1
|
Rustad CF, Bragadottir R, Tveten K, Nordgarden H, Miller JU, Åsten PM, Vasconcelos G, Kulseth MA, Holla ØL, Olsen HG, von der Lippe C, Sigurdardottir S. Clinical and genetic aspects of Bardet-Biedl syndrome in adults in Norway. Orphanet J Rare Dis 2025; 20:127. [PMID: 40087798 PMCID: PMC11909833 DOI: 10.1186/s13023-025-03641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a rare nonmotile ciliopathy characterized by retinal dystrophy, polydactyly, obesity, genital anomalies, renal dysfunction, and learning difficulties. The objectives were to describe the retinal, oral, and metabolic characteristics relevant to adults with BBS as well as the prevalence of genetic variants. METHODS A cross-sectional study of 30 adults with BBS (15 males, 15 females, mean age 39.8 ± 13.6 years) was recruited from a single centre for rare disorders in Norway. Participants attended a one day hospital visit including medical (blood pressure, body mass index), ophthalmological and oral examinations. Blood samples were collected and genetic analyses were performed. RESULTS Age at diagnosis varied from one year to 30 years. The incidence of overweight/obesity, hypertension, kidney disease, and diabetes mellitus was 82%, 67%, 27%, and 23%, respectively. All had retinitis pigmentosa. Prior to the study, 14 participants (47%) had confirmed extinguished electroretinography. Eleven participants were examined with electroretinography during the study period, and all had extinguished electroretinography. 50% perceived light, 23% saw hand motion, and one participant did not perceive light. Oral anomalies were identified in 77% of the participants, including abnormal palates (58%), crowded teeth (50%), and small teeth (60%). A genetic cause was identified in all participants, most commonly in BBS1 (n = 11) and BBS10 (n = 9). Other variants were found in BBS5, BBS7, BBS9, and MKKS. In addition to exon-located variants, a novel deep intronic variant causing mis-splicing was identified in BBS7. CONCLUSIONS A multidisciplinary examination is important for proper management of BBS. The genotype and phenotype of this sample were heterogeneous, including kidney failure, genital anomalies and obesity. Genome sequencing increased the likelihood of identifying the genetic cause. In BBS populations, the patients will benefit from testing or reanalysis, preferably with genome sequencing, including searching for deep intronic variants.
Collapse
Affiliation(s)
- Cecilie Fremstad Rustad
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway.
- The Medical Faculty, University of Oslo, Oslo, Norway.
| | - Ragnheidur Bragadottir
- The Medical Faculty, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Hilde Nordgarden
- National Resource Centre for Oral Health in Rare Disorders, Lovisenberg Diaconal Hospital, Oslo, Norway
| | | | - Pamela Marika Åsten
- National Resource Centre for Oral Health in Rare Disorders, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Gisela Vasconcelos
- National Resource Centre for Oral Health in Rare Disorders, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Hanne Gro Olsen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | | |
Collapse
|
2
|
Palma Sircili MH, Batista RL, Barreto EQDS, Bueno SP, Figueredo Benedetti AF, Craveiro FL, Ramos RM, Monteiro Filho MP, Domenice S, Mendonca BB, Dénes FT. Neonatal Hydrocolpos in Bardet-Biedl Syndrome due to a Novel Frameshift Indel in the BBS10 Gene. Sex Dev 2024:1-6. [PMID: 39250911 DOI: 10.1159/000541137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
INTRODUCTION Hydrocolpos, a rare condition characterized by cystic dilatation of the vagina, can arise from various etiologies, including isolated imperforate hymen and vaginal atresia. Genetic conditions, such as Bardet-Biedl syndrome (BBS), may also manifest with hydrocolpos as part of urogenital malformations. METHODS We present a case of neonatal hydrocolpos associated with BBS. Sequencing of 19 BBS genes was performed to elucidate the genetic basis of the syndrome. RESULTS Genetic analysis revealed a novel frameshift indel variant (c.1543_1546dup p.Thr516Argfs*7) in the BBS10 gene. This finding expands the spectrum of BBS mutations and underscores the importance of genetic evaluation in patients with hydrocolpos, particularly when associated with additional clinical features suggestive of syndromic etiology. CONCLUSION Pediatric urologists should maintain a high index of suspicion for underlying genetic conditions, including BBS, in neonates presenting with hydrocolpos, given the potential for more severe associated complications such as renal and retinal diseases, obesity, and polydactyly.
Collapse
Affiliation(s)
- Maria Helena Palma Sircili
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Pediatric Urology, São Paulo, Brazil
| | - Rafael Loch Batista
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Endocrinology, São Paulo, Brazil,
| | | | - Solange Paiva Bueno
- Hospital e Maternidade Dr Mario de Moraes Atenfelder Silva, Neonatology, São Paulo, Brazil
| | | | - Flora Ladeira Craveiro
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Endocrinology, São Paulo, Brazil
| | - Raquel Matinez Ramos
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Endocrinology, São Paulo, Brazil
| | | | - Sorahia Domenice
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Endocrinology, São Paulo, Brazil
| | | | - Francisco Tibor Dénes
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Pediatric Urology, São Paulo, Brazil
| |
Collapse
|
3
|
Milibari D, Nowilaty SR, Ba-Abbad R. The Clinical and Mutational Spectrum of Bardet-Biedl Syndrome in Saudi Arabia. Genes (Basel) 2024; 15:762. [PMID: 38927698 PMCID: PMC11202873 DOI: 10.3390/genes15060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The retinal features of Bardet-Biedl syndrome (BBS) are insufficiently characterized in Arab populations. This retrospective study investigated the retinal features and genotypes of BBS in Saudi patients managed at a single tertiary eye care center. Data analysis of the identified 46 individuals from 31 families included visual acuity (VA), systemic manifestations, multimodal retinal imaging, electroretinography (ERG), family pedigrees, and genotypes. Patients were classified to have cone-rod, rod-cone, or generalized photoreceptor dystrophy based on the pattern of macular involvement on the retinal imaging. Results showed that nyctalopia and subnormal VA were the most common symptoms with 76% having VA ≤ 20/200 at the last visit (age: 5-35). Systemic features included obesity 91%, polydactyly 56.5%, and severe cognitive impairment 33%. The predominant retinal phenotype was cone-rod dystrophy 75%, 10% had rod-cone dystrophy and 15% had generalized photoreceptor dystrophy. ERGs were undetectable in 95% of patients. Among the 31 probands, 61% had biallelic variants in BBSome complex genes, 32% in chaperonin complex genes, and 6% had biallelic variants in ARL6; including six previously unreported variants. Interfamilial and intrafamilial variabilities were noted, without a clear genotype-phenotype correlation. Most BBS patients had advanced retinopathy and were legally blind by early adulthood, indicating a narrow therapeutic window for rescue strategies.
Collapse
Affiliation(s)
- Doaa Milibari
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia; (D.M.); (S.R.N.)
- Department of Ophthalmology, King Abdullah Medical City, Makkah 24211, Saudi Arabia
| | - Sawsan R. Nowilaty
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia; (D.M.); (S.R.N.)
| | - Rola Ba-Abbad
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia; (D.M.); (S.R.N.)
- Ocular Genetics Services, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia
| |
Collapse
|
4
|
Holanda IP, Rim PHH, Guaragna MS, Gil-da-Silva-Lopes VL, Steiner CE. Syndromic Retinitis Pigmentosa: A 15-Patient Study. Genes (Basel) 2024; 15:516. [PMID: 38674450 PMCID: PMC11050127 DOI: 10.3390/genes15040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Retinitis pigmentosa is a group of genetically determined retinal dystrophies characterized by primary photoreceptor apoptosis and can occur in isolated or syndromic conditions. This study reviewed the clinical data of 15 patients with syndromic retinitis pigmentosa from a Rare Disease Reference Center in Brazil and the results of their next-generation sequencing tests. Five males and ten females participated, with the mean ages for ocular disease onset, fundoscopic diagnosis, and molecular evaluation being 9, 19, and 29 years, respectively. Bardet-Biedl syndrome (n = 5) and Usher syndrome (n = 3) were the most frequent diagnoses, followed by other rare conditions. Among the patients, fourteen completed molecular studies, with three negative results and eleven revealing findings in known genes, including novel variants in MKKS (c.432_435del, p.Phe144Leufs*14), USH2A (c.(7301+1_7302-1)_(9369+1_9370-1)del), and CEP250 (c.5383dup, p.Glu1795Glyfs*13, and c.5050del, p.Asp1684Thrfs*9). Except for Kearn-Sayre, all presented an autosomal recessive inheritance pattern with 64% homozygosity results. The long gap between symptom onset and diagnosis highlights the diagnostic challenges faced by the patients. This study reaffirms the clinical heterogeneity of syndromic retinitis pigmentosa and underscores the pivotal role of molecular analysis in advancing our understanding of these diseases.
Collapse
Affiliation(s)
- Ianne Pessoa Holanda
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-888, SP, Brazil; (I.P.H.); (M.S.G.); (V.L.G.-d.-S.-L.)
| | - Priscila Hae Hyun Rim
- Ambulatório de Genética Ocular, Departamento de Oftalmologia e Otorrinolaringologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-888, SP, Brazil;
| | - Rare Genomes Project Consortium
- Serviço de Genética Molecular, Departamento de Medicina Laboratorial, Hospital Israelita Albert Einstein (HIAE), São Paulo 05652-900, SP, Brazil
| | - Mara Sanches Guaragna
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-888, SP, Brazil; (I.P.H.); (M.S.G.); (V.L.G.-d.-S.-L.)
| | - Vera Lúcia Gil-da-Silva-Lopes
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-888, SP, Brazil; (I.P.H.); (M.S.G.); (V.L.G.-d.-S.-L.)
| | - Carlos Eduardo Steiner
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-888, SP, Brazil; (I.P.H.); (M.S.G.); (V.L.G.-d.-S.-L.)
| |
Collapse
|
5
|
Gao S, Zhang Q, Ding Y, Wang L, Li Z, Hu F, Yao RE, Yu T, Chang G, Wang X. Molecular and phenotypic characteristics of Bardet-Biedl syndrome in Chinese patients. Orphanet J Rare Dis 2024; 19:149. [PMID: 38584252 PMCID: PMC11000329 DOI: 10.1186/s13023-024-03150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a type of non-motile ciliopathy. To date, 26 genes have been reported to be associated with BBS. However, BBS is genetically heterogeneous, with significant clinical overlap with other ciliopathies, which complicates diagnosis. Disability and mortality rates are high in BBS patients; therefore, it is urgent to improve our understanding of BBS. Thus, our study aimed to describe the genotypic and phenotypic spectra of BBS in China and to elucidate genotype-phenotype correlations. METHODS Twenty Chinese patients diagnosed with BBS were enrolled in this study. We compared the phenotypes of Chinese BBS patients in this study with those from other countries to analyze the phenotypic differences across patients worldwide. In addition, genotype-phenotype correlations were described for our cohort. We also summarized all previously reported cases of BBS in Chinese patients (71 patients) and identified common and specific genetic variants in the Chinese population. RESULTS Twenty-eight variants, of which 10 are novel, in 5 different BBS-associated genes were identified in 20 Chinese BBS patients. By comparing the phenotypes of BBSome-coding genes (BBS2,7,9) with those of chaperonin-coding genes (BBS10,12), we found that patients with mutations in BBS10 and 12 had an earlier age of onset (1.10 Vs. 2.20, p < 0.01) and diagnosis (4.64 Vs. 13.17, p < 0.01), whereas patients with mutations in BBS2, 7, and 9 had a higher body mass index (28.35 Vs. 24.21, p < 0.05) and more vision problems (p < 0.05). Furthermore, in 91 Chinese BBS patients, mutations were predominant in BBS2 (28.89%) and BBS7 (15.56%), and the most frequent variants were in BBS2: c.534 + 1G > T (10/182 alleles) and BBS7: c.1002delT (7/182 alleles), marking a difference from the genotypic spectra of BBS reported abroad. CONCLUSIONS We recruited 20 Chinese patients with BBS for genetic and phenotypic analyses, and identified common clinical manifestations, pathogenic genes, and variants. We also described the phenotypic differences across patients worldwide and among different BBS-associated genes. This study involved the largest cohort of Chinese patients with BBS, and provides new insights into the distinctive clinical features of specific pathogenic variants.
