1
|
Tran TC, Mähl K, Kappel C, Dakhiya Y, Sampathkumar A, Sicard A, Lenhard M. Altered interactions between cis-regulatory elements partially resolve BLADE-ON-PETIOLE genetic redundancy in Capsella rubella. THE PLANT CELL 2024; 36:4637-4657. [PMID: 39158598 PMCID: PMC11448885 DOI: 10.1093/plcell/koae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Duplicated genes are thought to follow one of three evolutionary trajectories that resolve their redundancy: neofunctionalization, subfunctionalization, or pseudogenization. Differences in expression patterns have been documented for many duplicated gene pairs and interpreted as evidence of subfunctionalization and a loss of redundancy. However, little is known about the functional impact of such differences and about their molecular basis. Here, we investigate the genetic and molecular basis for the partial loss of redundancy between the two BLADE-ON-PETIOLE genes BOP1 and BOP2 in red shepherd's purse (Capsella rubella) compared to Arabidopsis (Arabidopsis thaliana). While both genes remain almost fully redundant in A. thaliana, BOP1 in C. rubella can no longer ensure wild-type floral organ numbers and suppress bract formation, due to an altered expression pattern in the region of the cryptic bract primordium. We use two complementary approaches, transgenic rescue of A. thaliana atbop1 atbop2 double mutants and deletions in the endogenous AtBOP1 promoter, to demonstrate that several BOP1 promoter regions containing conserved noncoding sequences interact in a nonadditive manner to control BOP1 expression in the bract primordium and that changes in these interactions underlie the evolutionary divergence between C. rubella and A. thaliana BOP1 expression and activity. Similarly, altered interactions between cis-regulatory regions underlie the divergence in functional promoter architecture related to the control of floral organ abscission by BOP1. These findings highlight the complexity of promoter architecture in plants and suggest that changes in the interactions between cis-regulatory elements are key drivers for evolutionary divergence in gene expression and the loss of redundancy.
Collapse
Affiliation(s)
- Thi Chi Tran
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Karoline Mähl
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Yuri Dakhiya
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm D-14476, Germany
| | - Adrien Sicard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm D-14476, Germany
| |
Collapse
|
2
|
Alexandre CM, Bubb KL, Schultz KM, Lempe J, Cuperus JT, Queitsch C. LTP2 hypomorphs show genotype-by-environment interaction in early seedling traits in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 241:253-266. [PMID: 37865885 PMCID: PMC10843042 DOI: 10.1111/nph.19334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the accuracy of genotype-to-phenotype predictions. The extent of this phenotypic variation depends in part on genetic background, raising questions about the genes involved in controlling stochastic phenotypic variation. Focusing on early seedling traits in Arabidopsis thaliana, we found that hypomorphs of the cuticle-related gene LIPID TRANSFER PROTEIN 2 (LTP2) greatly increased variation in seedling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Many ltp2 hypocotyls were significantly shorter than wild-type hypocotyls while others resembled the wild-type. Differences in epidermal properties and gene expression between ltp2 seedlings with long and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the observed phenotypic variation. We identified environmental conditions that reveal or mask the increased variation in ltp2 hypomorphs and found that increased expression of its closest paralog LTP1 is necessary for ltp2 phenotypes. Our results illustrate how decreased expression of a single gene can generate starkly increased phenotypic variation in isogenic individuals in response to an environmental challenge.
Collapse
Affiliation(s)
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Karla M Schultz
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Janne Lempe
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany 1099
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Vande Zande P, Siddiq MA, Hodgins-Davis A, Kim L, Wittkopp PJ. Active compensation for changes in TDH3 expression mediated by direct regulators of TDH3 in Saccharomyces cerevisiae. PLoS Genet 2023; 19:e1011078. [PMID: 38091349 PMCID: PMC10752532 DOI: 10.1371/journal.pgen.1011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Genetic networks are surprisingly robust to perturbations caused by new mutations. This robustness is conferred in part by compensation for loss of a gene's activity by genes with overlapping functions, such as paralogs. Compensation occurs passively when the normal activity of one paralog can compensate for the loss of the other, or actively when a change in one paralog's expression, localization, or activity is required to compensate for loss of the other. The mechanisms of active compensation remain poorly understood in most cases. Here we investigate active compensation for the loss or reduction in expression of the Saccharomyces cerevisiae gene TDH3 by its paralog TDH2. TDH2 is upregulated in a dose-dependent manner in response to reductions in TDH3 by a mechanism requiring the shared transcriptional regulators Gcr1p and Rap1p. TDH1, a second and more distantly related paralog of TDH3, has diverged in its regulation and is upregulated by another mechanism. Other glycolytic genes regulated by Rap1p and Gcr1p show changes in expression similar to TDH2, suggesting that the active compensation by TDH3 paralogs is part of a broader homeostatic response mediated by shared transcriptional regulators.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mohammad A. Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrea Hodgins-Davis
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa Kim
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Iohannes SD, Jackson D. Tackling redundancy: genetic mechanisms underlying paralog compensation in plants. THE NEW PHYTOLOGIST 2023; 240:1381-1389. [PMID: 37724752 DOI: 10.1111/nph.19267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Gene duplication is a powerful source of biological innovation giving rise to paralogous genes that undergo diverse fates. Redundancy between paralogous genes is an intriguing outcome of duplicate gene evolution, and its maintenance over evolutionary time has long been considered a paradox. Redundancy can also be dubbed 'a geneticist's nightmare': It hinders the predictability of genome editing outcomes and limits our ability to link genotypes to phenotypes. Genetic studies in yeast and plants have suggested that the ability of ancient redundant duplicates to compensate for dosage perturbations resulting from a loss of function depends on the reprogramming of gene expression, a phenomenon known as active compensation. Starting from considerations on the stoichiometric constraints that drive the evolutionary stability of redundancy, this review aims to provide insights into the mechanisms of active compensation between duplicates that could be targeted for breaking paralog dependencies - the next frontier in plant functional studies.
Collapse
Affiliation(s)
- Sessen Daniel Iohannes
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| |
Collapse
|
5
|
Zu Q, Deng X, Qu Y, Chen X, Cai Y, Wang C, Li Y, Chen Q, Zheng K, Liu X, Chen Q. Genetic Channelization Mechanism of Four Chalcone Isomerase Homologous Genes for Synergistic Resistance to Fusarium wilt in Gossypium barbadense L. Int J Mol Sci 2023; 24:14775. [PMID: 37834230 PMCID: PMC10572676 DOI: 10.3390/ijms241914775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Duplication events occur very frequently during plant evolution. The genes in the duplicated pathway or network can evolve new functions through neofunctionalization and subfunctionalization. Flavonoids are secondary metabolites involved in plant development and defense. Our previous transcriptomic analysis of F6 recombinant inbred lines (RILs) and the parent lines after Fusarium oxysporum f. sp. vasinfectum (Fov) infection showed that CHI genes have important functions in cotton. However, there are few reports on the possible neofunctionalization differences of CHI family paralogous genes involved in Fusarium wilt resistance in cotton. In this study, the resistance to Fusarium wilt, expression of metabolic pathway-related genes, metabolite content, endogenous hormone content, reactive oxygen species (ROS) content and subcellular localization of four paralogous CHI family genes in cotton were investigated. The results show that the four paralogous CHI family genes may play a synergistic role in Fusarium wilt resistance. These results revealed a genetic channelization mechanism that can regulate the metabolic flux homeostasis of flavonoids under the mediation of endogenous salicylic acid (SA) and methyl jasmonate (MeJA) via the four paralogous CHI genes, thereby achieving disease resistance. Our study provides a theoretical basis for studying the evolutionary patterns of homologous plant genes and using homologous genes for molecular breeding.
Collapse
Affiliation(s)
- Qianli Zu
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Xiaojuan Deng
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Xunji Chen
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), No. 403, Nanchang Road, Urumqi 830052, China;
| | - Yongsheng Cai
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Caoyue Wang
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Ying Li
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Qin Chen
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Xiaodong Liu
- College of Life Science, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| |
Collapse
|
6
|
Alexandre CM, Bubb KL, Schultz KM, Lempe J, Cuperus JT, Queitsch C. LTP2 hypomorphs show genotype-by-environment interaction in early seedling traits in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540469. [PMID: 37214854 PMCID: PMC10197655 DOI: 10.1101/2023.05.11.540469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the accuracy of genotype-to-phenotype predictions. The extent of this phenotypic variation depends in part on genetic background, raising questions about the genes involved in controlling stochastic phenotypic variation. Focusing on early seedling traits in Arabidopsis thaliana, we found that hypomorphs of the cuticle-related gene LTP2 greatly increased variation in seedling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Many ltp2 hypocotyls were significantly shorter than wild-type hypocotyls while others resembled the wild type. Differences in epidermal properties and gene expression between ltp2 seedlings with long and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the observed phenotypic variation. We identified environmental conditions that reveal or mask the increased variation in ltp2 hypomorphs, and found that increased expression of its closest paralog LTP1 is necessary for ltp2 phenotypes. Our results illustrate how decreased expression of a single gene can generate starkly increased phenotypic variation in isogenic individuals in response to an environmental challenge.
