Frequent allelic imbalance suggests involvement of a tumor suppressor gene at 1p36 in the pathogenesis of human lung cancers. Genes Chromosomes Cancer 2000; 28:342-6. [PMID: 10862041 DOI: 10.1002/1098-2264(200007)28:3<342::aid-gcc13>3.0.co;2-a] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The short arm of chromosome 1 is among the most frequently affected regions in various types of common adult cancers as well as in neuroblastoma. In a previous study of ours, frequent allelic imbalance at the TP73 locus at 1p36 was noted in lung cancer despite the absence of TP73 mutations. This suggested the possible existence of an as yet unidentified tumor suppressor gene on 1p. Our initial attempt using the candidate gene approach did not yield any somatic mutations in the 14-3-3sigma gene (official gene symbol, SFN), a mediator of G2 arrest by TP53. Detailed deletion mapping of the telomeric region of 1p was thus carried out as an initial step toward positional cloning. We used seven polymorphic markers in addition to TP73 to examine 61 primary lung cancers. Allelic imbalance at one or more loci of 1p36 was observed in 30 of the 61 cases, whereas D1S508 at 1p36.2 exhibited the highest frequency (45%) of allelic imbalance among the 1p36 markers examined. In contrast, two proximal markers at 1p32-34 showed significantly less frequent (11-14%) allelic imbalance. Consequently, the present study identified the shortest region of overlap between D1S507 and TP73, which included the most frequently affected marker, D1S508. In addition, several cases exhibited allelic imbalance confined to a subtelomeric region distal to D1S2845 at 1p36.3. The present findings warrant future studies to identify the putative tumor suppressor gene(s) at 1p36 to gain a better understanding of the molecular pathogenesis of lung cancer. Genes Chromosomes Cancer 28:342-346, 2000.
Collapse
Affiliation(s)
- S Nomoto
- Laboratory of Ultrastructure Research, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Lamant L, Pulford K, Bischof D, Morris SW, Mason DY, Delsol G, Mariamé B. Expression of the ALK tyrosine kinase gene in neuroblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1711-21. [PMID: 10793082 PMCID: PMC1876934 DOI: 10.1016/s0002-9440(10)65042-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ALK (anaplastic lymphoma kinase) is a tyrosine kinase receptor, expressed as part of the chimeric NPM-ALK protein, in anaplastic large cell lymphomas (ALCLs) exhibiting the t(2;5)(p23;q35) translocation. As a result of this translocation, the NPM (nucleophosmin) gene is fused to the portion of the ALK gene encoding its intracytoplasmic segment. In normal mouse tissues, mRNA encoding the Alk receptor has been found only in neural cells, suggesting involvement of this receptor in the development of the nervous system. The purpose of the present study was to examine the presence of ALK transcripts and protein in normal human tissues and a variety of cell lines and human tumors. Emphasis was placed on neuroblastomas because other tyrosine kinase receptors are expressed in human neuroblastomas. Fifty-six cell lines, including 29 lines of neural origin, and lymphoid and nonlymphoid tissue specimens, including 24 neuroblastomas, were investigated for ALK expression, using reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry. The results confirmed that mRNA encoding ALK protein was not detectable in any normal or neoplastic hematopoietic tissue tested, except for t(2;5)-positive ALCL. The salient finding was that 13 of the 29 cell lines of neural origin and 22 of 24 neuroblastomas were found to express ALK transcripts and ALK protein. However, no correlation was evident between any known prognostic factors and the level of ALK expression.
Collapse
Affiliation(s)
- L Lamant
- Department of Pathology, Centre Hospitalo-Universitaire Purpan, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Mendoza C, Sato H, Hiyama K, Ishioka S, Isobe T, Maeda H, Hiyama E, Inai K, Yamakido M. Allelotype and loss of heterozygosity around the L-myc gene locus in primary lung cancers. Lung Cancer 2000; 28:117-25. [PMID: 10717329 DOI: 10.1016/s0169-5002(99)00125-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-myc S-allele was reported to be associated with metastasis of lung cancer, indicating the existence of a putative tumor suppressor gene around the L-myc locus, in linkage disequilibrium. The relationship between the S-allele and inactivation of some tumor suppressor gene should be indicated by allelic loss. Therefore, we examined the association between the L-myc S-allele and loss of heterozygosity at 11 loci around the L-myc locus (1p34.3) in primary lesions or other biological characteristics in lung cancer. No associations between the S-allele and allelic loss around the L-myc locus or other characteristics were found. According to the deletion map, three shortest regions of overlap between D1S230 and D1S76 were identified. While loss of heterozygosity at SRO1, between D1S2797 and MYCL1, showed no relationship with the pathological stage, it was more frequently observed in squamous cell carcinoma than adenocarcinoma (P=0.019), and associated with high telomerase activity (P=0.046), an indicator of cellular immortality. In conclusion, we found three shortest regions of overlap (SROs) from D1S2797 to pter, and a tumor suppressor gene, which might be associated with suppression of lung cancer development but not with L-myc S-allele, may exist in SRO1.
