1
|
Sande CM, Chen S, Mitchell DV, Lin P, Abraham DM, Cheng JM, Gebhard T, Deolikar RJ, Freeman C, Zhou M, Kumar S, Bowman M, Bowman RL, Zheng S, Munkhbileg B, Chen Q, Stanley NL, Guo K, Lapite A, Hausler R, Taylor DM, Corines J, Morrissette JJ, Lieberman DB, Yang G, Shestova O, Gill S, Zheng J, Smith-Simmer K, Banaszak LG, Shoger KN, Reinig EF, Peterson M, Nicholas P, Walne AJ, Dokal I, Rosenheck JP, Oetjen KA, Link DC, Gelman AE, Reilly CR, Dutta R, Lindsley RC, Brundige KJ, Agarwal S, Bertuch AA, Churpek JE, Tague LK, Johnson FB, Olson TS, Babushok DV. ATM-dependent DNA damage response constrains cell growth and drives clonal hematopoiesis in telomere biology disorders. J Clin Invest 2025; 135:e181659. [PMID: 40179146 PMCID: PMC11996883 DOI: 10.1172/jci181659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Telomere biology disorders (TBDs) are genetic diseases caused by defective telomere maintenance. TBD patients often develop bone marrow failure and have an increased risk of myeloid neoplasms. To better understand the factors underlying hematopoietic outcomes in TBD, we comprehensively evaluated acquired genetic alterations in hematopoietic cells from 166 pediatric and adult TBD patients. Of these patients, 47.6% (28.8% of children, 56.1% of adults) had clonal hematopoiesis. Recurrent somatic alterations involved telomere maintenance genes (7.6%), spliceosome genes (10.4%, mainly U2AF1 p.S34), and chromosomal alterations (20.2%), including 1q gain (5.9%). Somatic variants affecting the DNA damage response (DDR) were identified in 21.5% of patients, including 20 presumed loss-of-function variants in ataxia-telangiectasia mutated (ATM). Using multimodal approaches, including single-cell sequencing, assays of ATM activation, telomere dysfunction-induced foci analysis, and cell-growth assays, we demonstrate telomere dysfunction-induced activation of the ATM-dependent DDR pathway with increased senescence and apoptosis in TBD patient cells. Pharmacologic ATM inhibition, modeling the effects of somatic ATM variants, selectively improved TBD cell fitness by allowing cells to bypass DDR-mediated senescence without detectably inducing chromosomal instability. Our results indicate that ATM-dependent DDR induced by telomere dysfunction is a key contributor to TBD pathogenesis and suggest dampening hyperactive ATM-dependent DDR as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Christopher M. Sande
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Laboratories, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Stone Chen
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dana V. Mitchell
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ping Lin
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Diana M. Abraham
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessie Minxuan Cheng
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Talia Gebhard
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Drexel University College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Rujul J. Deolikar
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colby Freeman
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary Zhou
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sushant Kumar
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Bowman
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert L. Bowman
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shannon Zheng
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bolormaa Munkhbileg
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Qijun Chen
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha L. Stanley
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children’s Hospital of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathy Guo
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ajibike Lapite
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Ryan Hausler
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James Corines
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer J.D. Morrissette
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David B. Lieberman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guang Yang
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Olga Shestova
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saar Gill
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiayin Zheng
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelcy Smith-Simmer
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Lauren G. Banaszak
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Kyle N. Shoger
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Erica F. Reinig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Madilynn Peterson
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Peter Nicholas
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amanda J. Walne
- Blizard Institute Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Inderjeet Dokal
- Blizard Institute Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Justin P. Rosenheck
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Karolyn A. Oetjen
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine
| | - Daniel C. Link
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine
- Department of Pathology & Immunology, and
| | - Andrew E. Gelman
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christopher R. Reilly
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ritika Dutta
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - R. Coleman Lindsley
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Karyn J. Brundige
- Division of Hematology/Oncology, Boston Children’s Hospital, Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children’s Hospital, Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alison A. Bertuch
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers, Houston, Texas, USA
| | - Jane E. Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Laneshia K. Tague
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - F. Brad Johnson
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy S. Olson
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daria V. Babushok
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Haj M, Frey Y, Levon A, Maliah A, Ben-Yishay T, Slutsky R, Smoom R, Tzfati Y, Ben-David U, Levy C, Elkon R, Ziv Y, Shiloh Y. The cGAS-STING, p38 MAPK, and p53 pathways link genome instability to accelerated cellular senescence in ATM-deficient murine lung fibroblasts. Proc Natl Acad Sci U S A 2025; 122:e2419196122. [PMID: 39772747 PMCID: PMC11745328 DOI: 10.1073/pnas.2419196122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging. We found that lung fibroblasts derived from ATM-deficient mice provide a versatile experimental system to explore the mechanisms driving the premature senescence of primary fibroblasts lacking ATM. Atm-/- fibroblasts failed to proliferate under ambient oxygen conditions (21%). Although they initially proliferated under physiological oxygen levels (3%), they rapidly entered senescence. In contrast, wild-type (WT) lung fibroblasts did not senesce under 3% oxygen and eventually underwent immortalization and neoplastic transformation. However, rapid senescence could be induced in WT cells either by Atm gene ablation or persistent chemical inhibition of ATM kinase activity, with senescence induced by ATM inhibition being reversible upon inhibitor removal. Moreover, the concomitant loss of ATM and p53 led to senescence evasion, vigorous growth, rampant genome instability, and subsequent immortalization and transformation. Our findings reveal that the rapid senescence of Atm-/- lung fibroblasts is driven by the collaborative action of the cGAS-STING, p38 MAPK, and p53 pathways in response to persistent DNA damage, ultimately leading to the induction of interferon-α1 and downstream interferon-stimulated genes. We propose that accelerated cellular senescence may exacerbate specific A-T symptoms, particularly contributing to the progressive, life-threatening interstitial lung disease often observed in A-T patients during adulthood.
Collapse
Affiliation(s)
- Majd Haj
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Yann Frey
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Amit Levon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Avishai Maliah
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Rachel Slutsky
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190501, Israel
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190501, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
3
|
Harman A, Bryan TM. Telomere maintenance and the DNA damage response: a paradoxical alliance. Front Cell Dev Biol 2024; 12:1472906. [PMID: 39483338 PMCID: PMC11524846 DOI: 10.3389/fcell.2024.1472906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Telomeres are the protective caps at the ends of linear chromosomes of eukaryotic organisms. Telomere binding proteins, including the six components of the complex known as shelterin, mediate the protective function of telomeres. They do this by suppressing many arms of the canonical DNA damage response, thereby preventing inappropriate fusion, resection and recombination of telomeres. One way this is achieved is by facilitation of DNA replication through telomeres, thus protecting against a "replication stress" response and activation of the master kinase ATR. On the other hand, DNA damage responses, including replication stress and ATR, serve a positive role at telomeres, acting as a trigger for recruitment of the telomere-elongating enzyme telomerase to counteract telomere loss. We postulate that repression of telomeric replication stress is a shared mechanism of control of telomerase recruitment and telomere length, common to several core telomere binding proteins including TRF1, POT1 and CTC1. The mechanisms by which replication stress and ATR cause recruitment of telomerase are not fully elucidated, but involve formation of nuclear actin filaments that serve as anchors for stressed telomeres. Perturbed control of telomeric replication stress by mutations in core telomere binding proteins can therefore cause the deregulation of telomere length control characteristic of diseases such as cancer and telomere biology disorders.
Collapse
Affiliation(s)
| | - Tracy M. Bryan
- Cell Biology Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
4
|
Han F, Riaz F, Pu J, Gao R, Yang L, Wang Y, Song J, Liang Y, Wu Z, Li C, Tang J, Xu X, Wang X. Connecting the Dots: Telomere Shortening and Rheumatic Diseases. Biomolecules 2024; 14:1261. [PMID: 39456194 PMCID: PMC11506250 DOI: 10.3390/biom14101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Telomeres, repetitive sequences located at the extremities of chromosomes, play a pivotal role in sustaining chromosomal stability. Telomerase is a complex enzyme that can elongate telomeres by appending telomeric repeats to chromosome ends and acts as a critical factor in telomere dynamics. The gradual shortening of telomeres over time is a hallmark of cellular senescence and cellular death. Notably, telomere shortening appears to result from the complex interplay of two primary mechanisms: telomere shelterin complexes and telomerase activity. The intricate interplay of genetic, environmental, and lifestyle influences can perturb telomere replication, incite oxidative stress damage, and modulate telomerase activity, collectively resulting in shifts in telomere length. This age-related process of telomere shortening plays a considerable role in various chronic inflammatory and oxidative stress conditions, including cancer, cardiovascular disease, and rheumatic disease. Existing evidence has shown that abnormal telomere shortening or telomerase activity abnormalities are present in the pathophysiological processes of most rheumatic diseases, including different disease stages and cell types. The impact of telomere shortening on rheumatic diseases is multifaceted. This review summarizes the current understanding of the link between telomere length and rheumatic diseases in clinical patients and examines probable telomere shortening in peripheral blood mononuclear cells and histiocytes. Therefore, understanding the intricate interaction between telomere shortening and various rheumatic diseases will help in designing personalized treatment and control measures for rheumatic disease.
Collapse
Affiliation(s)
- Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Farooq Riaz
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518000, China;
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Chunrui Li
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China;
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| |
Collapse
|
5
|
Takahashi K, Nakada D, Goodell M. Distinct landscape and clinical implications of therapy-related clonal hematopoiesis. J Clin Invest 2024; 134:e180069. [PMID: 39352380 PMCID: PMC11444158 DOI: 10.1172/jci180069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Therapy-related clonal hematopoiesis (t-CH) is defined as clonal hematopoiesis detected in individuals previously treated with chemotherapy and/or radiation therapy. With the increased use of genetic analysis in oncological care, the detection of t-CH among cancer patients is becoming increasingly common. t-CH arises through the selective bottleneck imposed by chemotherapies and potentially through direct mutagenesis from chemotherapies, resulting in a distinct mutational landscape enriched with mutations in DNA damage-response pathway genes such as TP53, PPM1D, and CHEK2. Emerging evidence sheds light on the mechanisms of t-CH development and potential strategies to mitigate its emergence. Due to its unique characteristics that predominantly affect cancer patients, t-CH has clinical implications distinct from those of CH in the general population. This Review discusses the potential mechanisms of t-CH development, its mutational landscape, mutant-drug relationships, and its clinical significance. We highlight the distinct nature of t-CH and call for intensified research in this field.