Collapse
Affiliation(s)
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Karla M Schultz
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Janne Lempe
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Kooblall KG, Stevenson M, Stewart M, Harris L, Zalucki O, Dewhurst H, Butterfield N, Leng H, Hough TA, Ma D, Siow B, Potter P, Cox RD, Brown SD, Horwood N, Wright B, Lockstone H, Buck D, Vincent TL, Hannan FM, Bassett JD, Williams GR, Lines KE, Piper M, Wells S, Teboul L, Hennekam RC, Thakker RV. A Mouse Model with a Frameshift Mutation in the Nuclear Factor I/X ( NFIX) Gene Has Phenotypic Features of Marshall-Smith Syndrome. JBMR Plus 2023; 7:e10739. [PMID: 37283649 PMCID: PMC10241085 DOI: 10.1002/jbm4.10739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall-Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6-10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix +/Del2, Nfix +/Del24, Nfix +/Del140, Nfix Del24/Del24, and Nfix Del140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but Nfix Del2/Del2 mice had significantly reduced viability (p < 0.002) and died at 2-3 weeks of age. Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix +/+ and Nfix +/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed Nfix Del2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix +/+ and Nfix +/Del2 mice. Nfix Del2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix +/+ mice. Thus, Nfix Del2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kreepa G. Kooblall
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)University of OxfordOxfordUK
| | - Mark Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)University of OxfordOxfordUK
| | - Michelle Stewart
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | | | - Oressia Zalucki
- The School of Biomedical Sciences and The Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Hannah Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
| | - Natalie Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
| | - Houfu Leng
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)Medical Sciences Division University of OxfordOxfordUK
| | - Tertius A. Hough
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Da Ma
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNCUSA
| | | | - Paul Potter
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Roger D. Cox
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Stephen D.M. Brown
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Nicole Horwood
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)Medical Sciences Division University of OxfordOxfordUK
| | - Benjamin Wright
- Oxford Genomics Centre, The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Helen Lockstone
- Oxford Genomics Centre, The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - David Buck
- Oxford Genomics Centre, The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Tonia L. Vincent
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)Medical Sciences Division University of OxfordOxfordUK
| | - Fadil M. Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)University of OxfordOxfordUK
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - J.H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
| | - Kate E. Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)University of OxfordOxfordUK
| | - Michael Piper
- The School of Biomedical Sciences and The Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Sara Wells
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Lydia Teboul
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Raoul C. Hennekam
- Department of Pediatrics, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)University of OxfordOxfordUK
| |
Collapse
|
8
|
Li S, Dohlman HG. Evolutionary conservation of sequence motifs at sites of protein modification. J Biol Chem 2023; 299:104617. [PMID: 36933807 PMCID: PMC10139944 DOI: 10.1016/j.jbc.2023.104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Gene duplications are common in biology and are likely to be an important source of functional diversification and specialization. The yeast Saccharomyces cerevisiae underwent a whole-genome duplication event early in evolution, and a substantial number of duplicated genes have been retained. We identified more than 3500 instances where only one of two paralogous proteins undergoes posttranslational modification despite having retained the same amino acid residue in both. We also developed a web-based search algorithm (CoSMoS.c.) that scores conservation of amino acid sequences based on 1011 wild and domesticated yeast isolates and used it to compare differentially modified pairs of paralogous proteins. We found that the most common modifications-phosphorylation, ubiquitylation, and acylation but not N-glycosylation-occur in regions of high sequence conservation. Such conservation is evident even for ubiquitylation and succinylation, where there is no established 'consensus site' for modification. Differences in phosphorylation were not associated with predicted secondary structure or solvent accessibility but did mirror known differences in kinase-substrate interactions. Thus, differences in posttranslational modification likely result from differences in adjoining amino acids and their interactions with modifying enzymes. By integrating data from large-scale proteomics and genomics analysis, in a system with such substantial genetic diversity, we obtained a more comprehensive understanding of the functional basis for genetic redundancies that have persisted for 100 million years.
Collapse
Affiliation(s)
- Shuang Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
9
|
Álvarez-Lugo A, Becerra A. The Fate of Duplicated Enzymes in Prokaryotes: The Case of Isomerases. J Mol Evol 2023; 91:76-92. [PMID: 36580111 DOI: 10.1007/s00239-022-10085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
The isomerases are a unique enzymatic class of enzymes that carry out a great diversity of chemical reactions at the intramolecular level. This class comprises about 300 members, most of which are involved in carbohydrate and terpenoid/polyketide metabolism. Along with oxidoreductases and translocases, isomerases are one of the classes with the highest ratio of paralogous enzymes. Due to its relatively small number of members, it is plausible to explore it in greater detail to identify specific cases of gene duplication. Here, we present an analysis at the level of individual isomerases and identify different members that seem to be involved in duplication events in prokaryotes. As was suggested in a previous study, there is no homogeneous distribution of paralogs, but rather they accumulate into a few subcategories, some of which differ between Archaea and Bacteria. As expected, the metabolic processes with more paralogous isomerases have to do with carbohydrate metabolism but also with RNA modification (a particular case involving an rRNA-modifying isomerase is thoroughly discussed and analyzed in detail). Overall, our findings suggest that the most common fate for paralogous enzymes is the retention of the original enzymatic function, either associated with a dosage effect or with differential expression in response to changing environments, followed by subfunctionalization and, to a much lesser degree, neofunctionalization, which is consistent with what has been reported elsewhere.
Collapse
Affiliation(s)
- Alejandro Álvarez-Lugo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, México.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
10
|
Zande PV, Wittkopp PJ. Active compensation for changes in TDH3 expression mediated by direct regulators of TDH3 in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523977. [PMID: 36711763 PMCID: PMC9882118 DOI: 10.1101/2023.01.13.523977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic networks are surprisingly robust to perturbations caused by new mutations. This robustness is conferred in part by compensation for loss of a gene's activity by genes with overlapping functions, such as paralogs. Compensation occurs passively when the normal activity of one paralog can compensate for the loss of the other, or actively when a change in one paralog's expression, localization, or activity is required to compensate for loss of the other. The mechanisms of active compensation remain poorly understood in most cases. Here we investigate active compensation for the loss or reduction in expression of the Saccharomyces cerevisiae gene TDH3 by its paralogs TDH1 and TDH2. TDH1 and TDH2 are upregulated in a dose-dependent manner in response to reductions in TDH3 by a mechanism requiring the shared transcriptional regulators Gcr1p and Rap1p. Other glycolytic genes regulated by Rap1p and Gcr1p show changes in expression similar to TDH2, suggesting that the active compensation by TDH3 paralogs is part of a broader homeostatic response mediated by shared transcriptional regulators.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Current address: Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Patricia J Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Amici DR, Cingoz H, Alasady MJ, Alhayek S, Phoumyvong CM, Sahni N, Yi SS, Mendillo ML. The HAPSTR2 retrogene buffers stress signaling and resilience in mammals. Nat Commun 2023; 14:152. [PMID: 36631436 PMCID: PMC9834230 DOI: 10.1038/s41467-022-35697-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
We recently identified HAPSTR1 (C16orf72) as a key component in a novel pathway which regulates the cellular response to molecular stressors, such as DNA damage, nutrient scarcity, and protein misfolding. Here, we identify a functional paralog to HAPSTR1: HAPSTR2. HAPSTR2 formed early in mammalian evolution, via genomic integration of a reverse transcribed HAPSTR1 transcript, and has since been preserved under purifying selection. HAPSTR2, expressed primarily in neural and germline tissues and a subset of cancers, retains established biochemical features of HAPSTR1 to achieve two functions. In normal physiology, HAPSTR2 directly interacts with HAPSTR1, markedly augmenting HAPSTR1 protein stability in a manner independent from HAPSTR1's canonical E3 ligase, HUWE1. Alternatively, in the context of HAPSTR1 loss, HAPSTR2 expression is sufficient to buffer stress signaling and resilience. Thus, we discover a mammalian retrogene which safeguards fitness.
Collapse
Affiliation(s)
- David R Amici
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Harun Cingoz
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Milad J Alasady
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Sammy Alhayek
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Claire M Phoumyvong
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, and Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), and Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, 78712, USA
| | - Marc L Mendillo
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
| |
Collapse
|
12
|
Bailon-Zambrano R, Sucharov J, Mumme-Monheit A, Murry M, Stenzel A, Pulvino AT, Mitchell JM, Colborn KL, Nichols JT. Variable paralog expression underlies phenotype variation. eLife 2022; 11:e79247. [PMID: 36134886 PMCID: PMC9555865 DOI: 10.7554/elife.79247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Human faces are variable; we look different from one another. Craniofacial disorders further increase facial variation. To understand craniofacial variation and how it can be buffered, we analyzed the zebrafish mef2ca mutant. When this transcription factor encoding gene is mutated, zebrafish develop dramatically variable craniofacial phenotypes. Years of selective breeding for low and high penetrance of mutant phenotypes produced strains that are either resilient or sensitive to the mef2ca mutation. Here, we compared gene expression between these strains, which revealed that selective breeding enriched for high and low mef2ca paralog expression in the low- and high-penetrance strains, respectively. We found that mef2ca paralog expression is variable in unselected wild-type zebrafish, motivating the hypothesis that heritable variation in paralog expression underlies mutant phenotype severity and variation. In support, mutagenizing the mef2ca paralogs, mef2aa, mef2b, mef2cb, and mef2d demonstrated modular buffering by paralogs. Specifically, some paralogs buffer severity while others buffer variability. We present a novel, mechanistic model for phenotypic variation where variable, vestigial paralog expression buffers development. These studies are a major step forward in understanding the mechanisms of facial variation, including how some genetically resilient individuals can overcome a deleterious mutation.
