1
|
Liu Q, Jiang S, Li Y, Zhou A, Long H, Zhong W. Causal relationships between cerebral cortical structure and preeclampsia: insights from bidirectional Mendelian randomization and colocalization analysis. Cereb Cortex 2024; 34:bhae400. [PMID: 39390712 DOI: 10.1093/cercor/bhae400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Preeclampsia, a multifaceted condition characterized by high blood pressure during pregnancy, is linked to substantial health risks for both the mother and the fetus. Previous studies suggest potential neurological impacts, but the causal relationships between cortical structural changes and preeclampsia remain unclear. We utilized genome-wide association study data for cortical thickness (TH) and surface area (SA) across multiple brain regions and preeclampsia. Bidirectional Mendelian randomization (MR) analyses were conducted to assess causality, followed by co-localization analyses to confirm shared genetic architecture. Increased cortical TH in the inferior parietal and supramarginal regions, and an enlarged SA in the postcentral region, were significantly associated with higher preeclampsia risk. Conversely, preeclampsia was linked to increased SA in the supramarginal and middle temporal gyri, and decreased SA in the lingual gyrus. Co-localization analyses indicated distinct genetic determinants for cortical structures and preeclampsia. Our findings reveal bidirectional influences between cortical structural features and preeclampsia, suggesting neuroinflammatory and vascular mechanisms as potential pathways. These insights underscore the importance of considering brain structure in preeclampsia risk assessment and highlight the need for further research into neuroprotective strategies.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Clinical Nutrition, Huadu District People's Hospital of Guangzhou, 48 Xinhua Road, Huadu District, Guangzhou, Guangdong 510800, China
| | - Shaoqing Jiang
- Department of Obstetrics and Gynecology, Huadu District People's Hospital of Guangzhou, 48 Xinhua Road, Huadu District, Guangzhou, Guangdong 510800, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Huadu District People's Hospital of Guangzhou, 48 Xinhua Road, Huadu District, Guangzhou, Guangdong 510800, China
| | - Aiyin Zhou
- Department of Obstetrics and Gynecology, Huadu District People's Hospital of Guangzhou, 48 Xinhua Road, Huadu District, Guangzhou, Guangdong 510800, China
| | - Hanfan Long
- Department of Obstetrics and Gynecology, Huadu District People's Hospital of Guangzhou, 48 Xinhua Road, Huadu District, Guangzhou, Guangdong 510800, China
| | - Weifen Zhong
- Department of Obstetrics and Gynecology, Huadu District People's Hospital of Guangzhou, 48 Xinhua Road, Huadu District, Guangzhou, Guangdong 510800, China
| |
Collapse
|
2
|
Ghorbani M, Namazi S, Dehghani M, Razi F, Khalvati B, Dehshahri A. Gene polymorphisms of TACR1 serve as the potential pharmacogenetic predictors of response to the neurokinin-1 receptor antagonist-based antiemetic regimens: a candidate-gene association study in breast cancer patients. Cancer Chemother Pharmacol 2024; 94:237-250. [PMID: 38678150 DOI: 10.1007/s00280-024-04661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE The current candidate gene association study aims to investigate tag SNPs from the TACR1 gene as pharmacogenetic predictors of response to the antiemetic guidelines-recommended, NK-1 receptor antagonist-based, triple antiemetic regimens. METHODS A set of eighteen tag SNPs of TACR1 were genotyped in breast cancer patients receiving anthracycline and cyclophosphamide (with/without docetaxel) applying real-time PCR-HRMA. Data analysis for 121 ultimately enrolled patients was initiated by defining haplotype blocks using PHASE v.2.1. The association of each tag SNP and haplotype alleles with failure to achieve the defined antiemetic regimen efficacy endpoints was tested using PLINK (v.1.9 and v.1.07, respectively) based on the logistic regression, adjusting for the previously known chemotherapy-induced nausea and vomiting (CINV) prognostic factors. All reported p-values were corrected using the permutation test (n = 100,000). RESULTS Four variants of rs881, rs17010730, rs727156, and rs3755462, as well as haplotypes containing the mentioned variants, were significantly associated with failure to achieve at least one of the defined efficacy endpoints. Variant annotation via in-silico studies revealed that the non-seed sequence variant, rs881, is located in the miRNA (hsa-miR-613) binding site. The other three variants or a variant in complete linkage disequilibrium with them overlap a region of high H3K9ac-promoter-like signature or regions of high enhancer-like signature in the brain or gastrointestinal tissue. CONCLUSION Playing an essential role in regulating TACR1 expression, gene polymorphisms of TACR1 serve as the potential pharmacogenetic predictors of response to the NK-1 receptor antagonist-based, triple antiemetic regimens. If clinically approved, modifying the NK-1 receptor antagonist dose leads to better management of CINV in risk-allele carriers.