Collapse
Affiliation(s)
- Shiyang Gao
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qianwen Zhang
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yu Ding
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Libo Wang
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhiying Li
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Feihan Hu
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ru-En Yao
- Department of Genetic Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tingting Yu
- Department of Genetic Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guoying Chang
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xiumin Wang
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
6
|
Tomlinson JW. Bardet-Biedl syndrome: A focus on genetics, mechanisms and metabolic dysfunction. Diabetes Obes Metab 2024; 26 Suppl 2:13-24. [PMID: 38302651 DOI: 10.1111/dom.15480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Bardet-Biedl syndrome (BBS) is a rare, monogenic, multisystem disorder characterized by retinal dystrophy, renal abnormalities, polydactyly, learning disabilities, as well as metabolic dysfunction, including obesity and an increased risk of type 2 diabetes. It is a primary ciliopathy, and causative mutations in more than 25 different genes have been described. Multiple cellular mechanisms contribute to the development of the metabolic phenotype associated with BBS, including hyperphagia as a consequence of altered hypothalamic appetite signalling as well as alterations in adipocyte biology promoting adipocyte proliferation and adipogenesis. Within this review, we describe in detail the metabolic phenotype associated with BBS and discuss the mechanisms that drive its evolution. In addition, we review current approaches to the metabolic management of patients with BBS, including the use of weight loss medications and bariatric surgery. Finally, we evaluate the potential of targeting hypothalamic appetite signalling to limit hyperphagia and induce clinically significant weight loss.
Collapse
Affiliation(s)
- Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
7
|
Malvasi M, Casillo L, Avogaro F, Abbouda A, Vingolo EM. Gene Therapy in Hereditary Retinal Dystrophies: The Usefulness of Diagnostic Tools in Candidate Patient Selections. Int J Mol Sci 2023; 24:13756. [PMID: 37762059 PMCID: PMC10531171 DOI: 10.3390/ijms241813756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Gene therapy actually seems to have promising results in the treatment of Leber Congenital Amaurosis and some different inherited retinal diseases (IRDs); the primary goal of this strategy is to change gene defects with a wild-type gene without defects in a DNA sequence to achieve partial recovery of the photoreceptor function and, consequently, partially restore lost retinal functions. This approach led to the introduction of a new drug (voretigene neparvovec-rzyl) for replacement of the RPE65 gene in patients affected by Leber Congenital Amaurosis (LCA); however, the treatment results are inconstant and with variable long-lasting effects due to a lack of correctly evaluating the anatomical and functional conditions of residual photoreceptors. These variabilities may also be related to host immunoreactive reactions towards the Adenovirus-associated vector. A broad spectrum of retinal dystrophies frequently generates doubt as to whether the disease or the patient is a good candidate for a successful gene treatment, because, very often, different diseases share similar genetic characteristics, causing an inconstant genotype/phenotype correlation between clinical characteristics also within the same family. For example, mutations on the RPE65 gene cause Leber Congenital Amaurosis (LCA) but also some forms of Retinitis Pigmentosa (RP), Bardet Biedl Syndrome (BBS), Congenital Stationary Night Blindness (CSNB) and Usher syndrome (USH), with a very wide spectrum of clinical manifestations. These confusing elements are due to the different pathways in which the product protein (retinoid isomer-hydrolase) is involved and, consequently, the overlapping metabolism in retinal function. Considering this point and the cost of the drug (over USD one hundred thousand), it would be mandatory to follow guidelines or algorithms to assess the best-fitting disease and candidate patients to maximize the output. Unfortunately, at the moment, there are no suggestions regarding who to treat with gene therapy. Moreover, gene therapy might be helpful in other forms of inherited retinal dystrophies, with more frequent incidence of the disease and better functional conditions (actually, gene therapy is proposed only for patients with poor vision, considering possible side effects due to the treatment procedures), in which this approach leads to better function and, hopefully, visual restoration. But, in this view, who might be a disease candidate or patient to undergo gene therapy, in relationship to the onset of clinical trials for several different forms of IRD? Further, what is the gold standard for tests able to correctly select the patient? Our work aims to evaluate clinical considerations on instrumental morphofunctional tests to assess candidate subjects for treatment and correlate them with clinical and genetic defect analysis that, often, is not correspondent. We try to define which parameters are an essential and indispensable part of the clinical rationale to select patients with IRDs for gene therapy. This review will describe a series of models used to characterize retinal morphology and function from tests, such as optical coherence tomography (OCT) and electrophysiological evaluation (ERG), and its evaluation as a primary outcome in clinical trials. A secondary aim is to propose an ancillary clinical classification of IRDs and their accessibility based on gene therapy's current state of the art. MATERIAL AND METHODS OCT, ERG, and visual field examinations were performed in different forms of IRDs, classified based on clinical and retinal conditions; compared to the gene defect classification, we utilized a diagnostic algorithm for the clinical classification based on morphofunctional information of the retina of patients, which could significantly improve diagnostic accuracy and, consequently, help the ophthalmologist to make a correct diagnosis to achieve optimal clinical results. These considerations are very helpful in selecting IRD patients who might respond to gene therapy with possible therapeutic success and filter out those in which treatment has a lower chance or no chance of positive results due to bad retinal conditions, avoiding time-consuming patient management with unsatisfactory results.
Collapse
Affiliation(s)
- Mariaelena Malvasi
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Lorenzo Casillo
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Filippo Avogaro
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Alessandro Abbouda
- Department of Ophthalmology, Fiorini Hospital Terracina AUSL, 04019 Terracina, Italy
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
- Department of Ophthalmology, Fiorini Hospital Terracina AUSL, 04019 Terracina, Italy
| |
Collapse
|
8
|
Khan S, Focșa IO, Budișteanu M, Stoica C, Nedelea F, Bohîlțea L, Caba L, Butnariu L, Pânzaru M, Rusu C, Jurcă C, Chirita-Emandi A, Bănescu C, Abbas W, Sadeghpour A, Baig SM, Bălgrădean M, Davis EE. Exome sequencing in a Romanian Bardet-Biedl syndrome cohort revealed an overabundance of causal BBS12 variants. Am J Med Genet A 2023; 191:2376-2391. [PMID: 37293956 PMCID: PMC10524726 DOI: 10.1002/ajmg.a.63322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Bardet-Biedl syndrome (BBS), is an emblematic ciliopathy hallmarked by pleiotropy, phenotype variability, and extensive genetic heterogeneity. BBS is a rare (~1/140,000 to ~1/160,000 in Europe) autosomal recessive pediatric disorder characterized by retinal degeneration, truncal obesity, polydactyly, cognitive impairment, renal dysfunction, and hypogonadism. Twenty-eight genes involved in ciliary structure or function have been implicated in BBS, and explain the molecular basis for ~75%-80% of individuals. To investigate the mutational spectrum of BBS in Romania, we ascertained a cohort of 24 individuals in 23 families. Following informed consent, we performed proband exome sequencing (ES). We detected 17 different putative disease-causing single nucleotide variants or small insertion-deletions and two pathogenic exon disruptive copy number variants in known BBS genes in 17 pedigrees. The most frequently impacted genes were BBS12 (35%), followed by BBS4, BBS7, and BBS10 (9% each) and BBS1, BBS2, and BBS5 (4% each). Homozygous BBS12 p.Arg355* variants were present in seven pedigrees of both Eastern European and Romani origin. Our data show that although the diagnostic rate of BBS in Romania is likely consistent with other worldwide cohorts (74%), we observed a unique distribution of causal BBS genes, including overrepresentation of BBS12 due to a recurrent nonsense variant, that has implications for regional diagnostics.
Collapse
Affiliation(s)
- Sheraz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ina Ofelia Focșa
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Cytogenomic Medical Laboratory, Bucharest, Romania
| | - Magdalena Budișteanu
- Psychiatry Research Laboratory, "Prof. Dr. Alexandru Obregia" Clinical Hospital of Psychiatry, Bucharest, Romania
- Medical Genetic Laboratory, "Victor Babeș" National Institute of Pathology, Bucharest, Romania
- Department of Medical Genetics, Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristina Stoica
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics, Clinical Institute Fundeni, Bucharest, Romania
| | - Florina Nedelea
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Genetics Department, Clinical Hospital Filantropia, Bucharest, Romania
| | | | - Lavinia Caba
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Lăcrămioara Butnariu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Monica Pânzaru
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Cristina Rusu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Claudia Jurcă
- Department of Genetics, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Department of Pediatrics, "Dr. Gavril Curteanu" Municipal Clinical Hospital, Oradea, Romania
| | - Adela Chirita-Emandi
- Emergency Hospital for Children Louis Turcanu, Regional Center of Medical Genetics Timis, Timisoara, Romania
- Victor Babes University of Medicine and Pharmacy Timisoara, Department of Microscopic Morphology Genetics, Center for Genomic Medicine, Timisoara, Romania
| | - Claudia Bănescu
- "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureş, Romania
| | - Wasim Abbas
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
- Duke Precision Medicine Program, Department of Medicine, Division of General Internal Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shahid Mahmood Baig
- Pakistan Science Foundation (PSF), Islamabad, Pakistan
- Department of Biological and Biomedical Sciences, Agha Khan University Karachi, Karachi, Pakistan
| | - Mihaela Bălgrădean
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children "Maria Skłodowska Curie", Bucharest, Romania
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Derderian C, Canales GI, Reiter JF. Seriously cilia: A tiny organelle illuminates evolution, disease, and intercellular communication. Dev Cell 2023; 58:1333-1349. [PMID: 37490910 PMCID: PMC10880727 DOI: 10.1016/j.devcel.2023.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/18/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
The borders between cell and developmental biology, which have always been permeable, have largely dissolved. One manifestation is the blossoming of cilia biology, with cell and developmental approaches (increasingly complemented by human genetics, structural insights, and computational analysis) fruitfully advancing understanding of this fascinating, multifunctional organelle. The last eukaryotic common ancestor probably possessed a motile cilium, providing evolution with ample opportunity to adapt cilia to many jobs. Over the last decades, we have learned how non-motile, primary cilia play important roles in intercellular communication. Reflecting their diverse motility and signaling functions, compromised cilia cause a diverse range of diseases collectively called "ciliopathies." In this review, we highlight how cilia signal, focusing on how second messengers generated in cilia convey distinct information; how cilia are a potential source of signals to other cells; how evolution may have shaped ciliary function; and how cilia research may address thorny outstanding questions.
Collapse
Affiliation(s)
- Camille Derderian
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriela I Canales
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Tian X, Zhao H, Zhou J. Organization, functions, and mechanisms of the BBSome in development, ciliopathies, and beyond. eLife 2023; 12:e87623. [PMID: 37466224 DOI: 10.7554/elife.87623] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The BBSome is an octameric protein complex that regulates ciliary transport and signaling. Mutations in BBSome subunits are closely associated with ciliary defects and lead to ciliopathies, notably Bardet-Biedl syndrome. Over the past few years, there has been significant progress in elucidating the molecular organization and functions of the BBSome complex. An improved understanding of BBSome-mediated biological events and molecular mechanisms is expected to help advance the development of diagnostic and therapeutic approaches for BBSome-related diseases. Here, we review the current literature on the structural assembly, transport regulation, and molecular functions of the BBSome, emphasizing its roles in cilium-related processes. We also provide perspectives on the pathological role of the BBSome in ciliopathies as well as how these can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Huang R, Fu F, Zhou H, Zhang L, Lei T, Cheng K, Yan S, Guo F, Wang Y, Ma C, Li R, Yu Q, Deng Q, Li L, Yang X, Han J, Li D, Liao C. Prenatal diagnosis in the fetal hyperechogenic kidneys: assessment using chromosomal microarray analysis and exome sequencing. Hum Genet 2023; 142:835-847. [PMID: 37095353 DOI: 10.1007/s00439-023-02545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/26/2023]
Abstract
Fetal hyperechogenic kidneys (HEK) is etiologically a heterogeneous disorder. The aim of this study was to identify the genetic causes of HEK using prenatal chromosomal microarray analysis (CMA) and exome sequencing (ES). From June 2014 to September 2022, we identified 92 HEK fetuses detected by ultrasound. We reviewed and documented other ultrasound anomalies, microscopic and submicroscopic chromosomal abnormalities, and single gene disorders. We also analyzed the diagnostic yield of CMA and ES and the clinical impact the diagnosis had on pregnancy management. In our cohort, CMA detected 27 pathogenic copy number variations (CNVs) in 25 (25/92, 27.2%) fetuses, with the most common CNV being 17q12 microdeletion syndrome. Among the 26 fetuses who underwent further ES testing, we identified 7 pathogenic/likely pathogenic variants and 8 variants of uncertain significance in 9 genes in 12 fetuses. Four novel variants were first reported herein, expanding the mutational spectra for HEK-related genes. Following counseling, 52 families chose to continue the pregnancy, and in 23 of them, postnatal ultrasound showed no detectable renal abnormalities. Of these 23 cases, 15 had isolated HEK on prenatal ultrasound. Taken together, our study showed a high rate of detectable genetic etiologies in cases with fetal HEK at the levels of chromosomal (aneuploidy), sub-chromosomal (microdeletions/microduplications), and single gene (point mutations). Therefore, we speculate that combined CMA and ES testing for fetal HEK is feasible and has good clinical utility. When no genetic abnormalities are identified, the findings can be transient, especially in the isolated HEK group.
