1
|
Oliver TRW, Behjati S. Developmental Dysregulation of Childhood Cancer. Cold Spring Harb Perspect Med 2024; 14:a041580. [PMID: 38692740 PMCID: PMC11529852 DOI: 10.1101/cshperspect.a041580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Most childhood cancers possess distinct clinicopathological profiles from those seen in adulthood, reflecting their divergent mechanisms of carcinogenesis. Rather than depending on the decades-long, stepwise accumulation of changes within a mature cell that defines adult carcinomas, many pediatric malignancies emerge rapidly as the consequence of random errors during development. These errors-whether they be genetic, epigenetic, or microenvironmental-characteristically block maturation, resulting in phenotypically primitive neoplasms. Only an event that falls within a narrow set of spatiotemporal parameters will forge a malignant clone; if it occurs too soon then the event might be lethal, or negatively selected against, while if it is too late or in an incorrectly primed precursor cell then the necessary intracellular conditions for transformation will not be met. The precise characterization of these changes, through the study of normal tissues and tumors from patients and model systems, will be essential if we are to develop new strategies to diagnose, treat, and perhaps even prevent childhood cancer.
Collapse
Affiliation(s)
- Thomas R W Oliver
- Department of Histopathology and Cytology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, United Kingdom
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
| |
Collapse
|
2
|
Camilleri G, Calleja-Aguis J, Said E. Trophoblastic disease and choriocarcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:108727. [PMID: 39370364 DOI: 10.1016/j.ejso.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/29/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Gestational trophoblastic disease (GTD) is a group of diseases associated with pregnancies that demonstrate abnormal development of trophoblastic cells. GTD includes hydatidiform moles (HM) that may continue to further develop into gestational trophoblastic neoplasms (GTN), such as choriocarcinoma (CC). Gestational CC is a malignant mass development that may arise from HM, from other (normal) pregnancies or from other gestational events (such as ectopic pregnancies). The aim of this review is to outline current understating of the genetics and epigenetics of GTD and gestational CC and the link between the two diseases.
Collapse
Affiliation(s)
- Graziella Camilleri
- Department of Anatomy, Faculty of Medicine and Surgery University of Malta, Malta; Department of Pathology, Mater Dei Hospital, Malta.
| | - Jean Calleja-Aguis
- Department of Anatomy, Faculty of Medicine and Surgery University of Malta, Malta
| | - Edith Said
- Department of Anatomy, Faculty of Medicine and Surgery University of Malta, Malta; Department of Pathology, Mater Dei Hospital, Malta
| |
Collapse
|
3
|
Nirgude S, Naveh NSS, Kavari SL, Traxler EM, Kalish JM. Cancer predisposition signaling in Beckwith-Wiedemann Syndrome drives Wilms tumor development. Br J Cancer 2024; 130:638-650. [PMID: 38142265 PMCID: PMC10876704 DOI: 10.1038/s41416-023-02538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Wilms tumor (WT) exhibits structural and epigenetic changes at chromosome 11p15, which also cause Beckwith-Wiedemann Syndrome (BWS). Children diagnosed with BWS have increased risk for WT. The aim of this study is to identify the molecular signaling signatures in BWS driving these tumors. METHODS We performed whole exome sequencing, methylation array analysis, and gene expression analysis on BWS-WT samples. Our data were compared to publicly available nonBWS data. We categorized WT from BWS and nonBWS patients by assessment of 11p15 methylation status and defined 5 groups- control kidney, BWS-nontumor kidney, BWS-WT, normal-11p15 nonBWS-WT, altered-11p15 nonBWS-WT. RESULTS BWS-WT samples showed single nucleotide variants in BCORL1, ASXL1, ATM and AXL but absence of recurrent gene mutations associated with sporadic WT. We defined a narrow methylation range stratifying nonBWS-WT samples. BWS-WT and altered-11p15 nonBWS-WT showed enrichment of common and unique molecular signatures based on global differential methylation and gene expression analysis. CTNNB1 overexpression and broad range of interactions were seen in the BWS-WT interactome study. CONCLUSION While WT predisposition in BWS is well-established, as are 11p15 alterations in nonBWS-WT, this study focused on stratifying tumor genomics by 11p15 status. Further investigation of our findings may identify novel therapeutic targets in WT oncogenesis.
Collapse
Affiliation(s)
- Snehal Nirgude
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Natali S Sobel Naveh
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sanam L Kavari
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily M Traxler
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Maya-González C, Wessman S, Lagerstedt-Robinson K, Taylan F, Tesi B, Kuchinskaya E, McCluggage WG, Poluha A, Holm S, Nergårdh R, Díaz De Ståhl T, Höybye C, Tettamanti G, Delgado-Vega AM, Skarin Nordenvall A, Nordgren A. Register-based and genetic studies of Prader-Willi syndrome show a high frequency of gonadal tumors and a possible mechanism for tumorigenesis through imprinting relaxation. Front Med (Lausanne) 2023; 10:1172565. [PMID: 37575996 PMCID: PMC10419300 DOI: 10.3389/fmed.2023.1172565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a rare disease caused by a lack of expression of inherited imprinted genes in the paternally derived Prader-Willi critical region on chromosome 15q11.2-q13. It is characterized by poor feeding and hypotonia in infancy, intellectual disability, behavioral abnormalities, dysmorphic features, short stature, obesity, and hypogonadism. PWS is not a known cancer predisposition syndrome, but previous investigations regarding the prevalence of cancer in these patients suggest an increased risk of developing specific cancer types such as myeloid leukemia and testicular cancer. We present the results from a Swedish national population-based cohort study of 360 individuals with PWS and 18,000 matched comparisons. The overall frequency of cancer was not increased in our PWS cohort, but we found a high frequency of pediatric cancers. We also performed whole-genome sequencing of blood- and tumor-derived DNAs from a unilateral dysgerminoma in a 13-year-old girl with PWS who also developed bilateral ovarian sex cord tumors with annular tubules. In germline analysis, there were no additional findings apart from the 15q11.2-q13 deletion of the paternal allele, while a pathogenic activating KIT mutation was identified in the tumor. Additionally, methylation-specific multiplex ligation-dependent probe amplification revealed reduced methylation at the PWS locus in the dysgerminoma but not in the blood. In conclusion, our register-based study suggests an increased risk of cancer at a young age, especially testicular and ovarian tumors. We found no evidence of a general increase in cancer risk in patients with PWS. However, given our limited observational time, further studies with longer follow-up times are needed to clarify the lifetime cancer risk in PWS. We have also described the second case of locus-specific loss-of-imprinting in a germ cell tumor in PWS, suggesting a possible mechanism of carcinogenesis.
Collapse
Affiliation(s)
- Carolina Maya-González
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Kuchinskaya
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Experimental Medicine, Linköping University, Linköping, Sweden
| | - W. Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Anna Poluha
- Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Stefan Holm
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ricard Nergårdh
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Teresita Díaz De Ståhl
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Höybye
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Giorgio Tettamanti
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelica Maria Delgado-Vega
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Skarin Nordenvall
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Sun J, Shu J, Shi D, Liu W, Zhang Y, Luo B. Effects of methylation and imprinting expression of Insulin-like growth factor 2 gene in gastric cancer. Cancer Biomark 2023; 38:355-366. [PMID: 37718779 DOI: 10.3233/cbm-230105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) is a common malignant tumor associated with EBV infection. Insulin-like growth factor 2 (IGF2) is an imprinted gene and a key protein that regulates growth, especially during normal fetal development. Loss of imprinting (LOI), is a common epigenetic anomaly in a variety of human cancers. However, the promoter methylation, imprinting status and function of IGF2 gene in GC are unclear. OBJECTIVE To explore the role of IGF2 in the occurrence and development of gastric cancer. METHODS The biological function of IGF2 in gastric cancer was investigated by Transwell, wound healing, CCK-8 and flow cytometry assays. IGF2 imprinting status and gene promoter methylation in gastric cancer tissues were detected by PCR-RFLP and BGS. RESULTS The results showed that the expression of IGF2 was higher in GC tissues than adjacent tissues. IGF2 gene promoter methylation and LOI were significantly higher in EBVaGC tissues than in EBV-negative gastric cancer (EBVnGC) tissues. The high expression of IGF2 in gastric cancer can promote the migration and proliferation of gastric cancer cells. CONCLUSION Our data suggest that IGF2 is involved in the occurrence and development of gastric cancer. Targeting IGF2 may be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jiting Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jun Shu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, Shandong, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
6
|
German B, Ellis L. Polycomb Directed Cell Fate Decisions in Development and Cancer. EPIGENOMES 2022; 6:28. [PMID: 36135315 PMCID: PMC9497807 DOI: 10.3390/epigenomes6030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The polycomb group (PcG) proteins are a subset of transcription regulators highly conserved throughout evolution. Their principal role is to epigenetically modify chromatin landscapes and control the expression of master transcriptional programs to determine cellular identity. The two mayor PcG protein complexes that have been identified in mammals to date are Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2). These protein complexes selectively repress gene expression via the induction of covalent post-translational histone modifications, promoting chromatin structure stabilization. PRC2 catalyzes the histone H3 methylation at lysine 27 (H3K27me1/2/3), inducing heterochromatin structures. This activity is controlled by the formation of a multi-subunit complex, which includes enhancer of zeste (EZH2), embryonic ectoderm development protein (EED), and suppressor of zeste 12 (SUZ12). This review will summarize the latest insights into how PRC2 in mammalian cells regulates transcription to orchestrate the temporal and tissue-specific expression of genes to determine cell identity and cell-fate decisions. We will specifically describe how PRC2 dysregulation in different cell types can promote phenotypic plasticity and/or non-mutational epigenetic reprogramming, inducing the development of highly aggressive epithelial neuroendocrine carcinomas, including prostate, small cell lung, and Merkel cell cancer. With this, EZH2 has emerged as an important actionable therapeutic target in such cancers.