Collapse
Affiliation(s)
- Marziyeh Ghorbani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soha Namazi
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Dehghani
- Department of Hematology and Medical Oncology, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Biological Mass Spectrometry Center, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Martinez KL, Klein A, Martin JR, Sampson CU, Giles JB, Beck ML, Bhakta K, Quatraro G, Farol J, Karnes JH. Disparities in ABO blood type determination across diverse ancestries: a systematic review and validation in the All of Us Research Program. J Am Med Inform Assoc 2024:ocae161. [PMID: 38917427 DOI: 10.1093/jamia/ocae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVES ABO blood types have widespread clinical use and robust associations with disease. The purpose of this study is to evaluate the portability and suitability of tag single-nucleotide polymorphisms (tSNPs) used to determine ABO alleles and blood types across diverse populations in published literature. MATERIALS AND METHODS Bibliographic databases were searched for studies using tSNPs to determine ABO alleles. We calculated linkage between tSNPs and functional variants across inferred continental ancestry groups from 1000 Genomes. We compared r2 across ancestry and assessed real-world consequences by comparing tSNP-derived blood types to serology in a diverse population from the All of Us Research Program. RESULTS Linkage between functional variants and O allele tSNPs was significantly lower in African (median r2 = 0.443) compared to East Asian (r2 = 0.946, P = 1.1 × 10-5) and European (r2 = 0.869, P = .023) populations. In All of Us, discordance between tSNP-derived blood types and serology was high across all SNPs in African ancestry individuals and linkage was strongly correlated with discordance across all ancestries (ρ = -0.90, P = 3.08 × 10-23). DISCUSSION Many studies determine ABO blood types using tSNPs. However, tSNPs with low linkage disequilibrium promote misinference of ABO blood types, particularly in diverse populations. We observe common use of inappropriate tSNPs to determine ABO blood type, particularly for O alleles and with some tSNPs mistyping up to 58% of individuals. CONCLUSION Our results highlight the lack of transferability of tSNPs across ancestries and potential exacerbation of disparities in genomic research for underrepresented populations. This is especially relevant as more diverse cohorts are made publicly available.
Collapse
Affiliation(s)
- Kiana L Martinez
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Andrew Klein
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Jennifer R Martin
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
- Department of the University of Arizona Health Sciences Library, The University of Arizona, Tucson, AZ 85721, United States
| | - Chinwuwanuju U Sampson
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Jason B Giles
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Madison L Beck
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Krupa Bhakta
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Gino Quatraro
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Juvie Farol
- Department of Clinical and Translational Science, The University of Arizona College of Medicine, Tucson, AZ 85721, United States
| | - Jason H Karnes
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
4
|
Liang H, Sedillo JC, Schrodi SJ, Ikeda A. Structural variants in linkage disequilibrium with GWAS-significant SNPs. Heliyon 2024; 10:e32053. [PMID: 38882374 PMCID: PMC11177133 DOI: 10.1016/j.heliyon.2024.e32053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
With the recent expansion of structural variant identification in the human genome, understanding the role of these impactful variants in disease architecture is critically important. Currently, a large proportion of genome-wide-significant genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) are functionally unresolved, raising the possibility that some of these SNPs are associated with disease through linkage disequilibrium with causal structural variants. Hence, understanding the linkage disequilibrium between newly discovered structural variants and statistically significant SNPs may provide a resource for further investigation into disease-associated regions in the genome. Here we present a resource cataloging structural variant-significant SNP pairs in high linkage disequilibrium. The database is composed of (i) SNPs that have exhibited genome-wide significant association with traits, primarily disease phenotypes, (ii) newly released structural variants (SVs), and (iii) linkage disequilibrium values calculated from unphased data. All data files including those detailing SV and GWAS SNP associations and results of GWAS-SNP-SV pairs are available at the SV-SNP LD Database and can be accessed at 'https://github.com/hliang-SchrodiLab/SV_SNPs. Our analysis results represent a useful fine mapping tool for interrogating SVs in linkage disequilibrium with disease-associated SNPs. We anticipate that this resource may play an important role in subsequent studies which investigate incorporating disease causing SVs into disease risk prediction models.