Collapse
Affiliation(s)
- Raisa Bailon-Zambrano
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Juliana Sucharov
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Abigail Mumme-Monheit
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Matthew Murry
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Amanda Stenzel
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Anthony T Pulvino
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jennyfer M Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Kathryn L Colborn
- Department of Surgery, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - James T Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
13
|
Vihinen M. Individual Genetic Heterogeneity. Genes (Basel) 2022; 13:1626. [PMID: 36140794 PMCID: PMC9498725 DOI: 10.3390/genes13091626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation has been widely covered in literature, however, not from the perspective of an individual in any species. Here, a synthesis of genetic concepts and variations relevant for individual genetic constitution is provided. All the different levels of genetic information and variation are covered, ranging from whether an organism is unmixed or hybrid, has variations in genome, chromosomes, and more locally in DNA regions, to epigenetic variants or alterations in selfish genetic elements. Genetic constitution and heterogeneity of microbiota are highly relevant for health and wellbeing of an individual. Mutation rates vary widely for variation types, e.g., due to the sequence context. Genetic information guides numerous aspects in organisms. Types of inheritance, whether Mendelian or non-Mendelian, zygosity, sexual reproduction, and sex determination are covered. Functions of DNA and functional effects of variations are introduced, along with mechanism that reduce and modulate functional effects, including TARAR countermeasures and intraindividual genetic conflict. TARAR countermeasures for tolerance, avoidance, repair, attenuation, and resistance are essential for life, integrity of genetic information, and gene expression. The genetic composition, effects of variations, and their expression are considered also in diseases and personalized medicine. The text synthesizes knowledge and insight on individual genetic heterogeneity and organizes and systematizes the central concepts.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
14
|
Kwon CT, Tang L, Wang X, Gentile I, Hendelman A, Robitaille G, Van Eck J, Xu C, Lippman ZB. Dynamic evolution of small signalling peptide compensation in plant stem cell control. NATURE PLANTS 2022; 8:346-355. [PMID: 35347264 DOI: 10.1038/s41477-022-01118-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Gene duplications are a hallmark of plant genome evolution and a foundation for genetic interactions that shape phenotypic diversity1-5. Compensation is a major form of paralogue interaction6-8 but how compensation relationships change as allelic variation accumulates is unknown. Here we leveraged genomics and genome editing across the Solanaceae family to capture the evolution of compensating paralogues. Mutations in the stem cell regulator CLV3 cause floral organs to overproliferate in many plants9-11. In tomato, this phenotype is partially suppressed by transcriptional upregulation of a closely related paralogue12. Tobacco lost this paralogue, resulting in no compensation and extreme clv3 phenotypes. Strikingly, the paralogues of petunia and groundcherry nearly completely suppress clv3, indicating a potent ancestral state of compensation. Cross-species transgenic complementation analyses show that this potent compensation partially degenerated in tomato due to a single amino acid change in the paralogue and cis-regulatory variation that limits its transcriptional upregulation. Our findings show how genetic interactions are remodelled following duplications and suggest that dynamic paralogue evolution is widespread over short time scales and impacts phenotypic variation from natural and engineered mutations.
Collapse
Affiliation(s)
- Choon-Tak Kwon
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Lingli Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingang Wang
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Iacopo Gentile
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Anat Hendelman
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Gina Robitaille
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Zachary B Lippman
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
| |
Collapse
|
15
|
Functional buffering via cell-specific gene expression promotes tissue homeostasis and cancer robustness. Sci Rep 2022; 12:2974. [PMID: 35194081 PMCID: PMC8863889 DOI: 10.1038/s41598-022-06813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022] Open
Abstract
Functional buffering that ensures biological robustness is critical for maintaining tissue homeostasis, organismal survival, and evolution of novelty. However, the mechanism underlying functional buffering, particularly in multicellular organisms, remains largely elusive. Here, we proposed that functional buffering can be mediated via expression of buffering genes in specific cells and tissues, by which we named Cell-specific Expression-BUffering (CEBU). We developed an inference index (C-score) for CEBU by computing C-scores across 684 human cell lines using genome-wide CRISPR screens and transcriptomic RNA-seq. We report that C-score-identified putative buffering gene pairs are enriched for members of the same duplicated gene family, pathway, and protein complex. Furthermore, CEBU is especially prevalent in tissues of low regenerative capacity (e.g., bone and neuronal tissues) and is weakest in highly regenerative blood cells, linking functional buffering to tissue regeneration. Clinically, the buffering capacity enabled by CEBU can help predict patient survival for multiple cancers. Our results suggest CEBU as a potential buffering mechanism contributing to tissue homeostasis and cancer robustness in humans.
Collapse
|
16
|
Jia Y, Qin C, Traw MB, Chen X, He Y, Kai J, Yang S, Wang L, Hurst LD. In rice splice variants that restore the reading frame after frameshifting indel introduction are common, often induced by the indels and sometimes lead to organism-level rescue. PLoS Genet 2022; 18:e1010071. [PMID: 35180223 PMCID: PMC8893660 DOI: 10.1371/journal.pgen.1010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/03/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
The introduction of frameshifting non-3n indels enables the identification of gene-trait associations. However, it has been hypothesised that recovery of the original reading frame owing to usage of non-canonical splice forms could cause rescue. To date there is very little evidence for organism-level rescue by such a mechanism and it is unknown how commonly indels induce, or are otherwise associated with, frame-restoring splice forms. We perform CRISPR/Cas9 editing of randomly selected loci in rice to investigate these issues. We find that the majority of loci have a frame-restoring isoform. Importantly, three quarters of these isoforms are not seen in the absence of the indels, consistent with indels commonly inducing novel isoforms. This is supported by analysis in the context of NMD knockdowns. We consider in detail the two top rescue candidates, in wax deficient anther 1 (wda1) and brittle culm (bc10), finding that organismal-level rescue in both cases is strong but owing to different splice modification routes. More generally, however, as frame-restoring isoforms are low abundance and possibly too disruptive, such rescue we suggest to be the rare exception, not the rule. Nonetheless, assuming that indels commonly induce frame-restoring isoforms, these results emphasize the need to examine RNA level effects of non-3n indels and suggest that multiple non-3n indels in any given gene are advisable to probe a gene’s trait associations. As protein coding genes are read in units of three (codons), insertions or deletions (indels) that are not a multiple of three long (non 3n) are expected to be especially harmful. Whether they are is important both for interpreting the results of non-3n indel experiments to probe a gene’s functional importance and for diagnostics. Particularly enigmatic are incidences where some non-3n changes in a gene compromise phenotypes while other seemingly comparable ones do not. One explanation for the latter is that a non-3n indel might be rescued via a frame-restoring splice form. Here we examine this hypothesis by inducing non-3n indels in many genes in rice and find that many non-3n indels are associated with a splice form that restores the reading frame. In the majority of these cases the indel appears to induce the potential rescuing splice form. We examine two top hit cases in detail and show functional rescue by splice modification. More generally, the frame-restoring forms are, however, low abundance and probably result in compromised proteins. We conclude then that splice mediated rescue is possible, but probably uncommon. Nonetheless it should not be overlooked in experimental design and interpretation.
Collapse
Affiliation(s)
- Yanxiao Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Qin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Milton Brian Traw
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaonan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Kai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: (SY); (LW); (LDH)
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: (SY); (LW); (LDH)
| | - Laurence D. Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail: (SY); (LW); (LDH)
| |
Collapse
|
17
|
Multi-Omics Analysis of Multiple Glucose-Sensing Receptor Systems in Yeast. Biomolecules 2022; 12:biom12020175. [PMID: 35204676 PMCID: PMC8961648 DOI: 10.3390/biom12020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has long been used to produce alcohol from glucose and other sugars. While much is known about glucose metabolism, relatively little is known about the receptors and signaling pathways that indicate glucose availability. Here, we compare the two glucose receptor systems in S. cerevisiae. The first is a heterodimer of transporter-like proteins (transceptors), while the second is a seven-transmembrane receptor coupled to a large G protein (Gpa2) that acts in coordination with two small G proteins (Ras1 and Ras2). Through comprehensive measurements of glucose-dependent transcription and metabolism, we demonstrate that the two receptor systems have distinct roles in glucose signaling: the G-protein-coupled receptor directs carbohydrate and energy metabolism, while the transceptors regulate ancillary processes such as ribosome, amino acids, cofactor and vitamin metabolism. The large G-protein transmits the signal from its cognate receptor, while the small G-protein Ras2 (but not Ras1) integrates responses from both receptor pathways. Collectively, our analysis reveals the molecular basis for glucose detection and the earliest events of glucose-dependent signal transduction in yeast.
Collapse
|
18
|
Okada H, Saga Y. Repurposing of the enhancer-promoter communication underlies the compensation of Mesp2 by Mesp1. PLoS Genet 2022; 18:e1010000. [PMID: 35025872 PMCID: PMC8791502 DOI: 10.1371/journal.pgen.1010000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/26/2022] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
Organisms are inherently equipped with buffering systems against genetic perturbations. Genetic compensation, the compensatory response by upregulating another gene or genes, is one such buffering mechanism. Recently, a well-conserved compensatory mechanism was proposed: transcriptional adaptation of homologs under the nonsense-mediated mRNA decay pathways. However, this model cannot explain the onset of all compensatory events. We report a novel genetic compensation mechanism operating over the Mesp gene locus. Mesp1 and Mesp2 are paralogs located adjacently in the genome. Mesp2 loss is partially rescued by Mesp1 upregulation in the presomitic mesoderm (PSM). Using a cultured PSM induction system, we reproduced the compensatory response in vitro and found that the Mesp2-enhancer is required to promote Mesp1. We revealed that the Mesp2-enhancer directly interacts with the Mesp1 promoter, thereby upregulating Mesp1 expression upon the loss of Mesp2. Of note, this interaction is established by genomic arrangement upon PSM development independently of Mesp2 disruption. We propose that the repurposing of this established enhancer-promoter communication is the mechanism underlying this compensatory response for the upregulation of the adjacent gene. Genetic compensation, the compensatory response by upregulating another gene or genes, is one of the inherent mechanisms against gene disruption to confer cellular fitness. However, the regulatory mechanisms are largely unknown. Nonsense-mediated mutant mRNA degradation was recently proposed as a conserved mechanism across species to upregulate homologous genes to compensate for a disrupted gene, but this cannot explain compensation events with no mutant mRNA. This study investigated the compensation mechanism operating over adjacent paralogs, Mesp1 and Mesp2, in the genome. Mesp genes encode essential transcription factors in the presomitic mesoderm for development. In general, an enhancer is considered to activate a target gene when it physically interacts with the target. The communication of the Mesp2-enhancer with the Mesp1 promoter is established upon differentiation of the presomitic mesoderm, but this communication activates Mesp1 only when Mesp2 is disrupted, leading to compensation. We revealed a novel compensation mechanism depending on the repurposing of this enhancer-promoter communication by gene disruption. Our study also provides new insight into transcriptional regulation by providing the concept that an enhancer changes its target even among its physically interacting genes in a context-dependent manner.