Collapse
Affiliation(s)
- Beatriz German
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leigh Ellis
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Hettmer S, Linardic CM, Kelsey A, Rudzinski ER, Vokuhl C, Selfe J, Ruhen O, Shern JF, Khan J, Kovach AR, Lupo PJ, Gatz SA, Schäfer BW, Volchenboum S, Minard-Colin V, Koscielniak E, Hawkins DS, Bisogno G, Sparber-Sauer M, Venkatramani R, Merks JHM, Shipley J. Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: A consensus view from European paediatric Soft tissue sarcoma Study Group, Children's Oncology Group and Cooperative Weichteilsarkom-Studiengruppe. Eur J Cancer 2022; 172:367-386. [PMID: 35839732 DOI: 10.1016/j.ejca.2022.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Rhabdomyosarcomas (RMSs) are the most common soft tissue sarcomas in children/adolescents less than 18 years of age with an annual incidence of 1-2/million. Inter/intra-tumour heterogeneity raise challenges in clinical, pathological and biological research studies. Risk stratification in European and North American clinical trials previously relied on clinico-pathological features, but now, incorporates PAX3/7-FOXO1-fusion gene status in the place of alveolar histology. International working groups propose a coordinated approach through the INternational Soft Tissue SaRcoma ConsorTium to evaluate the specific genetic abnormalities and generate and integrate molecular and clinical data related to patients with RMS across different trial settings. We review relevant data and present a consensus view on what molecular features should be assessed. In particular, we recommend the assessment of the MYOD1-LR122R mutation for risk escalation, as it has been associated with poor outcomes in spindle/sclerosing RMS and rare RMS with classic embryonal histopathology. The prospective analyses of rare fusion genes beyond PAX3/7-FOXO1 will generate new data linked to outcomes and assessment of TP53 mutations and CDK4 amplification may confirm their prognostic value. Pathogenic/likely pathogenic germline variants in TP53 and other cancer predisposition genes should also be assessed. DNA/RNA profiling of tumours at diagnosis/relapse and serial analyses of plasma samples is recommended where possible to validate potential molecular biomarkers, identify new biomarkers and assess how liquid biopsy analyses can have the greatest benefit. Together with the development of new molecularly-derived therapeutic strategies that we review, a synchronised international approach is expected to enhance progress towards improved treatment assignment, management and outcomes for patients with RMS.
Collapse
Affiliation(s)
- Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany
| | - Corinne M Linardic
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology; Duke University of Medicine, Durham, NC, USA
| | - Anna Kelsey
- Department of Paediatric Histopathology, Royal Manchester Children's Hospital, Manchester Foundation Trust, Manchester, UK
| | - Erin R Rudzinski
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Germany
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Olivia Ruhen
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Jack F Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA; Pediatric Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Alexander R Kovach
- Department of Pharmacology and Cancer Biology; Duke University of Medicine, Durham, NC, USA
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Birmingham, UK
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | - Ewa Koscielniak
- Klinikum der Landeshauptstadt Stuttgart GKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany; Medizinische Fakultät, University of Tübingen, Germany
| | - Douglas S Hawkins
- Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gianni Bisogno
- Hematology Oncology Division, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Monika Sparber-Sauer
- Klinikum der Landeshauptstadt Stuttgart GKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany; Medizinische Fakultät, University of Tübingen, Germany
| | - Rajkumar Venkatramani
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | | | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK.
| |
Collapse
|
8
|
Blood-derived lncRNAs as biomarkers for cancer diagnosis: the Good, the Bad and the Beauty. NPJ Precis Oncol 2022; 6:40. [PMID: 35729321 PMCID: PMC9213432 DOI: 10.1038/s41698-022-00283-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer ranks as one of the deadliest diseases worldwide. The high mortality rate associated with cancer is partially due to the lack of reliable early detection methods and/or inaccurate diagnostic tools such as certain protein biomarkers. Cell-free nucleic acids (cfNA) such as circulating long noncoding RNAs (lncRNAs) have been proposed as a new class of potential biomarkers for cancer diagnosis. The reported correlation between the presence of tumors and abnormal levels of lncRNAs in the blood of cancer patients has notably triggered a worldwide interest among clinicians and oncologists who have been actively investigating their potentials as reliable cancer biomarkers. In this report, we review the progress achieved (“the Good”) and challenges encountered (“the Bad”) in the development of circulating lncRNAs as potential biomarkers for early cancer diagnosis. We report and discuss the diagnostic performance of more than 50 different circulating lncRNAs and emphasize their numerous potential clinical applications (“the Beauty”) including therapeutic targets and agents, on top of diagnostic and prognostic capabilities. This review also summarizes the best methods of investigation and provides useful guidelines for clinicians and scientists who desire conducting their own clinical studies on circulating lncRNAs in cancer patients via RT-qPCR or Next Generation Sequencing (NGS).
Collapse
|
9
|
Maciaszek JL, Oak N, Nichols KE. Recent advances in Wilms' tumor predisposition. Hum Mol Genet 2021; 29:R138-R149. [PMID: 32412586 DOI: 10.1093/hmg/ddaa091] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Wilms' tumor (WT), the most common childhood kidney cancer, develops in association with an underlying germline predisposition in up to 15% of cases. Germline alterations affecting the WT1 gene and epigenetic alterations affecting the 11p15 locus are associated with a selective increase in WT risk. Nevertheless, WT also occurs in the context of more pleiotropic cancer predispositions, such as DICER1, Li-Fraumeni and Bloom syndrome, as well as Fanconi anemia. Recent germline genomic investigations have increased our understanding of the host genetic factors that influence WT risk, with sequencing of rare familial cases and large WT cohorts revealing an expanding array of predisposition genes and associated genetic conditions. Here, we describe evidence implicating WT1, the 11p15 locus, and the recently identified genes CTR9, REST and TRIM28 in WT predisposition. We discuss the clinical features, mode of inheritance and biological aspects of tumorigenesis, when known. Despite these described associations, many cases of familial WT remain unexplained. Continued investigations are needed to fully elucidate the landscape of germline genetic alterations in children with WT. Establishing a genetic diagnosis is imperative for WT families so that individuals harboring a predisposing germline variant can undergo surveillance, which should enable the early detection of tumors and use of less intensive treatments, thereby leading to improved overall outcomes.
Collapse
Affiliation(s)
- Jamie L Maciaszek
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ninad Oak
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
10
|
Thomas C, Soschinski P, Zwaig M, Oikonomopoulos S, Okonechnikov K, Pajtler KW, Sill M, Schweizer L, Koch A, Neumann J, Schüller U, Sahm F, Rauschenbach L, Keyvani K, Proescholdt M, Riemenschneider MJ, Segewiß J, Ruckert C, Grauer O, Monoranu CM, Lamszus K, Patrizi A, Kordes U, Siebert R, Kool M, Ragoussis J, Foulkes WD, Paulus W, Rivera B, Hasselblatt M. The genetic landscape of choroid plexus tumors in children and adults. Neuro Oncol 2021; 23:650-660. [PMID: 33249490 DOI: 10.1093/neuonc/noaa267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Choroid plexus tumors (CPTs) are intraventricular brain tumors predominantly arising in children but also affecting adults. In most cases, driver mutations have not been identified, although there are reports of frequent chromosome-wide copy-number alterations and TP53 mutations, especially in choroid plexus carcinomas (CPCs). METHODS DNA methylation profiling and RNA-sequencing was performed in a series of 47 CPTs. Samples comprised 35 choroid plexus papillomas (CPPs), 6 atypical choroid plexus papillomas (aCPPs) and 6 CPCs plus three recurrences thereof. Targeted TP53 and TERT promotor sequencing was performed in all samples. Whole exome sequencing (WES) and linked-read whole genome sequencing (WGS) was performed in 25 and 4 samples, respectively. RESULTS Tumors comprised the molecular subgroups "pediatric A" (N=11), "pediatric B" (N=12) and "adult" (N=27). Copy-number alterations mainly represented whole-chromosomal alterations with subgroup-specific enrichments (gains of Chr1, 2 and 21q in "pediatric B" and gains of Chr5 and 9 and loss of Chr21q in "adult"). RNA sequencing yielded a novel CCDC47-PRKCA fusion transcript in one adult choroid plexus papilloma patient with aggressive clinical course; an underlying Chr17 inversion was demonstrated by linked-read WGS. WES and targeted sequencing showed TP53 mutations in 7/47 CPTs (15%), five of which were children. On the contrary, TERT promoter mutations were encountered in 7/28 adult patients (25%) and associated with shorter progression-free survival (log-rank test, p=0.015). CONCLUSION Pediatric CPTs lack recurrent driver alterations except for TP53, whereas CPTs in adults show TERT promoter mutations or a novel CCDC47-PRKCA gene fusion, being associated with a more unfavorable clinical course.
Collapse
Affiliation(s)
- Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Patrick Soschinski
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Melissa Zwaig
- McGill University Genome Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Spyridon Oikonomopoulos
- McGill University Genome Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Leonille Schweizer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany, Partner Site Charité Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany, Partner Site Charité Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Julia Neumann
- Department of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laurèl Rauschenbach
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,DKFZ Division Translational Neurooncology, DKTK partner site, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Martin Proescholdt
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Neurosurgery, Regensburg University Hospital, Regensburg, Germany
| | | | - Jochen Segewiß
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Christian Ruckert
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Oliver Grauer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | | | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annarita Patrizi
- Schaller Research Group Leader at the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jiannis Ragoussis
- McGill University Genome Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Barbara Rivera
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| |
Collapse
|
11
|
Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet 2021; 12:675780. [PMID: 34017357 PMCID: PMC8129186 DOI: 10.3389/fgene.2021.675780] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
12
|
Shermane Lim YW, Xiang X, Garg M, Le MT, Li-Ann Wong A, Wang L, Goh BC. The double-edged sword of H19 lncRNA: Insights into cancer therapy. Cancer Lett 2020; 500:253-262. [PMID: 33221454 DOI: 10.1016/j.canlet.2020.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023]
Abstract
H19 long non-coding RNA (lncRNA) has many functions in cancer. Some studies have reported that H19 acts as an oncogene and is involved in cancer progression by activating epithelial-mesenchymal transition (EMT), the cell cycle and angiogenesis via mechanisms like microRNA (miRNA) sponging - the binding to and inhibition of miRNA activity. This makes H19 lncRNA a potential target for cancer therapeutics. However, several conflicting studies have also found that H19 suppresses tumour development. In this review, we shed light on the possible reasons for these conflicting findings. We also summarise the current literature on the applications of H19 lncRNA in cancer therapy in many cancers and explore new avenues for future research. This includes the use of H19 in recombinant vectors, chemoresistance, epigenetic regulation, tumour microenvironment alteration and cancer immunotherapy. The relationship between H19 and the master tumour suppressor gene p53 is also explored. In most studies, H19 knockdown via RNA interference (RNAi) or epigenetic silencing inhibits cancer development. Thus, H19 lncRNA could be a promising target for the development of cancer therapeutics. This warrants further investigations into its translational research to improve cancer therapy outcomes.