Collapse
Affiliation(s)
- Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Lu Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Tingying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Ken Cheng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fei Guo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - You Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Qiuxia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Qiong Deng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Lushan Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China.
| |
Collapse
|
12
|
Hsu Y, Bhattarai S, Thompson JM, Mahoney A, Thomas J, Mayer SK, Datta P, Garrison J, Searby CC, Vandenberghe LH, Seo S, Sheffield VC, Drack AV. Subretinal gene therapy delays vision loss in a Bardet-Biedl Syndrome type 10 mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:164-181. [PMID: 36700052 PMCID: PMC9841241 DOI: 10.1016/j.omtn.2022.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Blindness in Bardet-Biedl syndrome (BBS) is caused by dysfunction and loss of photoreceptor cells in the retina. BBS10, mutations of which account for approximately 21% of all BBS cases, encodes a chaperonin protein indispensable for the assembly of the BBSome, a cargo adaptor important for ciliary trafficking. The loss of BBSome function in the eye causes a reduced light sensitivity of photoreceptor cells, photoreceptor ciliary malformation, dysfunctional ciliary trafficking, and photoreceptor cell death. Cone photoreceptors lacking BBS10 have congenitally low electrical function in electroretinography. In this study, we performed gene augmentation therapy by injecting a viral construct subretinally to deliver the coding sequence of the mouse Bbs10 gene to treat retinal degeneration in a BBS10 mouse model. Long-term efficacy was assessed by measuring the electrical functions of the retina over time, imaging of the treated regions to visualize cell survival, conducting visually guided swim assays to measure functional vision, and performing retinal histology. We show that subretinal gene therapy slowed photoreceptor cell death and preserved retinal function in treated eyes. Notably, cone photoreceptors regained their electrical function after gene augmentation. Measurement of functional vision showed that subretinal gene therapy provided a significant benefit in delaying vision loss.
Collapse
Affiliation(s)
- Ying Hsu
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Sajag Bhattarai
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Jacob M. Thompson
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Angela Mahoney
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Jacintha Thomas
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Sara K. Mayer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Poppy Datta
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Janelle Garrison
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | | | - Luk H. Vandenberghe
- Massachusetts Eye and Ear, Grousbeck Gene Therapy Center, Harvard Medical School, Boston, MA, USA
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Val C. Sheffield
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
D’Antona L, Amato R, Brescia C, Rocca V, Colao E, Iuliano R, Blazer-Yost BL, Perrotti N. Kinase Inhibitors in Genetic Diseases. Int J Mol Sci 2023; 24:ijms24065276. [PMID: 36982349 PMCID: PMC10048847 DOI: 10.3390/ijms24065276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Over the years, several studies have shown that kinase-regulated signaling pathways are involved in the development of rare genetic diseases. The study of the mechanisms underlying the onset of these diseases has opened a possible way for the development of targeted therapies using particular kinase inhibitors. Some of these are currently used to treat other diseases, such as cancer. This review aims to describe the possibilities of using kinase inhibitors in genetic pathologies such as tuberous sclerosis, RASopathies, and ciliopathies, describing the various pathways involved and the possible targets already identified or currently under study.
Collapse
Affiliation(s)
- Lucia D’Antona
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Rocca
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Emma Colao
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Bonnie L. Blazer-Yost
- Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Nicola Perrotti
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
14
|
Tao T, Liu J, Wang B, Pang J, Li X, Huang L. Novel mutations in BBS genes and clinical characterization of Chinese families with Bardet-Biedl syndrome. Eur J Ophthalmol 2022; 33:11206721221136324. [PMID: 36325687 DOI: 10.1177/11206721221136324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE Bardet-Biedl syndrome (BBS) is a rare autosomal-recessive inherited disorder characterized by multisystem anomalies. The objective of this study was to detect and analyse pathogenic variants in four Chinese families with BBS. METHODS Comprehensive clinical examinations were performed to investigate and evaluate the phenotypes of the affected individuals from four families. Genomic DNA was extracted from peripheral blood. Next-generation sequencing (NGS) was performed for four families, and the presence of pathogenic variants was confirmed via Sanger sequencing. RESULTS There were two males and three females with a mean age of 16.00 years. All probands displayed the primary clinical features of BBS. Mutation screening demonstrated four novel mutations: c.613C>T; p.Q205* in the BBS5 gene, c.1391C>G; p.S464* in the BBS10 gene, and c.155delC; p.S52* and c.1584T>G; p.Y528* in the BBS12 gene. Two previously reported mutations were also identified, including c.534 + 1G>T in the BBS2 gene and c.539G>A; p.G180E in the BBS10 gene. The bioinformatic analysis revealed that all the detected mutations in BBS genes were disease causing. CONCLUSIONS This study identified four novel BBS gene mutations in these Chinese families and further expanded the genotypic spectrum of BBS, thus contributing to the literature and understanding of this multisystem disease.
Collapse
Affiliation(s)
- Tianchang Tao
- Department of Ophthalmology, 71185Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Department of Ophthalmology, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jia Liu
- Department of Ophthalmology, 71185Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Department of Ophthalmology, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Bin Wang
- Eye Research Institute, 599608Xiamen Eye Center of Xiamen University, Xiamen, China
| | - Jijing Pang
- Eye Research Institute, 599608Xiamen Eye Center of Xiamen University, Xiamen, China
| | - Xiaoxin Li
- Department of Ophthalmology, 71185Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Department of Ophthalmology, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- Eye Research Institute, 599608Xiamen Eye Center of Xiamen University, Xiamen, China
| | - Lvzhen Huang
- Department of Ophthalmology, 71185Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Department of Ophthalmology, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
15
|
Gupta N, Khan MA, Capasso G, Zacchia M. Computational and Structural Analysis to Assess the Pathogenicity of Bardet-Biedl Syndrome Related Missense Variants Identified in Bardet-Biedl Syndrome 10 Gene (BBS10). ACS OMEGA 2022; 7:37654-37662. [PMID: 36312387 PMCID: PMC9608418 DOI: 10.1021/acsomega.2c04522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/28/2022] [Indexed: 05/27/2023]
Abstract
Bardet-Biedl Syndrome (BBS) is a rare inherited disorder resulting in multiple organ dysfunctions, whose cardinal clinical features include cognitive impairment, obesity, and renal dysfunction. Although it is highly heterogeneous at genetic levels, BBS10 is one of the major causative genes worldwide. The BBS10 protein is part of a multiprotein complex localized at the basal body of the primary cilium. With the advancement of sequencing technologies, novel missense mutations are regularly reported in BBS10. However, prioritizing missense variants and conducting further in-depth analysis are key challenges in addressing their pathogenic effect. This study aims to characterize the known missense mutations of BBS10 by combining nine different in silico tools (SIFT, SNAP2, PROVEAN, Align-GVGD, ConSurf, I Mutant, MuPro, PremPS, and Dynamut) and molecular dynamics (MD) simulations. A total of 101 BBS10 missense variants have been analyzed. Our results showed that six BBS10 missense variants (Ser191Leu, Cys19Gly, Ile342Thr, Cys371Ser, Ala417Glu, and Tyr613Cys) were potentially deleterious. Overall, this study provides a comprehensive workflow for screening BBS10 missense mutations to identify pathogenic variants effectively.
Collapse
Affiliation(s)
- Neha Gupta
- Unit
of Nephrology, Department of Translational Medical Sciences, University of Campania, L. Vanvitelli, Via Leonardo Bianchi, 80131 Naples, Italy
- BioGem
S.C.A.R.L., Contrada Camporeale, 83031 Ariano Irpino
AV, Italy
| | - Mudassar Ali Khan
- Advanced
Centre for Treatment, Research and Education
in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi
Bhabha National Institute, Training School
Complex, Anushaktinagar, Mumbai 400094, India
| | - Giovambattista Capasso
- Unit
of Nephrology, Department of Translational Medical Sciences, University of Campania, L. Vanvitelli, Via Leonardo Bianchi, 80131 Naples, Italy
- BioGem
S.C.A.R.L., Contrada Camporeale, 83031 Ariano Irpino
AV, Italy
| | - Miriam Zacchia
- Unit
of Nephrology, Department of Translational Medical Sciences, University of Campania, L. Vanvitelli, Via Leonardo Bianchi, 80131 Naples, Italy
| |
Collapse
|
16
|
Mayer SK, Thomas J, Helms M, Kothapalli A, Cherascu I, Salesevic A, Stalter E, Wang K, Datta P, Searby C, Seo S, Hsu Y, Bhattarai S, Sheffield VC, Drack AV. Progressive retinal degeneration of rods and cones in a Bardet-Biedl syndrome type 10 mouse model. Dis Model Mech 2022; 15:dmm049473. [PMID: 36125046 PMCID: PMC9536196 DOI: 10.1242/dmm.049473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a multi-organ autosomal-recessive disorder caused by mutations in at least 22 different genes. A constant feature is early-onset retinal degeneration leading to blindness. Among the most common forms is BBS type 10 (BBS10), which is caused by mutations in a gene encoding a chaperonin-like protein. To aid in developing treatments, we phenotyped a Bbs10 knockout (Bbs10-/-) mouse model. Analysis by optical coherence tomography (OCT), electroretinography (ERG) and a visually guided swim assay (VGSA) revealed a progressive degeneration (from P19 to 8 months of age) of the outer nuclear layer that is visible by OCT and histology. Cone ERG was absent from at least P30, at which time rod ERG was reduced to 74.4% of control levels; at 8 months, rod ERG was 2.3% of that of controls. VGSA demonstrated loss of functional vision at 9 months. These phenotypes progressed more rapidly than retinal degeneration in the Bbs1M390R/M390R knock-in mouse. This study defines endpoints for preclinical trials that can be utilized to detect a treatment effect in the Bbs10-/- mouse and extrapolated to human clinical trials.