Collapse
Affiliation(s)
- Koichi Takahashi
- Departments of Leukemia and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Margaret Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Morel D, Robert C, Paragios N, Grégoire V, Deutsch E. Translational Frontiers and Clinical Opportunities of Immunologically Fitted Radiotherapy. Clin Cancer Res 2024; 30:2317-2332. [PMID: 38477824 PMCID: PMC11145173 DOI: 10.1158/1078-0432.ccr-23-3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Ionizing radiation can have a wide range of impacts on tumor-immune interactions, which are being studied with the greatest interest and at an accelerating pace by the medical community. Despite its undeniable immunostimulatory potential, it clearly appears that radiotherapy as it is prescribed and delivered nowadays often alters the host's immunity toward a suboptimal state. This may impair the full recovery of a sustained and efficient antitumor immunosurveillance posttreatment. An emerging concept is arising from this awareness and consists of reconsidering the way of designing radiation treatment planning, notably by taking into account the individualized risks of deleterious radio-induced immune alteration that can be deciphered from the planned beam trajectory through lymphocyte-rich organs. In this review, we critically appraise key aspects to consider while planning immunologically fitted radiotherapy, including the challenges linked to the identification of new dose constraints to immune-rich structures. We also discuss how pharmacologic immunomodulation could be advantageously used in combination with radiotherapy to compensate for the radio-induced loss, for example, with (i) agonists of interleukin (IL)2, IL4, IL7, IL9, IL15, or IL21, similarly to G-CSF being used for the prophylaxis of severe chemo-induced neutropenia, or with (ii) myeloid-derived suppressive cell blockers.
Collapse
Affiliation(s)
- Daphné Morel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| | - Nikos Paragios
- Therapanacea, Paris, France
- CentraleSupélec, Gif-sur-Yvette, France
| | - Vincent Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| |
Collapse
|
7
|
Vellingiri B, Balasubramani K, Iyer M, Raj N, Elangovan A, Song K, Yeo HC, Jayakumar N, Kinoshita M, Thangarasu R, Narayanasamy A, Dayem AA, Prajapati VK, Gopalakrishnan AV, Cho SG. Role of Telomeres and Telomerase in Parkinson's Disease-A New Theranostics? Adv Biol (Weinh) 2023; 7:e2300097. [PMID: 37590305 DOI: 10.1002/adbi.202300097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Indexed: 08/19/2023]
Abstract
Parkinson's disease (PD) is a complex condition that is significantly influenced by oxidative stress and inflammation. It is also suggested that telomere shortening (TS) is regulated by oxidative stress which leads to various diseases including age-related neurodegenerative diseases like PD. Thus, it is anticipated that PD would result in TS of peripheral blood mononuclear cells (PBMCs). Telomeres protect the ends of eukaryotic chromosomes preserving them against fusion and destruction. The TS is a normal process because DNA polymerase is unable to replicate the linear ends of the DNA due to end replication complications and telomerase activity in various cell types counteracts this process. PD is usually observed in the aged population and progresses over time therefore, disparities among telomere length in PBMCs of PD patients are recorded and it is still a question whether it has any useful role. Here, the likelihood of telomere attrition in PD and its implications concerning microglia activation, ageing, oxidative stress, and the significance of telomerase activators are addressed. Also, the possibility of telomeres and telomerase as a diagnostic and therapeutic biomarker in PD is discussed.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, Tamil Nadu, 641021, India
| | - Neethu Raj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ajay Elangovan
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Han-Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Namitha Jayakumar
- Department of Biotechnology, Sri Ramakrishna College of Arts and Science, Coimbatore, Tamil Nadu, 641006, India
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Ondoyama-Cho, Narutaki, Ukyo-Ku, Kyoto, 616-8255, Japan
| | - Ravimanickam Thangarasu
- Department of Zoology, School of Science, Tamil Nadu Open University, Saidapet, Chennai, 600015, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
8
|
van Setten GB. Ocular Surface Allostasis-When Homeostasis Is Lost: Challenging Coping Potential, Stress Tolerance, and Resilience. Biomolecules 2023; 13:1246. [PMID: 37627311 PMCID: PMC10452761 DOI: 10.3390/biom13081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The loss of ocular surface (OS) homeostasis characterizes the onset of dry eye disease. Resilience defines the ability to withstand this threat, reflecting the ability of the ocular surface to cope with and bounce back after challenging events. The coping capacity of the OS defines the ability to successfully manage cellular stress. Cellular stress, which is central to the outcome of the pathophysiology of dry eye disease, is characterized by intensity, continuity, and receptivity, which lead to the loss of homeostasis, resulting in a phase of autocatalytic dysregulation, an event that is not well-defined. To better define this event, here, we present a model providing a potential approach when homeostasis is challenged and the coping capacities have reached their limits, resulting in the stage of heterostasis, in which the dysregulated cellular stress mechanisms take over, leading to dry eye disease. The main feature of the proposed model is the concept that, prior to the initiation of the events leading to cellular stress, there is a period of intense activation of all available coping mechanisms preventing the imminent dysregulation of ocular surface homeostasis. When the remaining coping mechanisms and resilience potential have been maximally exploited and have, finally, been exceeded, there will be a transition to manifest disease with all the well-known signs and symptoms, with a shift to allostasis, reflecting the establishment of another state of balance. The intention of this review was to show that it is possibly the phase of heterostasis preceding the establishment of allostasis that offers a better chance for therapeutic intervention and optimized recovery. Once allostasis has been established, as a new steady-state of balance at a higher level of constant cell stress and inflammation, treatment may be far more difficult, and the potential for reversal is drastically decreased. Homeostasis, once lost, can possibly not be fully recovered. The processes established during heterostasis and allostasis require different approaches and treatments for their control, indicating that the current treatment options for homeostasis need to be adapted to a more-demanding situation. The loss of homeostasis necessarily implies the establishment of a new balance; here, we refer to such a state as allostasis.
Collapse
Affiliation(s)
- Gysbert-Botho van Setten
- St. Eriks Eye Hospital, 171 04 Solna, Sweden;
- Lab of DOHF and Wound Healing, Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, Eugeniavägen 12/Level 6, 171 04 Solna, Sweden
| |
Collapse
|
9
|
Zuo S, Li X, Yang Y, Zhou J, He Q. A Quick Method to Synthesize Extrachromosomal Circular DNA In Vitro. Molecules 2023; 28:molecules28104236. [PMID: 37241975 DOI: 10.3390/molecules28104236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/29/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a special class of circular DNA in eukaryotes. Recent studies have suggested that eccDNA is the product of genomic instability and has important biological functions to regulate many downstream biological processes. While NGS (Next-Generation Sequencing)-based eccDNA sequencing has led to the identification of many eccDNAs in both healthy and diseased tissues, the specific biological functions of individual eccDNAs have yet to be clearly elucidated. Synthesizing eccDNAs longer than 1 kb with specific sequences remains a major challenge in the field, which has hindered our ability to fully understand their functions. Current methods for synthesizing eccDNAs primarily rely on chemical oligo synthesis, ligation, or the use of a specific gene editing and recombination systems. Therefore, these methods are often limited by the length of eccDNAs and are complex, expensive, as well as time-consuming. In this study, we introduce a novel method named QuickLAMA (Ligase-Assisted Minicircle Accumulation) for rapidly synthesizing eccDNAs up to 2.6 kb using a simple PCR and ligation approach. To validate the efficacy of our method, we synthesized three eccDNAs of varying lengths from cancer tissue and PC3 cells and confirmed successful circularization through sequencing and restriction enzyme digestion. Additional analyses have demonstrated that this method is highly efficient, cost-effective, and time-efficient, with good reproducibility. Using the method, a well-trained molecular biologist can synthesize and purify multiple eccDNAs within a single day, and it can be easily standardized and processed in a high-throughput manner, indicating the potential of the method to produce a wide range of desired eccDNAs and promote the translation of eccDNA research into clinical applications.
Collapse
Affiliation(s)
- Shanru Zuo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xueguang Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Yide Yang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Junhua Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Quanyuan He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
10
|
Glugoski L, Deon GA, Nogaroto V, Moreira-Filho O, Vicari MR. Robertsonian Fusion Site in Rineloricaria pentamaculata (Siluriformes: Loricariidae): Involvement of 5S Ribosomal DNA and Satellite Sequences. Cytogenet Genome Res 2023; 162:657-664. [PMID: 37054691 DOI: 10.1159/000530636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
Cytogenetic studies demonstrated that unstable chromosomal sites in armored catfishes (Loricariidae) triggered intense karyotypic diversification, mainly derived from Robertsonian rearrangements. In Loricariinae, the presence of ribosomal DNA (rDNA) clusters and their flanking repeated regions (such as microsatellites or partial transposable element sequences) was proposed to facilitate chromosomal rearrangements. Hence, this study aimed to characterize the numerical chromosomal polymorphism observed in Rineloricaria pentamaculata and evaluate the chromosomal rearrangements which originated diploid chromosome number (2n) variation, from 56 to 54. Our data indicate a centric fusion event between acrocentric chromosomes of pairs 15 and 18, bearing 5S rDNA sites on their short (p) arms. This chromosome fusion established the numerical polymorphism, decreasing the 2n from original 56 (karyomorph A) to 55 in karyomorph B and 54 in karyomorph C. Although vestiges of telomeric sequences were evidenced at the fusion point, no 5S rDNA was detected in this region. The acrocentric chromosomes involved in the origin of the fusion were enriched with (CA)n and (GA)n microsatellites. Repetitive sequences in the acrocentric chromosomes subtelomeres have facilitated the rearrangement. Our study thus reinforces the view on the important role of particular repetitive DNA classes in promoting chromosome fusions which frequently drive Rineloricaria karyotype evolution.