Collapse
Affiliation(s)
- Yun Wei Shermane Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, 201313, India
| | - Minh Tn Le
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119228, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119228, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
13
|
Zhou Q, Meng QR, Meng TG, He QL, Zhao ZH, Li QN, Lei WL, Liu SZ, Schatten H, Wang ZB, Sun QY. Deletion of BAF250a affects oocyte epigenetic modifications and embryonic development. Mol Reprod Dev 2020; 87:550-564. [PMID: 32215983 DOI: 10.1002/mrd.23339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 11/10/2022]
Abstract
BRG1-associated factor 250a (BAF250a) is a component of the SWI/SNF adenosine triphosphate-dependent chromatin remodeling complex, which has been shown to control chromatin structure and transcription. BAF250a was reported to be a key component of the gene regulatory machinery in embryonic stem cells controlling self-renewal, differentiation, and cell lineage decisions. Here we constructed Baf250aF/F ;Gdf9-cre (Baf250aCKO ) mice to specifically delete BAF250a in oocytes to investigate the role of maternal BAF250a in female germ cells and embryo development. Our results showed that BAF250a deletion did not affect folliculogenesis, ovulation, and fertilization, but it caused late embryonic death. RNA sequencing analysis showed that the expression of genes involved in cell proliferation and differentiation, tissue morphogenesis, histone modification, and nucleosome remodeling were perturbed in Baf250aCKO MII oocytes. We showed that covalent histone modifications such as H3K27me3 and H3K27ac were also significantly affected in oocytes, which may reduce oocyte quality and lead to birth defects. In addition, the DNA methylation level of Igf2r, Snrpn, and Peg3 differentially methylated regions was decreased in Baf250aCKO oocytes. Quantitative real-time polymerase chain reaction analysis showed that the relative messenger RNA (mRNA) expression levels of Igf2r and Snrpn were significantly increased. The mRNA expression level of Dnmt1, Dnmt3a, Dnmt3l, and Uhrf1 was decreased, and the protein expression in these genes was also reduced, which might be the cause for impaired imprinting establishment. In conclusion, our results demonstrate that BAF250a plays an important role in oocyte transcription regulation, epigenetic modifications, and embryo development.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Ren Meng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Long He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Zhen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Sobczuk P, Brodziak A, Khan MI, Chhabra S, Fiedorowicz M, Wełniak-Kamińska M, Synoradzki K, Bartnik E, Cudnoch-Jędrzejewska A, Czarnecka AM. Choosing The Right Animal Model for Renal Cancer Research. Transl Oncol 2020; 13:100745. [PMID: 32092671 PMCID: PMC7036425 DOI: 10.1016/j.tranon.2020.100745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The increase in the life expectancy of patients with renal cell carcinoma (RCC) in the last decade is due to changes that have occurred in the area of preclinical studies. Understanding cancer pathophysiology and the emergence of new therapeutic options, including immunotherapy, would not be possible without proper research. Before new approaches to disease treatment are developed and introduced into clinical practice they must be preceded by preclinical tests, in which animal studies play a significant role. This review describes the progress in animal model development in kidney cancer research starting from the oldest syngeneic or chemically-induced models, through genetically modified mice, finally to xenograft, especially patient-derived, avatar and humanized mouse models. As there are a number of subtypes of RCC, our aim is to help to choose the right animal model for a particular kidney cancer subtype. The data on genetic backgrounds, biochemical parameters, histology, different stages of carcinogenesis and metastasis in various animal models of RCC as well as their translational relevance are summarized. Moreover, we shed some light on imaging methods, which can help define tumor microstructure, assist in the analysis of its metabolic changes and track metastasis development.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Anna Brodziak
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Mohammed Imran Khan
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada.
| | - Stuti Chhabra
- Department of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Michał Fiedorowicz
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Marlena Wełniak-Kamińska
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Anna M Czarnecka
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| |
Collapse
|
15
|
Jasinska AJ, Rostamian D, Davis AT, Kavanagh K. Transcriptomic Analysis of Cell-free Fetal RNA in the Amniotic Fluid of Vervet Monkeys ( Chlorocebus sabaeus). Comp Med 2020; 70:67-74. [PMID: 31969210 PMCID: PMC7024774 DOI: 10.30802/aalas-cm-19-000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
NHP are important translational models for understanding the genomic underpinnings of growth, development, fetal programming, and predisposition to disease, with potential for the development of early health biomarkers. Understanding how prenatal gene expression is linked to pre- and postnatal health and development requires methods for assessing the fetal transcriptome. Here we used RNAseq methodology to analyze the expression of cell-free fetal RNA in the amniotic fluid supernatant (AFS) of vervet monkeys. Despite the naturally high level of degradation of free-floating RNA, we detected more than 10,000 gene transcripts in vervet AFS. The most highly expressed genes were H19, IGF2, and TPT1, which are involved in embryonic growth and glycemic health. We noted global similarities in expression profiles between vervets and humans, with genes involved in embryonic growth and glycemic health among the genes most highly expressed in AFS. Our study demonstrates both the feasibility and usefulness of prenatal transcriptomic profiles, by using amniocentesis procedures to obtain AFS and cell-free fetal RNA from pregnant vervets.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, University of California-Los Angeles, Los Angeles, California; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland;,
| | - Dalar Rostamian
- Center for Neurobehavioral Genetics, University of California-Los Angeles, Los Angeles, California
| | - Ashley T Davis
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biomedicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
16
|
Wegert J, Zauter L, Appenzeller S, Otto C, Bausenwein S, Vokuhl C, Ernestus K, Furtwängler R, Graf N, Gessler M. High-risk blastemal Wilms tumor can be modeled by 3D spheroid cultures in vitro. Oncogene 2019; 39:849-861. [PMID: 31562394 PMCID: PMC6976522 DOI: 10.1038/s41388-019-1027-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/10/2023]
Abstract
In vitro models represent a critical tool in cancer research to study tumor biology and to evaluate new treatment options. Unfortunately, there are no effective preclinical models available that represent Wilms tumor (WT) — the most common pediatric renal tumor. Especially the high-risk blastemal WT subtype is not represented by the few primary cell lines established until now. Here, we describe a new 3D approach for in vitro cultivation of blastemal WT cells, where primary cultures grown in suspension as spheroids could be propagated long-term. Besides blastemal cultures, we could generate spheroids representing epithelial and stromal WT. Spheroid cultures were analyzed by immunohistochemistry in comparison to corresponding tumor sections and were further characterized by RNA sequencing. Histological appearance of spheroids resembled the original tumor and they expressed marker genes characteristic of early renal development and blastemal WT elements. The cultures were amenable to genetic manipulation and they formed xenograft tumors, which resemble the primary human tumor. This collection of WT spheroids that carry different genetic drivers forms a long-sought tool for drug testing and in vitro modeling.
Collapse
Affiliation(s)
- Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Lisa Zauter
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Christoph Otto
- Experimental Surgery, Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Sabrina Bausenwein
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Vokuhl
- Kiel Pediatric Tumor Registry, Section of Pediatric Pathology, Department of Pathology, University Hospital of Kiel, Kiel, Germany
| | - Karen Ernestus
- Institute for Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Rhoikos Furtwängler
- Pediatric Oncology and Hematology, Children's Hospital, Saarland University and Saarland University Medical Centre, Homburg, Germany
| | - Norbert Graf
- Pediatric Oncology and Hematology, Children's Hospital, Saarland University and Saarland University Medical Centre, Homburg, Germany
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany. .,Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
17
|
High level of lncRNA H19 expression is associated with shorter survival in esophageal squamous cell cancer patients. Pathol Res Pract 2019; 215:152638. [PMID: 31551175 DOI: 10.1016/j.prp.2019.152638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/25/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
Abstract
AIM Long non-coding RNA (lncRNA) is currently considered to play an important regulatory role in various diseases, including tumors, at present a hot topic in research. As a non-coding transcription product of imprinted gene, LncRNA H19 is expressed as a parent imprinted maternal allele without protein-coding ability. Increasing evidence indicates that LncH19 may be a new tumor marker for early clinical diagnosis and prognosis judgment. In this study, LncH19 expression was investigated by RNA in situ hybridization for further exploring the clinicopathological role of its expression in esophageal squamous cell cancer (ESCC). METHODS 121 tumor samples and seven cases of adjacent non-tumor tissues from esophageal cancer patients were detected by RNA in situ hybridization (ISH) and the ISH staining was graded with modified Allred scoring. RESULTS While no LncH19 expression in the tumor adjacent to normal epithelia was disclosed with the technology, significantly higher levels of LncH19 expression were detected in the tumors obtained from the patients who died within one year after surgery, compared to the expression in those tumors from the patients who survived longer than five years after the same treatment regimen (P = 0.001). In addition, LncH19 expression was verified to correlate with a larger tumor size (P = 0.002) and a higher UICC stage (P = 0.001). CONCLUSION Our LncH19 ISH data verify the involvement of LncH19 in ESCC. Higher levels of LncH19 expression were not only detected in tumors with larger size and in clinical late stage, but also significantly associated with shorter survival, strongly indicating its clinical significance in the malignant progression of ESCC and useful value as a poor prognostic factor for the patients.