Collapse
Affiliation(s)
- Sara K. Mayer
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Jacintha Thomas
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Megan Helms
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Aishwarya Kothapalli
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ioana Cherascu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Adisa Salesevic
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Elliot Stalter
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Poppy Datta
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Charles Searby
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Sajag Bhattarai
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Val C. Sheffield
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Arlene V. Drack
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
18
|
Cai M, Lin M, Lin N, Xu L, Huang H. Novel homozygous nonsense mutation associated with Bardet-Biedl syndrome in fetuses with congenital renal malformation. Medicine (Baltimore) 2022; 101:e30003. [PMID: 35960079 PMCID: PMC9371496 DOI: 10.1097/md.0000000000030003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder, characterized by clinical and genetic heterogeneity. BBS is more commonly reported in adults and children than in fetuses. Here, a retrospective study on 210 fetuses with congenital renal malformation was conducted. METHODS The fetuses were diagnosed using invasive prenatal tests, including chromosome karyotype analysis, whole exome sequencing (WES), and single-nucleotide polymorphism array. We found the intrauterine phenotype of a fetus presenting enlarged kidneys, enhanced echo, and oligohydramnios; therefore, the fetus was characterized to have BBS. RESULTS Chromosome karyotype analysis presented normal results. Analysis using an Affymetrix CytoScan 750K array revealed 2 homozygous regions. However, WES revealed a homozygous mutation of c.1177C>T (p.Arg393*) on exon 12 of BBS1 and a heterozygous variation of c.2704G>A (p.Asp902Asn) on exon 22 of CC2D2A. The American College of Medical Genetics and Genomics guidelines identified c.1177C>T and c.2704G>A as a pathogenic mutation and of uncertain significance, respectively. Sanger sequencing identified heterozygous mutation, that is, c.1177C>T and heterozygous variation, that is, c.2704G>A in the parents of the fetus. CONCLUSIONS WES identified a novel homozygous nonsense mutation c.1177C>T in BBS1 of a Chinese fetus with congenital renal malformation. This finding provides insight into the BBS1 mutations in Asian populations in general and shows the necessity of genetic counseling.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Min Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
19
|
Nasser F, Kohl S, Kurtenbach A, Kempf M, Biskup S, Zuleger T, Haack TB, Weisschuh N, Stingl K, Zrenner E. Ophthalmic and Genetic Features of Bardet Biedl Syndrome in a German Cohort. Genes (Basel) 2022; 13:genes13071218. [PMID: 35886001 PMCID: PMC9322102 DOI: 10.3390/genes13071218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to characterize the ophthalmic and genetic features of Bardet Biedl (BBS) syndrome in a cohort of patients from a German specialized ophthalmic care center. Sixty-one patients, aged 5−56 years, underwent a detailed ophthalmic examination including visual acuity and color vision testing, electroretinography (ERG), visually evoked potential recording (VEP), fundus examination, and spectral domain optical coherence tomography (SD-OCT). Adaptive optics flood illumination ophthalmoscopy was performed in five patients. All patients had received diagnostic genetic testing and were selected upon the presence of apparent biallelic variants in known BBS-associated genes. All patients had retinal dystrophy with morphologic changes of the retina. Visual acuity decreased from ~0.2 (decimal) at age 5 to blindness 0 at 50 years. Visual field examination could be performed in only half of the patients and showed a concentric constriction with remaining islands of function in the periphery. ERG recordings were mostly extinguished whereas VEP recordings were reduced in about half of the patients. The cohort of patients showed 51 different likely biallelic mutations—of which 11 are novel—in 12 different BBS-associated genes. The most common associated genes were BBS10 (32.8%) and BBS1 (24.6%), and by far the most commonly observed variants were BBS10 c.271dup;p.C91Lfs*5 (21 alleles) and BBS1 c.1169T>G;p.M390R (18 alleles). The phenotype associated with the different BBS-associated genes and genotypes in our cohort is heterogeneous, with diverse features without genotype−phenotype correlation. The results confirm and expand our knowledge of this rare disease.
Collapse
Affiliation(s)
- Fadi Nasser
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Department of Ophthalmology, University of Leipzig, 04103 Leipzig, Germany
- Correspondence:
| | - Susanne Kohl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Anne Kurtenbach
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Melanie Kempf
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | | | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Nicole Weisschuh
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Katarina Stingl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076 Tuebingen, Germany
| |
Collapse
|
20
|
Immune Infiltration of Ulcerative Colitis and Detection of the m6A Subtype. J Immunol Res 2022; 2022:7280977. [PMID: 35795532 PMCID: PMC9252851 DOI: 10.1155/2022/7280977] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease characterized by persistent colon inflammation. N6-methyladenosine (m6A) methylation is one of the most prevalent RNA modifications with key roles in both normal and illness, but m6A methylation in ulcerative colitis is unknown. This research investigated m6A methylation in UC. We examined the expression of known m6A RNA methylation regulators in UC using the Gene Expression Omnibus database (GEO database). First, we used m6A regulators to examine m6A change in UC samples. These two patient groups were created by clustering three m6A gene expression datasets. These genes were then utilized to build an m6A gene network using WGCNA and PPI. These networks were built using differentially expressed genes. The 12 m6A regulators were found to be dispersed throughout the chromosome. The study’s data were then connected, revealing positive or negative relationships between genes or signaling pathways. Then, PCA of the 12 m6A-regulated genes indicated that the two patient groups could be discriminated in both PC1 and PC2 dimensions. The ssGSEA algorithm found that immune invading cells could be easily distinguished across diverse patient groups. Both groups had varied levels of popular cytokines. The differential gene analysis of the two samples yielded 517 genes like FTO and RFX7. It found 9 hub genes among 121 genes in the blue module, compared their expression in two groups of samples, and found that the differences in expression of these 9 genes were highly significant. The identification of 9 possible m6A methylation-dependent gene regulatory networks suggests that m6A methylation is involved in UC pathogenesis. Nine candidate genes have been identified as possible markers for assessing UC severity and developing innovative UC targeted therapeutic approaches.
Collapse
|
21
|
Fabregat M, Niño-Rivero S, Pose S, Cárdenas-Rodríguez M, Bresque M, Hernández K, Prieto-Echagüe V, Schlapp G, Crispo M, Lagos P, Lago N, Escande C, Irigoín F, Badano JL. Generation and characterization of Ccdc28b mutant mice links the Bardet-Biedl associated gene with mild social behavioral phenotypes. PLoS Genet 2022; 18:e1009896. [PMID: 35653384 PMCID: PMC9197067 DOI: 10.1371/journal.pgen.1009896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/14/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
CCDC28B (coiled-coil domain-containing protein 28B) was identified as a modifier in the ciliopathy Bardet-Biedl syndrome (BBS). Our previous work in cells and zebrafish showed that CCDC28B plays a role regulating cilia length in a mechanism that is not completely understood. Here we report the generation of a Ccdc28b mutant mouse using CRISPR/Cas9 (Ccdc28b mut). Depletion of CCDC28B resulted in a mild phenotype. Ccdc28b mut animals i) do not present clear structural cilia affectation, although we did observe mild defects in cilia density and cilia length in some tissues, ii) reproduce normally, and iii) do not develop retinal degeneration or obesity, two hallmark features of reported BBS murine models. In contrast, Ccdc28b mut mice did show clear social interaction defects as well as stereotypical behaviors. This finding is indeed relevant regarding CCDC28B as a modifier of BBS since behavioral phenotypes have been documented in BBS. Overall, this work reports a novel mouse model that will be key to continue evaluating genetic interactions in BBS, deciphering the contribution of CCDC28B to modulate the presentation of BBS phenotypes. In addition, our data underscores a novel link between CCDC28B and behavioral defects, providing a novel opportunity to further our understanding of the genetic, cellular, and molecular basis of these complex phenotypes. BBS is caused by mutations in any one of 22 genes known to date. In some families, BBS can be inherited as an oligogenic trait whereby mutations in more than one BBS gene collaborate in the presentation of the syndrome. In addition, CCDC28B was originally identified as a modifier of BBS, whereby a reduction in CCDC28B levels was associated with a more severe presentation of the syndrome. Different mechanisms, all relying on functional redundancy, have been proposed to explain these genetic interactions. The characterization of BBS proteins supported this functional redundancy hypothesis: BBS proteins play a role in cilia maintenance/function and subsets of BBS proteins can even interact directly in multiprotein complexes. We have previously shown that CCDC28B also participates in cilia biology regulating the length of the organelle: knockdown of CCDC28B in cells results in cilia shortening and targeting ccdc28b in zebrafish also results in early embryonic phenotypes characteristic of other cilia mutants. In this work, we generated a Ccdc28b mutant mouse to determine whether abrogating Ccdc28b function would be sufficient to cause a ciliopathy phenotype in mammals, and to generate a tool to continue dissecting its modifying role in the context of BBS. Overall, Ccdc28b mutant mice presented a mild phenotype, a finding fully compatible with its role as a modifier, rather than a causal BBS gene. In addition, we found that Ccdc28b mutants showed behavioral phenotypes, similar to the deficits observed in rodent autism spectrum disorder (ASD) models. Thus, our results underscore a novel causal link between CCDC28B and behavioral phenotypes in mice.
Collapse
Affiliation(s)
- Matías Fabregat
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sofía Niño-Rivero
- Departamento de Fisiología, Universidad de la República, Montevideo, Uruguay
| | - Sabrina Pose
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Magdalena Cárdenas-Rodríguez
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariana Bresque
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Metabolic Diseases and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Karina Hernández
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Victoria Prieto-Echagüe
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Geraldine Schlapp
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Martina Crispo
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Patricia Lagos
- Departamento de Fisiología, Universidad de la República, Montevideo, Uruguay
| | - Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Escande
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Metabolic Diseases and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Irigoín
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- * E-mail: (FI); (JLB)
| | - Jose L. Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- * E-mail: (FI); (JLB)
| |
Collapse
|
22
|
Roberts KJ, Ariza AJ, Selvaraj K, Quadri M, Mangarelli C, Neault S, Davis EE, Binns HJ. Testing for rare genetic causes of obesity: findings and experiences from a pediatric weight management program. Int J Obes (Lond) 2022; 46:1493-1501. [PMID: 35562395 PMCID: PMC9105591 DOI: 10.1038/s41366-022-01139-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Genetic screening for youth with obesity in the absence of syndromic findings has not been part of obesity management. For children with early onset obesity, genetic screening is recommended for those having clinical features of genetic obesity syndromes (including hyperphagia). OBJECTIVES The overarching goal of this work is to report the findings and experiences from one pediatric weight management program that implemented targeted sequencing analysis for genes known to cause rare genetic disorders of obesity. SUBJECTS/METHODS This exploratory study evaluated youth tested over an 18-month period using a panel of 40-genes in the melanocortin 4 receptor pathway. Medical records were reviewed for demographic and visit information, including body mass index (BMI) percent of 95th percentile (%BMIp95) and two eating behaviors. RESULTS Of 117 subjects: 51.3% were male; 53.8% Hispanic; mean age 10.2 years (SD 3.8); mean %BMIp95 157% (SD 29%). Most subjects were self- or caregiver-reported to have overeating to excess or binge eating (80.3%) and sneaking food or eating in secret (59.0%). Among analyzed genes, 72 subjects (61.5%) had at least one variant reported; 50 (42.7%) had a single variant reported; 22 (18.8%) had 2-4 variants reported; most variants were rare (<0.05% minor allele frequency [MAF]), and of uncertain significance; all variants were heterozygous. Nine subjects (7.7%) had a variant reported as PSCK1 "risk" or MC4R "likely pathogenic"; 39 (33.3%) had a Bardet-Biedl Syndrome (BBS) gene variant (4 with "pathogenic" or "likely pathogenic" variants). Therefore, 9 youth (7.7%) had gene variants previously identified as increasing risk for obesity and 4 youth (3.4%) had BBS carrier status. CONCLUSIONS Panel testing identified rare variants of uncertain significance in most youth tested, and infrequently identified variants previously reported to increase the risk for obesity. Further research in larger cohorts is needed to understand how genetic variants influence the expression of non-syndromic obesity.
Collapse
Affiliation(s)
- Karyn J Roberts
- College of Nursing, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI, 53201-0413, USA. .,Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Adolfo J Ariza
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kavitha Selvaraj
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Maheen Quadri
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Caren Mangarelli
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Sarah Neault
- Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Erica E Davis
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Helen J Binns
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Gupta N, D'Acierno M, Zona E, Capasso G, Zacchia M. Bardet-Biedl syndrome: The pleiotropic role of the chaperonin-like BBS6, 10, and 12 proteins. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:9-19. [PMID: 35373910 PMCID: PMC9325507 DOI: 10.1002/ajmg.c.31970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/08/2022] [Accepted: 03/27/2022] [Indexed: 12/11/2022]
Abstract
Bardet–Biedl syndrome (BBS) is a rare pleiotropic disorder known as a ciliopathy. Despite significant genetic heterogeneity, BBS1 and BBS10 are responsible for major diagnosis in western countries. It is well established that eight BBS proteins, namely BBS1, 2, 4, 5, 7, 8, 9, and 18, form the BBSome, a multiprotein complex serving as a regulator of ciliary membrane protein composition. Less information is available for BBS6, BBS10, and BBS12, three proteins showing sequence homology with the CCT/TRiC family of group II chaperonins. Even though their chaperonin function is debated, scientific evidence demonstrated that they are required for initial BBSome assembly in vitro. Recent studies suggest that genotype may partially predict clinical outcomes. Indeed, patients carrying truncating mutations in any gene show the most severe phenotype; moreover, mutations in chaperonin‐like BBS proteins correlated with severe kidney impairment. This study is a critical review of the literature on genetics, expression level, cellular localization and function of BBS proteins, focusing primarily on the chaperonin‐like BBS proteins, and aiming to provide some clues to understand the pathomechanisms of disease in this setting.