Collapse
Affiliation(s)
- Hao Liang
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Joni C Sedillo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven J Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Chen JH, Zhao Y, Khan RAW, Li ZQ, Zhou J, Shen JW, Xiang SY, Li NN, Wen ZJ, Jian XM, Song ZJ, Stewart R, Wang Z, Pan D, He L, Xu YF, Shi YY. SNX29, a new susceptibility gene shared with major mental disorders in Han Chinese population. World J Biol Psychiatry 2021; 22:526-534. [PMID: 33143498 DOI: 10.1080/15622975.2020.1845793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Environmental and genetic factors play important roles in the development of schizophrenia (SCZ), bipolar disorder (BPD) or major depressive disorder (MDD). Some risk loci are identified with shared genetic effects on major psychiatric disorders. To investigate whether SNX29 gene played a significant role in these psychiatric disorders in the Han Chinese population. METHODS We focussed on 11 single-nucleotide polymorphisms (SNPs) harbouring SNX29 gene and carried out case-control studies in patients with SCZ (n = 1248), BPD (n = 1344), or MDD (n = 1056), and 1248 healthy controls (HC) recruited from the Han Chinese population. We constructed weighted gene co-expression network analysis (WGCNA) and extracted significant modules by R package. RESULTS We found that rs3743592 was significantly associated with MDD and rs6498263 with BPD in both allele and genotype distributions. Before correction, rs3743592 showed allelic and genotypic significance with SCZ, rs6498263 showed allelic significance with SCZ. WGCNA identified top 10 modules of co-expressed genes. Gene Ontology (GO) and pathway analysis were used to examine the functions of SNX29, which revealed that SNX29 was involved in the regulation of a number of biological processes, such as TGF-beta, ErbB, and Wnt signalling pathway, etc. CONCLUSIONS Our results supported common risk factors in SNX29 might share among these three mental disorders in the Han Chinese population.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China
| | - Ying Zhao
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Raja Amjad Waheed Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Zhi-Qiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China.,The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P. R. China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jia-Wei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Si-Ying Xiang
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Ning-Ning Li
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zu-Jia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xue-Min Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhi-Jian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Robert Stewart
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yi-Feng Xu
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yong-Yong Shi
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China.,The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P. R. China.,Shanghai Changning Mental Health Center, Shanghai, P. R. China.,Department of Psychiatry, The First Teaching Hospital of Xinjiang Medical University, Urumqi, P. R. China
| |
Collapse
|
6
|
Lopes C, Pereira C, Farinha M, Medeiros R, Dinis-Ribeiro M. Genetic Variations in Prostaglandin E 2 Pathway Identified as Susceptibility Biomarkers for Gastric Cancer in an Intermediate Risk European Country. Int J Mol Sci 2021; 22:ijms22020648. [PMID: 33440718 PMCID: PMC7827533 DOI: 10.3390/ijms22020648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
The cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway exerts deleterious pleiotropic effects in inflammation-induced gastric carcinogenesis. We aimed to assess the association of genetic variants in prostaglandin-endoperoxide synthase 2 (PTGS2), ATP binding cassette subfamily C member 4 (ABCC4), hydroxyprostaglandin dehydrogenase 15-(NAD) (HPGD), and solute carrier organic anion transporter family member 2A1 (SLCO2A1) PGE2 pathway-related genes with gastric cancer (GC) risk in a European Caucasian population. A hospital-based case-control study gathering 260 GC cases and 476 cancer-free controls was implemented. Using a tagSNP approach, 51 single nucleotide polymorphisms (SNPs) were genotyped through MassARRAY® iPLEX Gold Technology or allelic discrimination by real-time polymerase chain reaction (PCR). Homozygous carriers of the minor allele for both rs689466 and rs10935090 SNPs were associated with a 2.98 and 4.30-fold increased risk for GC, respectively (95% confidence interval (CI): 1.14–7.74, p = 0.027; 95% CI: 1.22–15.16, p = 0.026), with the latter also being associated with an anticipated diagnosis age. A multifactor dimensionality reduction analysis identified an overall three-factor best interactive model composed of age, rs689466, and rs1678374 that was associated with a 17.6-fold GC increased risk (95% CI: 11.67–26.48, p < 0.0001, (cross-validation) CV consistency of 8/10 and accuracy of 0.807). In this preliminary study, several tagSNPs in PGE2 pathway-related genes were identified as risk biomarkers for GC development. This approach may help to identify higher-risk individuals and may contribute to the tailoring screening of GC in intermediate-risk European countries.