Collapse
|
18
|
Castillejo-Lopez C, Pjanic M, Pirona AC, Hetty S, Wabitsch M, Wadelius C, Quertermous T, Arner E, Ingelsson E. Detailed Functional Characterization of a Waist-Hip Ratio Locus in 7p15.2 Defines an Enhancer Controlling Adipocyte Differentiation. iScience 2019; 20:42-59. [PMID: 31557715 PMCID: PMC6817687 DOI: 10.1016/j.isci.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/10/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
We combined CAGE sequencing in human adipocytes during differentiation with data from genome-wide association studies to identify an enhancer in the SNX10 locus on chromosome 7, presumably involved in body fat distribution. Using reporter assays and CRISPR-Cas9 gene editing in human cell lines, we characterized the role of the enhancer in adipogenesis. The enhancer was active during adipogenesis and responded strongly to insulin and isoprenaline. The allele associated with increased waist-hip ratio in human genetic studies was associated with higher enhancer activity. Mutations of the enhancer resulted in less adipocyte differentiation. RNA sequencing of cells with disrupted enhancer showed reduced expression of established adipocyte markers, such as ADIPOQ and LPL, and identified CHI3L1 on chromosome 1 as a potential gene involved in adipocyte differentiation. In conclusion, we identified and characterized an enhancer in the SNX10 locus and outlined its plausible mechanisms of action and downstream targets. An enhancer active during adipogenesis is located in an obesity GWAS locus The enhancer responded strongly to insulin and isoprenaline Mutation of the enhancer by CRISPR-Cas9 decreased adipocyte differentiation Knockout of CHI3L1 decreased adipocyte differentiation
Collapse
Affiliation(s)
- Casimiro Castillejo-Lopez
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Milos Pjanic
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna Chiara Pirona
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne Hetty
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, University of Ulm, Ulm, Germany
| | - Claes Wadelius
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Erik Arner
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Jadhav B, Monajemi R, Gagalova KK, Ho D, Draisma HHM, van de Wiel MA, Franke L, Heijmans BT, van Meurs J, Jansen R, 't Hoen PAC, Sharp AJ, Kiełbasa SM. RNA-Seq in 296 phased trios provides a high-resolution map of genomic imprinting. BMC Biol 2019; 17:50. [PMID: 31234833 PMCID: PMC6589892 DOI: 10.1186/s12915-019-0674-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/07/2019] [Indexed: 01/21/2023] Open
Abstract
Background Identification of imprinted genes, demonstrating a consistent preference towards the paternal or maternal allelic expression, is important for the understanding of gene expression regulation during embryonic development and of the molecular basis of developmental disorders with a parent-of-origin effect. Combining allelic analysis of RNA-Seq data with phased genotypes in family trios provides a powerful method to detect parent-of-origin biases in gene expression. Results We report findings in 296 family trios from two large studies: 165 lymphoblastoid cell lines from the 1000 Genomes Project and 131 blood samples from the Genome of the Netherlands (GoNL) participants. Based on parental haplotypes, we identified > 2.8 million transcribed heterozygous SNVs phased for parental origin and developed a robust statistical framework for measuring allelic expression. We identified a total of 45 imprinted genes and one imprinted unannotated transcript, including multiple imprinted transcripts showing incomplete parental expression bias that was located adjacent to strongly imprinted genes. For example, PXDC1, a gene which lies adjacent to the paternally expressed gene FAM50B, shows a 2:1 paternal expression bias. Other imprinted genes had promoter regions that coincide with sites of parentally biased DNA methylation identified in the blood from uniparental disomy (UPD) samples, thus providing independent validation of our results. Using the stranded nature of the RNA-Seq data in lymphoblastoid cell lines, we identified multiple loci with overlapping sense/antisense transcripts, of which one is expressed paternally and the other maternally. Using a sliding window approach, we searched for imprinted expression across the entire genome, identifying a novel imprinted putative lncRNA in 13q21.2. Overall, we identified 7 transcripts showing parental bias in gene expression which were not reported in 4 other recent RNA-Seq studies of imprinting. Conclusions Our methods and data provide a robust and high-resolution map of imprinted gene expression in the human genome. Electronic supplementary material The online version of this article (10.1186/s12915-019-0674-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bharati Jadhav
- Department of Genetics and Genomic Sciences, Hess Center for Science and Medicine, Mount Sinai School of Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY, 10029, USA
| | - Ramin Monajemi
- Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.
| | | | - Daniel Ho
- Department of Genetics and Genomic Sciences, Hess Center for Science and Medicine, Mount Sinai School of Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY, 10029, USA
| | - Harmen H M Draisma
- Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Mark A van de Wiel
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Bastiaan T Heijmans
- Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Rick Jansen
- Department of Psychiatry, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | | | | | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Hess Center for Science and Medicine, Mount Sinai School of Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY, 10029, USA.
| | - Szymon M Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.
| |
Collapse
|
20
|
Yagi M, Kabata M, Ukai T, Ohta S, Tanaka A, Shimada Y, Sugimoto M, Araki K, Okita K, Woltjen K, Hochedlinger K, Yamamoto T, Yamada Y. De Novo DNA Methylation at Imprinted Loci during Reprogramming into Naive and Primed Pluripotency. Stem Cell Reports 2019; 12:1113-1128. [PMID: 31056481 PMCID: PMC6524733 DOI: 10.1016/j.stemcr.2019.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
CpG islands (CGIs) including those at imprinting control regions (ICRs) are protected from de novo methylation in somatic cells. However, many cancers often exhibit CGI hypermethylation, implying that the machinery is impaired in cancer cells. Here, we conducted a comprehensive analysis of CGI methylation during somatic cell reprogramming. Although most CGIs remain hypomethylated, a small subset of CGIs, particularly at several ICRs, was often de novo methylated in reprogrammed pluripotent stem cells (PSCs). Such de novo ICR methylation was linked with the silencing of reprogramming factors, which occurs at a late stage of reprogramming. The ICR-preferred CGI hypermethylation was similarly observed in human PSCs. Mechanistically, ablation of Dnmt3a prevented PSCs from de novo ICR methylation. Notably, the ICR-preferred CGI hypermethylation was observed in pediatric cancers, while adult cancers exhibit genome-wide CGI hypermethylation. These results may have important implications in the pathogenesis of pediatric cancers and the application of PSCs. Several ICRs are de novo methylated in reprogrammed PSCs De novo ICR methylation in iPSCs is linked with transgene silencing Depletion of Dnmt3a prevents reprogrammed PSCs from de novo ICR methylation Pediatric cancers exhibit reprogrammed PSC-like aberration in CGI methylation
Collapse
Affiliation(s)
- Masaki Yagi
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Tomoyo Ukai
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Akito Tanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yui Shimada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Michihiko Sugimoto
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Keisuke Okita
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan.
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan.
| |
Collapse
|
21
|
Sun Z, Xue S, Xu H, Hu X, Chen S, Yang Z, Yang Y, Ouyang J, Cui H. Expression profiles of long noncoding RNAs associated with the NSUN2 gene in HepG2 cells. Mol Med Rep 2019; 19:2999-3008. [PMID: 30816500 PMCID: PMC6423554 DOI: 10.3892/mmr.2019.9984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
NOP2/Sun domain family member 2 (NSUN2) is upregulated in numerous types of tumors and may be implicated in multiple biological processes, including cell proliferation, migration and human tumorigenesis. However, little is known about how NSUN2 serves a role in these processes. In the present study, expression profiles of long noncoding RNAs (lncRNAs) and mRNAs were developed in NSUN2‑deficient HepG2 cells by RNA‑sequencing analysis. A total of 757 lncRNAs were differentially expressed, 392 of which were upregulated, and 365 were downregulated compared with wild‑type HepG2 cells. Moreover, 212 lncRNAs were co‑expressed with 368 target mRNAs. It was also observed that 253 pairs of lncRNAs and mRNAs exhibited negative correlations and that 290 pairs had positive correlations. Bioinformatics analysis indicated that these lncRNAs regulated by NSUN2 were associated with 'signal transduction', 'extracellular exosome' and 'calcium ion binding', and were enriched in 'pathways in cancer', 'PI3K‑Akt signaling pathway' and 'ECM‑receptor interaction pathway'. These results illustrate the landscape and co‑expression network of lncRNAs regulated by NSUN2 and provide invaluable information for studying the molecular function of NSUN2.
Collapse
Affiliation(s)
- Zhen Sun
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Shonglei Xue
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Hui Xu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Shihao Chen
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Zhe Yang
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yu Yang
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Juan Ouyang
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Joint International Research Laboratory of Agricultural and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
22
|
Analysis of the Paternally-Imprinted DLK1-MEG3 and IGF2-H19 Tandem Gene Loci in NT2 Embryonal Carcinoma Cells Identifies DLK1 as a Potential Therapeutic Target. Stem Cell Rev Rep 2019; 14:823-836. [PMID: 29980981 DOI: 10.1007/s12015-018-9838-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The paternally-imprinted genes insulin-like growth factor 2 (IGF2), H19, delta-like homologue 1 (DLK1), and maternally-expressed gene 3 (MEG3) are expressed from the tandem gene loci IGF2-H19 and DLK1-MEG3, which play crucial roles in initiating embryogenesis and development. The erasure of imprinting (EOI) at differentially methylated regions (DMRs) which regulate the expression of these genes maintains the developmental quiescence of primordial germ cells (PGCs) migrating through the embryo proper during embryogenesis and prevents them from forming teratomas. To address the potential involvement of the IGF2-H19 and DLK1-MEG3 loci in the pathogenesis of embryonal carcinoma (EC), we investigated their genomic imprinting at DMRs in the human PGC-derived EC cell line NTera-2 (NT2). We observed EOI at the IGF2-H19 locus and, somewhat to our surprise, a loss of imprinting (LOI) at the DLK1-MEG3 locus. As a result, NT2 cells express imprinted gene ratios from these loci such that there are i) low levels of the proliferation-promoting IGF2 relative to ii) high levels of the proliferation-inhibiting long noncoding RNA (lncRNA) H19 and iii) high levels of proliferation-promoting DLK1 relative to iv) low levels of the proliferation-inhibiting lncRNA MEG3. Consistent with this pattern of expression, the knockdown of DLK1 mRNA by shRNA resulted in decreased in vitro cell proliferation and in vivo tumor growth as well as decreased in vivo organ seeding by NT2 cells. Furthermore, treatment of NT2 cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-azaD) inhibited their proliferation. This inhibition was accompanied by changes in expression of both tandem gene sets: a decrease in the expression of DLK1 and upregulation of the proliferation-inhibiting lncRNA MEG3, and at the same time upregulation of IGF2 and downregulation of the lncRNA H19. These results suggest that the DLK1-MEG3 locus, and not the IGF2-H19 locus, drives the tumorigenicity of NT2 cells. Based on these results, we identified DLK1 as a novel treatment target for EC that could be downregulated by 5-azaD.