Collapse
Affiliation(s)
- Larissa Glugoski
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Geize A Deon
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Viviane Nogaroto
- Department of Structural Biology, Molecular and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Orlando Moreira-Filho
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Marcelo Ricardo Vicari
- Department of Structural Biology, Molecular and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
11
|
Pennarun G, Picotto J, Bertrand P. Close Ties between the Nuclear Envelope and Mammalian Telomeres: Give Me Shelter. Genes (Basel) 2023; 14:genes14040775. [PMID: 37107534 PMCID: PMC10137478 DOI: 10.3390/genes14040775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The nuclear envelope (NE) in eukaryotic cells is essential to provide a protective compartment for the genome. Beside its role in connecting the nucleus with the cytoplasm, the NE has numerous important functions including chromatin organization, DNA replication and repair. NE alterations have been linked to different human diseases, such as laminopathies, and are a hallmark of cancer cells. Telomeres, the ends of eukaryotic chromosomes, are crucial for preserving genome stability. Their maintenance involves specific telomeric proteins, repair proteins and several additional factors, including NE proteins. Links between telomere maintenance and the NE have been well established in yeast, in which telomere tethering to the NE is critical for their preservation and beyond. For a long time, in mammalian cells, except during meiosis, telomeres were thought to be randomly localized throughout the nucleus, but recent advances have uncovered close ties between mammalian telomeres and the NE that play important roles for maintaining genome integrity. In this review, we will summarize these connections, with a special focus on telomere dynamics and the nuclear lamina, one of the main NE components, and discuss the evolutionary conservation of these mechanisms.
Collapse
Affiliation(s)
- Gaëlle Pennarun
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Julien Picotto
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
12
|
Barmettler S, Sharapova SO, Milota T, Greif PA, Magg T, Hauck F. Genomics Driving Diagnosis and Treatment of Inborn Errors of Immunity With Cancer Predisposition. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1725-1736.e2. [PMID: 35364342 DOI: 10.1016/j.jaip.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Inborn errors of immunity (IEI) are genetically and clinically heterogeneous disorders that, in addition to infection susceptibility and immune dysregulation, can have an enhanced cancer predisposition. The increasing availability of upfront next-generation sequencing diagnostics in immunology and oncology have uncovered substantial overlap of germline and somatic genetic conditions that can result in immunodeficiency and cancer. However, broad application of unbiased genetics in these neighboring disciplines still needs to be deployed, and joined therapeutic strategies guided by germline and somatic genetic risk factors are lacking. We illustrate the current difficulties encountered in clinical practice, summarize the historical development of pathophysiological concepts of cancer predisposition, and review select genetic, molecular, and cellular mechanisms of well-defined and illustrative disease entities such as DNA repair defects, combined immunodeficiencies with Epstein-Barr virus susceptibility, autoimmune lymphoproliferative syndromes, regulatory T-cell disorders, and defects in cell intrinsic immunity. We review genetic variants that, when present in the germline, cause IEI with cancer predisposition but, when arising as somatic variants, behave as oncogenes and cause specific cancer entities. We finally give examples of small molecular compounds that are developed and studied to target genetically defined cancers but might also proof useful to treat IEI.
Collapse
Affiliation(s)
- Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy, & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University Hospital and Motol University Hospital, Prague, Czechia
| | - Philipp A Greif
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
13
|
Aguado J, Gómez-Inclán C, Leeson HC, Lavin MF, Shiloh Y, Wolvetang EJ. The hallmarks of aging in Ataxia-Telangiectasia. Ageing Res Rev 2022; 79:101653. [PMID: 35644374 DOI: 10.1016/j.arr.2022.101653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
Abstract
Ataxia-telangiectasia (A-T) is caused by absence of the catalytic activity of ATM, a protein kinase that plays a central role in the DNA damage response, many branches of cellular metabolism, redox and mitochondrial homeostasis, and cell cycle regulation. A-T is a complex disorder characterized mainly by progressive cerebellar degeneration, immunodeficiency, radiation sensitivity, genome instability, and predisposition to cancer. It is increasingly recognized that the premature aging component of A-T is an important driver of this disease, and A-T is therefore an attractive model to study the aging process. This review outlines the current state of knowledge pertaining to the molecular and cellular signatures of aging in A-T and proposes how these new insights can guide novel therapeutic approaches for A-T.
Collapse
Affiliation(s)
- Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia.
| | - Cecilia Gómez-Inclán
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | - Hannah C Leeson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Yosef Shiloh
- The David and Inez Myers Laboratory of Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
14
|
Low GKM, Ting APL, Fok EDZ, Gopalakrishnan K, Zeegers D, Khaw AK, Jayapal M, Martinez-Lopez W, Hande MP. Role of Xeroderma pigmentosum D (XPD) protein in genome maintenance in human cells under oxidative stress. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503444. [PMID: 35483790 DOI: 10.1016/j.mrgentox.2022.503444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Xeroderma pigmentosum D (XPD) protein plays a pivotal role in the nucleotide excision repair pathway. XPD unwinds the local area of the damaged DNA by virtue of constituting transcription factor II H (TFIIH) and is important not only for repair but also for basal transcription. Although cells deficient in XPD have shown to be defective in oxidative base-lesion repair, the effects of the oxidative assault on primary fibroblasts from patients suffering from Xeroderma Pigmentosum D have not been fully explored. Therefore, we sought to investigate the role of XPD in oxidative DNA damage-repair by treating primary fibroblasts derived from a patient suffering from Xeroderma Pigmentosum D, with hydrogen peroxide. Our results show dose-dependent increase in genotoxicity with minimal effect on cytotoxicity with H2O2 in XPD deficient cells compared to control cells. XPD deficient cells displayed increased susceptibility and reduced repair capacity when subjected to DNA damage induced by oxidative stress. XPD deficient fibroblasts exhibited increased telomeric loss after H2O2 treatment. In addition, we demonstrated that chronic oxidative stress induced accelerated premature senescence characteristics. Gene expression profiling revealed alterations in genes involved in transcription and nucleotide metabolisms, as well as in cellular and cell cycle processes in a more significant way than in other pathways. This study highlights the role of XPD in the repair of oxidative stress and telomere maintenance. Lack of functional XPD seems to increase the susceptibility of oxidative stress-induced genotoxicity while retaining cell viability posing as a potential cancer risk factor of Xeroderma Pigmentosum D patients.
Collapse
Affiliation(s)
- Grace Kah Mun Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aloysius Poh Leong Ting
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edwin Dan Zhihao Fok
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kalpana Gopalakrishnan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dimphy Zeegers
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aik Kia Khaw
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manikandan Jayapal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wilner Martinez-Lopez
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Associate Unit on Genomic Stability, Faculty of Medicine, University of the Republic (UdelaR), Montevideo, Uruguay; Vellore Institute of Technology, Vellore, India
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Vellore Institute of Technology, Vellore, India; Mangalore University, India.
| |
Collapse
|
15
|
Hong X, Wang L, Zhang K, Liu J, Liu JP. Molecular Mechanisms of Alveolar Epithelial Stem Cell Senescence and Senescence-Associated Differentiation Disorders in Pulmonary Fibrosis. Cells 2022; 11:877. [PMID: 35269498 PMCID: PMC8909789 DOI: 10.3390/cells11050877] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary senescence is accelerated by unresolved DNA damage response, underpinning susceptibility to pulmonary fibrosis. Recently it was reported that the SARS-Cov-2 viral infection induces acute pulmonary epithelial senescence followed by fibrosis, although the mechanism remains unclear. Here, we examine roles of alveolar epithelial stem cell senescence and senescence-associated differentiation disorders in pulmonary fibrosis, exploring the mechanisms mediating and preventing pulmonary fibrogenic crisis. Notably, the TGF-β signalling pathway mediates alveolar epithelial stem cell senescence by mechanisms involving suppression of the telomerase reverse transcriptase gene in pulmonary fibrosis. Alternatively, telomere uncapping caused by stress-induced telomeric shelterin protein TPP1 degradation mediates DNA damage response, pulmonary senescence and fibrosis. However, targeted intervention of cellular senescence disrupts pulmonary remodelling and fibrosis by clearing senescent cells using senolytics or preventing senescence using telomere dysfunction inhibitor (TELODIN). Studies indicate that the development of senescence-associated differentiation disorders is reprogrammable and reversible by inhibiting stem cell replicative senescence in pulmonary fibrosis, providing a framework for targeted intervention of the molecular mechanisms of alveolar stem cell senescence and pulmonary fibrosis. Abbreviations: DPS, developmental programmed senescence; IPF, idiopathic pulmonary fibrosis; OIS, oncogene-induced replicative senescence; SADD, senescence-associated differentiation disorder; SALI, senescence-associated low-grade inflammation; SIPS, stress-induced premature senescence; TERC, telomerase RNA component; TERT, telomerase reverse transcriptase; TIFs, telomere dysfunction-induced foci; TIS, therapy-induced senescence; VIS, virus-induced senescence.
Collapse
Affiliation(s)
- Xiaojing Hong
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Kexiong Zhang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Jun Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, VIC 3181, Australia
- Hudson Institute of Medical Research, Monash University Department of Molecular and Translational Science, Clayton, VIC 3168, Australia
| |
Collapse
|
16
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Simna SP, Han Z. Prospects Of Non-Coding Elements In Genomic Dna Based Gene Therapy. Curr Gene Ther 2021; 22:89-103. [PMID: 33874871 DOI: 10.2174/1566523221666210419090357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
Gene therapy has made significant development since the commencement of the first clinical trials a few decades ago and has remained a dynamic area of research regardless of obstacles such as immune response and insertional mutagenesis. Progression in various technologies like next-generation sequencing (NGS) and nanotechnology has established the importance of non-coding segments of a genome, thereby taking gene therapy to the next level. In this review, we have summarized the importance of non-coding elements, highlighting the advantages of using full-length genomic DNA loci (gDNA) compared to complementary DNA (cDNA) or minigene, currently used in gene therapy. The focus of this review is to provide an overview of the advances and the future of potential use of gDNA loci in gene therapy, expanding the therapeutic repertoire in molecular medicine.
Collapse
Affiliation(s)
- S P Simna
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| |
Collapse
|
18
|
Stagni V, Ferri A, Cirotti C, Barilà D. ATM Kinase-Dependent Regulation of Autophagy: A Key Player in Senescence? Front Cell Dev Biol 2021; 8:599048. [PMID: 33490066 PMCID: PMC7817534 DOI: 10.3389/fcell.2020.599048] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence suggests a strong interplay between autophagy and genomic stability. Recently, several papers have demonstrated a molecular connection between the DNA Damage Response (DDR) and autophagy and have explored how this link influences cell fate and the choice between apoptosis and senescence in response to different stimuli. The aberrant deregulation of this interplay is linked to the development of pathologies, including cancer and neurodegeneration. Ataxia-telangiectasia mutated kinase (ATM) is the product of a gene that is lost in Ataxia-Telangiectasia (A-T), a rare genetic disorder characterized by ataxia and cerebellar neurodegeneration, defects in the immune response, higher incidence of lymphoma development, and premature aging. Importantly, ATM kinase plays a central role in the DDR, and it can finely tune the balance between senescence and apoptosis: activated ATM promotes autophagy and in particular sustains the lysosomal-mitochondrial axis, which in turn promotes senescence and inhibits apoptosis. Therefore, ATM is the key factor that enables cells to escape apoptosis by entering senescence through modulation of autophagy. Importantly, unlike apoptotic cells, senescent cells are viable and have the ability to secrete proinflammatory and mitogenic factors, thus influencing the cellular environment. In this review we aim to summarize recent advances in the understanding of molecular mechanisms linking DDR and autophagy to senescence, pointing out the role of ATM kinase in these cellular responses. The significance of this regulation in the pathogenesis of Ataxia-Telangiectasia will be discussed.