Collapse
Affiliation(s)
- C Mendoza
- Second Department of Internal Medicine, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Piepkorn M. Melanoma genetics: an update with focus on the CDKN2A(p16)/ARF tumor suppressors. J Am Acad Dermatol 2000; 42:705-22; quiz 723-6. [PMID: 10775844 DOI: 10.1067/mjd.2000.104687] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED Investigative interest in atypical nevi and familial melanoma has contributed to the identification of several candidate melanoma loci within the human genome. Molecular defects in both tumor suppressor genes and oncogenes have been pathogenically linked to melanoma in recent studies. Of the loci currently characterized, the major gene resides on chromosome 9p and encodes a tumor suppressor designated p16. This gene, which is also known as CDKN2A, is either mutated or deleted in a large majority of melanoma cell lines, as well as in many uncultured melanoma cells and in the germline of melanoma kindreds. A novel aspect of the p16 locus is that it encodes not just one but two separate gene products that are transcribed in alternative reading frames. Both products function as negative regulators of cell cycle progression. The p16 protein itself executes its effects by competitively inhibiting cyclin-dependent kinase 4, which is a factor necessary for cellular progression through a major regulatory transition of the cell division cycle. Inherited and acquired deletions or point mutations in the p16 gene increase the likelihood that potentially mutagenic DNA damage will escape repair before cell division. Notably, the second product of the locus, ARF (for alternative reading frame), regulates cell growth through independent effects on the p53 pathway. Although there is little evidence that ARF by itself is involved in the pathogenesis of melanoma, deletions at the p16 locus disable two separate pathways that control cell growth. These recent advances open up the possibility of genetic testing for melanoma susceptibility in the setting of familial melanoma and suggest novel therapeutic strategies for melanoma based on gene therapy or small molecule mimicry targeted to the correction of defects in the p16 regulatory pathway. (J Am Acad Dermatol 2000;42:705-22.) LEARNING OBJECTIVE At the conclusion of this learning activity, participants should be familiar with the historical aspects of melanoma genetics and should have a greater understanding of the CDKN2A(p16)/ARF tumor suppressor genes.
Collapse
Affiliation(s)
- M Piepkorn
- Division of Dermatology, Department of Medicine and Department of Pathology, University of Washington School of Medicine, Seattle 98195-6524, USA.
| |
Collapse
|
47
|
Cornelis S, Bruynooghe Y, Denecker G, Van Huffel S, Tinton S, Beyaert R. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 2000; 5:597-605. [PMID: 10882096 DOI: 10.1016/s1097-2765(00)80239-7] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PITSLRE protein kinases are related to the large family of cyclin-dependent kinases. They have been proposed to act as tumor suppressor genes and have been shown to play a role in cell cycle progression. We report that two PITSLRE protein kinase isoforms, namely p11O(PITSLRE) and p58(PITSLRE), are translated from a single transcript by initiation at alternative in-frame AUG codons. p110(PITSLRE) is produced by classical cap-dependent translation, whereas p58(PITSLRE) results from internal initiation of translation controlled by an internal ribosome entry site (IRES) with unique properties. The IRES element is localized to the mRNA coding region, and its activity is cell cycle regulated, which permits translation of p58(PITSLRE) in G2/M.
Collapse
Affiliation(s)
- S Cornelis
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Gent, Belgium.