Collapse
Affiliation(s)
- Hajime Okada
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Kuzmin E, Taylor JS, Boone C. Retention of duplicated genes in evolution. Trends Genet 2022; 38:59-72. [PMID: 34294428 PMCID: PMC8678172 DOI: 10.1016/j.tig.2021.06.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Gene duplication is a prevalent phenomenon across the tree of life. The processes that lead to the retention of duplicated genes are not well understood. Functional genomics approaches in model organisms, such as yeast, provide useful tools to test the mechanisms underlying retention with functional redundancy and divergence of duplicated genes, including fates associated with neofunctionalization, subfunctionalization, back-up compensation, and dosage amplification. Duplicated genes may also be retained as a consequence of structural and functional entanglement. Advances in human gene editing have enabled the interrogation of duplicated genes in the human genome, providing new tools to evaluate the relative contributions of each of these factors to duplicate gene retention and the evolution of genome structure.
Collapse
Affiliation(s)
- Elena Kuzmin
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Ave des Pins Ouest, Montreal, QC, Canada H3A 1A3.
| | - John S Taylor
- Department of Biology, University of Victoria, PO Box 1700, Station CSC, Victoria, BC, Canada V8W 2Y2
| | - Charles Boone
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1; RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan, 351-0198
| |
Collapse
|
20
|
Choi J, Salvail H, Groisman EA. RNA chaperone activates Salmonella virulence program during infection. Nucleic Acids Res 2021; 49:11614-11628. [PMID: 34751407 PMCID: PMC8599858 DOI: 10.1093/nar/gkab992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Organisms often harbor seemingly redundant proteins. In the bacterium Salmonella enterica serovar Typhimurium (S. Typhimurium), the RNA chaperones CspC and CspE appear to play redundant virulence roles because a mutant lacking both chaperones is attenuated, whereas mutants lacking only one exhibit wild-type virulence. We now report that CspC—but not CspE—is necessary to activate the master virulence regulator PhoP when S. Typhimurium experiences mildly acidic pH, such as inside macrophages. This CspC-dependent PhoP activation is specific to mildly acidic pH because a cspC mutant behaves like wild-type S. Typhimurium under other PhoP-activating conditions. Moreover, it is mediated by ugtL, a virulence gene required for PhoP activation inside macrophages. Purified CspC promotes ugtL translation by disrupting a secondary structure in the ugtL mRNA that occludes ugtL’s ribosome binding site. Our findings demonstrate that proteins that are seemingly redundant actually confer distinct and critical functions to the lifestyle of an organism.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Hubert Salvail
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
21
|
Yubero P, Poyatos JF. Dissecting the Fitness Costs of Complex Mutations. Mol Biol Evol 2021; 38:4520-4531. [PMID: 34175930 PMCID: PMC8476139 DOI: 10.1093/molbev/msab193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fitness cost of complex pleiotropic mutations is generally difficult to assess. On the one hand, it is necessary to identify which molecular properties are directly altered by the mutation. On the other, this alteration modifies the activity of many genetic targets with uncertain consequences. Here, we examine the possibility of addressing these challenges by identifying unique predictors of these costs. To this aim, we consider mutations in the RNA polymerase (RNAP) in Escherichia coli as a model of complex mutations. Changes in RNAP modify the global program of transcriptional regulation, with many consequences. Among others is the difficulty to decouple the direct effect of the mutation from the response of the whole system to such mutation. A problem that we solve quantitatively with data of a set of constitutive genes, those on which the global program acts most directly. We provide a statistical framework that incorporates the direct effects and other molecular variables linked to this program as predictors, which leads to the identification that some genes are more suitable to determine costs than others. Therefore, we not only identified which molecular properties best anticipate fitness, but we also present the paradoxical result that, despite pleiotropy, specific genes serve as more solid predictors. These results have connotations for the understanding of the architecture of robustness in biological systems.
Collapse
Affiliation(s)
- Pablo Yubero
- Logic of Genomic Systems Laboratory, CNB-CSIC, Madrid, Spain
| | - Juan F Poyatos
- Logic of Genomic Systems Laboratory, CNB-CSIC, Madrid, Spain
| |
Collapse
|
22
|
Jung KW, Jung JH, Park HY. Functional Roles of Homologous Recombination and Non-Homologous End Joining in DNA Damage Response and Microevolution in Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7070566. [PMID: 34356945 PMCID: PMC8307084 DOI: 10.3390/jof7070566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most deleterious type of DNA lesions because they cause loss of genetic information if not properly repaired. In eukaryotes, homologous recombination (HR) and non-homologous end joining (NHEJ) are required for DSB repair. However, the relationship of HR and NHEJ in DNA damage stress is unknown in the radiation-resistant fungus Cryptococcus neoformans. In this study, we found that the expression levels of HR- and NHEJ-related genes were highly induced in a Rad53-Bdr1 pathway-dependent manner under genotoxic stress. Deletion of RAD51, which is one of the main components in the HR, resulted in growth under diverse types of DNA damage stress, whereas perturbations of KU70 and KU80, which belong to the NHEJ system, did not affect the genotoxic stresses except when bleomycin was used for treatment. Furthermore, deletion of both RAD51 and KU70/80 renders cells susceptible to oxidative stress. Notably, we found that deletion of RAD51 induced a hypermutator phenotype in the fluctuation assay. In contrast to the fluctuation assay, perturbation of KU70 or KU80 induced rapid microevolution similar to that induced by the deletion of RAD51. Collectively, Rad51-mediated HR and Ku70/Ku80-mediated NHEJ regulate the DNA damage response and maintain genome stability.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si 56212, Jeollabuk-Do, Korea; (J.-H.J.); (H.-Y.P.)
- Correspondence: ; Tel.: +82-63-570-3337
| | - Jong-Hyun Jung
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si 56212, Jeollabuk-Do, Korea; (J.-H.J.); (H.-Y.P.)
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Korea
| | - Ha-Young Park
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si 56212, Jeollabuk-Do, Korea; (J.-H.J.); (H.-Y.P.)
| |
Collapse
|
23
|
Kovács K, Farkas Z, Bajić D, Kalapis D, Daraba A, Almási K, Kintses B, Bódi Z, Notebaart RA, Poyatos JF, Kemmeren P, Holstege FCP, Pál C, Papp B. Suboptimal Global Transcriptional Response Increases the Harmful Effects of Loss-of-Function Mutations. Mol Biol Evol 2021; 38:1137-1150. [PMID: 33306797 PMCID: PMC7947755 DOI: 10.1093/molbev/msaa280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The fitness impact of loss-of-function mutations is generally assumed to reflect the loss of specific molecular functions associated with the perturbed gene. Here, we propose that rewiring of the transcriptome upon deleterious gene inactivation is frequently nonspecific and mimics stereotypic responses to external environmental change. Consequently, transcriptional response to gene deletion could be suboptimal and incur an extra fitness cost. Analysis of the transcriptomes of ∼1,500 single-gene deletion Saccharomyces cerevisiae strains supported this scenario. First, most transcriptomic changes are not specific to the deleted gene but are rather triggered by perturbations in functionally diverse genes. Second, gene deletions that alter the expression of dosage-sensitive genes are especially harmful. Third, by elevating the expression level of downregulated genes, we could experimentally mitigate the fitness defect of gene deletions. Our work shows that rewiring of genomic expression upon gene inactivation shapes the harmful effects of mutations.
Collapse
Affiliation(s)
- Károly Kovács
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Zoltán Farkas
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Djordje Bajić
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
- Logic of Genomic Systems Laboratory, Department of Systems Biology, CNB-CSIC, Madrid, Spain
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT
| | - Dorottya Kalapis
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Andreea Daraba
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Karola Almási
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Bálint Kintses
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
- HCEMM-BRC Translational Microbiology Lab, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Zoltán Bódi
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Richard A Notebaart
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Juan F Poyatos
- Logic of Genomic Systems Laboratory, Department of Systems Biology, CNB-CSIC, Madrid, Spain
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Csaba Pál
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Balázs Papp
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| |
Collapse
|
24
|
Deflandre B, Thiébaut N, Planckaert S, Jourdan S, Anderssen S, Hanikenne M, Devreese B, Francis I, Rigali S. Deletion of bglC triggers a genetic compensation response by awakening the expression of alternative beta-glucosidase. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194615. [PMID: 32758700 DOI: 10.1016/j.bbagrm.2020.194615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
In the plant pathogen Streptomyces scabies, the gene bglC encodes a GH1 family cellobiose beta-glucosidase that is both required for primary metabolism and for inducing virulence of the bacterium. Deletion of bglC (strain ΔbglC) surprisingly resulted in the augmentation of the global beta-glucosidase activity of S. scabies. This paradoxical phenotype is highly robust as it has been observed in all bglC deletion mutants independently generated, thereby highlighting a phenomenon of genetic compensation. Comparative proteomics allowed to identify two glycosyl hydrolases - named BcpE1 and BcpE2 - of which peptide levels were significantly increased in strain ΔbglC. Quantitative RT-PCR revealed that the higher abundance of BcpE1 and BcpE2 is triggered at the transcriptional level, the expression of their respective gene being 100 and 15 times upregulated. Enzymatic studies with pure BcpE proteins showed that they both possess beta-glucosidase activity thereby explaining the genotypic-phenotypic discrepancy of the bglC deletion mutant. The GH1 family BcpE1 could hydrolyze cellobiose and generate glucose similarly to BglC itself thereby mainly contributing to the survival of strain ΔbglC when cellobiose is provided as sole nutrient source. The low affinity of BcpE2 for cellobiose suggests that this GH3 family beta-glucosidase would instead primarily target another and yet unknown glucose-beta-1,4-linked substrate. These results make S. scabies a new model system to study genetic compensation. Discovering how, either the bglC DNA locus, its mRNA, the BglC protein, or either its enzymatic activity controls bcpE genes' expression, will unveil new mechanisms directing transcriptional repression.