Collapse
Affiliation(s)
- Neha Gupta
- Unit of Nephrology, Department of Translational Medical Sciences, University of Campania L. Vanvitelli, Naples, Italy.,BioGem S.C.A.R.L., Benevento, Benevento Province, Italy
| | - Mariavittoria D'Acierno
- Unit of Nephrology, Department of Translational Medical Sciences, University of Campania L. Vanvitelli, Naples, Italy.,BioGem S.C.A.R.L., Benevento, Benevento Province, Italy
| | - Enrica Zona
- Unit of Nephrology, Department of Translational Medical Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | | | - Miriam Zacchia
- Unit of Nephrology, Department of Translational Medical Sciences, University of Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
24
|
Meyer JR, Krentz AD, Berg RL, Richardson JG, Pomeroy J, Hebbring SJ, Haws RM. Kidney Failure in Bardet-Biedl Syndrome. Clin Genet 2022; 101:429-441. [PMID: 35112343 PMCID: PMC9311438 DOI: 10.1111/cge.14119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/29/2022]
Abstract
The aim of this study was to explore kidney failure (KF) in Bardet–Biedl syndrome (BBS), focusing on high‐risk gene variants, demographics, and morbidity. We employed the Clinical Registry Investigating BBS (CRIBBS) to identify 44 (7.2%) individuals with KF out of 607 subjects. Molecularly confirmed BBS was identified in 37 KF subjects and 364 CRIBBS registrants. KF was concomitant with recessive causal variants in 12 genes, with BBS10 the most predominant causal gene (26.6%), while disease penetrance was highest in SDCCAG8 (100%). Two truncating variants were present in 67.6% of KF cases. KF incidence was increased in genes not belonging to the BBSome or chaperonin‐like genes (p < 0.001), including TTC21B, a new candidate BBS gene. Median age of KF was 12.5 years, with the vast majority of KF occurring by 30 years (86.3%). Females were disproportionately affected (77.3%). Diverse uropathies were identified, but were not more common in the KF group (p = 0.672). Kidney failure was evident in 11 of 15 (73.3%) deaths outside infancy. We conclude that KF poses a significant risk for premature morbidity in BBS. Risk factors for KF include female sex, truncating variants, and genes other than BBSome/chaperonin‐like genes highlighting the value of comprehensive genetic investigation.
Collapse
Affiliation(s)
- Jennifer R Meyer
- University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| | | | - Richard L Berg
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | | | - Jeremy Pomeroy
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Scott J Hebbring
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Robert M Haws
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA.,Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| |
Collapse
|
25
|
Chandra B, Tung ML, Hsu Y, Scheetz T, Sheffield VC. Retinal ciliopathies through the lens of Bardet-Biedl Syndrome: Past, present and future. Prog Retin Eye Res 2021; 89:101035. [PMID: 34929400 DOI: 10.1016/j.preteyeres.2021.101035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The primary cilium is a highly specialized and evolutionary conserved organelle in eukaryotes that plays a significant role in cell signaling and trafficking. Over the past few decades tremendous progress has been made in understanding the physiology of cilia and the underlying pathomechanisms of various ciliopathies. Syndromic ciliopathies consist of a group of disorders caused by ciliary dysfunction or abnormal ciliogenesis. These disorders have multiorgan involvement in addition to retinal degeneration underscoring the ubiquitous distribution of primary cilia in different cell types. Genotype-phenotype correlation is often challenging due to the allelic heterogeneity and pleiotropy of these disorders. In this review, we discuss the clinical and genetic features of syndromic ciliopathies with a focus on Bardet-Biedl syndrome (BBS) as a representative disorder. We discuss the structure and function of primary cilia and their role in retinal photoreceptors. We describe the progress made thus far in understanding the functional and genetic characterization including expression quantitative trait locus (eQTL) analysis of BBS genes. In the future directions section, we discuss the emerging technologies, such as gene therapy, as well as anticipated challenges and their implications in therapeutic development for ciliopathies.
Collapse
Affiliation(s)
- Bharatendu Chandra
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Moon Ley Tung
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Todd Scheetz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Val C Sheffield
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
26
|
Grudzinska Pechhacker MK, Jacobson SG, Drack AV, Scipio MD, Strubbe I, Pfeifer W, Duncan JL, Dollfus H, Goetz N, Muller J, Vincent AL, Aleman TS, Tumber A, Van Cauwenbergh C, De Baere E, Bedoukian E, Leroy BP, Maynes JT, Munier FL, Tavares E, Saleh E, Vincent A, Heon E. Comparative Natural History of Visual Function From Patients With Biallelic Variants in BBS1 and BBS10. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 34940782 PMCID: PMC8711006 DOI: 10.1167/iovs.62.15.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to compare the natural history of visual function change in cohorts of patients affected with retinal degeneration due to biallelic variants in Bardet-Biedl syndrome genes: BBS1 and BBS10. Methods Patients were recruited from nine academic centers from six countries (Belgium, Canada, France, New Zealand, Switzerland, and the United States). Inclusion criteria were: (1) female or male patients with a clinical diagnosis of retinal dystrophy, (2) biallelic disease-causing variants in BBS1 or BBS10, and (3) measures of visual function for at least one visit. Retrospective data collected included genotypes, age, onset of symptoms, and best corrected visual acuity (VA). When possible, data on refractive error, fundus images and autofluorescence (FAF), optical coherence tomography (OCT), Goldmann kinetic perimetry (VF), electroretinography (ERG), and the systemic phenotype were collected. Results Sixty-seven individuals had variants in BBS1 (n = 38; 20 female patients and 18 male patients); or BBS10 (n = 29; 14 female patients and 15 male patients). Missense variants were the most common type of variants for patients with BBS1, whereas frameshift variants were most common for BBS10. When ERGs were recordable, rod-cone dystrophy (RCD) was observed in 82% (23/28) of patients with BBS1 and 73% (8/11) of patients with BBS10; cone-rod dystrophy (CORD) was seen in 18% of patients with BBS1 only, and cone dystrophy (COD) was only seen in 3 patients with BBS10 (27%). ERGs were nondetectable earlier in patients with BBS10 than in patients with BBS1. Similarly, VA and VF declined more rapidly in patients with BBS10 compared to patients with BBS1. Conclusions Retinal degeneration appears earlier and is more severe in BBS10 cases as compared to those with BBS1 variants. The course of change of visual function appears to relate to genetic subtypes of BBS.
Collapse
Affiliation(s)
- Monika K Grudzinska Pechhacker
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arlene V Drack
- Department of Ophthalmology, Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Matteo Di Scipio
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Ine Strubbe
- Department of Ophthalmology, Ghent University Hospital & Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Wanda Pfeifer
- Department of Ophthalmology, Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Helene Dollfus
- CARGO ( Centre de référence pour les affections rares génétiques ), IGMA Institut de Génétqiue Médicale d'Alsace , Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,UMRS_1112, IGMA ( Institut de génétique Médicale d'Alsace ) Université de Strasbourg, Strasbourg, France
| | - Nathalie Goetz
- UMRS_1112, IGMA ( Institut de génétique Médicale d'Alsace ) Université de Strasbourg, Strasbourg, France
| | - Jean Muller
- CARGO ( Centre de référence pour les affections rares génétiques ), IGMA Institut de Génétqiue Médicale d'Alsace , Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,UMRS_1112, IGMA ( Institut de génétique Médicale d'Alsace ) Université de Strasbourg, Strasbourg, France.,Laboratoire de diagnostique génétique, IGMA ( Institut de génétique Médicale d'Alsace ) Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Andrea L Vincent
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Tomas S Aleman
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, Philadelphia, Pennsylvania, United States.,Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent University Hospital & Department of Head and Skin, Ghent University, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Emma Bedoukian
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital & Department of Head and Skin, Ghent University, Ghent, Belgium.,Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, Philadelphia, Pennsylvania, United States.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Center for Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Departments of Biochemistry and Anesthesiology and Pain Medicine, University of Toronto, Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Francis L Munier
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Erika Tavares
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Eman Saleh
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
27
|
Focșa IO, Budișteanu M, Burloiu C, Khan S, Sadeghpour A, Bohîlțea LC, Davis EE, Bălgrădean M. A case of Bardet-Biedl syndrome caused by a recurrent variant in BBS12: A case report. Biomed Rep 2021; 15:103. [PMID: 34760276 PMCID: PMC8567465 DOI: 10.3892/br.2021.1479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a clinically and genetically heterogenous disorder that manifests as a result of primary cilia impairment. Cilia are present on most cell types, thus BBS is a multisystemic condition involving the majority of organ systems. The core features of the syndrome include retinal degeneration, obesity, polydactyly, cognitive impairment, renal anomalies and urogenital malformations. To date, pathogenic variants in 26 genes have been shown to be involved in the molecular basis of this rare ciliopathy. Of these causal loci, BBS12 accounts for ~8% of all cases. In this case report, an individual with BBS caused by a rare recurrent variant in BBS12 (NM_152618.3: c.1063C>T; p.Arg355*) is described and compared with others with the same DNA variant, placing this finding in the context of the current literature.
Collapse
Affiliation(s)
- Ina Ofelia Focșa
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Medical Genetic Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Medical Genetics, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Carmen Burloiu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Sheraz Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan Institute of Engineering and Applied Sciences, Islamabad 38000, Pakistan.,Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA.,Duke Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27708, USA
| | - Laurențiu C Bohîlțea
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mihaela Bălgrădean
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children 'Maria Skłodowska Curie', 077120 Bucharest, Romania.,Department of Pediatrics, University of Medicine and Pharmacy 'Carol Davila', 077120 Bucharest, Romania
| |
Collapse
|
28
|
Bizzari S, Nair P, Deepthi A, Hana S, Al-Ali MT, Megarbané A, El-Hayek S. Catalogue for Transmission Genetics in Arabs (CTGA) Database: Analysing Lebanese Data on Genetic Disorders. Genes (Basel) 2021; 12:1518. [PMID: 34680914 PMCID: PMC8535931 DOI: 10.3390/genes12101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
Lebanon has a high annual incidence of birth defects at 63 per 1000 live births, most of which are due to genetic factors. The Catalogue for Transmission Genetics in Arabs (CTGA) database, currently holds data on 642 genetic diseases and 676 related genes, described in Lebanese subjects. A subset of disorders (14/642) has exclusively been described in the Lebanese population, while 24 have only been reported in CTGA and not on OMIM. An analysis of all disorders highlights a preponderance of congenital malformations, deformations and chromosomal abnormalities and demonstrates that 65% of reported disorders follow an autosomal recessive inheritance pattern. In addition, our analysis reveals that at least 58 known genetic disorders were first mapped in Lebanese families. CTGA also hosts 1316 variant records described in Lebanese subjects, 150 of which were not reported on ClinVar or dbSNP. Most variants involved substitutions, followed by deletions, duplications, as well as in-del and insertion variants. This review of genetic data from the CTGA database highlights the need for screening programs, and is, to the best of our knowledge, the most comprehensive report on the status of genetic disorders in Lebanon to date.
Collapse
Affiliation(s)
- Sami Bizzari
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Pratibha Nair
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Asha Deepthi
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Sayeeda Hana
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Mahmoud Taleb Al-Ali
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - André Megarbané
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 13-5053, Lebanon;
| | - Stephany El-Hayek
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| |
Collapse
|
29
|
Meng X, Long Y, Ren J, Wang G, Yin X, Li S. Ocular Characteristics of Patients With Bardet-Biedl Syndrome Caused by Pathogenic BBS Gene Variation in a Chinese Cohort. Front Cell Dev Biol 2021; 9:635216. [PMID: 33777945 PMCID: PMC7991091 DOI: 10.3389/fcell.2021.635216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Bardet–Biedl syndrome (BBS; OMIM 209900) is a rare genetic disease causing damage to multiple organs and affecting patients’ quality of life in late adolescence or early adulthood. In this study, the ocular characteristics including morphology and function, were analyzed in 12 BBS patients from 10 Chinese families by molecular diagnostics. A total of five known and twelve novel variants in four BBS genes (BBS2, 58.33%; BBS4, 8.33%; BBS7, 16.67%; and BBS9, 16.67%) were identified in 10 Chinese families with BBS. All patients had typical phenotypes of retinitis pigmentosa with unrecordable or severely damaged cone and rod responses on full-field flash electroretinography (ffERG). Most of the patients showed unremarkable reactions in pattern visual evoked potential (PVEP) and multifocal electroretinography (mfERG), while their flash visual evoked potentials (FVEP) indicated display residual visual function. Changes in the fundus morphology, including color fundus photography and autofluorescence (AF) imaging, were heterogeneous and not consistent with the patients’ functional tests. Overall, our study expands the variation spectrum of the BBS gene, showing that the ocular characteristics of BBS patients are clinically highly heterogeneous, and demonstrates the usefulness of a combination of the ffERG and FVEP assessments of visual function in the advanced stage of retinopathy in BBS.