Collapse
Affiliation(s)
- Catarina Lopes
- Molecular Oncology and Viral Pathology Group, IPO Porto Research (CI-IPOP), Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
| | - Carina Pereira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research (CI-IPOP), Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- CINTESIS—Center for Health Technology and Services Research, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
- Correspondence: ; Tel.: +351-225-084-000; Fax: +351-225-084-001
| | - Mónica Farinha
- Pathology Department, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research (CI-IPOP), Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- Portuguese League Against Cancer, Estrada Interior da Circunvalação, 4200-172 Porto, Portugal
| | - Mário Dinis-Ribeiro
- CINTESIS—Center for Health Technology and Services Research, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
- Gastroenterology Department, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
7
|
Common variants in FAN1, located in 15q13.3, confer risk for schizophrenia and bipolar disorder in Han Chinese. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109973. [PMID: 32450113 DOI: 10.1016/j.pnpbp.2020.109973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
Multiple genetic risk factors have been associated with psychiatric disorders which provides the genetic insight to these disorders; however, the etiology of these disorders is still elusive. 15q13.3 was previously associated with schizophrenia, bipolar and other neurodevelopmental disorders. Whereas, the FAN1 which encodes the Fanconi anemia associated nuclease 1 was suggested to be causal gene for 15q13.3 related psychiatric disorders. This study aimed to investigate the association of FAN1 with three major psychiatric disorders. Herein, we conducted a case-control study with the Chinese Han population. Three single nucleotide polymorphisms (SNPs) of FAN1 were genotyped in 1248 schizophrenia cases, 1344 bipolar disorder cases, 1056 major depressive disorder cases and 1248 normal controls. We found that SNPs rs7171212 was associated with bipolar (pallele = 0.023, pgenotype = 0.022, OR = 0.658) and schizophrenia (pallele = 0.021, pgenotype = 0.019, OR = 0.645). Whereas, rs4779796 was associated with schizophrenia (pgenotype = 0.001, adjusted pgenotype = 0.003, OR = 1.089). In addition, rs7171212 (adjusted pallele = 0.018, adjusted pgenotype = 0.018, OR = 0.652) and rs4779796 (adjusted pgenotype = 0.024, OR = 1.12) showed significantly associated with combined cases of schizophrenia and bipolar disorder. Further, meta-analysis was performed with the case-control data and dataset extracted from previously reported genome-wide association study to validate the promising SNPs. Our results provide the new evidence that FAN1 may be a common susceptibility gene for schizophrenia and bipolar disorder in Han Chinese. These novel findings need further validation with larger sample size and functional characterization to understand the underlying pathogenic mechanism behind FAN1 in the prevalence of schizophrenia and bipolar disorders.
Collapse
|
8
|
Ma C, Li X, Chen J, Li Z, Guan J, Li Y, Yin S, Shi Y. Association Analysis Between Common Variants of the TRPM1 Gene and Three Mental Disorders in the Han Chinese Population. Genet Test Mol Biomarkers 2020; 24:649-657. [PMID: 33001715 PMCID: PMC7585623 DOI: 10.1089/gtmb.2019.0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Our study was designed to determine if the TRPM1 gene is associated with any of three mental disorders. The project included a cross disorder meta-analysis and association analysis including 141701 cases and 175248 controls. Materials and Methods: We genotyped eight tag single nucleotide polymorphisms (SNPs) in 1248 unrelated schizophrenia (SCZ) patients, 1056 major depressive disorder patients, 1344 bipolar disorder patients, and 1248 normal controls. We then performed a meta-analysis of 10 GWASs to identify common genetic factors among these three mental disorders. Finally, we performed a meta-analysis of six GWASs to explore the role of rs10162727 in SCZ. Result: Although two haplotypes of the TRPM1 gene, rs1035706-rs10162727 and rs10162727-rs3784599, were identified in the control group, as well as all three disease groups, none of the eight tag SNP associations remained significant after correction for multiple tests. In this cross-disorder meta-analysis of the three diseases, none of the tag SNPs were confirmed to be common among the diseases. In addition, in the meta-analysis conducted for the rs10162727 locus in SCZ, there was no significant association (p-value = 0.84, odds ratio = 1.02 [95% CI = 0.87-1.19]). Conclusion: In the Han Chinese population, no significant evidence was found linking variants of the TRPM1 gene with any of the mental disorders examined.