Collapse
Affiliation(s)
- Benoit Deflandre
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, Liège B-4000, Belgium
| | - Noémie Thiébaut
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, Liège B-4000, Belgium
| | - Sören Planckaert
- Laboratory of Microbiology, Protein Research Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent B-9000, Belgium
| | - Samuel Jourdan
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, Liège B-4000, Belgium
| | - Sinaeda Anderssen
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, Liège B-4000, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Bart Devreese
- Laboratory of Microbiology, Protein Research Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent B-9000, Belgium
| | - Isolde Francis
- Department of Biology, California State University, Bakersfield 93311, CA, USA
| | - Sébastien Rigali
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, Liège B-4000, Belgium.
| |
Collapse
|
25
|
Kuzmin E, VanderSluis B, Nguyen Ba AN, Wang W, Koch EN, Usaj M, Khmelinskii A, Usaj MM, van Leeuwen J, Kraus O, Tresenrider A, Pryszlak M, Hu MC, Varriano B, Costanzo M, Knop M, Moses A, Myers CL, Andrews BJ, Boone C. Exploring whole-genome duplicate gene retention with complex genetic interaction analysis. Science 2020; 368:eaaz5667. [PMID: 32586993 PMCID: PMC7539174 DOI: 10.1126/science.aaz5667] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
Whole-genome duplication has played a central role in the genome evolution of many organisms, including the human genome. Most duplicated genes are eliminated, and factors that influence the retention of persisting duplicates remain poorly understood. We describe a systematic complex genetic interaction analysis with yeast paralogs derived from the whole-genome duplication event. Mapping of digenic interactions for a deletion mutant of each paralog, and of trigenic interactions for the double mutant, provides insight into their roles and a quantitative measure of their functional redundancy. Trigenic interaction analysis distinguishes two classes of paralogs: a more functionally divergent subset and another that retained more functional overlap. Gene feature analysis and modeling suggest that evolutionary trajectories of duplicated genes are dictated by combined functional and structural entanglement factors.
Collapse
Affiliation(s)
- Elena Kuzmin
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex N Nguyen Ba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matej Usaj
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anton Khmelinskii
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | | | | | - Oren Kraus
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Amy Tresenrider
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael Pryszlak
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Ming-Che Hu
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Brenda Varriano
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michael Costanzo
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
- Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alan Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Evolution and Function, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Brenda J Andrews
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
26
|
Zachariah S, Gray DA. Deubiquitinating Enzymes in Model Systems and Therapy: Redundancy and Compensation Have Implications. Bioessays 2019; 41:e1900112. [DOI: 10.1002/bies.201900112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Sarah Zachariah
- Centre for Cancer TherapeuticsOttawa Hospital Research Institute 501 Smyth Box 926 Ottawa ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa 451 Smyth Rd Ottawa ON K1H 8M5 Canada
| | - Douglas A. Gray
- Centre for Cancer TherapeuticsOttawa Hospital Research Institute 501 Smyth Box 926 Ottawa ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa 451 Smyth Rd Ottawa ON K1H 8M5 Canada
| |
Collapse
|
27
|
Chagovetz AA, Klatt Shaw D, Ritchie E, Hoshijima K, Grunwald DJ. Interactions among ryanodine receptor isotypes contribute to muscle fiber type development and function. Dis Model Mech 2019; 13:dmm.038844. [PMID: 31383689 PMCID: PMC6906632 DOI: 10.1242/dmm.038844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations affecting ryanodine receptor (RyR) calcium release channels commonly underlie congenital myopathies. Although these channels are known principally for their essential roles in muscle contractility, mutations in the human RYR1 gene result in a broad spectrum of phenotypes, including muscle weakness, altered proportions of fiber types, anomalous muscle fibers with cores or centrally placed nuclei, and dysmorphic craniofacial features. Currently, it is unknown which phenotypes directly reflect requirements for RyRs and which result secondarily to aberrant muscle function. To identify biological processes requiring RyR function, skeletal muscle development was analyzed in zebrafish embryos harboring protein-null mutations. RyR channels contribute to both muscle fiber development and function. Loss of some RyRs had modest effects, altering muscle fiber-type specification in the embryo without compromising viability. In addition, each RyR-encoding gene contributed to normal swimming behavior and muscle function. The RyR channels do not function in a simple additive manner. For example, although isoform RyR1a is sufficient for muscle contraction in the absence of RyR1b, RyR1a normally attenuates the activity of the co-expressed RyR1b channel in slow muscle. RyR3 also acts to modify the functions of other RyR channels. Furthermore, diminished RyR-dependent contractility affects both muscle fiber maturation and craniofacial development. These findings help to explain some of the heterogeneity of phenotypes that accompany RyR1 mutations in humans.
Collapse
Affiliation(s)
- Alexis A Chagovetz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Dana Klatt Shaw
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin Ritchie
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - David J Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
28
|
Dandage R, Landry CR. Paralog dependency indirectly affects the robustness of human cells. Mol Syst Biol 2019; 15:e8871. [PMID: 31556487 PMCID: PMC6757259 DOI: 10.15252/msb.20198871] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
The protective redundancy of paralogous genes partly relies on the fact that they carry their functions independently. However, a significant fraction of paralogous proteins may form functionally dependent pairs, for instance, through heteromerization. As a consequence, one could expect these heteromeric paralogs to be less protective against deleterious mutations. To test this hypothesis, we examined the robustness landscape of gene loss-of-function by CRISPR-Cas9 in more than 450 human cell lines. This landscape shows regions of greater deleteriousness to gene inactivation as a function of key paralog properties. Heteromeric paralogs are more likely to occupy such regions owing to their high expression and large number of protein-protein interaction partners. Further investigation revealed that heteromers may also be under stricter dosage balance, which may also contribute to the higher deleteriousness upon gene inactivation. Finally, we suggest that physical dependency may contribute to the deleteriousness upon loss-of-function as revealed by the correlation between the strength of interactions between paralogs and their higher deleteriousness upon loss of function.
Collapse
Affiliation(s)
- Rohan Dandage
- Département de BiologieUniversité LavalQuébecQCCanada
- Département de Biochimie, Microbiologie et Bio‐InformatiqueUniversité LavalQuébecQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- The Québec Network for Research on Protein Function, Engineering, and Applications (PROTEO)Université LavalQuébecQCCanada
- Centre de Recherche en Données Massives (CRDM)Université LavalQuébecQCCanada
| | - Christian R Landry
- Département de BiologieUniversité LavalQuébecQCCanada
- Département de Biochimie, Microbiologie et Bio‐InformatiqueUniversité LavalQuébecQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- The Québec Network for Research on Protein Function, Engineering, and Applications (PROTEO)Université LavalQuébecQCCanada
- Centre de Recherche en Données Massives (CRDM)Université LavalQuébecQCCanada
| |
Collapse
|
29
|
Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, Man J, Liu L, Lemmon ZH, Jones DS, Van Eck J, Jackson DP, Bartlett ME, Nimchuk ZL, Lippman ZB. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat Genet 2019; 51:786-792. [PMID: 30988512 DOI: 10.1038/s41588-019-0389-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/07/2019] [Indexed: 01/19/2023]
Abstract
Precise control of plant stem cell proliferation is necessary for the continuous and reproducible development of plant organs1,2. The peptide ligand CLAVATA3 (CLV3) and its receptor protein kinase CLAVATA1 (CLV1) maintain stem cell homeostasis within a deeply conserved negative feedback circuit1,2. In Arabidopsis, CLV1 paralogs also contribute to homeostasis, by compensating for the loss of CLV1 through transcriptional upregulation3. Here, we show that compensation4,5 operates in diverse lineages for both ligands and receptors, but while the core CLV signaling module is conserved, compensation mechanisms have diversified. Transcriptional compensation between ligand paralogs operates in tomato, facilitated by an ancient gene duplication that impacted the domestication of fruit size. In contrast, we found little evidence for transcriptional compensation between ligands in Arabidopsis and maize, and receptor compensation differs between tomato and Arabidopsis. Our findings show that compensation among ligand and receptor paralogs is critical for stem cell homeostasis, but that diverse genetic mechanisms buffer conserved developmental programs.
Collapse
Affiliation(s)
- Daniel Rodriguez-Leal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Inari Agriculture, Cambridge, MA, USA
| | - Cao Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Choon-Tak Kwon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Cara Soyars
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jarrett Man
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Zachary H Lemmon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Inari Agriculture, Cambridge, MA, USA
| | - Daniel S Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joyce Van Eck
- Boyce Thompson Institute for Plant Science, Ithaca, NY, USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | | | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
30
|
Sahu AD, S Lee J, Wang Z, Zhang G, Iglesias-Bartolome R, Tian T, Wei Z, Miao B, Nair NU, Ponomarova O, Friedman AA, Amzallag A, Moll T, Kasumova G, Greninger P, Egan RK, Damon LJ, Frederick DT, Jerby-Arnon L, Wagner A, Cheng K, Park SG, Robinson W, Gardner K, Boland G, Hannenhalli S, Herlyn M, Benes C, Flaherty K, Luo J, Gutkind JS, Ruppin E. Genome-wide prediction of synthetic rescue mediators of resistance to targeted and immunotherapy. Mol Syst Biol 2019; 15:e8323. [PMID: 30858180 PMCID: PMC6413886 DOI: 10.15252/msb.20188323] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 12/31/2018] [Accepted: 01/21/2019] [Indexed: 01/09/2023] Open
Abstract
Most patients with advanced cancer eventually acquire resistance to targeted therapies, spurring extensive efforts to identify molecular events mediating therapy resistance. Many of these events involve synthetic rescue (SR) interactions, where the reduction in cancer cell viability caused by targeted gene inactivation is rescued by an adaptive alteration of another gene (the rescuer). Here, we perform a genome-wide in silico prediction of SR rescuer genes by analyzing tumor transcriptomics and survival data of 10,000 TCGA cancer patients. Predicted SR interactions are validated in new experimental screens. We show that SR interactions can successfully predict cancer patients' response and emerging resistance. Inhibiting predicted rescuer genes sensitizes resistant cancer cells to therapies synergistically, providing initial leads for developing combinatorial approaches to overcome resistance proactively. Finally, we show that the SR analysis of melanoma patients successfully identifies known mediators of resistance to immunotherapy and predicts novel rescuers.