Collapse
|
23
|
Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nat Commun 2019; 10:168. [PMID: 30635573 PMCID: PMC6329821 DOI: 10.1038/s41467-018-08127-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/12/2018] [Indexed: 01/10/2023] Open
Abstract
In humans and in mice the formation of nephrons during embryonic development reaches completion near the end of gestation, after which no new nephrons are formed. The final nephron complement can vary 10-fold, with reduced nephron number predisposing individuals to hypertension, renal, and cardiovascular diseases in later life. While the heterochronic genes lin28 and let-7 are well-established regulators of developmental timing in invertebrates, their role in mammalian organogenesis is not fully understood. Here we report that the Lin28b/let-7 axis controls the duration of kidney development in mice. Suppression of let-7 miRNAs, directly or via the transient overexpression of LIN28B, can prolong nephrogenesis and enhance kidney function potentially via upregulation of the Igf2/H19 locus. In contrast, kidney-specific loss of Lin28b impairs renal development. Our study reveals mechanisms regulating persistence of nephrogenic mesenchyme and provides a rationale for therapies aimed at increasing nephron mass. Nephrogenesis ceases after postnatal day 2 in the mouse or after the 36th week of gestation in humans, but how this is regulated is unclear. Here, the authors identify a role for the RNA-binding protein Lin28 and suppression of let-7 microRNA in regulating the duration of nephrogenesis.
Collapse
|
24
|
Barbour JA, Wong JWH. Dysregulation of Cis-Regulatory Elements in Cancer. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
25
|
James E, Jenkins TG. Epigenetics, infertility, and cancer: future directions. Fertil Steril 2018; 109:27-32. [PMID: 29307396 DOI: 10.1016/j.fertnstert.2017.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/28/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
Although direct correlates between cancer and infertile epigenetic profiles are rare, the general similarities between the two disease processes offer insights into the study of both abnormalities. Foremost among them is the nature of these pathologies, where one disease (cancer) is categorized by an inability to control or inhibit cellular proliferation, and the other (male infertility) is caused by an inability to maintain the normally efficient extreme proliferation of the male germ cell. Based on this similarity alone, the study of epigenetics in both male fertility and cancer has the potential to offer intriguing insights in both fields. The creative application of harmonious studies of both infertility and cancer is likely to yield useful and informative data that may aid in both the understanding and treatment of both pathologies.
Collapse
Affiliation(s)
- Emma James
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Timothy G Jenkins
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
26
|
Vanaja KG, Timp W, Feinberg AP, Levchenko A. A Loss of Epigenetic Control Can Promote Cell Death through Reversing the Balance of Pathways in a Signaling Network. Mol Cell 2018; 72:60-70.e3. [PMID: 30244832 DOI: 10.1016/j.molcel.2018.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/04/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Abstract
Epigenetic control of regulatory networks is only partially understood. Expression of Insulin-like growth factor-II (IGF2) is controlled by genomic imprinting, mediated by silencing of the maternal allele. Loss of imprinting of IGF2 (LOI) is linked to intestinal and colorectal cancers, causally in murine models and epidemiologically in humans. However, the molecular underpinnings of the LOI phenotype are not clear. Surprisingly, in LOI cells, we find a reversal of the relative activities of two canonical signaling pathways triggered by IGF2, causing further rebalancing between pro- and anti-apoptotic signaling. A predictive mathematical model shows that this network rebalancing quantitatively accounts for the effect of receptor tyrosine kinase inhibition in both WT and LOI cells. This mechanism also quantitatively explains both the stable LOI phenotype and the therapeutic window for selective killing of LOI cells, and thus prevention of epigenetically controlled cancers. These findings suggest a framework for understanding epigenetically modified cell signaling.
Collapse
Affiliation(s)
- Kiran G Vanaja
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA
| | - Andrew P Feinberg
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Andre Levchenko
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Chen KS, Stroup EK, Budhipramono A, Rakheja D, Nichols-Vinueza D, Xu L, Stuart SH, Shukla AA, Fraire C, Mendell JT, Amatruda JF. Mutations in microRNA processing genes in Wilms tumors derepress the IGF2 regulator PLAG1. Genes Dev 2018; 32:996-1007. [PMID: 30026293 PMCID: PMC6075147 DOI: 10.1101/gad.313783.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
Many childhood Wilms tumors are driven by mutations in the microRNA biogenesis machinery, but the mechanism by which these mutations drive tumorigenesis is unknown. Here we show that the transcription factor pleomorphic adenoma gene 1 (PLAG1) is a microRNA target gene that is overexpressed in Wilms tumors with mutations in microRNA processing genes. Wilms tumors can also overexpress PLAG1 through copy number alterations, and PLAG1 expression correlates with prognosis in Wilms tumors. PLAG1 overexpression accelerates growth of Wilms tumor cells in vitro and induces neoplastic growth in the developing mouse kidney in vivo. In both settings, PLAG1 transactivates insulin-like growth factor 2 (IGF2), a key Wilms tumor oncogene, and drives mammalian target of rapamycin complex 1 (mTORC1) signaling. These data link microRNA impairment to the PLAG1-IGF2 pathway, providing new insight into the manner in which common Wilms tumor mutations drive disease pathogenesis.
Collapse
Affiliation(s)
- Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health, Dallas, Texas 75390, USA
| | - Emily K Stroup
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Albert Budhipramono
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dinesh Rakheja
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Diana Nichols-Vinueza
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Quantitative Biomedical Research Center, Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas 75290, USA
| | - Sarai H Stuart
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Abhay A Shukla
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Claudette Fraire
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - James F Amatruda
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health, Dallas, Texas 75390, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
28
|
Abstract
Long non-coding RNAs (lncRNAs) refer to functional cellular RNAs molecules longer than 200 nucleotides in length. Unlike microRNAs, which have been widely studied, little is known about the enigmatic role of lncRNAs. However, lncRNAs have motivated extensively attention in the past few years and are emerging as potentially important regulators in pathological processes, including in cancer. We now understand that lncRNAs play role in cancer through their interactions with DNA, protein, and RNA in many instances. Moreover, accumulating evidence has recognized that large classes of lncRNAs are functional for ovarian cancer. Nevertheless, the biological phenomena and molecular mechanisms of lncRNAs in ovarian cancer remain to be better identified. In this review, we outline the dysregulated expression of lncRNAs and their potential clinical implications in ovarian cancer, with a particular emphasis on discussing the well characterized mechanisms underlying lncRNAs in ovarian cancer.
Collapse
Affiliation(s)
- Lei Zhan
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032 China
| | - Bing Wei
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 China
| |
Collapse
|
29
|
Abstract
The eukaryotic epigenome has an instrumental role in determining and maintaining cell identity and function. Epigenetic components such as DNA methylation, histone tail modifications, chromatin accessibility, and DNA architecture are tightly correlated with central cellular processes, while their dysregulation manifests in aberrant gene expression and disease. The ability to specifically edit the epigenome holds the promise of enhancing understanding of how epigenetic modifications function and enabling manipulation of cell phenotype for research or therapeutic purposes. Genome engineering technologies use highly specific DNA-targeting tools to precisely deposit epigenetic changes in a locus-specific manner, creating diverse epigenome editing platforms. This review summarizes these technologies and insights from recent studies, describes the complex relationship between epigenetic components and gene regulation, and highlights caveats and promises of the emerging field of epigenome editing, including applications for translational purposes, such as epigenetic therapy and regenerative medicine.
Collapse
Affiliation(s)
- Liad Holtzman
- Department of Biomedical Engineering and Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; ,
| | - Charles A Gersbach
- Department of Biomedical Engineering and Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; , .,Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
30
|
El Hajj J, Nguyen E, Liu Q, Bouyer C, Adriaenssens E, Hilal G, Ségal-Bendirdjian E. Telomerase regulation by the long non-coding RNA H19 in human acute promyelocytic leukemia cells. Mol Cancer 2018; 17:85. [PMID: 29703210 PMCID: PMC5923027 DOI: 10.1186/s12943-018-0835-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/16/2018] [Indexed: 01/06/2023] Open
Abstract
Background Since tumor growth requires reactivation of telomerase (hTERT), this enzyme is a challenging target for drug development. Therefore, it is of great interest to identify telomerase expression and activity regulators. Retinoids are well-known inducers of granulocytic maturation associated with hTERT repression in acute promyelocytic leukemia (APL) blasts. In a maturation-resistant APL cell line, we have previously identified a new pathway of retinoid-induced hTERT transcriptional repression independent of differentiation. Furthermore, we reported the isolation of a cell variant resistant to this repression. Those cell lines could serve as unique tools to identify new telomerase regulators. Methods Using a microarray approach we identified the long non-coding RNA, H19 as a potential candidate playing a role in telomerase regulation. Expression of H19, hTERT, and hTR were examined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Telomerase activity was quantified by quantitative telomeric repeats amplification protocol (qTRAP). In vitro and in vivo assays were performed to investigate H19 function on telomerase expression and activity. Results We showed both in retinoid-treated cell lines and in APL patient cells an inverse relationship between the expression of H19 and the expression and activity of hTERT. Exploring the mechanistic link between H19 and hTERT regulation, we showed that H19 is able to impede telomerase function by disruption of the hTERT-hTR interaction. Conclusions This study identifies a new way of telomerase regulation through H19’s involvement and thereby reveals a new function for this long non-coding RNA that can be targeted for therapeutic purpose. Electronic supplementary material The online version of this article (10.1186/s12943-018-0835-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joëlle El Hajj
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France.,Paris-Descartes University, Paris Sorbonne Cité, Paris, France.,Paris-Sud University, Paris-Saclay University, Orsay, France.,Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Eric Nguyen
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France.,Paris-Descartes University, Paris Sorbonne Cité, Paris, France
| | - Qingyuan Liu
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France.,Paris-Descartes University, Paris Sorbonne Cité, Paris, France.,Present address: Bristol-Myers Squibb (China) Investment Co. Ltd., Shanghai, 200040, People's Republic of China
| | - Claire Bouyer
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France.,Paris-Descartes University, Paris Sorbonne Cité, Paris, France
| | | | - George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Evelyne Ségal-Bendirdjian
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France. .,Paris-Descartes University, Paris Sorbonne Cité, Paris, France. .,Paris-Sud University, Paris-Saclay University, Orsay, France. .,INSERM UMR-S 1007, Paris-Descartes University, 45 rue des Saints-Pères, 75006, Paris, France.