Collapse
Affiliation(s)
- Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Alessandra Ferri
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Cirotti
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Barilà
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
19
|
FBW7 Mediates Senescence and Pulmonary Fibrosis through Telomere Uncapping. Cell Metab 2020; 32:860-877.e9. [PMID: 33086033 DOI: 10.1016/j.cmet.2020.10.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Tissue stem cells undergo premature senescence under stress, promoting age-related diseases; however, the associated mechanisms remain unclear. Here, we report that in response to radiation, oxidative stress, or bleomycin, the E3 ubiquitin ligase FBW7 mediates cell senescence and tissue fibrosis through telomere uncapping. FBW7 binding to telomere protection protein 1 (TPP1) facilitates TPP1 multisite polyubiquitination and accelerates degradation, triggering telomere uncapping and DNA damage response. Overexpressing TPP1 or inhibiting FBW7 by genetic ablation, epigenetic interference, or peptidomimetic telomere dysfunction inhibitor (TELODIN) reduces telomere uncapping and shortening, expanding the pulmonary alveolar AEC2 stem cell population in mice. TELODIN, synthesized from the seventh β strand blade of FBW7 WD40 propeller domain, increases TPP1 stability, lung respiratory function, and resistance to senescence and fibrosis in animals chronically exposed to environmental stress. Our findings elucidate a pivotal mechanism underlying stress-induced pulmonary epithelial stem cell senescence and fibrosis, providing a framework for aging-related disorder interventions.
Collapse
|
20
|
Shiloh Y. The cerebellar degeneration in ataxia-telangiectasia: A case for genome instability. DNA Repair (Amst) 2020; 95:102950. [PMID: 32871349 DOI: 10.1016/j.dnarep.2020.102950] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Research on the molecular pathology of genome instability disorders has advanced our understanding of the complex mechanisms that safeguard genome stability and cellular homeostasis at large. Once the culprit genes and their protein products are identified, an ongoing dialogue develops between the research lab and the clinic in an effort to link specific disease symptoms to the functions of the proteins that are missing in the patients. Ataxi A-T elangiectasia (A-T) is a prominent example of this process. A-T's hallmarks are progressive cerebellar degeneration, immunodeficiency, chronic lung disease, cancer predisposition, endocrine abnormalities, segmental premature aging, chromosomal instability and radiation sensitivity. The disease is caused by absence of the powerful protein kinase, ATM, best known as the mobilizer of the broad signaling network induced by double-strand breaks (DSBs) in the DNA. In parallel, ATM also functions in the maintenance of the cellular redox balance, mitochondrial function and turnover and many other metabolic circuits. An ongoing discussion in the A-T field revolves around the question of which ATM function is the one whose absence is responsible for the most debilitating aspect of A-T - the cerebellar degeneration. This review suggests that it is the absence of a comprehensive role of ATM in responding to ongoing DNA damage induced mainly by endogenous agents. It is the ensuing deterioration and eventual loss of cerebellar Purkinje cells, which are very vulnerable to ATM absence due to a unique combination of physiological features, which kindles the cerebellar decay in A-T.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University Medical School, Tel Aviv, 69978, Israel.
| |
Collapse
|
21
|
Sunderland P, Augustyniak J, Lenart J, Bużańska L, Carlessi L, Delia D, Sikora E. ATM-deficient neural precursors develop senescence phenotype with disturbances in autophagy. Mech Ageing Dev 2020; 190:111296. [PMID: 32621937 DOI: 10.1016/j.mad.2020.111296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
ATM is a kinase involved in DNA damage response (DDR), regulation of response to oxidative stress, autophagy and mitophagy. Mutations in the ATM gene in humans result in ataxi A-Telangiectasia disease (A-T) characterized by a variety of symptoms with neurodegeneration and premature ageing among them. Since brain is one of the most affected organs in A-T, we have focused on senescence of neural progenitor cells (NPCs) derived from A-T reprogrammed fibroblasts. Accordingly, A-T NPCs obtained through neural differentiation of iPSCs in 5% oxygen possessed some features of senescence including increased activity of SA-β-gal and secretion of IL6 and IL8 in comparison to control NPCs. This phenotype of A-T NPC was accompanied by elevated oxidative stress. A-T NPCs exhibited symptoms of impaired autophagy and mitophagy with lack of response to chloroquine treatment. Additional sources of oxidative stress like increased oxygen concentration (20 %) and H2O2 respectively aggravated the phenotype of senescence and additionally disturbed the process of mitophagy. In both cases only A-T NPCs reacted to the treatment. We conclude that oxidative stress may be responsible for the phenotype of senescence and impairment of autophagy in A-T NPCs. Our results point to senescent A-T cells as a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Piotr Sunderland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Justyna Augustyniak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Lenart
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Leonora Bużańska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Luigi Carlessi
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Domenico Delia
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| | - Ewa Sikora
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
22
|
McGrath-Morrow SA, Ndeh R, Helmin KA, Khuder B, Rothblum-Oviatt C, Collaco JM, Wright J, Reyfman PA, Lederman HM, Singer BD. DNA methylation and gene expression signatures are associated with ataxia-telangiectasia phenotype. Sci Rep 2020; 10:7479. [PMID: 32366930 PMCID: PMC7198504 DOI: 10.1038/s41598-020-64514-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
People with ataxia-telangiectasia (A-T) display phenotypic variability with regard to progression of immunodeficiency, sino-pulmonary disease, and neurologic decline. To determine the association between differential gene expression, epigenetic state, and phenotypic variation among people with A-T, we performed transcriptional and genome-wide DNA methylation profiling in patients with mild and classic A-T progression as well as healthy controls. RNA and genomic DNA were isolated from peripheral blood mononuclear cells for transcriptional and DNA methylation profiling with RNA-sequencing and modified reduced representation bisulfite sequencing, respectively. We identified 555 genes that were differentially expressed among the control, mild A-T, and classic A-T groups. Genome-wide DNA methylation profiling revealed differential promoter methylation in cis with 146 of these differentially expressed genes. Functional enrichment analysis identified significant enrichment in immune, growth, and apoptotic pathways among the methylation-regulated genes. Regardless of clinical phenotype, all A-T participants exhibited downregulation of critical genes involved in B cell function (PAX5, CD79A, CD22, and FCRL1) and upregulation of several genes associated with senescence and malignancy, including SERPINE1. These findings indicate that gene expression differences may be associated with phenotypic variability and suggest that DNA methylation regulates expression of critical immune response genes in people with A-T.
Collapse
Affiliation(s)
- Sharon A McGrath-Morrow
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Roland Ndeh
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Basil Khuder
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer Wright
- Eudowood Division of Pediatric, Allergy and Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paul A Reyfman
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Howard M Lederman
- Eudowood Division of Pediatric, Allergy and Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
23
|
van der Spek A, Warner SC, Broer L, Nelson CP, Vojinovic D, Ahmad S, Arp PP, Brouwer RWW, Denniff M, van den Hout MCGN, van Rooij JGJ, Kraaij R, van IJcken WFJ, Samani NJ, Ikram MA, Uitterlinden AG, Codd V, Amin N, van Duijn CM. Exome Sequencing Analysis Identifies Rare Variants in ATM and RPL8 That Are Associated With Shorter Telomere Length. Front Genet 2020; 11:337. [PMID: 32425970 PMCID: PMC7204400 DOI: 10.3389/fgene.2020.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/20/2020] [Indexed: 01/04/2023] Open
Abstract
Telomeres are important for maintaining genomic stability. Telomere length has been associated with aging, disease, and mortality and is highly heritable (∼82%). In this study, we aimed to identify rare genetic variants associated with telomere length using whole-exome sequence data. We studied 1,303 participants of the Erasmus Rucphen Family (ERF) study, 1,259 of the Rotterdam Study (RS), and 674 of the British Heart Foundation Family Heart Study (BHF-FHS). We conducted two analyses, first we analyzed the family-based ERF study and used the RS and BHF-FHS for replication. Second, we combined the summary data of the three studies in a meta-analysis. Telomere length was measured by quantitative polymerase chain reaction in blood. We identified nine rare variants significantly associated with telomere length (p-value < 1.42 × 10–7, minor allele frequency of 0.2–0.5%) in the ERF study. Eight of these variants (in C11orf65, ACAT1, NPAT, ATM, KDELC2, and EXPH5) were located on chromosome 11q22.3 that contains ATM, a gene involved in telomere maintenance. Although we were unable to replicate the variants in the RS and BHF-FHS (p-value ≥ 0.21), segregation analysis showed that all variants segregate with shorter telomere length in a family. In the meta-analysis of all studies, a nominally significant association with LTL was observed with a rare variant in RPL8 (p-value = 1.48 × 10−6), which has previously been associated with age. Additionally, a novel rare variant in the known RTEL1 locus showed suggestive evidence for association (p-value = 1.18 × 10–4) with LTL. To conclude, we identified novel rare variants associated with telomere length. Larger samples size are needed to confirm these findings and to identify additional variants.
Collapse
Affiliation(s)
- Ashley van der Spek
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,SkylineDx B.V., Rotterdam, Netherlands
| | - Sophie C Warner
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Pascal P Arp
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Neurology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Zhao K, Wang X, Xue X, Li L, Hu Y. A long noncoding RNA sensitizes genotoxic treatment by attenuating ATM activation and homologous recombination repair in cancers. PLoS Biol 2020; 18:e3000666. [PMID: 32203529 PMCID: PMC7138317 DOI: 10.1371/journal.pbio.3000666] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 04/07/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is an apical kinase of the DNA damage response following DNA double-strand breaks (DSBs); however, the mechanisms of ATM activation are not completely understood. Long noncoding RNAs (lncRNAs) are a class of regulatory molecules whose significant roles in DNA damage response have started to emerge. However, how lncRNA regulates ATM activity remains unknown. Here, we identify an inhibitor of ATM activation, lncRNA HITT (HIF-1α inhibitor at translation level). Mechanistically, HITT directly interacts with ATM at the HEAT repeat domain, blocking MRE11-RAD50-NBS1 complex-dependent ATM recruitment, leading to restrained homologous recombination repair and enhanced chemosensitization. Following DSBs, HITT is elevated mainly by the activation of Early Growth Response 1 (EGR1), resulting in retarded and restricted ATM activation. A reverse association between HITT and ATM activity was also detected in human colon cancer tissues. Furthermore, HITTs sensitize DNA damaging agent-induced cell death both in vitro and in vivo. These findings connect lncRNA directly to ATM activity regulation and reveal potential roles for HITT in sensitizing cancers to genotoxic treatment.