Collapse
Affiliation(s)
- Avinash Das Sahu
- Department of Biostatistics and Computational Biology, Harvard School of Public Health, Boston, MA, USA
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
| | - Joo S Lee
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhiyong Wang
- Department of Pharmacology & Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Neurosurgery and The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | | | - Tian Tian
- New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhi Wei
- New Jersey Institute of Technology, Newark, NJ, USA
| | - Benchun Miao
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Nishanth Ulhas Nair
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olga Ponomarova
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Adam A Friedman
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Arnaud Amzallag
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Tabea Moll
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Gyulnara Kasumova
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Patricia Greninger
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Regina K Egan
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Leah J Damon
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Dennie T Frederick
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Livnat Jerby-Arnon
- Schools of Computer Science & Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, the Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Kuoyuan Cheng
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
| | - Seung Gu Park
- Department of Biostatistics and Computational Biology, Harvard School of Public Health, Boston, MA, USA
| | - Welles Robinson
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
| | - Kevin Gardner
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genevieve Boland
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Sridhar Hannenhalli
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Cyril Benes
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Keith Flaherty
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Ji Luo
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Silvio Gutkind
- Department of Pharmacology & Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Eytan Ruppin
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Schools of Computer Science & Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
31
|
Minor Isozymes Tailor Yeast Metabolism to Carbon Availability. mSystems 2019; 4:mSystems00170-18. [PMID: 30834327 PMCID: PMC6392091 DOI: 10.1128/msystems.00170-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/21/2019] [Indexed: 11/23/2022] Open
Abstract
Gene duplication is one of the main evolutionary paths to new protein function. Typically, duplicated genes either accumulate mutations and degrade into pseudogenes or are retained and diverge in function. Some duplicated genes, however, show long-term persistence without apparently acquiring new function. An important class of isozymes consists of those that catalyze the same reaction in the same compartment, where knockout of one isozyme causes no known functional defect. Here we present an approach to assigning specific functional roles to seemingly redundant isozymes. First, gene expression data are analyzed computationally to identify conditions under which isozyme expression diverges. Then, knockouts are compared under those conditions. This approach revealed that the expression of many yeast isozymes diverges in response to carbon availability and that carbon source manipulations can induce fitness phenotypes for seemingly redundant isozymes. A driver of these fitness phenotypes is differential allosteric enzyme regulation, indicating isozyme divergence to achieve more-optimal control of metabolism. Isozymes are enzymes that differ in sequence but catalyze the same chemical reactions. Despite their apparent redundancy, isozymes are often retained over evolutionary time, suggesting that they contribute to fitness. We developed an unsupervised computational method for identifying environmental conditions under which isozymes are likely to make fitness contributions. This method analyzes published gene expression data to find specific experimental perturbations that induce differential isozyme expression. In yeast, we found that isozymes are strongly enriched in the pathways of central carbon metabolism and that many isozyme pairs show anticorrelated expression during the respirofermentative shift. Building on these observations, we assigned function to two minor central carbon isozymes, aconitase 2 (ACO2) and pyruvate kinase 2 (PYK2). ACO2 is expressed during fermentation and proves advantageous when glucose is limiting. PYK2 is expressed during respiration and proves advantageous for growth on three-carbon substrates. PYK2’s deletion can be rescued by expressing the major pyruvate kinase only if that enzyme carries mutations mirroring PYK2’s allosteric regulation. Thus, central carbon isozymes help to optimize allosteric metabolic regulation under a broad range of potential nutrient conditions while requiring only a small number of transcriptional states. IMPORTANCE Gene duplication is one of the main evolutionary paths to new protein function. Typically, duplicated genes either accumulate mutations and degrade into pseudogenes or are retained and diverge in function. Some duplicated genes, however, show long-term persistence without apparently acquiring new function. An important class of isozymes consists of those that catalyze the same reaction in the same compartment, where knockout of one isozyme causes no known functional defect. Here we present an approach to assigning specific functional roles to seemingly redundant isozymes. First, gene expression data are analyzed computationally to identify conditions under which isozyme expression diverges. Then, knockouts are compared under those conditions. This approach revealed that the expression of many yeast isozymes diverges in response to carbon availability and that carbon source manipulations can induce fitness phenotypes for seemingly redundant isozymes. A driver of these fitness phenotypes is differential allosteric enzyme regulation, indicating isozyme divergence to achieve more-optimal control of metabolism.
Collapse
|
32
|
Juarez-Carreño S, Morante J, Dominguez M. Systemic signalling and local effectors in developmental stability, body symmetry, and size. Cell Stress 2018; 2:340-361. [PMID: 31225459 PMCID: PMC6551673 DOI: 10.15698/cst2018.12.167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Symmetric growth and the origins of fluctuating asymmetry are unresolved phenomena of biology. Small, and sometimes noticeable, deviations from perfect bilateral symmetry reflect the vulnerability of development to perturbations. The degree of asymmetry is related to the magnitude of the perturbations and the ability of an individual to cope with them. As the left and right sides of an individual were presumed to be genetically identical, deviations of symmetry were traditionally attributed to non-genetic effects such as environmental and developmental noise. In this review, we draw attention to other possible sources of variability, especially to somatic mutations and transposons. Mutations are a major source of phenotypic variability and recent genomic data have highlighted somatic mutations as ubiquitous, even in phenotypically normal individuals. We discuss the importance of factors that are responsible for buffering and stabilizing the genome and for maintaining size robustness and quality through elimination of less-fit or damaged cells. However, the important question that arises from these studies is whether this self-correcting capacity and intrinsic organ size controls are sufficient to explain how symmetric structures can reach an identical size and shape. Indeed, recent discoveries in the fruit fly have uncovered a conserved hormone of the insulin/IGF/relaxin family, Dilp8, that is responsible for stabilizing body size and symmetry in the face of growth perturbations. Dilp8 alarm signals periphery growth status to the brain, where it acts on its receptor Lgr3. Loss of Dilp8-Lgr3 signaling renders flies incapable of detecting growth perturbations and thus maintaining a stable size and symmetry. These findings help to understand how size and symmetry of somatic tissues remain undeterred in noisy environments, after injury or illnesses, and in the presence of accumulated somatic mutations.
Collapse
Affiliation(s)
- Sergio Juarez-Carreño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Avda Santiago Ramón y Cajal s/n, Campus de Sant Joan, Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Avda Santiago Ramón y Cajal s/n, Campus de Sant Joan, Alicante, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Avda Santiago Ramón y Cajal s/n, Campus de Sant Joan, Alicante, Spain
| |
Collapse
|
33
|
Jones DM, Wells R, Pullen N, Trick M, Irwin JA, Morris RJ. Spatio-temporal expression dynamics differ between homologues of flowering time genes in the allopolyploid Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:103-118. [PMID: 29989238 PMCID: PMC6175450 DOI: 10.1111/tpj.14020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/18/2018] [Accepted: 06/19/2018] [Indexed: 05/20/2023]
Abstract
Polyploidy is a recurrent feature of eukaryotic evolution and has been linked to increases in complexity, adaptive radiation and speciation. Within angiosperms such events have occurred repeatedly in many plant lineages. Here we investigate the retention and spatio-temporal expression dynamics of duplicated genes predicted to regulate the floral transition in Brassica napus (oilseed rape, OSR). We show that flowering time genes are preferentially retained relative to other genes in the OSR genome. Using a transcriptome time series in two tissues (leaf and shoot apex) across development we show that 67% of these retained flowering time genes are expressed. Furthermore, between 64% (leaf) and 74% (shoot apex) of the retained gene homologues show diverged expression patterns relative to each other across development, suggesting neo- or subfunctionalization. A case study of homologues of the shoot meristem identity gene TFL1 reveals differences in cis-regulatory elements that could explain this divergence. Such differences in the expression dynamics of duplicated genes highlight the challenges involved in translating gene regulatory networks from diploid model systems to more complex polyploid crop species.
Collapse
Affiliation(s)
- D. Marc Jones
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Rachel Wells
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Nick Pullen
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Martin Trick
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Judith A. Irwin
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Richard J. Morris
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
34
|
Yang YF, Cao W, Wu S, Qian W. Genetic Interaction Network as an Important Determinant of Gene Order in Genome Evolution. Mol Biol Evol 2018; 34:3254-3266. [PMID: 29029158 PMCID: PMC5850728 DOI: 10.1093/molbev/msx264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although it is generally accepted that eukaryotic gene order is not random, the basic principles of gene arrangement on a chromosome remain poorly understood. Here, we extended existing population genetics theories that were based on two-locus models and proposed a hypothesis that genetic interaction networks drive the evolution of eukaryotic gene order. We predicted that genes with positive epistasis would move toward each other in evolution, during which a negative correlation between epistasis and gene distance formed. We tested and confirmed our prediction with computational simulations and empirical data analyses. Importantly, we demonstrated that gene order in the budding yeast could be successfully predicted from the genetic interaction network. Taken together, our study reveals the role of the genetic interaction network in the evolution of gene order, extends our understanding of the encoding principles in genomes, and potentially offers new strategies to improve synthetic biology.