| |
Collapse
|
31
|
Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma. Oncotarget 2018; 7:21298-314. [PMID: 26802029 PMCID: PMC5008286 DOI: 10.18632/oncotarget.6965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years of age. Second, the average demethylation at differentially methylated regions (DMRs) in the 14q32-locus varied significantly compared to genome-wide demethylation. Third, the 14q32-locus was enriched in both H3K4-me3 and H3K27-me3 histone modifications that affected expression of all imprinted genes and miRNAs in this region. Fourth, imprinting defects at 14q32 - DMRs are present in triad DNA samples from affected children and their biological parents. Finally, imprinting defects at 14q32-DMRs were also observed at higher frequencies in an Rb1/Trp53 mutation-induced osteosarcoma mouse model. Further analysis of normal and tumor tissues from a Sleeping Beauty mouse model of spontaneous osteosarcoma supported the notion that these imprinting defects may be a key factor in osteosarcoma pathobiology. In conclusion, we demonstrate that imprinting defects at the 14q32 locus significantly alter gene expression, may contribute to the pathogenesis of osteosarcoma, and could be predictive of survival outcomes.
Collapse
|
32
|
Abstract
Decades of studies have shown that epigenetic alterations play a significant role on cancer development both in vitro and in vivo. However, considering that many cancers harbor mutations at epigenetic modifier genes and that transcription factor-mediated gene regulations are tightly coupled with epigenetic modifications, the majority of epigenetic alterations in cancers could be the consequence of the dysfunction or dysregulation of epigenetic modifiers caused by genetic abnormalities. Therefore, it remains unclear whether bona fide epigenetic abnormalities have causal roles on cancer development. Reprogramming technologies enable us to actively alter epigenetic regulations while preserving genomic information. Taking advantage, recent studies have provided in vivo evidence for the significant impact of epigenetic abnormalities on the initiation, maintenance and progression of cancer cells.
Collapse
Affiliation(s)
- Kenji Ito
- Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
33
|
Chen Z, Li S, Subramaniam S, Shyy JYJ, Chien S. Epigenetic Regulation: A New Frontier for Biomedical Engineers. Annu Rev Biomed Eng 2017; 19:195-219. [PMID: 28301736 DOI: 10.1146/annurev-bioeng-071516-044720] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gene expression in mammalian cells depends on the epigenetic status of the chromatin, including DNA methylation, histone modifications, promoter-enhancer interactions, and noncoding RNA-mediated regulation. The coordinated actions of these multifaceted regulations determine cell development, cell cycle regulation, cell state and fate, and the ultimate responses in health and disease. Therefore, studies of epigenetic modulations are critical for our understanding of gene regulation mechanisms at the molecular, cellular, tissue, and organ levels. The aim of this review is to provide biomedical engineers with an overview of the principles of epigenetics, methods of study, recent findings in epigenetic regulation in health and disease, and computational and sequencing tools for epigenetics analysis, with an emphasis on the cardiovascular system. This review concludes with the perspectives of the application of bioengineering to advance epigenetics and the utilization of epigenetics to translate bioengineering research into clinical medicine.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91016; .,Department of Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - Shuai Li
- Department of Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - Shankar Subramaniam
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - John Y-J Shyy
- Department of Medicine, University of California at San Diego, La Jolla, California 92093; ,
| | - Shu Chien
- Department of Medicine, University of California at San Diego, La Jolla, California 92093; , .,Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, California 92093; ,
| |
Collapse
|
34
|
Chao MP, Gentles AJ, Chatterjee S, Lan F, Reinisch A, Corces MR, Xavy S, Shen J, Haag D, Chanda S, Sinha R, Morganti RM, Nishimura T, Ameen M, Wu H, Wernig M, Wu JC, Majeti R. Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease. Cell Stem Cell 2017; 20:329-344.e7. [PMID: 28089908 DOI: 10.1016/j.stem.2016.11.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/21/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
Abstract
Understanding the relative contributions of genetic and epigenetic abnormalities to acute myeloid leukemia (AML) should assist integrated design of targeted therapies. In this study, we generated induced pluripotent stem cells (iPSCs) from AML patient samples harboring MLL rearrangements and found that they retained leukemic mutations but reset leukemic DNA methylation/gene expression patterns. AML-iPSCs lacked leukemic potential, but when differentiated into hematopoietic cells, they reacquired the ability to give rise to leukemia in vivo and reestablished leukemic DNA methylation/gene expression patterns, including an aberrant MLL signature. Epigenetic reprogramming was therefore not sufficient to eliminate leukemic behavior. This approach also allowed us to study the properties of distinct AML subclones, including differential drug susceptibilities of KRAS mutant and wild-type cells, and predict relapse based on increased cytarabine resistance of a KRAS wild-type subclone. Overall, our findings illustrate the value of AML-iPSCs for investigating the mechanistic basis and clonal properties of human AML.
Collapse
Affiliation(s)
- Mark P Chao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Department of Medicine, Division of Hematology, Stanford Medicine, CA 94305, USA.
| | - Andrew J Gentles
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Stanford Center for Cancer Systems Biology, Stanford Medicine, CA 94305, USA
| | - Susmita Chatterjee
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Feng Lan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Andreas Reinisch
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - M Ryan Corces
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Seethu Xavy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Jinfeng Shen
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Daniel Haag
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Soham Chanda
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Rachel M Morganti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Mohamed Ameen
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Haodi Wu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Joseph C Wu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University, CA 94305, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Department of Medicine, Division of Hematology, Stanford Medicine, CA 94305, USA
| |
Collapse
|
35
|
K-Ras, H-Ras, N-Ras and B-Raf mutation and expression analysis in Wilms tumors: association with tumor growth. Med Oncol 2016; 34:6. [PMID: 27943100 DOI: 10.1007/s12032-016-0862-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
Nephroblastoma (Wilms tumor) is a kidney neoplasia, predominately occurring at very young age, resulting from the malignant transformation of renal stem cells. The Ras proto-oncogenes and B-Raf are members of an intracellular cascade pathway, which regulates cell growth and differentiation, and ultimately cancer development. Our objective was to determine the mutation rate and to measure the mRNA levels of the three Ras genes and of B-Raf in formalin-fixed paraffin-embedded tissue samples from 32 patients with nephroblastoma and 10 controls. No mutations were detected in the four studied genes among our Wilms tumors cases, while Ras and B-Raf expression was higher in malignant samples versus controls. Statistical analysis revealed a positive correlation of K-Ras (p < 0.001) and B-Raf (p = 0.006) with tumor size, a negative correlation of K-Ras (p = 0.041) and H-Ras (p = 0.033) with the percentage of tissue necrosis, and an association of N-Ras (p = 0.047) and B-Raf (p = 0.044) with tissue histology. From the above, we deduce that although Ras and B-Raf mutations are rare events in Wilms tumors, their expression pattern suggests that they play an important role in the development and progression of this malignancy.
Collapse
|
36
|
Iempridee T. Long non-coding RNA H19 enhances cell proliferation and anchorage-independent growth of cervical cancer cell lines. Exp Biol Med (Maywood) 2016; 242:184-193. [PMID: 27633578 DOI: 10.1177/1535370216670542] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNA H19 is aberrantly expressed in multiple malignancies and its expression levels correlate with recurrence, metastasis, and patient survival. Despite numerous reports documenting the role of H19 in carcinogenesis, its contribution to cervical cancer development is still largely unknown. In this study, I observed that H19 expression was elevated in cervical cancer cell lines and could be detected in extracellular vesicles in the culture medium. In addition, I demonstrated, by overexpression and knockdown experiments, that H19 promoted cell proliferation and multicellular tumor spheroid formation without significantly affecting apoptosis and cell migration. Finally, treatment with transforming growth factor beta and hypoxia-mimetic CoCl2 could modulate H19 levels in a cell line-specific manner. These findings indicate that H19 promotes both anchorage-specific and -independent growth of cervical cancer cell lines and may serve as a potential target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| |
Collapse
|
37
|
Chen H, Ye D, Xie X, Lu W, Zhu C, Chen X. PTEN Promoter Methylation and Protein Expression in Normal Early Placentas and Hydatidiform Moles. ACTA ACUST UNITED AC 2016; 12:214-7. [PMID: 15784509 DOI: 10.1016/j.jsgi.2005.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the relationship between PTEN promoter methylation and protein expression, and the possible involvement of the PTEN gene in development of gestational trophoblasts and the pathogenesis of hydatidiform moles. METHODS DNA was extracted from choria of normal early placentas, partial hydatidiform moles, complete hydatidiform moles, and invasive moles, and overdigested by methylation-sensitive endonuclease HpaII. The PTEN promoter was amplificated by polymerase chain reaction. PTEN protein expression was detected by immunohistochemistry. RESULTS In partial and complete hydatidiform moles, the PTEN promoter methylation rate was significantly higher than in early placentas (72%, 59.4%, 14.3%; P = .000, .002, respectively), and the PTEN protein expression rate was significantly lower than in early placentas (9.1%, 4.5%, 90.5%; P = .000, .000, respectively). However, partial hydatidiform moles, complete hydatidiform moles, and invasive moles were not significant different in terms of PTEN promoter methylation and protein expression. CONCLUSIONS These findings suggest that the regulation of PTEN expression may play an important role in the development of the early gestational trophoblast and in the pathogenesis of hydatidiform mole, but not in its malignant transformation.