Collapse
Affiliation(s)
- Kunming Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Xuting Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Li Li
- The fourth affiliated hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
- Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|
25
|
Wilkinson HN, Hardman MJ. Wound senescence: A functional link between diabetes and ageing? Exp Dermatol 2020; 30:68-73. [PMID: 32009254 DOI: 10.1111/exd.14082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Arguably, the two most important causes of pathological healing in the skin are diabetes and ageing. While these factors have historically been considered independent modifiers of the healing process, recent studies suggest that they may be mechanistically linked. The primary contributor to diabetic pathology is hyperglycaemia, which accelerates the production of advanced glycation end products, a characteristic of ageing tissue. Indeed, advanced age also leads to mild hyperglycaemia. Here, we discuss emerging literature that reveals a hitherto unappreciated link between cellular senescence, diabetes and wound repair. Senescent cells cause widespread destruction of normal tissue architecture in ageing and have been shown to be increased in chronic wounds. However, the role of senescence remains controversial, with several studies reporting beneficial effects for transiently induced senescence in wound healing. We recently highlighted a direct role for senescence in diabetic healing pathology, mediated by the senescence receptor, CXCR2. These findings suggest that targeting local tissue senescence may provide a therapeutic strategy applicable to a broad range of chronic wound types.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull, UK
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull, UK
| |
Collapse
|
26
|
Min B, Park M, Jeon K, Park JS, Seo H, Jeong S, Kang YK. Age-associated bimodal transcriptional drift reduces intergenic disparities in transcription. Aging (Albany NY) 2019; 10:789-807. [PMID: 29706608 PMCID: PMC5940109 DOI: 10.18632/aging.101428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/20/2018] [Indexed: 02/03/2023]
Abstract
This study addressed the question of how well the quantitative transcriptome structure established in early life is maintained and how consistently it appears with increasing age, and if there is age-associated alteration of gene expression (A3GE), how much influence the Huntington’s disease (HD) genotype exerts on it. We examined 285 exonic sequences of 175 genes using targeted PCR sequencing in skeletal muscle, brain, and splenic CD4+ T cells of wild-type and HD mice. In contrast to the muscle and brain, T cells exhibited large A3GE, suggesting a strong contribution to functional decline of the organism. This A3GE was markedly intensified in age-matched HD T cells, which exhibited accelerated aging as determined by reduced telomere length. Regression analysis suggested that gene expression levels change at a rate of approximately 3% per month with age. We found a bimodal relationship in A3GE in T cells in that weakly expressed genes in young mice were increasingly transcribed in older animals whereas highly expressed genes in the young were decreasingly expressed with age. This bimodal transcriptional drift in the T cell transcriptome data causes the differences in transcription rate between genes to progressively reduce with age.
Collapse
Affiliation(s)
- Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| | - Myungsun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| | - Kyuheum Jeon
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| | - Hyemyung Seo
- Department of Molecular and Life Sciences, Hanyang University, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Sangkyun Jeong
- Mibyeong Research Center, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
27
|
Abstract
Many recent advances have emerged in the telomere and telomerase fields. This Timeline article highlights the key advances that have expanded our views on the mechanistic underpinnings of telomeres and telomerase and their roles in ageing and disease. Three decades ago, the classic view was that telomeres protected the natural ends of linear chromosomes and that telomerase was a specific telomere-terminal transferase necessary for the replication of chromosome ends in single-celled organisms. While this concept is still correct, many diverse fields associated with telomeres and telomerase have substantially matured. These areas include the discovery of most of the key molecular components of telomerase, implications for limits to cellular replication, identification and characterization of human genetic disorders that result in premature telomere shortening, the concept that inhibiting telomerase might be a successful therapeutic strategy and roles for telomeres in regulating gene expression. We discuss progress in these areas and conclude with challenges and unanswered questions in the field.
Collapse
Affiliation(s)
- Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
28
|
Amirifar P, Ranjouri MR, Yazdani R, Abolhassani H, Aghamohammadi A. Ataxia-telangiectasia: A review of clinical features and molecular pathology. Pediatr Allergy Immunol 2019; 30:277-288. [PMID: 30685876 DOI: 10.1111/pai.13020] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 01/09/2023]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive primary immunodeficiency (PID) disease that is caused by mutations in ataxia-telangiectasia mutated (ATM) gene encoding a serine/threonine protein kinase. A-T patients represent a broad range of clinical manifestations including progressive cerebellar ataxia, oculocutaneous telangiectasia, variable immunodeficiency, radiosensitivity, susceptibility to malignancies, and increased metabolic diseases. This congenital disorder has phenotypic heterogeneity, and the severity of symptoms varies in different patients based on severity of mutations and disease progression. The principal role of nuclear ATM is the coordination of cellular signaling pathways in response to DNA double-strand breaks, oxidative stress, and cell cycle checkpoint. The pathogenesis of A-T is not limited to the role of ATM in the DNA damage response (DDR) pathway, and it has other functions mainly in the hematopoietic cells and neurons. ATM adjusts the functions of organelles such as mitochondria and peroxisomes and also regulates angiogenesis and glucose metabolisms. However, ATM has other functions in the cells (especially cell viability) that need further investigations. In this review, we described functions of ATM in the nucleus and cytoplasm, and also its association with some disorder formation such as neurologic, immunologic, vascular, pulmonary, metabolic, and dermatologic complications.
Collapse
Affiliation(s)
- Parisa Amirifar
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ranjouri
- Molecular Medicine and Genetics Department, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
| |
Collapse
|
29
|
Turner KJ, Vasu V, Griffin DK. Telomere Biology and Human Phenotype. Cells 2019; 8:cells8010073. [PMID: 30669451 PMCID: PMC6356320 DOI: 10.3390/cells8010073] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
Telomeres are nucleoprotein structures that cap the end of each chromosome arm and function to maintain genome stability. The length of telomeres is known to shorten with each cell division and it is well-established that telomere attrition is related to replicative capacity in vitro. Moreover, telomere loss is also correlated with the process of aging in vivo. In this review, we discuss the mechanisms that lead to telomere shortening and summarise telomere homeostasis in humans throughout a lifetime. In addition, we discuss the available evidence that shows that telomere shortening is related to human aging and the onset of age-related disease.
Collapse
Affiliation(s)
- Kara J Turner
- University of Kent, School of Biosciences, Giles Lane, Canterbury, Kent, CT2-7NJ, UK.
| | - Vimal Vasu
- University of Kent, School of Biosciences, Giles Lane, Canterbury, Kent, CT2-7NJ, UK.
- Department of Child Health, East Kent Hospitals University Foundation NHS Trust, William Harvey Hospital, Ashford, Kent, TN24-0LZ, UK.
| | - Darren K Griffin
- University of Kent, School of Biosciences, Giles Lane, Canterbury, Kent, CT2-7NJ, UK.
| |
Collapse
|
30
|
Zhang L, Li S, Chen L, Li J, Zhang Z, Yang Y, Wang X, Liu J. Cerebellar fastigial nucleus electrical stimulatin protects against cerebral ischemic damage by upregulating telomerase activity. Restor Neurol Neurosci 2019; 37:131-141. [PMID: 30988241 DOI: 10.3233/rnn-180876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cerebellar fastigial nucleus electrical stimulation (FNS) in rats has been shown to protect against brain ischemia/reperfusion (I/R) damage. Activation of telomerase has been reported to provide neuroprotection in animal models of stroke. OBJECTIVE The aim of this study was to explore whether precondition FNS increases the expression of telomerase reverse transcriptase (TERT) and telomerase activity in rats after cerebral I/R injury. METHODS One day after continuous stimulation of the fastigial cerebellar nucleus for 1 h, adult male Sprague Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 24 h, 48 h and 72 h, while the I/R control groups received the same treatment without FNS. Ischemic lesion volumes were measured following TTC staining. The number of apoptotic cells was measured by using TUNEL assays. Subsequently, telomerase activity was examined by using TRAP-silver staining. Additionally, the expression level of TERT mRNA was assessed by using real-time fluorescence quantitative PCR. Finally, the expression of TERT protein was measured by using Western blotting. RESULTS The results of our study demonstrated that FNS significantly decreased infarct volumes and improved neurological deficits when compared with the I/R control group. The telomerase activity in the I/R + FNS group was significantly increased compared with that in the I/R control group, particularly in the 24 h reperfusion subgroup (P < 0.05). FNS treatment significantly decreased the number of TUNEL-positive cells when compared with that in the I/R control group. Expression of TERT gradually increased, with the peak occurring after or before 48 h reperfusion and the 24 h and 72 h reperfusion subgroups demonstrating higher expression than each I/R control group (P < 0.05). CONCLUSIONS Our results show that pre-FNS exerts neuroprotective effects that may be achieved by upregulating the expression of TERT and then by increasing telomerase activity.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Shenghua Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Lan Chen
- Department of Internal Medicine, The Second Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jinpin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Zhaoxia Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Yi Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Xiaoling Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| |
Collapse
|
31
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
32
|
Kasraian Z, Trompezinski S, Cario-André M, Morice-Picard F, Ged C, Jullie ML, Taieb A, Rezvani HR. Pigmentation abnormalities in nucleotide excision repair disorders: Evidence and hypotheses. Pigment Cell Melanoma Res 2018; 32:25-40. [PMID: 29938913 DOI: 10.1111/pcmr.12720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Skin pigmentation abnormalities are manifested in several disorders associated with deficient DNA repair mechanisms such as nucleotide excision repair (NER) and double-strand break (DSB) diseases, a topic that has not received much attention up to now. Hereditary disorders associated with defective DNA repair are valuable models for understanding mechanisms that lead to hypo- and hyperpigmentation. Owing to the UV-associated nature of abnormal pigmentary manifestations, the outcome of the activated DNA damage response (DDR) network could be the effector signal for alterations in pigmentation, ultimately manifesting as pigmentary abnormalities in repair-deficient disorders. In this review, the role of the DDR network in the manifestation of pigmentary abnormalities in NER and DSB disorders is discussed with a special emphasis on NER disorders.