Collapse
Affiliation(s)
- Yu-Fei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqing Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shaohuan Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Galimba KD, Martínez-Gómez J, Di Stilio VS. Gene Duplication and Transference of Function in the paleo AP3 Lineage of Floral Organ Identity Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:334. [PMID: 29628932 PMCID: PMC5876318 DOI: 10.3389/fpls.2018.00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/28/2018] [Indexed: 06/01/2023]
Abstract
The floral organ identity gene APETALA3 (AP3) is a MADS-box transcription factor involved in stamen and petal identity that belongs to the B-class of the ABC model of flower development. Thalictrum (Ranunculaceae), an emerging model in the non-core eudicots, has AP3 homologs derived from both ancient and recent gene duplications. Prior work has shown that petals have been lost repeatedly and independently in Ranunculaceae in correlation with the loss of a specific AP3 paralog, and Thalictrum represents one of these instances. The main goal of this study was to conduct a functional analysis of the three AP3 orthologs present in Thalictrum thalictroides, representing the paleoAP3 gene lineage, to determine the degree of redundancy versus divergence after gene duplication. Because Thalictrum lacks petals, and has lost the petal-specific AP3, we also asked whether heterotopic expression of the remaining AP3 genes contributes to the partial transference of petal function to the first whorl found in insect-pollinated species. To address these questions, we undertook functional characterization by virus-induced gene silencing (VIGS), protein-protein interaction and binding site analyses. Our results illustrate partial redundancy among Thalictrum AP3s, with deep conservation of B-class function in stamen identity and a novel role in ectopic petaloidy of sepals. Certain aspects of petal function of the lost AP3 locus have apparently been transferred to the other paralogs. A novel result is that the protein products interact not only with each other, but also as homodimers. Evidence presented here also suggests that expression of the different ThtAP3 paralogs is tightly integrated, with an apparent disruption of B function homeostasis upon silencing of one of the paralogs that codes for a truncated protein. To explain this result, we propose two testable alternative scenarios: that the truncated protein is a dominant negative mutant or that there is a compensational response as part of a back-up circuit. The evidence for promiscuous protein-protein interactions via yeast two-hybrid combined with the detection of AP3 specific binding motifs in all B-class gene promoters provide partial support for these hypotheses.
Collapse
|
36
|
Fares MA, Sabater-Muñoz B, Toft C. Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations. Genome Biol Evol 2017; 9:1229-1240. [PMID: 28459980 PMCID: PMC5433386 DOI: 10.1093/gbe/evx085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker’s yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast.
Collapse
Affiliation(s)
- Mario A Fares
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Valencia, Spain.,Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valencia, Paterna, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Beatriz Sabater-Muñoz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Valencia, Spain.,Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valencia, Paterna, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Christina Toft
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valencia, Paterna, Spain.,Department of Genetics, University of Valencia, Burjasot, Spain.,Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Burjasot, Valencia, Spain
| |
Collapse
|
37
|
CRISPR Technology Reveals RAD(51)-ical Mechanisms of Repair in Roundworms: An Educational Primer for Use with "Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans". Genetics 2017; 204:883-891. [PMID: 28114101 DOI: 10.1534/genetics.116.195479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mechanisms cells use to maintain genetic fidelity via DNA repair and the accuracy of these processes have garnered interest from scientists engaged in basic research to clinicians seeking improved treatment for cancer patients. Despite the continued advances, many details of DNA repair are still incompletely understood. In addition, the inherent complexity of DNA repair processes, even at the most fundamental level, makes it a challenging topic. This primer is meant to assist both educators and students in using a recent paper, "Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in Caenorhabditis elegans," to understand mechanisms of DNA repair. The goals of this primer are to highlight and clarify several key techniques utilized, with special emphasis on the clustered, regularly interspaced, short palindromic repeats technique and the ways in which it has revolutionized genetics research, as well as to provide questions for deeper in-class discussion.
Collapse
|
38
|
Elena López-Calcagno P, Omar Abuzaid A, Lawson T, Anne Raines C. Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin-Benson cycle. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2285-2298. [PMID: 28430985 PMCID: PMC5447874 DOI: 10.1093/jxb/erx084] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
CP12 is a small, redox-sensitive protein, the most detailed understanding of which is the thioredoxin-mediated regulation of the Calvin-Benson cycle, where it facilitates the formation of a complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) in response to changes in light intensity. In most organisms, CP12 proteins are encoded by small multigene families, where the importance of each individual CP12 gene in vivo has not yet been reported. We used Arabidopsis thaliana T-DNA mutants and RNAi transgenic lines with reduced levels of CP12 transcript to determine the relative importance of each of the CP12 genes. We found that single cp12-1, cp12-2, and cp12-3 mutants do not develop a severe photosynthetic or growth phenotype. In contrast, reductions of both CP12-1 and CP12-2 transcripts lead to reductions in photosynthetic capacity and to slower growth and reduced seed yield. No clear phenotype for CP12-3 was evident. Additionally, the levels of PRK protein are reduced in the cp12-1, cp12-1/2, and multiple mutants. Our results suggest that there is functional redundancy between CP12-1 and CP12-2 in Arabidopsis where these proteins have a role in determining the level of PRK in mature leaves and hence photosynthetic capacity.
Collapse
Affiliation(s)
| | - Amani Omar Abuzaid
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Tracy Lawson
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Christine Anne Raines
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
39
|
Jacobs C, Lambourne L, Xia Y, Segrè D. Upon Accounting for the Impact of Isoenzyme Loss, Gene Deletion Costs Anticorrelate with Their Evolutionary Rates. PLoS One 2017; 12:e0170164. [PMID: 28107392 PMCID: PMC5249160 DOI: 10.1371/journal.pone.0170164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 12/30/2016] [Indexed: 12/19/2022] Open
Abstract
System-level metabolic network models enable the computation of growth and metabolic phenotypes from an organism's genome. In particular, flux balance approaches have been used to estimate the contribution of individual metabolic genes to organismal fitness, offering the opportunity to test whether such contributions carry information about the evolutionary pressure on the corresponding genes. Previous failure to identify the expected negative correlation between such computed gene-loss cost and sequence-derived evolutionary rates in Saccharomyces cerevisiae has been ascribed to a real biological gap between a gene's fitness contribution to an organism "here and now" and the same gene's historical importance as evidenced by its accumulated mutations over millions of years of evolution. Here we show that this negative correlation does exist, and can be exposed by revisiting a broadly employed assumption of flux balance models. In particular, we introduce a new metric that we call "function-loss cost", which estimates the cost of a gene loss event as the total potential functional impairment caused by that loss. This new metric displays significant negative correlation with evolutionary rate, across several thousand minimal environments. We demonstrate that the improvement gained using function-loss cost over gene-loss cost is explained by replacing the base assumption that isoenzymes provide unlimited capacity for backup with the assumption that isoenzymes are completely non-redundant. We further show that this change of the assumption regarding isoenzymes increases the recall of epistatic interactions predicted by the flux balance model at the cost of a reduction in the precision of the predictions. In addition to suggesting that the gene-to-reaction mapping in genome-scale flux balance models should be used with caution, our analysis provides new evidence that evolutionary gene importance captures much more than strict essentiality.
Collapse
Affiliation(s)
- Christopher Jacobs
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Luke Lambourne
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | - Yu Xia
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila. Genetics 2016; 204:613-630. [PMID: 27558138 PMCID: PMC5068850 DOI: 10.1534/genetics.116.192328] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022] Open
Abstract
The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster. We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses.
Collapse
|
41
|
Complementary Roles of GADD34- and CReP-Containing Eukaryotic Initiation Factor 2α Phosphatases during the Unfolded Protein Response. Mol Cell Biol 2016; 36:1868-80. [PMID: 27161320 DOI: 10.1128/mcb.00190-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/27/2016] [Indexed: 02/02/2023] Open
Abstract
Phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation in stressed cells. While phosphorylated eIF2α (P-eIF2α) attenuates global protein synthesis, mRNAs encoding stress proteins are more efficiently translated. Two eIF2α phosphatases, containing GADD34 and CReP, catalyze P-eIF2α dephosphorylation. The current view of GADD34, whose transcription is stress induced, is that it functions in a feedback loop to resolve cell stress. In contrast, CReP, which is constitutively expressed, controls basal P-eIF2α levels in unstressed cells. Our studies show that GADD34 drives substantial changes in mRNA translation in unstressed cells, particularly targeting the secretome. Following activation of the unfolded protein response (UPR), rapid translation of GADD34 mRNA occurs and GADD34 is essential for UPR progression. In the absence of GADD34, eIF2α phosphorylation is persistently enhanced and the UPR translational program is significantly attenuated. This "stalled" UPR is relieved by the subsequent activation of compensatory mechanisms that include AKT-mediated suppression of PKR-like kinase (PERK) and increased expression of CReP mRNA, partially restoring protein synthesis. Our studies highlight the coordinate regulation of UPR by the GADD34- and CReP-containing eIF2α phosphatases to control cell viability.
Collapse
|
42
|
Karmon A, Pilpel Y. Biological causal links on physiological and evolutionary time scales. eLife 2016; 5:e14424. [PMID: 27113916 PMCID: PMC4846369 DOI: 10.7554/elife.14424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/04/2016] [Indexed: 01/03/2023] Open
Abstract
Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning.