Collapse
Affiliation(s)
- Huaizeng Chen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
38
|
Ziaee S, Chu GCY, Huang JM, Sieh S, Chung LWK. Prostate cancer metastasis: roles of recruitment and reprogramming, cell signal network and three-dimensional growth characteristics. Transl Androl Urol 2016; 4:438-54. [PMID: 26816842 PMCID: PMC4708593 DOI: 10.3978/j.issn.2223-4683.2015.04.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) metastasizes to bone and soft tissues, greatly decreasing quality of life, causing bone pain, skeletal complications, and mortality in PCa patients. While new treatment strategies are being developed, the molecular and cellular basis of PCa metastasis and the “cross-talk” between cancer cells and their microenvironment and crucial cell signaling pathways need to be successfully dissected for intervention. In this review, we introduce a new concept of the mechanism of PCa metastasis, the recruitment and reprogramming of bystander and dormant cells (DCs) by a population of metastasis-initiating cells (MICs). We provide evidence that recruited and reprogrammed DCs gain MICs phenotypes and can subsequently metastasize to bone and soft tissues. We show that MICs can also recruit and reprogram circulating tumor cells (CTCs) and this could contribute to cancer cell evolution and the acquisition of therapeutic resistance. We summarize relevant molecular signaling pathways, including androgen receptors (ARs) and their variants and growth factors (GFs) and cytokines that could contribute to the predilection of PCa for homing to bone and soft tissues. To understand the etiology and the biology of PCa and the effectiveness of therapeutic targeting, we briefly summarize the animal and cell models that have been employed. We also report our experience in the use of three-dimensional (3-D) culture and co-culture models to understand cell signaling networks and the use of these attractive tools to conduct drug screening exercises against already-identified molecular targets. Further research into PCa growth and metastasis will improve our ability to target cancer metastasis more effectively and provide better rationales for personalized oncology.
Collapse
Affiliation(s)
- Shabnam Ziaee
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gina Chia-Yi Chu
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jen-Ming Huang
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shirly Sieh
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
39
|
Long noncoding RNA H19 contributes to gallbladder cancer cell proliferation by modulated miR-194-5p targeting AKT2. Tumour Biol 2016; 37:9721-30. [PMID: 26803515 DOI: 10.1007/s13277-016-4852-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023] Open
Abstract
Gallbladder cancer (GBC) is a highly malignant cancer with poor prognosis. Although long noncoding RNA (lncRNA) H19 has been reported to play vital role in many human cancers, whether it is involved in GBC proliferation is still unknown. This study was designed to explore the effect of H19 in GBC cell proliferation. The expression of H19 and AKT2 were significantly elevated in GBC tissues, and the level of miR-194-5p is markedly decreased. Moreover, the RNA levels of H19 and AKT2 were positively correlated, and H19 elevation was significantly associated with tumor size. Cell proliferation decreased significantly after knockdown of H19 in GBC-SD and NOZ cells and after knockdown of AKT2 in NOZ cells. Results from cell cycle studies indicated that the S phase were significantly decreased after knockdown of H19 in NOZ cells but significantly elevated after overexpression of H19 in GBC-SD cells. Furthermore, knockdown of H19 upregulated miR-194-5p levels, yet significantly decreased miR-194-5p targeting AKT2 gene expression in NOZ cells. Inhibitor against miR-194-5p reversed these effects. In addition, overexpression of H19 in GBC-SD cells downregulated miR-194-5p and markedly increased AKT2 expression, and miR-194-5p mimic reversed these effects. Eventually, GBC cells were arrested in G0/G1-phase after H19 knockdown, inhibition of miR-194-5p markedly promoted cells into S-phase and co-transfection of siH19, and miR-194-5p inhibitor exerted mutually counter-regulated effects on cell cycle. These results suggested that H19/miR-194-5p/AKT2 axis regulatory network might modulate cell proliferation in GBC.
Collapse
|
40
|
Abstract
Noncoding RNAs are critical regulatory factors in essentially all forms of life. Stem cells occupy a special position in cell biology and Biomedicine, and emerging results show that multiple ncRNAs play essential roles in stem cells. We discuss some of the known ncRNAs in stem cells such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adult stem cells, and cancer stem cells with a focus on long ncRNAs. Roles and functional mechanisms of these lncRNAs are summarized, and insights into current and future studies are presented.
Collapse
|
41
|
Mishima C, Kagara N, Tanei T, Naoi Y, Shimoda M, Shimomura A, Shimazu K, Kim SJ, Noguchi S. Loss of imprinting of IGF2 in fibroadenomas and phyllodes tumors of the breast. Oncol Rep 2015; 35:1511-8. [PMID: 26676988 DOI: 10.3892/or.2015.4489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/22/2015] [Indexed: 11/05/2022] Open
Abstract
Loss of imprinting (LOI) of insulin-like growth factor 2 (IGF2) is thought to be implicated in the pathogenesis of some tumors by upregulating IGF2 mRNA but its role in the pathogenesis of fibroadenomas (FAs) and phyllodes tumors (PTs) of the breast is yet to be studied. LOI of IGF2 was investigated in 25 FAs and 17 PTs which were heterozygous for Apa I polymorphism, and was found to be present in 13 FAs and 12 PTs. IGF2 mRNA expression was more upregulated in FAs and PTs than in paired surrounding normal tissues and laser microdissection showed that IGF2 mRNA expression was significantly higher in the stromal than the epithelial cells. LOI was not associated with upregulation of IGF2 mRNA, nor were MED12 mutations and methylation status of the differentially methylated region 0 (DMR0) of IGF2. These results demonstrate that IGF2 mRNA expression is more upregulated in FAs and PTs than in normal tissues, especially in their stromal cells, but such an upregulation is not related to LOI of IGF2, and that hypomethylation of DMR0 is unlikely to be involved in induction of LOI.
Collapse
Affiliation(s)
- Chieko Mishima
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Naofumi Kagara
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Tomonori Tanei
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yasuto Naoi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Atsushi Shimomura
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Seung Jin Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Shinzaburo Noguchi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Abstract
Constitutional epimutation, which is an aberration in gene expression due to an altered epigenotype that is widely distributed in normal tissues (albeit frequently mosaic), provides an alternative mechanism to genetic mutation for cancer predisposition. Observational studies in cancer-affected families have revealed intergenerational inheritance of constitutional epimutation, providing unique insights into the heritability of epigenetic traits in humans. In this Opinion article, the potential contribution of constitutional epimutation to the 'missing' causality and heritability of cancer is explored.
Collapse
Affiliation(s)
- Megan P Hitchins
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Grant Building S169, 1291 Welch Road, Stanford, California 94305, USA
| |
Collapse
|
43
|
Abstract
Cancer arises through the accumulation of both genetic and epigenetic alterations. Although the causal role of genetic mutations on cancer development has been established in vivo, similar evidence for epigenetic alterations is limited. Moreover, mutual interactions between genetic mutations and epigenetic alterations remain unclear. Cellular reprogramming technology can be used to actively modify the epigenome without affecting the underlying genomic sequences. Here we introduce recent studies that have utilized this property for cancer research. We propose that just as it has potential for regenerative medicine and disease modeling, cell reprogramming could also be a powerful tool for dissecting the role of the cancer epigenome in the development and maintenance of cancer cells.
Collapse
Affiliation(s)
- Katsunori Semi
- Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiro Yamada
- Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Zhou J, Lai PBS, Tsui SKW. Identification of a non-coding KLF4 transcript generated from intron retention and downregulated in human hepatocellular carcinoma. Int J Oncol 2015; 47:1554-62. [PMID: 26238073 DOI: 10.3892/ijo.2015.3104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/29/2015] [Indexed: 11/06/2022] Open
Abstract
The Krüppel-like factor 4 (KLF4) gene is related to various biological processes including stem cell reprogramming and tumorigenesis. In this study, we identified and characterized a non-coding transcript of KLF4, which was designated KLF4‑003, in human liver tissue samples. KLF4‑003 was identified in a number of cell lines by reverse transcription PCR and DNA sequencing. Its expression levels were determined in 54 pairs of human hepatocellular carcinoma (HCC) tissues and a number of HCC cell lines by real-time PCR (RT-PCR). Methylation status of KLF4‑003 CpG islands was determined by bisulfite sequencing. The regulatory effect of KLF4‑003 CpG islands hypermethylation in Hep3B cells was then validated by the 5-aza-dC demethylation treatment, followed by RT-PCR analysis. Receiver operating characteristic (ROC) curve was created to evaluate the diagnostic value for differentiating between HCC cancer and benign diseases. The association study between KLF4‑003 expression level and clinical traits of HCC patients was performed with SPSS. We found that KLF4‑003 was downregulated in 46 out of 54 HCC samples compared with their adjunct normal tissues. The reduced KLF4‑003 expression was significantly associated with HCC recurrence (P=0.045) in the follow-up of 31 HCC patients. Significant differences were detected between the methylation status of HCC specimens and their adjacent normal controls. Demethylation treatment significantly rescued the expression of KLF4‑003 in Hep3B cells. Such observation indicated that the CpG island hypermethylation was at least partially responsible for the downregulation of KLF4‑003 in HCC. The area under ROC curve for the prediction of HCC reached 0.803 (95% CI=0.719-0.886, P<0.001). Our results suggested that the expression of KLF4‑003 was epigenetically regulated by methylation status of a KLF4‑003 CpG island in HCC. The differential expression of KLF4‑003 might play an important role in HCC development and might serve as a potential biomarker for the diagnosis of HCC.