Collapse
Affiliation(s)
- Zeinab Kasraian
- NAOS, Aix en Provence, France.,Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France
| | | | - Muriel Cario-André
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Fanny Morice-Picard
- Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France.,Service de Dermatologie Adulte et Pédiatrique, CHU de Bordeaux, Bordeaux, France
| | - Cécile Ged
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | | | - Alain Taieb
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France.,Service de Dermatologie Adulte et Pédiatrique, CHU de Bordeaux, Bordeaux, France
| | - Hamid Reza Rezvani
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
33
|
Barrientos-Moreno M, Murillo-Pineda M, Muñoz-Cabello AM, Prado F. Histone depletion prevents telomere fusions in pre-senescent cells. PLoS Genet 2018; 14:e1007407. [PMID: 29879139 PMCID: PMC5991667 DOI: 10.1371/journal.pgen.1007407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Upon telomerase inactivation, telomeres gradually shorten with each cell division until cells enter replicative senescence. In Saccharomyces cerevisiae, the kinases Mec1/ATR and Tel1/ATM protect the genome during pre-senescence by preventing telomere-telomere fusions (T-TFs) and the subsequent genetic instability associated with fusion-bridge-breakage cycles. Here we report that T-TFs in mec1Δ tel1Δ cells can be suppressed by reducing the pool of available histones. This protection associates neither with changes in bulk telomere length nor with major changes in the structure of subtelomeric chromatin. We show that the absence of Mec1 and Tel1 strongly augments double-strand break (DSB) repair by non-homologous end joining (NHEJ), which might contribute to the high frequency of T-TFs in mec1Δ tel1Δ cells. However, histone depletion does not prevent telomere fusions by inhibiting NHEJ, which is actually increased in histone-depleted cells. Rather, histone depletion protects telomeres from fusions by homologous recombination (HR), even though HR is proficient in maintaining the proliferative state of pre-senescent mec1Δ tel1Δ cells. Therefore, HR during pre-senescence not only helps stalled replication forks but also prevents T-TFs by a mechanism that, in contrast to the previous one, is promoted by a reduction in the histone pool and can occur in the absence of Rad51. Our results further suggest that the Mec1-dependent depletion of histones that occurs during pre-senescence in cells without telomerase (tlc1Δ) prevents T-TFs by favoring the processing of unprotected telomeres by Rad51-independent HR. Telomere shortening upon telomerase inactivation leads to an irreversible cell division arrest known as replicative senescence, which is considered as a tumor suppressor mechanism. Since pre-senescence is critical for tissue homeostasis, cells are endowed with recombination mechanisms that facilitate the replication of short telomeres and prevent premature entry into senescence. Consequently, pre-senescent cells divide with critically short telomeres, which have lost most of their shelterin proteins. The tumor suppressor genes ATR and ATM, as well as their yeast homologs Mec1 and Tel1, prevent telomere fusions during pre-senescence by unknown mechanisms. Here we show that the absence of Mec1 and Tel1 strongly augments DSB repair by non-homologous end joining, which might explain the high rate of telomere fusions in mec1Δ tel1Δ cells. Moreover, we show that a reduction in the pool of available histones prevents telomere fusions in mec1Δ tel1Δ cells by stimulating Rad51-independent homologous recombination. Our results suggest that the Mec1-dependent process of histone depletion that accompanies pre-senescence in cells lacking telomerase activity is required to prevent telomere fusions by promoting the processing of unprotected telomeres by recombination instead of non-homologous end joining.
Collapse
Affiliation(s)
- Marta Barrientos-Moreno
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Marina Murillo-Pineda
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Ana M. Muñoz-Cabello
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
- * E-mail:
| |
Collapse
|
34
|
Zaki-Dizaji M, Akrami SM, Azizi G, Abolhassani H, Aghamohammadi A. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis? Inflamm Res 2018; 67:559-570. [PMID: 29582093 DOI: 10.1007/s00011-018-1142-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Ataxia-Telangiectasia (A-T) syndrome is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, chromosome instability, radiosensitivity, and predisposition to malignancy. There is growing evidence that A-T patients suffer from pathologic inflammation that is responsible for many symptoms of this syndrome, including neurodegeneration, autoimmunity, cardiovascular disease, accelerated aging, and insulin resistance. In addition, epidemiological studies have shown A-T heterozygotes, somewhat like deficient patients, are susceptible to ionizing irradiation and have a higher risk of cancers and metabolic disorders. AREA COVERED This review summarizes clinical and molecular findings of inflammation in A-T syndrome. CONCLUSION Ataxia-Telangiectasia Mutated (ATM), a master regulator of the DNA damage response is the protein known to be associated with A-T and has a complex nuclear and cytoplasmic role. Loss of ATM function may induce immune deregulation and systemic inflammation.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
| |
Collapse
|
35
|
Kong HR, Anthony NB, Rowland KC, Khatri B, Kong BC. Genome re-sequencing to identify single nucleotide polymorphism markers for muscle color traits in broiler chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:13-18. [PMID: 28830129 PMCID: PMC5756915 DOI: 10.5713/ajas.17.0479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Meat quality including muscle color in chickens is an important trait and continuous selective pressures for fast growth and high yield have negatively impacted this trait. This study was conducted to investigate genetic variations responsible for regulating muscle color. METHODS Whole genome re-sequencing analysis using Illumina HiSeq paired end read method was performed with pooled DNA samples isolated from two broiler chicken lines divergently selected for muscle color (high muscle color [HMC] and low muscle color [LMC]) along with their random bred control line (RAN). Sequencing read data was aligned to the chicken reference genome sequence for Red Jungle Fowl (Galgal4) using reference based genome alignment with NGen program of the Lasergene software package. The potential causal single nucleotide polymorphisms (SNPs) showing non-synonymous changes in coding DNA sequence regions were chosen in each line. Bioinformatic analyses to interpret functions of genes retaining SNPs were performed using the ingenuity pathways analysis (IPA). RESULTS Millions of SNPs were identified and totally 2,884 SNPs (1,307 for HMC and 1,577 for LMC) showing >75% SNP rates could induce non-synonymous mutations in amino acid sequences. Of those, SNPs showing over 10 read depths yielded 15 more reliable SNPs including 1 for HMC and 14 for LMC. The IPA analyses suggested that meat color in chickens appeared to be associated with chromosomal DNA stability, the functions of ubiquitylation (UBC) and quality and quantity of various subtypes of collagens. CONCLUSION In this study, various potential genetic markers showing amino acid changes were identified in differential meat color lines, that can be used for further animal selection strategy.
Collapse
Affiliation(s)
- H. R. Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - N. B. Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - K. C. Rowland
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - B. Khatri
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - B. C. Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
36
|
Renault AL, Mebirouk N, Cavaciuti E, Le Gal D, Lecarpentier J, d'Enghien CD, Laugé A, Dondon MG, Labbé M, Lesca G, Leroux D, Gladieff L, Adenis C, Faivre L, Gilbert-Dussardier B, Lortholary A, Fricker JP, Dahan K, Bay JO, Longy M, Buecher B, Janin N, Zattara H, Berthet P, Combès A, Coupier I, Hall J, Stoppa-Lyonnet D, Andrieu N, Lesueur F. Telomere length, ATM mutation status and cancer risk in Ataxia-Telangiectasia families. Carcinogenesis 2017; 38:994-1003. [PMID: 28981872 PMCID: PMC5862273 DOI: 10.1093/carcin/bgx074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/08/2017] [Indexed: 11/12/2022] Open
Abstract
Recent studies have linked constitutive telomere length (TL) to aging-related diseases including cancer at different sites. ATM participates in the signaling of telomere erosion, and inherited mutations in ATM have been associated with increased risk of cancer, particularly breast cancer. The goal of this study was to investigate whether carriage of an ATM mutation and TL interplay to modify cancer risk in ataxia-telangiectasia (A-T) families.The study population consisted of 284 heterozygous ATM mutation carriers (HetAT) and 174 non-carriers (non-HetAT) from 103 A-T families. Forty-eight HetAT and 14 non-HetAT individuals had cancer, among them 25 HetAT and 6 non-HetAT were diagnosed after blood sample collection. We measured mean TL using a quantitative PCR assay and genotyped seven single-nucleotide polymorphisms (SNPs) recurrently associated with TL in large population-based studies.HetAT individuals were at increased risk of cancer (OR = 2.3, 95%CI = 1.2-4.4, P = 0.01), and particularly of breast cancer for women (OR = 2.9, 95%CI = 1.2-7.1, P = 0.02), in comparison to their non-HetAT relatives. HetAT individuals had longer telomeres than non-HetAT individuals (P = 0.0008) but TL was not associated with cancer risk, and no significant interaction was observed between ATM mutation status and TL. Furthermore, rs9257445 (ZNF311) was associated with TL in HetAT subjects and rs6060627 (BCL2L1) modified cancer risk in HetAT and non-HetAT women.Our findings suggest that carriage of an ATM mutation impacts on the age-related TL shortening and that TL per se is not related to cancer risk in ATM carriers. TL measurement alone is not a good marker for predicting cancer risk in A-T families.