Collapse
Affiliation(s)
- Chuanchuan Ma
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Xiuli Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Jianhua Chen
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
| | - Jian Guan
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yigang Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shankai Yin
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Walavalkar K, Saravanan B, Singh AK, Jayani RS, Nair A, Farooq U, Islam Z, Soota D, Mann R, Shivaprasad PV, Freedman ML, Sabarinathan R, Haiman CA, Notani D. A rare variant of African ancestry activates 8q24 lncRNA hub by modulating cancer associated enhancer. Nat Commun 2020; 11:3598. [PMID: 32680982 PMCID: PMC7368061 DOI: 10.1038/s41467-020-17325-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/24/2020] [Indexed: 11/18/2022] Open
Abstract
Genetic variation at the 8q24 locus is linked with the greater susceptibility to prostate cancer in men of African ancestry. One such African ancestry specific rare variant, rs72725854 (A>G/T) (~6% allele frequency) has been associated with a ~2-fold increase in prostate cancer risk. However, the functional relevance of this variant is unknown. Here we show that the variant rs72725854 is present in a prostate cancer-specific enhancer at 8q24 locus. Chromatin-conformation capture and dCas9 mediated enhancer blocking establish a direct regulatory link between this enhancer and lncRNAs PCAT1, PRNCR1 and PVT1. The risk allele ('T') is associated with higher expression of PCAT1, PVT1 and c-myc in prostate tumors. Further, enhancer with the risk allele gains response to androgen stimulation by recruiting the transcription factor SPDEF whereas, non-risk alleles remain non-responsive. Elevated expression of these lncRNAs and c-myc in risk allele carriers may explain their greater susceptibility to prostate cancer.
Collapse
Affiliation(s)
- Kaivalya Walavalkar
- Genetics and Development, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Bharath Saravanan
- Genetics and Development, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
- Sastra Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Anurag Kumar Singh
- Genetics and Development, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Ranveer Singh Jayani
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Ashwin Nair
- Genetics and Development, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
- Sastra Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Umer Farooq
- Genetics and Development, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
- Trans-Disciplinary University, IVRI road, Bangalore, Tamil Nadu, 560064, Karnataka, India
| | - Zubairul Islam
- Genetics and Development, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
- Sastra Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Deepanshu Soota
- Genetics and Development, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Rajat Mann
- Genetics and Development, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Padubidri V Shivaprasad
- Genetics and Development, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, 02142, USA
- Centre for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Radhakrishnan Sabarinathan
- Genetics and Development, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90007, USA
| | - Dimple Notani
- Genetics and Development, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India.
| |
Collapse
|
10
|
Common variants in SATB2 are associated with schizophrenia in Uygur Chinese population. Psychiatr Genet 2019; 29:120-126. [PMID: 31162297 DOI: 10.1097/ypg.0000000000000229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Schizophrenia is one of the most severe mental disorders and its etiology is supposed to be an interaction between genes and environmental factors. Previous genome-wide association studies of schizophrenia have reported multiple susceptibility loci including rs6704641 in the SATB2 gene. Recently, this locus was further confirmed as a genome-wide significant locus for association with schizophrenia by trans-ancestry meta-analysis of Han Chinese and Caucasian samples. However, there is no report of genetic analysis in Uygur Chinese population, which is considered to have a combined genetic background between eastern Asia and Caucasian. This study is aimed to explore whether SATB2 gene is significantly associated with schizophrenia in Uygur Chinese population, thus providing additional evidence for elucidating the role of SATB2 gene in schizophrenia. PARTICIPANTS AND METHODS In this study, we performed a case-control analysis focusing on seven tag single nucleotide polymorphisms located in SATB2 gene among 985 patients with schizophrenia and 1218 healthy controls recruited from the Xinjiang Province of China. RESULTS We found that rs6704641 was significantly associated with schizophrenia in both allelic and genotypic distributions (Pallele = 0.008, Pgenotype = 0.028 after correction). In addition, rs16831466 is significantly associated with schizophrenia in allelic distributions (corrected Pallele = 0.041). Besides, several haplotypes of single nucleotide polymorphism are significantly associated with schizophrenia too. CONCLUSION Our results suggest that SATB2 is also a susceptibility gene for schizophrenia in Uygur Chinese population, and subsequent functional experiments are necessary to reveal its role in the pathogenesis.