Collapse
Affiliation(s)
- Junwei Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - Paul Bo-San Lai
- Department of Surgery, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| |
Collapse
|
45
|
Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 2015; 9:3-12. [PMID: 24739571 DOI: 10.4161/epi.27473] [Citation(s) in RCA: 341] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic regulation of gene expression is an increasingly well-understood concept that explains much of the contribution of an organism's environment and experience to its biology. However, discussion persists as to which mechanisms can be classified as epigenetic. Ongoing research continues to uncover novel pathways, including the important role of non-protein coding RNA transcripts in epigenetic gene regulation. We know that the majority of human and other mammalian transcripts are not translated but that many of these are nonetheless functional. These non-coding RNAs (ncRNAs) can be short (<200 nt) or long (<200 nt) and are further classified by genomic origin and mechanism of action. We discuss examples of ncRNAs that interact with histone modifying complexes or DNA methyltransferases to regulate gene expression, others that are targets of these epigenetic mechanisms, and propose a model in which such transcripts feed back into an epigenetic regulatory network.
Collapse
Affiliation(s)
- Veronica J Peschansky
- Center for Therapeutic Innovation & Department of Psychiatry and Behavioral Sciences; University of Miami; Miller School of Medicine; Miami, FL USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation & Department of Psychiatry and Behavioral Sciences; University of Miami; Miller School of Medicine; Miami, FL USA
| |
Collapse
|
46
|
Radhakrishnan VK, Hernandez LC, Anderson K, Tan Q, De León M, De León DD. Expression of Intratumoral IGF-II Is Regulated by the Gene Imprinting Status in Triple Negative Breast Cancer from Vietnamese Patients. Int J Endocrinol 2015; 2015:401851. [PMID: 26448747 PMCID: PMC4581569 DOI: 10.1155/2015/401851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/23/2015] [Indexed: 12/23/2022] Open
Abstract
African American women suffer higher incidence and mortality of triple negative breast cancer (TNBC) than Caucasian women. TNBC is very aggressive, causing the worst clinical outcome. We previously demonstrated that tumors from these patients express high IGF-II and exhibit high activation of the IGF signaling pathways. IGF-II gene expression is imprinted (monoallelic), promotes tumor progression, and metastasis and regulates Survivin, a TNBC prognostic marker. Since BC mortality has increased among young Vietnamese women, we analyzed 48 (paired) TNBC samples from Vietnamese patients to assess IGF-II expression. We analyzed all samples by qrtPCR for identification of IGF-II heterozygosity and to determine allelic expression of the IGF-II gene. We also analyzed the tissues for proIGF-II and Survivin by RT-PCR and Western blotting. A total of 28 samples displayed IGF-II heterozygosity of which 78% were biallelic. Tumors with biallelic IGF-II gene expression exhibited the highest levels of proIGF-II and Survivin. Although 100% of these tissues corresponding normal samples were biallelic, they expressed significantly lower levels of or no proIGF-II and Survivin. Thus, IGF-II biallelic gene expression is differentially regulated in normal versus tumor tissues. We propose that intratumoral proIGF-II is dependent on the IGF-II gene imprinting status and it will promote a more aggressive TNBC.
Collapse
Affiliation(s)
- Vinodh Kumar Radhakrishnan
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lorraine Christine Hernandez
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Kendra Anderson
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Qianwei Tan
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Daisy D. De León
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- *Daisy D. De León:
| |
Collapse
|
47
|
Suppression of TET1-dependent DNA demethylation is essential for KRAS-mediated transformation. Cell Rep 2014; 9:1827-1840. [PMID: 25466250 DOI: 10.1016/j.celrep.2014.10.063] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/23/2014] [Accepted: 10/25/2014] [Indexed: 12/31/2022] Open
Abstract
Hypermethylation-mediated tumor suppressor gene (TSG) silencing is a central epigenetic alteration in RAS-dependent tumorigenesis. Ten-eleven translocation (TET) enzymes can depress DNA methylation by hydroxylation of 5-methylcytosine (5mC) bases to 5-hydroxymethylcytosine (5hmC). Here, we report that suppression of TET1 is required for KRAS-induced DNA hypermethylation and cellular transformation. In distinct nonmalignant cell lines, oncogenic KRAS promotes transformation by inhibiting TET1 expression via the ERK-signaling pathway. This reduces chromatin occupancy of TET1 at TSG promoters, lowers levels of 5hmC, and increases levels of 5mC and 5mC-dependent transcriptional silencing. Restoration of TET1 expression by ERK pathway inhibition or ectopic TET1 reintroduction in KRAS-transformed cells reactivates TSGs and inhibits colony formation. KRAS knockdown increases TET1 expression and diminishes colony-forming ability, whereas KRAS/TET1 double knockdown bypasses the KRAS dependence of KRAS-addicted cancer cells. Thus, suppression of TET1-dependent DNA demethylation is critical for KRAS-mediated transformation.
Collapse
|
48
|
Steyaert S, Van Criekinge W, De Paepe A, Denil S, Mensaert K, Vandepitte K, Vanden Berghe W, Trooskens G, De Meyer T. SNP-guided identification of monoallelic DNA-methylation events from enrichment-based sequencing data. Nucleic Acids Res 2014; 42:e157. [PMID: 25237057 PMCID: PMC4227762 DOI: 10.1093/nar/gku847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Monoallelic gene expression is typically initiated early in the development of an organism. Dysregulation of monoallelic gene expression has already been linked to several non-Mendelian inherited genetic disorders. In humans, DNA-methylation is deemed to be an important regulator of monoallelic gene expression, but only few examples are known. One important reason is that current, cost-affordable truly genome-wide methods to assess DNA-methylation are based on sequencing post-enrichment. Here, we present a new methodology based on classical population genetic theory, i.e. the Hardy–Weinberg theorem, that combines methylomic data from MethylCap-seq with associated SNP profiles to identify monoallelically methylated loci. Applied on 334 MethylCap-seq samples of very diverse origin, this resulted in the identification of 80 genomic regions featured by monoallelic DNA-methylation. Of these 80 loci, 49 are located in genic regions of which 25 have already been linked to imprinting. Further analysis revealed statistically significant enrichment of these loci in promoter regions, further establishing the relevance and usefulness of the method. Additional validation was done using both 14 whole-genome bisulfite sequencing data sets and 16 mRNA-seq data sets. Importantly, the developed approach can be easily applied to other enrichment-based sequencing technologies, like the ChIP-seq-based identification of monoallelic histone modifications.
Collapse
Affiliation(s)
- Sandra Steyaert
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | - Wim Van Criekinge
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | - Ayla De Paepe
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | - Simon Denil
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | - Klaas Mensaert
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | | | - Wim Vanden Berghe
- PPES, Department of Biomedical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Geert Trooskens
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | - Tim De Meyer
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| |
Collapse
|
49
|
Abstract
The WT1 (Wilms' tumour 1) gene encodes a zinc finger transcription factor and RNA-binding protein that direct the development of several organs and tissues. WT1 manifests both tumour suppressor and oncogenic activities, but the reasons behind these opposing functions are still not clear. As a transcriptional regulator, WT1 can either activate or repress numerous target genes resulting in disparate biological effects such as growth, differentiation and apoptosis. The complex nature of WT1 is exemplified by a plethora of isoforms, post-translational modifications and multiple binding partners. How WT1 achieves specificity to regulate a large number of target genes involved in diverse physiological processes is the focus of the present review. We discuss the wealth of the growing molecular information that defines our current understanding of the versatility and utility of WT1 as a master regulator of organ development, a tumour suppressor and an oncogene.
Collapse
|
50
|
Yan L, Zhou J, Gao Y, Ghazal S, Lu L, Bellone S, Yang Y, Liu N, Zhao X, Santin AD, Taylor H, Huang Y. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene 2014; 34:3076-84. [PMID: 25088204 DOI: 10.1038/onc.2014.236] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 06/16/2014] [Accepted: 06/20/2014] [Indexed: 02/07/2023]
Abstract
The imprinted, developmentally regulated H19 long noncoding RNA has been implicated in the pathogenesis of diverse human cancers, but the underlying mechanisms have remained poorly understood. Here, we report that H19 promotes tumor cell migration and invasion by inhibiting let-7, a potent tumor suppressor microRNA that functions to posttranscriptionally suppress the expression of oncogenes that regulate cell growth and motility. We show that H19 depletion impairs, whereas its overexpression enhances the motility and invasiveness of tumor cells. These phenomena occur, at least in part through affecting let-7-mediated regulation of metastasis-promoting genes, including Hmga2, c-Myc and Igf2bp3. This H19/let-7-dependent regulation is recapitulated in vivo where co-expressions of oncogenes and H19 exist in both primary human ovarian and endometrial cancers. Furthermore, we provide evidence that the anti-diabetic drug metformin inhibits tumor cell migration and invasion, partly by downregulating H19 via DNA methylation. Our results reveal a novel mechanism underpinning H19-mediated regulation in metastasis and may explain why in some cases increased let-7 expression unexpectedly correlates with poor prognosis, given the widely accepted role for let-7 as a tumor suppressor. Targeting this newly identified pathway might offer therapeutic opportunities.
Collapse
Affiliation(s)
- L Yan
- 1] Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China [2] Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - J Zhou
- 1] Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA [2] Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Y Gao
- 1] Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA [2] Department of Gynecology and Obstetrics, Chinese PLA General Hospital, Beijing, P. R. China
| | - S Ghazal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - L Lu
- Department of Chronic Diseases Epidemiology, Yale School of Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - S Bellone
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Y Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - N Liu
- 1] Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA [2] Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - X Zhao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - A D Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - H Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Y Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|