Collapse
Affiliation(s)
- Xiaohong Meng
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yanling Long
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Jiayun Ren
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Gang Wang
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Xin Yin
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Shiying Li
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
30
|
Yamakawa D, Katoh D, Kasahara K, Shiromizu T, Matsuyama M, Matsuda C, Maeno Y, Watanabe M, Nishimura Y, Inagaki M. Primary cilia-dependent lipid raft/caveolin dynamics regulate adipogenesis. Cell Rep 2021; 34:108817. [PMID: 33691104 DOI: 10.1016/j.celrep.2021.108817] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Primary cilia play a pivotal role in signal transduction and development and are known to serve as signaling hubs. Recent studies have shown that primary cilium dysfunction influences adipogenesis, but the mechanisms are unclear. Here, we show that mesenchymal progenitors C3H10T1/2 depleted of trichoplein, a key regulator of cilium formation, have significantly longer cilia than control cells and fail to differentiate into adipocytes. Mechanistically, the elongated cilia prevent caveolin-1- and/or GM3-positive lipid rafts from being assembled around the ciliary base where insulin receptor proteins accumulate, thereby inhibiting the insulin-Akt signaling. We further generate trichoplein knockout mice, in which adipogenic progenitors display elongated cilia and impair the lipid raft dynamics. The knockout mice on an extended high-fat diet exhibit reduced body fat and smaller adipocytes than wild-type (WT) mice. Overall, our results suggest a role for primary cilia in regulating adipogenic signal transduction via control of the lipid raft dynamics around cilia.
Collapse
Affiliation(s)
- Daishi Yamakawa
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Daisuke Katoh
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kousuke Kasahara
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202, Japan
| | - Chise Matsuda
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yumi Maeno
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
31
|
The Neurochaperonopathies: Anomalies of the Chaperone System with Pathogenic Effects in Neurodegenerative and Neuromuscular Disorders. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chaperone (or chaperoning) system (CS) constitutes molecular chaperones, co-chaperones, and chaperone co-factors, interactors and receptors, and its canonical role is protein quality control. A malfunction of the CS may cause diseases, known as the chaperonopathies. These are caused by qualitatively and/or quantitatively abnormal molecular chaperones. Since the CS is ubiquitous, chaperonopathies are systemic, affecting various tissues and organs, playing an etiologic-pathogenic role in diverse conditions. In this review, we focus on chaperonopathies involved in the pathogenic mechanisms of diseases of the central and peripheral nervous systems: the neurochaperonopathies (NCPs). Genetic NCPs are linked to pathogenic variants of chaperone genes encoding, for example, the small Hsp, Hsp10, Hsp40, Hsp60, and CCT-BBS (chaperonin-containing TCP-1- Bardet–Biedl syndrome) chaperones. Instead, the acquired NCPs are associated with malfunctional chaperones, such as Hsp70, Hsp90, and VCP/p97 with aberrant post-translational modifications. Awareness of the chaperonopathies as the underlying primary or secondary causes of disease will improve diagnosis and patient management and open the possibility of investigating and developing chaperonotherapy, namely treatment with the abnormal chaperone as the main target. Positive chaperonotherapy would apply in chaperonopathies by defect, i.e., chaperone insufficiency, and consist of chaperone replacement or boosting, whereas negative chaperonotherapy would be pertinent when a chaperone actively participates in the initiation and progression of the disease and must be blocked and eliminated.
Collapse
|
32
|
Novel Compound Heterozygous BBS2 and Homozygous MKKS Variants Detected in Chinese Families with Bardet-Biedl Syndrome. J Ophthalmol 2021; 2021:6751857. [PMID: 33520300 PMCID: PMC7817241 DOI: 10.1155/2021/6751857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/23/2020] [Accepted: 12/19/2020] [Indexed: 11/29/2022] Open
Abstract
Background Bardet–Biedl syndrome (BBS) is a rare multisystem developmental disorder. In this study, we report the genetic causes and clinical manifestations in two Chinese families with BBS. Materials and Methods Two families were recruited in this study. Family A was a four-generation family with four affected and 15 unaffected members participating in the study, and family B was a consanguineous family with one affected and three unaffected members participating. Whole exome sequencing was performed in the two families, followed by a multistep bioinformatics analysis. Sanger sequencing was used to verify the variants and to perform a segregation analysis. Comprehensive ocular and systemic examinations were also conducted. Results Novel compound heterozygous variants c.235T > G (p.T79P) and c.534 + 1G > T were detected in the BBS2 gene in family A, and known homozygous variant c.748G > A (p.G250R) was detected in the MKKS gene in family B. Both families presented with retinitis pigmentosa; however, except for polydactyly, all other systemic manifestations were different. All of the affected family members in family A were overweight with a high body mass index (range from 26.5 to 41.9) and high blood pressure. Family A also presented with a delay in the onset of secondary sex characteristics and genital anomalies, while other systemic abnormalities were absent in family B. Conclusions This study presents one family with two novel BBS2 variants, expanding the variant spectrum of BBS, and one family with a known homozygous MKKS variant. The different phenotypes seen between the families with BBS2 and MKKS variants will contribute to the literature and our overall understanding of BBS.
Collapse
|
33
|
Exome-wide evaluation of rare coding variants using electronic health records identifies new gene-phenotype associations. Nat Med 2021; 27:66-72. [PMID: 33432171 PMCID: PMC8775355 DOI: 10.1038/s41591-020-1133-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/13/2020] [Indexed: 01/18/2023]
Abstract
The clinical impact of rare loss-of-function variants has yet to be determined for most genes. Integration of DNA sequencing data with electronic health records (EHRs) could enhance our understanding of the contribution of rare genetic variation to human disease1. By leveraging 10,900 whole-exome sequences linked to EHR data in the Penn Medicine Biobank, we addressed the association of the cumulative effects of rare predicted loss-of-function variants for each individual gene on human disease on an exome-wide scale, as assessed using a set of diverse EHR phenotypes. After discovering 97 genes with exome-by-phenome-wide significant phenotype associations (P < 10-6), we replicated 26 of these in the Penn Medicine Biobank, as well as in three other medical biobanks and the population-based UK Biobank. Of these 26 genes, five had associations that have been previously reported and represented positive controls, whereas 21 had phenotype associations not previously reported, among which were genes implicated in glaucoma, aortic ectasia, diabetes mellitus, muscular dystrophy and hearing loss. These findings show the value of aggregating rare predicted loss-of-function variants into 'gene burdens' for identifying new gene-disease associations using EHR phenotypes in a medical biobank. We suggest that application of this approach to even larger numbers of individuals will provide the statistical power required to uncover unexplored relationships between rare genetic variation and disease phenotypes.
Collapse
|
34
|
Martín-Sánchez M, Bravo-Gil N, González-del Pozo M, Méndez-Vidal C, Fernández-Suárez E, Rodríguez-de la Rúa E, Borrego S, Antiñolo G. A Multi-Strategy Sequencing Workflow in Inherited Retinal Dystrophies: Routine Diagnosis, Addressing Unsolved Cases and Candidate Genes Identification. Int J Mol Sci 2020; 21:E9355. [PMID: 33302505 PMCID: PMC7763277 DOI: 10.3390/ijms21249355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
The management of unsolved inherited retinal dystrophies (IRD) cases is challenging since no standard pipelines have been established. This study aimed to define a diagnostic algorithm useful for the diagnostic routine and to address unsolved cases. Here, we applied a Next-Generation Sequencing-based workflow, including a first step of panel sequencing (PS) followed by clinical-exome sequencing (CES) and whole-exome sequencing (WES), in 46 IRD patients belonging to 42 families. Twenty-six likely causal variants in retinal genes were found by PS and CES. CES and WES allowed proposing two novel candidate loci (WDFY3 and a X-linked region including CITED1), both abundantly expressed in human retina according to RT-PCR and immunohistochemistry. After comparison studies, PS showed the best quality and cost values, CES and WES involved similar analytical efforts and WES presented the highest diagnostic yield. These results reinforce the relevance of panels as a first step in the diagnostic routine and suggest WES as the next strategy for unsolved cases, reserving CES for the simultaneous study of multiple conditions. Standardizing this algorithm would enhance the efficiency and equity of clinical genetics practice. Furthermore, the identified candidate genes could contribute to increase the diagnostic yield and expand the mutational spectrum in these disorders.
Collapse
Affiliation(s)
- Marta Martín-Sánchez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Seville, Spain
| | - María González-del Pozo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Seville, Spain
| | - Cristina Méndez-Vidal
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Seville, Spain
| | - Elena Fernández-Suárez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
| | - Enrique Rodríguez-de la Rúa
- Department of Ophthalmology, University Hospital Virgen Macarena, 41013 Seville, Spain;
- Retics Patologia Ocular, OFTARED, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (M.M.-S.); (N.B.-G.); (M.G.-d.P.); (C.M.-V.); (E.F.-S.); (S.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Seville, Spain
| |
Collapse
|
35
|
Kousi M, Söylemez O, Ozanturk A, Mourtzi N, Akle S, Jungreis I, Muller J, Cassa CA, Brand H, Mokry JA, Wolf MY, Sadeghpour A, McFadden K, Lewis RA, Talkowski ME, Dollfus H, Kellis M, Davis EE, Sunyaev SR, Katsanis N. Evidence for secondary-variant genetic burden and non-random distribution across biological modules in a recessive ciliopathy. Nat Genet 2020; 52:1145-1150. [PMID: 33046855 PMCID: PMC8272915 DOI: 10.1038/s41588-020-0707-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/31/2020] [Indexed: 11/08/2022]
Abstract
The influence of genetic background on driver mutations is well established; however, the mechanisms by which the background interacts with Mendelian loci remain unclear. We performed a systematic secondary-variant burden analysis of two independent cohorts of patients with Bardet-Biedl syndrome (BBS) with known recessive biallelic pathogenic mutations in one of 17 BBS genes for each individual. We observed a significant enrichment of trans-acting rare nonsynonymous secondary variants in patients with BBS compared with either population controls or a cohort of individuals with a non-BBS diagnosis and recessive variants in the same gene set. Strikingly, we found a significant over-representation of secondary alleles in chaperonin-encoding genes-a finding corroborated by the observation of epistatic interactions involving this complex in vivo. These data indicate a complex genetic architecture for BBS that informs the biological properties of disease modules and presents a model for secondary-variant burden analysis in recessive disorders.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Onuralp Söylemez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aysegül Ozanturk
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Niki Mourtzi
- Advanced Center for Translational and Genetic Medicine, Lurie Children's Hospital, Chicago, IL, USA
| | - Sebastian Akle
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, USA
| | - Irwin Jungreis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Jean Muller
- Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christopher A Cassa
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Program in Population and Medical Genetics and Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jill Anne Mokry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Maxim Y Wolf
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Kelsey McFadden
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Richard A Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Michael E Talkowski
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Program in Population and Medical Genetics and Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Advanced Center for Translational and Genetic Medicine, Lurie Children's Hospital, Chicago, IL, USA
| | - Shamil R Sunyaev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.
- Advanced Center for Translational and Genetic Medicine, Lurie Children's Hospital, Chicago, IL, USA.