| | | | | | | | | | | |
Collapse
|
48
|
Shearer PD, Valentine MB, Grundy P, DeCou JM, Banavali SD, Komuro H, Green DM, Beckwith JB, Look AT. Hemizygous deletions of chromosome band 16q24 in Wilms tumor: detection by fluorescence in situ hybridization. CANCER GENETICS AND CYTOGENETICS 1999; 115:100-5. [PMID: 10598141 DOI: 10.1016/s0165-4608(99)00093-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Loss of heterozygosity (LOH) for markers on chromosome arm 16q in Wilms tumor has been linked to an increased risk of treatment failure. We therefore postulated that fluorescence in situ hybridization (FISH) with probes from this region might enhance current strategies for identifying high-risk patients at diagnosis. In a blinded comparative pilot study of 19 Wilms tumor samples from 18 patients with favorable histology, FISH and DNA polymorphism analysis yielded concordant results in 14 cases, either retention (n = 6) or loss (n = 8) of chromosome arm 16q markers. Discordant findings in 4 of the 5 remaining cases resulted from detection of LOH, but no loss by FISH. Two of these cases, directly comparable at marker D16S422, appeared to have tumor-specific uniparental disomy, in that 2 copies of D16S422 and the 16 centromere were evident, despite LOH. In 2 other cases, the discrepancies could be explained by LOH confined to loci distal to the D16S422 locus. In the fifth case, FISH detected 2 distinct populations of tumor cells, one characterized by normal diploidy and the other by monosomy 16, whereas DNA polymorphism analysis failed to indicate LOH altogether. Thus, FISH confirmed the presence of allelic loss (hence, the possible location of biologically important tumor suppressor genes) on the distal long arm of chromosome 16 in cases of favorable-histology Wilms tumor, with the advantages of technical simplicity, successful analysis of samples that were otherwise uninformative by analysis of DNA polymorphisms, and the addition of internal controls for chromosomal aneusomy. We suggest that combined analysis of the chromosome 16q region in Wilms tumor by FISH and DNA polymorphism analysis would improve evaluations to identify high-risk patients who might benefit from alternative therapy.
Collapse
Affiliation(s)
- P D Shearer
- Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ariza ME, Broome-Powell M, Lahti JM, Kidd VJ, Nelson MA. Fas-induced apoptosis in human malignant melanoma cell lines is associated with the activation of the p34(cdc2)-related PITSLRE protein kinases. J Biol Chem 1999; 274:28505-13. [PMID: 10497214 DOI: 10.1074/jbc.274.40.28505] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Cdc2L locus encoding the PITSLRE protein kinases maps to chromosome band 1p36 and consists of two duplicated and tandemly linked genes. The purpose of the present study was to determine whether diminution of PITSLRE kinases leads to deregulation of apoptosis. The human melanoma cell lines A375 (Cdc2L wild-type alleles) and UACC 1227 (mutant Cdc2L alleles) were tested with agonist anti-Fas monoclonal antibody. We found that exposure of these cells to anti-Fas for 24, 48, or 72 h resulted in differential sensitivity to Fas-induced apoptosis. In A375, cell death started at 24-48 h post-treatment, and it was maximal by 72 h. Conversely, UACC 1227 cells were resistant to Fas-mediated apoptosis. Induction of PITSLRE histone H1 kinase activity was observed in A375 anti-Fas treated but not in UACC 1227 cells. Also, the PITSLRE protein kinase activity in A375 anti-Fas-treated cells preceded maximal levels of apoptosis. Finally, fluorescence confocal microscopy revealed a nuclear localization of PITSLRE proteins in normal melanocytes and A375 cells but a cytoplasmic localization in UACC 1227 cells. The differences in PITSLRE protein and cellular localization between A375 and UACC 1227 cells appear to account for the differences in sensitivity of the two cells lines to anti-Fas and staurosporine. These observations suggest that alterations in PITSLRE gene expression and protein localization may result in the loss of apoptotic signaling.
Collapse
Affiliation(s)
- M E Ariza
- Arizona Cancer Center, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
50
|
Yokozaki H, Shitara Y, Fujimoto J, Hiyama T, Yasui W, Tahara E. Alterations of p73 preferentially occur in gastric adenocarcinomas with foveolar epithelial phenotype. Int J Cancer 1999; 83:192-6. [PMID: 10471526 DOI: 10.1002/(sici)1097-0215(19991008)83:2<192::aid-ijc8>3.0.co;2-e] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To establish the possible involvement of p73, a newly discovered p53-related candidate as a tumor-suppressor gene in human stomach carcinogenesis, the allelic status, allele-specific expression and mutations of the gene were investigated using PCR-restriction fragment length polymorphism (PCR-RFLP) analysis, RT-PCR SSCP analysis and direct DNA sequencing in 95 gastric adenocarcinomas. Of these, 32 exhibited the heterozygous p73 allele for the StyI restriction site in exon 2. Among these, the cancer DNA of 12 revealed loss of heterozygosity (LOH) of p73. All of the cancers with p73 LOH exhibited phenotypes of foveolar epithelium of the stomach. RT-PCR SSCP analysis of p73 heterozygous cases demonstrated not only bi-allelic expression of the gene but also relatively reduced expression of the affected allele in 6 of 8 tumors with p73 LOH. No gene mutation was detected in the remaining allele of LOH-positive cancers. Our results suggest that alterations of p73, including LOH and abnormal expression, may play roles in the genesis of foveolar-type gastric adenocarcinomas, though this is not in line with a classical Knudson's "2-hit" model.
Collapse
Affiliation(s)
- H Yokozaki
- First Department of Pathology, Hiroshima University School of Medicine, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|