Collapse
Affiliation(s)
- Anne-Laure Renault
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Noura Mebirouk
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Eve Cavaciuti
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Dorothée Le Gal
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Julie Lecarpentier
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | - Marie-Gabrielle Dondon
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Martine Labbé
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Gaetan Lesca
- CHU de Lyon, Groupement Hospitalier Est, Service de Génétique Médicale, Lyon, France
| | - Dominique Leroux
- CHU de Grenoble, Hôpital Couple-Enfant, Département de Génétique, Grenoble, France
| | - Laurence Gladieff
- Institut Claudius Regaud-IUCT-Oncopole, Service d'Oncologie Médicale, Toulouse, France
| | | | - Laurence Faivre
- Hôpital d'Enfants, Service de Génétique Médicale, Dijon, France
| | | | - Alain Lortholary
- Centre Catherine de Sienne, Service d'Oncologie Médicale, Nantes, France
| | | | - Karin Dahan
- Clinique Universitaire Saint-Luc, Génétique, Bruxelles, Belgium
| | | | | | | | - Nicolas Janin
- Clinique Universitaire Saint-Luc, Génétique, Bruxelles, Belgium
| | | | - Pascaline Berthet
- Centre François Baclesse, Unité de Pathologie Gynécologique, Caen, France
| | - Audrey Combès
- Centre Hospitalier Universitaire de Nîmes, Unité de Génétique Médicale et Cytogénétique, Nîmes, France
| | - Isabelle Coupier
- Hôpital Arnaud de Villeneuve, CHU Montpellier, Service de Génétique Médicale et Oncogénétique, Montpellier, France.,ICM Val d'Aurel, Unité d'Oncogénétique, Montpellier, France
| | | | - Janet Hall
- Centre de Recherche en Cancérologie de Lyon, Lyon, France.,UMR INSERM 1052, Lyon, France.,CNRS 5286, Lyon, France
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France.,INSERM, U830, Paris, France.,Université Paris Descartes, Paris, France
| | - Nadine Andrieu
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| | - Fabienne Lesueur
- INSERM, U900, Paris, France.,PSL Research University, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France
| |
Collapse
|
37
|
Zaki-Dizaji M, Akrami SM, Abolhassani H, Rezaei N, Aghamohammadi A. Ataxia telangiectasia syndrome: moonlighting ATM. Expert Rev Clin Immunol 2017; 13:1155-1172. [PMID: 29034753 DOI: 10.1080/1744666x.2017.1392856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) a multisystem disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. Identification of the gene defective in this syndrome, ataxia-telangiectasia mutated gene (ATM), and further characterization of the disorder together with a greater insight into the function of the ATM protein have expanded our knowledge about the molecular pathogenesis of this disease. Area covered: In this review, we have attempted to summarize the different roles of ATM signaling that have provided new insights into the diverse clinical phenotypes exhibited by A-T patients. Expert commentary: ATM, in addition to DNA repair response, is involved in many cytoplasmic roles that explain diverse phenotypes of A-T patients. It seems accumulation of DNA damage, persistent DNA damage response signaling, and chronic oxidative stress are the main players in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| | - Seyed Mohammad Akrami
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,c Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden.,d Primary Immunodeficiency Diseases Network (PIDNet ), Universal Scientific Education and Research Network (USERN) , Stockholm , Sweden
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,e Department of Immunology and Biology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| |
Collapse
|
38
|
Anderson R, Richardson GD, Passos JF. Mechanisms driving the ageing heart. Exp Gerontol 2017; 109:5-15. [PMID: 29054534 DOI: 10.1016/j.exger.2017.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. One of the main risk factors for CVD is age, however the biological processes that occur in the heart during ageing are poorly understood. It is therefore important to understand the fundamental mechanisms driving heart ageing to enable the development of preventions and treatments targeting these processes. Cellular senescence is often described as the irreversible cell-cycle arrest which occurs in somatic cells. Emerging evidence suggests that cellular senescence plays a key role in heart ageing, however the cell-types involved and the underlying mechanisms are not yet elucidated. In this review we discuss the current understanding of how mechanisms known to contribute to senescence impact on heart ageing and CVD. Finally, we evaluate recent data suggesting that targeting senescent cells may be a viable therapy to counteract the ageing of the heart.
Collapse
Affiliation(s)
- Rhys Anderson
- The Randall Division, King's College London, London, UK; Ageing Research Laboratories, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Gavin D Richardson
- Cardiovascular Research Centre, Institute for Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - João F Passos
- Ageing Research Laboratories, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
Abstract
Bacteria and viruses possess circular DNA, whereas eukaryotes with typically very large DNA molecules have had to evolve into linear chromosomes to circumvent the problem of supercoiling circular DNA of that size. Consequently, such organisms possess telomeres to cap chromosome ends. Telomeres are essentially tandem repeats of any DNA sequence that are present at the ends of chromosomes. Their biology has been an enigmatic one, involving various molecules interacting dynamically in an evolutionarily well-trimmed fashion. Telomeres range from canonical hexameric repeats in most eukaryotes to unimaginably random retrotransposons, which attach to chromosome ends and reverse-transcribe to DNA in some plants and insects. Telomeres invariably associate with specialised protein complexes that envelop it, also regulating access of the ends to legitimate enzymes involved in telomere metabolism. They also transcribe into repetitive RNA which also seems to be playing significant roles in telomere maintenance. Telomeres thus form the intersection of DNA, protein, and RNA molecules acting in concert to maintain chromosome integrity. Telomere biology is emerging to appear ever more complex than previously envisaged, with the continual discovery of more molecules and interplays at the telomeres. This review also includes a section dedicated to the history of telomere biology, and intends to target the scientific audience new to the field by rendering an understanding of the phenomenon of chromosome end protection at large, with more emphasis on the biology of human telomeres. The review provides an update on the field and mentions the questions that need to be addressed.
Collapse
Affiliation(s)
- Shriram Venkatesan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
| | - Aik Kia Khaw
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828 Singapore, Singapore.
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
- Tembusu College, National University of Singapore, 138598 Singapore, Singapore.
- VIT University, Vellore 632014, India.
- Mangalore University, Mangalore 574199, India.
| |
Collapse
|
40
|
Eitan E, Braverman C, Tichon A, Gitler D, Hutchison ER, Mattson MP, Priel E. Excitotoxic and Radiation Stress Increase TERT Levels in the Mitochondria and Cytosol of Cerebellar Purkinje Neurons. THE CEREBELLUM 2017; 15:509-17. [PMID: 26374457 DOI: 10.1007/s12311-015-0720-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase, an enzyme that elongates telomeres at the ends of chromosomes during DNA replication. Recently, it was shown that TERT has additional roles in cell survival, mitochondrial function, DNA repair, and Wnt signaling, all of which are unrelated to telomeres. Here, we demonstrate that TERT is enriched in Purkinje neurons, but not in the granule cells of the adult mouse cerebellum. TERT immunoreactivity in Purkinje neurons is present in the nucleus, mitochondria, and cytoplasm. Furthermore, TERT co-localizes with mitochondrial markers, and immunoblot analysis of protein extracts from isolated mitochondria and synaptosomes confirmed TERT localization in mitochondria. TERT expression in Purkinje neurons increased significantly in response to two stressors: a sub-lethal dose of X-ray radiation and exposure to a high glutamate concentration. While X-ray radiation increased TERT levels in the nucleus, glutamate exposure elevated TERT levels in mitochondria. Our findings suggest that in mature Purkinje neurons, TERT is present both in the nucleus and in mitochondria, where it may participate in adaptive responses of the neurons to excitotoxic and radiation stress.
Collapse
Affiliation(s)
- Erez Eitan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. .,Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA.
| | - Carmel Braverman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ailone Tichon
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Emmette R Hutchison
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Esther Priel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
41
|
Ratnaparkhe M, Hlevnjak M, Kolb T, Jauch A, Maass KK, Devens F, Rode A, Hovestadt V, Korshunov A, Pastorczak A, Mlynarski W, Sungalee S, Korbel J, Hoell J, Fischer U, Milde T, Kramm C, Nathrath M, Chrzanowska K, Tausch E, Takagi M, Taga T, Constantini S, Loeffen J, Meijerink J, Zielen S, Gohring G, Schlegelberger B, Maass E, Siebert R, Kunz J, Kulozik AE, Worst B, Jones DT, Pfister SM, Zapatka M, Lichter P, Ernst A. Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis. Leukemia 2017; 31:2048-2056. [PMID: 28196983 DOI: 10.1038/leu.2017.55] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/17/2017] [Accepted: 02/02/2017] [Indexed: 12/28/2022]
Abstract
Recent developments in sequencing technologies led to the discovery of a novel form of genomic instability, termed chromothripsis. This catastrophic genomic event, involved in tumorigenesis, is characterized by tens to hundreds of simultaneously acquired locally clustered rearrangements on one chromosome. We hypothesized that leukemias developing in individuals with Ataxia Telangiectasia, who are born with two mutated copies of the ATM gene, an essential guardian of genome stability, would show a higher prevalence of chromothripsis due to the associated defect in DNA double-strand break repair. Using whole-genome sequencing, fluorescence in situ hybridization and RNA sequencing, we characterized the genomic landscape of Acute Lymphoblastic Leukemia (ALL) arising in patients with Ataxia Telangiectasia. We detected a high frequency of chromothriptic events in these tumors, specifically on acrocentric chromosomes, as compared with tumors from individuals with other types of DNA repair syndromes (27 cases total, 10 with Ataxia Telangiectasia). Our data suggest that the genomic landscape of Ataxia Telangiectasia ALL is clearly distinct from that of sporadic ALL. Mechanistically, short telomeres and compromised DNA damage response in cells of Ataxia Telangiectasia patients may be linked with frequent chromothripsis. Furthermore, we show that ATM loss is associated with increased chromothripsis prevalence in additional tumor entities.
Collapse
Affiliation(s)
- M Ratnaparkhe
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Hlevnjak
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T Kolb
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Jauch
- Institute of Human Genetics, University Heidelberg, Heidelberg, Germany
| | - K K Maass
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F Devens
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Rode
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - V Hovestadt
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and Department of Neuropathology University Hospital, Heidelberg, Germany
| | - A Pastorczak
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - W Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - S Sungalee
- EMBL Heidelberg, Genome Biology, Heidelberg, Germany
| | - J Korbel
- EMBL Heidelberg, Genome Biology, Heidelberg, Germany
| | - J Hoell
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - U Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - T Milde
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | - C Kramm
- Department of Pediatric Oncology, University of Halle, Halle, Germany.,Division of Pediatric Hematology and Oncology, Goettingen, Germany
| | - M Nathrath
- Clinical Cooperation Group Osteosarcoma, Pediatric Oncology Center, Department of Pediatrics, Technical University Munich, Munich, Germany.,Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany
| | - K Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - E Tausch
- Department of Internal Medicine III, University of Ulm, Germany
| | - M Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - T Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - S Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv Medical Center, Tel-Aviv University, Tel Aviv, Israel
| | - J Loeffen
- Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - S Zielen
- Department of Paediatric Pulmonology, Allergy and Cystic Fibrosis, Children's Hospital, Goethe-University, Frankfurt, Germany
| | - G Gohring
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - B Schlegelberger
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - E Maass
- Olgahospital Stuttgart, Children's Hospital, Klinikum Stuttgart, Stuttgart, Germany
| | - R Siebert
- Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany
| | - J Kunz
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | - A E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | - B Worst
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D T Jones
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S M Pfister
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Zapatka
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Lichter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Ernst
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
42
|
Telomere-associated aging disorders. Ageing Res Rev 2017; 33:52-66. [PMID: 27215853 PMCID: PMC9926533 DOI: 10.1016/j.arr.2016.05.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/25/2023]
Abstract
Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Several monogenic inherited diseases that display features of human premature aging correlate with shortened telomeres, and are referred to collectively as telomeropathies. These disorders have overlapping symptoms and a common underlying mechanism of telomere dysfunction, but also exhibit variable symptoms and age of onset, suggesting they fall along a spectrum of disorders. Primary telomeropathies are caused by defects in the telomere maintenance machinery, whereas secondary telomeropathies have some overlapping symptoms with primary telomeropathies, but are generally caused by mutations in DNA repair proteins that contribute to telomere preservation. Here we review both the primary and secondary telomeropathies, discuss potential mechanisms for tissue specificity and age of onset, and highlight outstanding questions in the field and future directions toward elucidating disease etiology and developing therapeutic strategies.