- Departments of Pediatrics and Cellular and Molecular Biology, Northwestern University School of Medicine, Chicago, IL, USA.
| |
Collapse
|
36
|
Deletion in the Bardet-Biedl Syndrome Gene TTC8 Results in a Syndromic Retinal Degeneration in Dogs. Genes (Basel) 2020; 11:genes11091090. [PMID: 32962042 PMCID: PMC7565673 DOI: 10.3390/genes11091090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
In golden retriever dogs, a 1 bp deletion in the canine TTC8 gene has been shown to cause progressive retinal atrophy (PRA), the canine equivalent of retinitis pigmentosa. In humans, TTC8 is also implicated in Bardet–Biedl syndrome (BBS). To investigate if the affected dogs only exhibit a non-syndromic PRA or develop a syndromic ciliopathy similar to human BBS, we recruited 10 affected dogs to the study. The progression of PRA for two of the dogs was followed for 2 years, and a rigorous clinical characterization allowed a careful comparison with primary and secondary characteristics of human BBS. In addition to PRA, the dogs showed a spectrum of clinical and morphological signs similar to primary and secondary characteristics of human BBS patients, such as obesity, renal anomalies, sperm defects, and anosmia. We used Oxford Nanopore long-read cDNA sequencing to characterize retinal full-length TTC8 transcripts in affected and non-affected dogs, the results of which suggest that three isoforms are transcribed in the retina, and the 1 bp deletion is a loss-of-function mutation, resulting in a canine form of Bardet–Biedl syndrome with heterogeneous clinical signs.
Collapse
|
37
|
Prasai A, Schmidt Cernohorska M, Ruppova K, Niederlova V, Andelova M, Draber P, Stepanek O, Huranova M. The BBSome assembly is spatially controlled by BBS1 and BBS4 in human cells. J Biol Chem 2020; 295:14279-14290. [PMID: 32759308 DOI: 10.1074/jbc.ra120.013905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a pleiotropic ciliopathy caused by dysfunction of primary cilia. More than half of BBS patients carry mutations in one of eight genes encoding for subunits of a protein complex, the BBSome, which mediates trafficking of ciliary cargoes. In this study, we elucidated the mechanisms of the BBSome assembly in living cells and how this process is spatially regulated. We generated a large library of human cell lines deficient in a particular BBSome subunit and expressing another subunit tagged with a fluorescent protein. We analyzed these cell lines utilizing biochemical assays, conventional and expansion microscopy, and quantitative fluorescence microscopy techniques: fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. Our data revealed that the BBSome formation is a sequential process. We show that the pre-BBSome is nucleated by BBS4 and assembled at pericentriolar satellites, followed by the translocation of the BBSome into the ciliary base mediated by BBS1. Our results provide a framework for elucidating how BBS-causative mutations interfere with the biogenesis of the BBSome.
Collapse
Affiliation(s)
- Avishek Prasai
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Schmidt Cernohorska
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Klara Ruppova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Andelova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Draber
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
38
|
Gouronc A, Zilliox V, Jacquemont M, Darcel F, Leuvrey A, Nourisson E, Antin M, Alessandri J, Doray B, Gueguen P, Payet F, Randrianaivo H, Stoetzel C, Scheidecker S, Flodrops H, Dollfus H, Muller J. High prevalence of
Bardet‐Biedl
syndrome in
La Réunion
Island
is due to a founder variant in
ARL6/BBS3. Clin Genet 2020; 98:166-171. [DOI: 10.1111/cge.13768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Aurélie Gouronc
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
| | - Vincent Zilliox
- Unité Fonctionnelle de Bioinformatique Médicale appliquée au diagnostic (UF7363)Hôpitaux Universitaires de Strasbourg Strasbourg France
| | | | - Françoise Darcel
- Service des Maladies Neurologiques RaresGHSR, CHU de La Réunion Saint Pierre La Réunion France
| | - Anne‐Sophie Leuvrey
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
| | - Elsa Nourisson
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
| | - Manuela Antin
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
| | - Jean‐Luc Alessandri
- Pole Femme‐Mère‐Enfants, CH Félix GuyonCHU de La Réunion Saint‐Denis La Réunion France
| | - Bérénice Doray
- Service de Génétique, CH Félix GuyonCHU de La Réunion Saint‐Denis La Réunion France
| | - Paul Gueguen
- Service de Génétique, CH Félix GuyonCHU de La Réunion Saint‐Denis La Réunion France
| | - Frédérique Payet
- Service de Génétique, CH Félix GuyonCHU de La Réunion Saint‐Denis La Réunion France
| | | | - Corinne Stoetzel
- Laboratoire de Génétique MédicaleINSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg Faculté de médecine de Strasbourg Strasbourg France
| | - Sophie Scheidecker
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
- Laboratoire de Génétique MédicaleINSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg Faculté de médecine de Strasbourg Strasbourg France
| | - Hugues Flodrops
- Service de Pédiatrie, GHSRCHU de La Réunion Saint Pierre La Réunion France
| | - Hélène Dollfus
- Laboratoire de Génétique MédicaleINSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg Faculté de médecine de Strasbourg Strasbourg France
- Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENEHôpitaux Universitaires de Strasbourg Strasbourg France
- Service de Génétique MédicaleInstitut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg Strasbourg France
| | - Jean Muller
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
- Unité Fonctionnelle de Bioinformatique Médicale appliquée au diagnostic (UF7363)Hôpitaux Universitaires de Strasbourg Strasbourg France
- Laboratoire de Génétique MédicaleINSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg Faculté de médecine de Strasbourg Strasbourg France
| |
Collapse
|
39
|
Kops SA, Kylat RI, Bhatia S, Seckeler MD, Barber BJ, Bader MY. Genetic Characterization of a Model Ciliopathy: Bardet-Biedl Syndrome. J Pediatr Genet 2020; 10:126-130. [PMID: 33996183 DOI: 10.1055/s-0040-1708844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a rare ciliopathy affecting multiple organ systems. Patients with BBS are usually diagnosed later in childhood when clinical features of the disease become apparent. In this article, we presented a case of BBS discovered by whole genome sequencing in a newborn with heterotaxy, duodenal atresia, and complex congenital heart disease. Early diagnosis is important not only for prognostication but also to explore ways to mitigate the cone-rod dysfunction and for exploring newer therapies. Our case highlights the importance of a high index of suspicion and the utility of advanced genetic testing to provide an early diagnosis for a rare disease.
Collapse
Affiliation(s)
- Samantha A Kops
- Department of Pediatrics, Banner University Medical Center, Arizona, United States
| | - Ranjit I Kylat
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| | - Shanti Bhatia
- Department of Pediatrics, Banner University Medical Center, Arizona, United States
| | - Michael D Seckeler
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| | - Brent J Barber
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| | - Mohammad Y Bader
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| |
Collapse
|
40
|
Barabino A, Flamier A, Hanna R, Héon E, Freedman BS, Bernier G. Deregulation of Neuro-Developmental Genes and Primary Cilium Cytoskeleton Anomalies in iPSC Retinal Sheets from Human Syndromic Ciliopathies. Stem Cell Reports 2020; 14:357-373. [PMID: 32160518 PMCID: PMC7066374 DOI: 10.1016/j.stemcr.2020.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/22/2023] Open
Abstract
Ciliopathies are heterogeneous genetic diseases affecting primary cilium structure and function. Meckel-Gruber (MKS) and Bardet-Biedl (BBS) syndromes are severe ciliopathies characterized by skeletal and neurodevelopment anomalies, including polydactyly, cognitive impairment, and retinal degeneration. We describe the generation and molecular characterization of human induced pluripotent stem cell (iPSC)-derived retinal sheets (RSs) from controls, and MKS (TMEM67) and BBS (BBS10) cases. MKS and BBS RSs displayed significant common alterations in the expression of hundreds of developmental genes and members of the WNT and BMP pathways. Induction of crystallin molecular chaperones was prominent in MKS and BBS RSs suggesting a stress response to misfolded proteins. Unique to MKS photoreceptors was the presence of supernumerary centrioles and cilia, and aggregation of ciliary proteins. Unique to BBS photoreceptors was the accumulation of DNA damage and activation of the mitotic spindle checkpoint. This study reveals how combining cell reprogramming, organogenesis, and next-generation sequencing enables the elucidation of mechanisms involved in human ciliopathies.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Anthony Flamier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Elise Héon
- Hospital for Sick Children, Department of Ophthalmology and Vision Sciences, Program of Genetics and Genome Biology, 555 University av., Toronto, ON M5G 1X8, Canada
| | - Benjamin S Freedman
- Department of Medicine, Division of Nephrology, Kidney Research Institute, and Institute of Stem Cell and Regenerative Medicine, and Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada; Department of Neurosciences, University of Montreal, Montreal, QC H3C 3J7, Canada; Department of Ophthalmology, University of Montreal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
41
|
Rahit KMTH, Tarailo-Graovac M. Genetic Modifiers and Rare Mendelian Disease. Genes (Basel) 2020; 11:E239. [PMID: 32106447 PMCID: PMC7140819 DOI: 10.3390/genes11030239] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Despite advances in high-throughput sequencing that have revolutionized the discovery of gene defects in rare Mendelian diseases, there are still gaps in translating individual genome variation to observed phenotypic outcomes. While we continue to improve genomics approaches to identify primary disease-causing variants, it is evident that no genetic variant acts alone. In other words, some other variants in the genome (genetic modifiers) may alleviate (suppress) or exacerbate (enhance) the severity of the disease, resulting in the variability of phenotypic outcomes. Thus, to truly understand the disease, we need to consider how the disease-causing variants interact with the rest of the genome in an individual. Here, we review the current state-of-the-field in the identification of genetic modifiers in rare Mendelian diseases and discuss the potential for future approaches that could bridge the existing gap.
Collapse
Affiliation(s)
- K. M. Tahsin Hassan Rahit
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
42
|
Chakrabarty S, Savantre SB, Ramachandra Bhat C, Satyamoorthy K. Multiple genetic mutations implicate spectrum of phenotypes in Bardet-Biedl syndrome. Gene 2020; 725:144164. [PMID: 31639430 DOI: 10.1016/j.gene.2019.144164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/14/2019] [Accepted: 10/08/2019] [Indexed: 11/17/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a clinically and genetically heterogeneous ciliopathy with several clinical features including retinitis pigmentosa, obesity, kidney dysfunction, postaxial polydactyly, behavioral dysfunction and hypogonadism with wide spectrum of additional features. With multiple phenotypes and heterogeneous distribution, it is unlikely that BBS is caused by single gene defect. We have performed clinical and genetic diagnosis of two individuals from an Indian family with classical BBS symptoms. Whole exome sequencing identified homozygous missense mutation in BBS10 gene, hemizygous missense AR and homozygous missense PDE6B mutations in the proband and affected sibling with BBS. Identification of BBS10 mutation along with AR and PDE6B gene mutation will expand the genetic and phenotypic spectrum in individuals with BBS.
Collapse
Affiliation(s)
- Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Swheta B Savantre
- Department of Medicine, K.V.G. Medical College & Hospital, Dakshina Kannada, Sullia 574327, India
| | - C Ramachandra Bhat
- Department of Medicine, K.V.G. Medical College & Hospital, Dakshina Kannada, Sullia 574327, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
43
|
A novel missense variant in the BBS7 gene underlying Bardet-Biedl syndrome in a consanguineous Pakistani family. Clin Dysmorphol 2020; 29:17-23. [DOI: 10.1097/mcd.0000000000000294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Jaffal L, Joumaa WH, Assi A, Helou C, Cherfan G, Zibara K, Audo I, Zeitz C, El Shamieh S. Next Generation Sequencing Identifies Five Novel Mutations in Lebanese Patients with Bardet-Biedl and Usher Syndromes. Genes (Basel) 2019; 10:genes10121047. [PMID: 31888296 PMCID: PMC6947157 DOI: 10.3390/genes10121047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 01/15/2023] Open
Abstract
AIM To identify disease-causing mutations in four Lebanese families: three families with Bardet-Biedl and one family with Usher syndrome (BBS and USH respectively), using next generation sequencing (NGS). METHODS We applied targeted NGS in two families and whole exome sequencing (WES) in two other families. Pathogenicity of candidate mutations was evaluated according to frequency, conservation, in silico prediction tools, segregation with disease, and compatibility with inheritance pattern. The presence of pathogenic variants was confirmed via Sanger sequencing followed by segregation analysis. RESULTS Most likely disease-causing mutations were identified in all included patients. In BBS patients, we found (M1): c.2258A > T, p. (Glu753Val) in BBS9, (M2): c.68T > C; p. (Leu23Pro) in ARL6, (M3): c.265_266delTT; p. (Leu89Valfs*11) and (M4): c.880T > G; p. (Tyr294Asp) in BBS12. A previously known variant (M5): c.551A > G; p. (Asp184Ser) was also detected in BBS5. In the USH patient, we found (M6): c.188A > C, p. (Tyr63Ser) in CLRN1. M2, M3, M4, and M6 were novel. All of the candidate mutations were shown to be likely disease-causing through our bioinformatic analysis. They also segregated with the corresponding phenotype in available family members. CONCLUSION This study expanded the mutational spectrum and showed the genetic diversity of BBS and USH. It also spotlighted the efficiency of NGS techniques in revealing mutations underlying clinically and genetically heterogeneous disorders.