Collapse
Affiliation(s)
- Amit Karmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
43
|
Ghosh P, Grellscheid SN, Sowdhamini R. A tale of two paralogs: human Transformer2 proteins with differential RNA-binding affinities. J Biomol Struct Dyn 2015; 34:1979-86. [PMID: 26414300 DOI: 10.1080/07391102.2015.1100551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Transformer2 (Tra2) proteins in humans are homologues of the Drosophila Tra2 protein. One of the two RNA-binding paralogs, Tra2β, has been very well-studied over the past decade, but not much is known about Tra2α. It was very recently shown that the two proteins demonstrate the phenomenon of paralog compensation. Here, we provide a structural basis for this genetic backup circuit, using molecular modelling and dynamics studies. We show that the two proteins display similar binding specificities, but differential affinities to a short GAA-rich RNA stretch. Starting from the 6-nucleotide RNA in the solution structure, close to 4000 virtual mutations were modelled on RNA and the domain-RNA interactions were studied after energy minimisation to convergence. Separately, another known 13-nucleotide stretch was docked and the domain-RNA interactions were observed through a 100-ns dynamics trajectory. We have also demonstrated the 'compensatory' mechanism at the level of domains in one of the domain repeat-containing RNA-binding proteins.
Collapse
Affiliation(s)
- Pritha Ghosh
- a National Centre for Biological Sciences , Tata Institute of Fundamental Research , GKVK Campus, Bellary Road, Bangalore 560065 , Karnataka , India
| | | | - R Sowdhamini
- a National Centre for Biological Sciences , Tata Institute of Fundamental Research , GKVK Campus, Bellary Road, Bangalore 560065 , Karnataka , India
| |
Collapse
|
44
|
Payne JL, Wagner A. Mechanisms of mutational robustness in transcriptional regulation. Front Genet 2015; 6:322. [PMID: 26579194 PMCID: PMC4621482 DOI: 10.3389/fgene.2015.00322] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022] Open
Abstract
Robustness is the invariance of a phenotype in the face of environmental or genetic change. The phenotypes produced by transcriptional regulatory circuits are gene expression patterns that are to some extent robust to mutations. Here we review several causes of this robustness. They include robustness of individual transcription factor binding sites, homotypic clusters of such sites, redundant enhancers, transcription factors, redundant transcription factors, and the wiring of transcriptional regulatory circuits. Such robustness can either be an adaptation by itself, a byproduct of other adaptations, or the result of biophysical principles and non-adaptive forces of genome evolution. The potential consequences of such robustness include complex regulatory network topologies that arise through neutral evolution, as well as cryptic variation, i.e., genotypic divergence without phenotypic divergence. On the longest evolutionary timescales, the robustness of transcriptional regulation has helped shape life as we know it, by facilitating evolutionary innovations that helped organisms such as flowering plants and vertebrates diversify.
Collapse
Affiliation(s)
- Joshua L Payne
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich Zurich, Switzerland ; Swiss Institute of Bioinformatics Lausanne, Switzerland
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich Zurich, Switzerland ; Swiss Institute of Bioinformatics Lausanne, Switzerland ; The Santa Fe Institute Santa Fe, NM, USA
| |
Collapse
|
45
|
Fares MA. The origins of mutational robustness. Trends Genet 2015; 31:373-81. [PMID: 26013677 DOI: 10.1016/j.tig.2015.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/17/2022]
Abstract
Biological systems are resistant to genetic changes; a property known as mutational robustness, the origin of which remains an open question. In recent years, researchers have explored emergent properties of biological systems and mechanisms of genetic redundancy to reveal how mutational robustness emerges and persists. Several mechanisms have been proposed to explain the origin of mutational robustness, including molecular chaperones and gene duplication. The latter has received much attention, but its role in robustness remains controversial. Here, I examine recent findings linking genetic redundancy through gene duplication and mutational robustness. Experimental evolution and genome resequencing have made it possible to test the role of gene duplication in tolerating mutations at both the coding and regulatory levels. This evidence as well as previous findings on regulatory reprogramming of duplicates support the role of gene duplication in the origin of robustness.
Collapse
Affiliation(s)
- Mario A Fares
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain; Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
46
|
Lu X, Megchelenbrink W, Notebaart RA, Huynen MA. Predicting human genetic interactions from cancer genome evolution. PLoS One 2015; 10:e0125795. [PMID: 25933428 PMCID: PMC4416779 DOI: 10.1371/journal.pone.0125795] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/25/2015] [Indexed: 11/18/2022] Open
Abstract
Synthetic Lethal (SL) genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75) for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.
Collapse
Affiliation(s)
- Xiaowen Lu
- Department of Bioinformatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Wout Megchelenbrink
- Department of Bioinformatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Richard A. Notebaart
- Department of Bioinformatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail: (RAN); (MAH)
| | - Martijn A. Huynen
- Department of Bioinformatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail: (RAN); (MAH)
| |
Collapse
|
47
|
Evolutionary Developmental Biology and the Limits of Philosophical Accounts of Mechanistic Explanation. HISTORY, PHILOSOPHY AND THEORY OF THE LIFE SCIENCES 2015. [DOI: 10.1007/978-94-017-9822-8_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Somatic mutations favorable to patient survival are predominant in ovarian carcinomas. PLoS One 2014; 9:e112561. [PMID: 25390899 PMCID: PMC4229214 DOI: 10.1371/journal.pone.0112561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022] Open
Abstract
Somatic mutation accumulation is a major cause of abnormal cell growth. However, some mutations in cancer cells may be deleterious to the survival and proliferation of the cancer cells, thus offering a protective effect to the patients. We investigated this hypothesis via a unique analysis of the clinical and somatic mutation datasets of ovarian carcinomas published by the Cancer Genome Atlas. We defined and screened 562 macro mutation signatures (MMSs) for their associations with the overall survival of 320 ovarian cancer patients. Each MMS measures the number of mutations present on the member genes (except for TP53) covered by a specific Gene Ontology (GO) term in each tumor. We found that somatic mutations favorable to the patient survival are predominant in ovarian carcinomas compared to those indicating poor clinical outcomes. Specially, we identified 19 (3) predictive MMSs that are, usually by a nonlinear dose-dependent effect, associated with good (poor) patient survival. The false discovery rate for the 19 "positive" predictors is at the level of 0.15. The GO terms corresponding to these MMSs include "lysosomal membrane" and "response to hypoxia", each of which is relevant to the progression and therapy of cancer. Using these MMSs as features, we established a classification tree model which can effectively partition the training samples into three prognosis groups regarding the survival time. We validated this model on an independent dataset of the same disease (Log-rank p-value < 2.3 × 10(-4)) and a dataset of breast cancer (Log-rank p-value < 9.3 × 10(-3)). We compared the GO terms corresponding to these MMSs and those enriched with expression-based predictive genes. The analysis showed that the GO term pairs with large similarity are mainly pertinent to the proteins located on the cell organelles responsible for material transport and waste disposal, suggesting the crucial role of these proteins in cancer mortality.
Collapse
|
49
|
Xing A, Williams ME, Bourett TM, Hu W, Hou Z, Meeley RB, Jaqueth J, Dam T, Li B. A pair of homoeolog ClpP5 genes underlies a virescent yellow-like mutant and its modifier in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:192-205. [PMID: 24888539 DOI: 10.1111/tpj.12568] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/28/2014] [Accepted: 05/13/2014] [Indexed: 05/24/2023]
Abstract
Gene-background interaction is a commonly observed phenomenon in many species, but the molecular mechanisms of such an interaction is less well understood. Here we report the cloning of a maize mutant gene and its modifier. A recessive mutant with a virescent yellow-like (vyl) phenotype was identified in an ethyl methanesulfonate-mutagenized population derived from the maize inbred line B73. Homozygous mutant maize plants exhibited a yellow leaf phenotype after emergence but gradually recovered and became indistinguishable from wild-type plants after approximately 2 weeks. Taking the positional cloning approach, the Chr.9_ClpP5 gene, one of the proteolytic subunits of the chloroplast Clp protease complex, was identified and validated as the candidate gene for vyl. When introgressed by backcross into the maize inbred line PH09B, the mutant phenotype of vyl lasted much longer in the greenhouse and was lethal in the field, implying the presence of a modifier(s) for vyl. A major modifier locus was identified on chromosome 1, and a paralogous ClpP5 gene was isolated and confirmed as the candidate for the vyl-modifier. Expression of Chr.1_ClpP5 is induced significantly in B73 by the vyl mutation, while the expression of Chr.1_ClpP5 in PH09B is not responsive to the vyl mutation. Moreover, expression and sequence analysis suggests that the PH09B Chr.1_ClpP5 allele is functionally weaker than the B73 allele. We propose that functional redundancy between duplicated paralogous genes is the molecular mechanism for the interaction between vyl and its modifier.
Collapse
Affiliation(s)
- Anqi Xing
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Rd., Beijing, 100094, China; DuPont Pioneer, 200 Powder Mill Road, Wilmington, DE, 19880, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Gene duplication is widely believed to facilitate adaptation, but unambiguous evidence for this hypothesis has been found in only a small number of cases. Although gene duplication may increase the fitness of the involved organisms by doubling gene dosage or neofunctionalization, it may also result in a simple division of ancestral functions into daughter genes, which need not promote adaptation. Hence, the general validity of the adaptation by gene duplication hypothesis remains uncertain. Indeed, a genome-scale experiment found similar fitness effects of deleting pairs of duplicate genes and deleting individual singleton genes from the yeast genome, leading to the conclusion that duplication rarely results in adaptation. Here we contend that the above comparison is unfair because of a known duplication bias among genes with different fitness contributions. To rectify this problem, we compare homologous genes from the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. We discover that simultaneously deleting a duplicate gene pair in S. cerevisiae reduces fitness significantly more than deleting their singleton counterpart in S. pombe, revealing post-duplication adaptation. The duplicates-singleton difference in fitness effect is not attributable to a potential increase in gene dose after duplication, suggesting that the adaptation is owing to neofunctionalization, which we find to be explicable by acquisitions of binary protein-protein interactions rather than gene expression changes. These results provide genomic evidence for the role of gene duplication in organismal adaptation and are important for understanding the genetic mechanisms of evolutionary innovation.
Collapse
Affiliation(s)
- Wenfeng Qian
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|