Collapse
|
43
|
Shiloh Y, Lederman HM. Ataxia-telangiectasia (A-T): An emerging dimension of premature ageing. Ageing Res Rev 2017; 33:76-88. [PMID: 27181190 DOI: 10.1016/j.arr.2016.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/28/2022]
Abstract
A-T is a prototype genome instability syndrome and a multifaceted disease. A-T leads to neurodegeneration - primarily cerebellar atrophy, immunodeficiency, oculocutaneous telangiectasia (dilated blood vessels), vestigial thymus and gonads, endocrine abnormalities, cancer predisposition and varying sensitivity to DNA damaging agents, particularly those that induce DNA double-strand breaks. With the recent increase in life expectancy of A-T patients, the premature ageing component of this disease is gaining greater awareness. The complex A-T phenotype reflects the ever growing number of functions assigned to the protein encoded by the responsible gene - the homeostatic protein kinase, ATM. The quest to thoroughly understand the complex A-T phenotype may reveal yet elusive ATM functions.
Collapse
|
44
|
Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis 2016; 11:159. [PMID: 27884168 PMCID: PMC5123280 DOI: 10.1186/s13023-016-0543-7] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022] Open
Abstract
DEFINITION OF THE DISEASE Ataxia telangiectasia (A-T) is an autosomal recessive disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. A-T is often referred to as a genome instability or DNA damage response syndrome. EPIDEMIOLOGY The world-wide prevalence of A-T is estimated to be between 1 in 40,000 and 1 in 100,000 live births. CLINICAL DESCRIPTION A-T is a complex disorder with substantial variability in the severity of features between affected individuals, and at different ages. Neurological symptoms most often first appear in early childhood when children begin to sit or walk. They have immunological abnormalities including immunoglobulin and antibody deficiencies and lymphopenia. People with A-T have an increased predisposition for cancers, particularly of lymphoid origin. Pulmonary disease and problems with feeding, swallowing and nutrition are common, and there also may be dermatological and endocrine manifestations. ETIOLOGY A-T is caused by mutations in the ATM (Ataxia Telangiectasia, Mutated) gene which encodes a protein of the same name. The primary role of the ATM protein is coordination of cellular signaling pathways in response to DNA double strand breaks, oxidative stress and other genotoxic stress. DIAGNOSIS The diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with one or more of the following which may vary in their appearance: telangiectasia, frequent sinopulmonary infections and specific laboratory abnormalities (e.g. IgA deficiency, lymphopenia especially affecting T lymphocytes and increased alpha-fetoprotein levels). Because certain neurological features may arise later, a diagnosis of A-T should be carefully considered for any ataxic child with an otherwise elusive diagnosis. A diagnosis of A-T can be confirmed by the finding of an absence or deficiency of the ATM protein or its kinase activity in cultured cell lines, and/or identification of the pathological mutations in the ATM gene. DIFFERENTIAL DIAGNOSIS There are several other neurologic and rare disorders that physicians must consider when diagnosing A-T and that can be confused with A-T. Differentiation of these various disorders is often possible with clinical features and selected laboratory tests, including gene sequencing. ANTENATAL DIAGNOSIS Antenatal diagnosis can be performed if the pathological ATM mutations in that family have been identified in an affected child. In the absence of identifying mutations, antenatal diagnosis can be made by haplotype analysis if an unambiguous diagnosis of the affected child has been made through clinical and laboratory findings and/or ATM protein analysis. GENETIC COUNSELING Genetic counseling can help family members of a patient with A-T understand when genetic testing for A-T is feasible, and how the test results should be interpreted. MANAGEMENT AND PROGNOSIS Treatment of the neurologic problems associated with A-T is symptomatic and supportive, as there are no treatments known to slow or stop the neurodegeneration. However, other manifestations of A-T, e.g. immunodeficiency, pulmonary disease, failure to thrive and diabetes can be treated effectively.
Collapse
Affiliation(s)
| | - Jennifer Wright
- The Ataxia Telangiectasia Clinical Center, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Maureen A. Lefton-Greif
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Sharon A. McGrath-Morrow
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Thomas O. Crawford
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Howard M. Lederman
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics, Medicine and Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| |
Collapse
|
45
|
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase Regulation from Beginning to the End. Genes (Basel) 2016; 7:genes7090064. [PMID: 27649246 PMCID: PMC5042394 DOI: 10.3390/genes7090064] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.
Collapse
Affiliation(s)
- Deanna Elise MacNeil
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Hélène Jeanne Bensoussan
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
- Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
46
|
Robust reprogramming of Ataxia-Telangiectasia patient and carrier erythroid cells to induced pluripotent stem cells. Stem Cell Res 2016; 17:296-305. [DOI: 10.1016/j.scr.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/29/2016] [Accepted: 08/06/2016] [Indexed: 12/18/2022] Open
|
47
|
Abstract
DNA double-strand breaks (DSBs) are rare, but highly toxic, lesions requiring orchestrated and conserved machinery to prevent adverse consequences, such as cell death and cancer-causing genome structural mutations. DSBs trigger the DNA damage response (DDR) that directs a cell to repair the break, undergo apoptosis, or become senescent. There is increasing evidence that the various endpoints of DSB processing by different cells and tissues are part of the aging phenotype, with each stage of the DDR associated with specific aging pathologies. In this Perspective, we discuss the possibility that DSBs are major drivers of intrinsic aging, highlighting the dynamics of spontaneous DSBs in relation to aging, the distinct age-related pathologies induced by DSBs, and the segmental progeroid phenotypes in humans and mice with genetic defects in DSB repair. A model is presented as to how DSBs could drive some of the basic mechanisms underlying age-related functional decline and death.
Collapse
Affiliation(s)
- Ryan R White
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA.
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA.
| |
Collapse
|
48
|
Kim JY, An YM, Park JH. Role of GLTSCR2 in the regulation of telomerase activity and chromosome stability. Mol Med Rep 2016; 14:1697-703. [PMID: 27357325 DOI: 10.3892/mmr.2016.5427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 01/11/2016] [Indexed: 11/05/2022] Open
Abstract
Telomerase is essential for regulating telomeres, and its activation is a critical step in cellular immortalization and tumorigenesis. The transcriptional activation of human telomerase reverse transcriptase (hTERT) is critical for telomerase expression. Although several transcriptional activators have been identified, factors responsible for enhancing the hTERT promoter remain to be fully elucidated. In the present study, the role of glioma tumor-suppressor candidate region gene 2 (GLTSCR2) in telomerase regulation was analyzed. A doxycyclin-inducible green fluorescent protein (GFP)-tagged GLTSCR2-expressing adenovirus (Ad‑GLT/GFP) was used for the transduction of SK‑Hep‑1 and T98G cancer cells, and normal human umbilical vein endothelial cells. Changes in telomerase activity using telomere repeat amplification protocol assay were assessed, and the gene expression levels of hTERT were then examined. To investigate chromosome instability and senescence, Giemsa and β-galactosidase staining was performed. The results revealed that overexpression of GLTSCR2 significantly increased telomerase activity in the cancer and normal cell lines. This increase was consistent with increases in the protein and mRNA expression levels of hTERT. In luciferase assays, the hTERT promoter was activated by GLTSCR2. Knockdown of GLTSCR2 led to the downregulation of telomerase activity, abnormal nuclear morphology as a marker of chromosome instability, significant suppression of growth rate, alterations in cellular morphology and, eventually, cellular senescence. Taken together, the results of the present study suggested that GLTSCR2 is crucially involved in the positive regulation of telomerase and chromosome stability.
Collapse
Affiliation(s)
- Jee-Youn Kim
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Yong-Min An
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Jae-Hoon Park
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| |
Collapse
|
49
|
Abstract
Neurocutaneous syndromes (or phakomatoses) are a diverse group of congenital disorders that encompass abnormalities of neuroectodermal and, sometimes, mesodermal development, hence commonly involving the skin, eye, and central nervous system. These are often inherited conditions and typically present in early childhood or adolescence. Some of the abnormalities and clinical symptoms may, however, be progressive, and there is an increased risk of neoplastic formation in many of the syndromes. As a group, neurocutaneous syndromes are characterized by distinctive cutaneous stigmata and neurologic symptomology, the latter often representing the most devastating and debilitating features of these diseases. Many of these syndromes are markedly heterogeneous in nature as they affect many organ systems. Given the incurable nature of these conditions and the broad spectrum of pathologies they comprise, treatments vary on a case-by-case basis and tend to be palliative rather than curative. With the advances in molecular genetics, however, greater understanding of biologic functions of the gene products and the correlative phenotypic expression is being attained, and this knowledge may guide future therapeutic developments. This chapter focuses on the cutaneous and neurologic pathology with emphasis on neuroimaging of selective neurocutaneous syndromes, including tuberous sclerosis, Sturge-Weber syndrome, Klippel-Trenaunay syndrome, ataxia-telangiectasia, and incontinentia pigmenti.
Collapse
Affiliation(s)
- Nitasha Klar
- Division of Neuroradiology, Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bernard Cohen
- Departments of Dermatology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Doris D M Lin
- Division of Neuroradiology, Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
50
|
Lee SS, Bohrson C, Pike AM, Wheelan SJ, Greider CW. ATM Kinase Is Required for Telomere Elongation in Mouse and Human Cells. Cell Rep 2015; 13:1623-32. [PMID: 26586427 PMCID: PMC4663052 DOI: 10.1016/j.celrep.2015.10.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/11/2015] [Accepted: 10/11/2015] [Indexed: 12/26/2022] Open
Abstract
Short telomeres induce a DNA damage response, senescence, and apoptosis, thus maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase-specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease.
Collapse
Affiliation(s)
- Stella Suyong Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Craig Bohrson
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexandra Mims Pike
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Jo Wheelan
- Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Carol Widney Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|