Collapse
Affiliation(s)
- Lama Jaffal
- Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Debbieh 1107 2809, Lebanon;
| | - Wissam H Joumaa
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh 1700, Lebanon;
| | - Alexandre Assi
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut 1106, Lebanon; (A.A.); (C.H.); (G.C.)
| | - Charles Helou
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut 1106, Lebanon; (A.A.); (C.H.); (G.C.)
| | - George Cherfan
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut 1106, Lebanon; (A.A.); (C.H.); (G.C.)
| | - Kazem Zibara
- ER045, PRASE, DSST, Lebanese University, Beirut 1700, Lebanon;
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut 1700, Lebanon
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (I.A.); (C.Z.)
- CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, 75012 Paris, France
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (I.A.); (C.Z.)
| | - Said El Shamieh
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh 1700, Lebanon;
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut 1107 2809, Lebanon
- Correspondence:
| |
Collapse
|
45
|
Paolacci S, Faletra F, Maltese PE, Quadrifoglio M, Bertelli M. A next generation sequencing custom gene panel designed to distinguish isolated polydactyly from syndromic polydactyly during prenatal diagnosis. Congenit Anom (Kyoto) 2019; 59:197-198. [PMID: 30767287 DOI: 10.1111/cga.12328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Stefano Paolacci
- MAGI's Lab, Research Division, Via delle Maioliche, Rovereto, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health, Department of Medical Genetics, Burlo Garofolo Institute, Trieste, Italy
| | | | - Mariachiara Quadrifoglio
- Institute for Maternal and Child Health, Department of Medical Genetics, Burlo Garofolo Institute, Trieste, Italy
| | - Matteo Bertelli
- MAGI Euregio, Research Division, Via Maso della Pieve, Bolzano, Italy
| |
Collapse
|
46
|
Ludlam WG, Aoba T, Cuéllar J, Bueno-Carrasco MT, Makaju A, Moody JD, Franklin S, Valpuesta JM, Willardson BM. Molecular architecture of the Bardet-Biedl syndrome protein 2-7-9 subcomplex. J Biol Chem 2019; 294:16385-16399. [PMID: 31530639 DOI: 10.1074/jbc.ra119.010150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/10/2019] [Indexed: 02/04/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a genetic disorder characterized by malfunctions in primary cilia resulting from mutations that disrupt the function of the BBSome, an 8-subunit complex that plays an important role in protein transport in primary cilia. To better understand the molecular basis of BBS, here we used an integrative structural modeling approach consisting of EM and chemical cross-linking coupled with MS analyses, to analyze the structure of a BBSome 2-7-9 subcomplex consisting of three homologous BBS proteins, BBS2, BBS7, and BBS9. The resulting molecular model revealed an overall structure that resembles a flattened triangle. We found that within this structure, BBS2 and BBS7 form a tight dimer through a coiled-coil interaction and that BBS9 associates with the dimer via an interaction with the α-helical domain of BBS2. Interestingly, a BBS-associated mutation of BBS2 (R632P) is located in its α-helical domain at the interface between BBS2 and BBS9, and binding experiments indicated that this mutation disrupts the BBS2-BBS9 interaction. This finding suggests that BBSome assembly is disrupted by the R632P substitution, providing molecular insights that may explain the etiology of BBS in individuals harboring this mutation.
Collapse
Affiliation(s)
- W Grant Ludlam
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Takuma Aoba
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Jorge Cuéllar
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M Teresa Bueno-Carrasco
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aman Makaju
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112
| | - James D Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Sarah Franklin
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112
| | - José M Valpuesta
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| |
Collapse
|
47
|
Barrell WB, Griffin JN, Harvey JL, Danovi D, Beales P, Grigoriadis AE, Liu KJ. Induction of Neural Crest Stem Cells From Bardet-Biedl Syndrome Patient Derived hiPSCs. Front Mol Neurosci 2019; 12:139. [PMID: 31293383 PMCID: PMC6598745 DOI: 10.3389/fnmol.2019.00139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Neural crest cells arise in the embryo from the neural plate border and migrate throughout the body, giving rise to many different tissue types such as bones and cartilage of the face, smooth muscles, neurons, and melanocytes. While studied extensively in animal models, neural crest development and disease have been poorly described in humans due to the challenges in accessing embryonic tissues. In recent years, patient-derived human induced pluripotent stem cells (hiPSCs) have become easier to generate, and several streamlined protocols have enabled robust differentiation of hiPSCs to the neural crest lineage. Thus, a unique opportunity is offered for modeling neurocristopathies using patient specific stem cell lines. In this work, we make use of hiPSCs derived from patients affected by the Bardet-Biedl Syndrome (BBS) ciliopathy. BBS patients often exhibit subclinical craniofacial dysmorphisms that are likely to be associated with the neural crest-derived facial skeleton. We focus on hiPSCs carrying variants in the BBS10 gene, which encodes a protein forming part of a chaperonin-like complex associated with the cilium. Here, we establish a pipeline for profiling hiPSCs during differentiation toward the neural crest stem cell fate. This can be used to characterize the differentiation properties of the neural crest-like cells. Two different BBS10 mutant lines showed a reduction in expression of the characteristic neural crest gene expression profile. Further analysis of both BBS10 mutant lines highlighted the inability of these mutant lines to differentiate toward a neural crest fate, which was also characterized by a decreased WNT and BMP response. Altogether, our study suggests a requirement for wild-type BBS10 in human neural crest development. In the long term, approaches such as the one we describe will allow direct comparison of disease-specific cell lines. This will provide valuable insights into the relationships between genetic background and heterogeneity in cellular models. The possibility of integrating laboratory data with clinical phenotypes will move us toward precision medicine approaches.
Collapse
Affiliation(s)
- William B. Barrell
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - John N. Griffin
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Jessica-Lily Harvey
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Davide Danovi
- Centre for Stem Cells & Regenerative Medicine, King’s College London, London, United Kingdom
| | - Philip Beales
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| |
Collapse
|
48
|
Manara E, Paolacci S, D’Esposito F, Abeshi A, Ziccardi L, Falsini B, Colombo L, Iarossi G, Pilotta A, Boccone L, Guerri G, Monica M, Marta B, Maltese PE, Buzzonetti L, Rossetti L, Bertelli M. Mutation profile of BBS genes in patients with Bardet-Biedl syndrome: an Italian study. Ital J Pediatr 2019; 45:72. [PMID: 31196119 PMCID: PMC6567512 DOI: 10.1186/s13052-019-0659-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/16/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a rare inherited multisystemic disorder with autosomal recessive or complex digenic triallelic inheritance. There is currently no treatment for BBS, but some morbidities can be managed. Accurate molecular diagnosis is often crucial for the definition of appropriate patient management and for the development of a potential personalized therapy. METHODS We developed a next-generation-sequencing (NGS) protocol for the screening of the 18 most frequently mutated genes to define the genotype and clarify the mutation spectrum of a cohort of 20 BBS Italian patients. RESULTS We defined the causative variants in 60% of patients; four of those are novel. 33% of patients also harboured variants in additional gene/s, suggesting possible oligogenic inheritance. To explore the function of different genes, we looked for correlations between genotype and phenotype in our cohort. Hypogonadism was more frequently detected in patients with variants in BBSome proteins, while renal abnormalities in patients with variations in BBSome chaperonin genes. CONCLUSIONS NGS is a powerful tool that can help understanding BBS patients' phenotype through the identification of mutations that could explain differences in phenotype severity and could provide insights for the development of targeted therapy. Furthermore, our results support the existence of additional BBS loci yet to be identified.
Collapse
Affiliation(s)
| | | | - Fabiana D’Esposito
- Magi Euregio, Bolzano, Italy
- Imperial College Ophthalmic Research Unit, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, Federico II University, Naples, Italy
| | | | | | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Leonardo Colombo
- Department of Ophthalmology, San Paolo Hospital, University of Milan, Milan, Italy
| | - Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù IRCCS Children’s Hospital, Rome, Italy
| | - Alba Pilotta
- Special Unit of Auxoendocrinology, Diabetology and Pediatric Genetics, University of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Loredana Boccone
- Microcitemic Regional Hospital, Brotzu Hospital, Cagliari, Italy
| | | | - Marica Monica
- Microcitemic Regional Hospital, Brotzu Hospital, Cagliari, Italy
| | - Balzarini Marta
- Microcitemic Regional Hospital, Brotzu Hospital, Cagliari, Italy
| | | | - Luca Buzzonetti
- Department of Ophthalmology, Bambino Gesù IRCCS Children’s Hospital, Rome, Italy
| | - Luca Rossetti
- Department of Ophthalmology, San Paolo Hospital, University of Milan, Milan, Italy
| | | |
Collapse
|
49
|
Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev 2019; 20:212-240. [PMID: 30353704 DOI: 10.1111/obr.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the genetic elucidation of obesity over the past two decades, driven largely by technological, methodological and organizational innovations. Current strategies for identifying obesity-predisposing loci/genes, including cytogenetics, linkage analysis, homozygosity mapping, admixture mapping, candidate gene studies, genome-wide association studies, custom genotyping arrays, whole-exome sequencing and targeted exome sequencing, have achieved differing levels of success, and the identified loci in aggregate explain only a modest fraction of the estimated heritability of obesity. This review outlines the successes and limitations of these approaches and proposes novel strategies, including the use of exceptionally large sample sizes, the study of diverse ethnic groups and deep phenotypes and the application of innovative methods and study designs, to identify the remaining obesity-predisposing genes. The use of both established and emerging strategies has the potential to crack the genetic code of obesity in the not-too-distant future. The resulting knowledge is likely to yield improvements in obesity prediction, prevention and care.
Collapse
Affiliation(s)
- V Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
50
|
Thoraco-Abdominal Abnormalities in Bardet-Biedl Syndrome: Situs Inversus and Heterotaxy. J Pediatr 2019; 204:31-37. [PMID: 30293640 DOI: 10.1016/j.jpeds.2018.08.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To characterize the diversity and prevalence of thoraco-abdominal abnormalities in Bardet-Biedl syndrome (BBS), a model ciliopathy for understanding the role of cilia in human health. STUDY DESIGN The Clinical Registry Investigating BBS, a worldwide registry exploring the phenotype and natural history of BBS, was used to conduct the study. Protected health information was obtained by subject or family interview and Health Insurance Portability and Accountability Act-approved release of data including imaging studies and genetic testing. Echocardiography and imaging findings were independently confirmed by 2 cardiologists. RESULTS Thoraco-abdominal abnormalities were identified in 6 of 368 (1.6%) subjects with a minimum prevalence of 1 in 60 Clinical Registry Investigating BBS participants. Diverse laterality defects were observed suggesting that the underlying ciliopathy randomly alters embryonic left-right axis orientation. Congenital heart disease, common in heterotaxy, was present in 2 subjects. Additional defects, uncommonly reported in BBS, were observed in the central nervous, genitourinary, gastrointestinal, and musculoskeletal systems in the subjects. No BBS genotype was favored in the cohort. One subject had genetic and clinical phenotype diagnostic of both primary ciliary dyskinesia and BBS. CONCLUSIONS The variety of thoraco-abdominal abnormalities in BBS suggests the pleiotropic nature of these anomalies is not confined to a single pattern or genotype. Clinicians providing care to individuals with BBS should consider the increased prevalence of thoraco-abdominal anomalies in BBS. Individuals with features suggestive of other ciliopathies, such as primary ciliary dyskinesia, should undergo further evaluation for additional genetic disorders. TRIAL REGISTRATION ClinicalTrials.gov: NCT02329210.
Collapse
|