Collapse
|
11
|
Cao Y, Zhang Q, Chen J, Li Z, Zhou Z, Shen J, Wang D, Pan D, Wang Z, Ke D, Wang X, Lu D, Zhao Y, Cheng S, Shi Y. Polymorphism of the PPARD Gene and Dynamic Balance Performance in Han Chinese Children. Hereditas 2019; 156:15. [PMID: 31148953 PMCID: PMC6533762 DOI: 10.1186/s41065-019-0092-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/15/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Athletic performances are complex traits with heritability of ~66%. Dynamic balance is one of the most important athletic performances, and there has been little studies for it in sports genomics. The candidate PPARD gene was reported to be able to affect muscle development for balance predisposition and influence the athletic performance including skiing triumph in the Caucasian population. This study aims to investigate whether the PPARD gene is a susceptibility gene for dynamic balance performance in Han Chinese children. RESULTS A total 2244 children were recruited and their balance beam performances were measured. Five polymorphisms in the PPARD gene were genotyped through the MassARRAY Sequenom platform. Rs2016520 exerted significant association with dynamic balance performance (minor allele C, P = 0.015, Pcorrected < 0.05) and was affirmed in a meta-analysis by combining previously reported Caucasian cohorts (OR = 1.57, 95% CI = [1.30, 1.91], P < 10 -5) . Another polymorphism, rs2267668, was also significantly associated with dynamic balance performance (minor allele G, P = 0.015, Pcorrected < 0.05). In the dichotomous study, 321 cases (61% boys and 39% girls) and 370 controls (49% boys and 51% girls) in our samples were selected as representatives, and the thresholds were the mean velocity (0.737 m/s) ± standard deviation (0.264 m/s), in which rs2016520-C and rs2267668-G still remained significant (CI =1.41 [1.11~1.79], P = 0.004, Pcorrected < 0.016; CI =1.45 [1.14~1.86], P = 0.002, Pcorrected < 0.016). In different genders, consistent OR direction was observed for each variant. CONCLUSIONS Our results suggested that the PPARD gene is associated with dynamic balance performance of human being, and further studies to reveal its etiology is strongly suggested.
Collapse
Affiliation(s)
- Yixuan Cao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Qiyue Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Jianhua Chen
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030 China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 China
| | - Zhiqiang Li
- Qingdao University, Metabolic Disease Institute, Qingdao, 266003 China
| | - Zhaowei Zhou
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Jiawei Shen
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Dong Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Dun Pan
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Zhuo Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Dandan Ke
- Department of Human Sports Science, Shanghai University of Sport, Shanghai, 200438 China
| | - Xiaofei Wang
- Department of Human Sports Science, Shanghai University of Sport, Shanghai, 200438 China
| | - Dajiang Lu
- Department of Human Sports Science, Shanghai University of Sport, Shanghai, 200438 China
| | - Ying Zhao
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shulin Cheng
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yongyong Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030 China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| |
Collapse
|
12
|
Momary KM, Drozda K. Governmental and Academic Efforts to Advance the Field of Pharmacogenomics. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
13
|
Zhang Q, Cao Y, Chen J, Shen J, Ke D, Wang X, Ji J, Xu Y, Zhang W, Shen Y, Wang D, Pan D, Wang Z, Shi Y, Cheng S, Zhao Y, Lu D. ACTN3 is associated with children's physical fitness in Han Chinese. Mol Genet Genomics 2018; 294:47-56. [PMID: 30167790 DOI: 10.1007/s00438-018-1485-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
The ACTN3 gene locates on 11q13-q14 and encodes the α-actinin-3 protein, which is only expressed in human skeletal muscle and influenced muscle function and metabolism. The previous studies reported that SNP rs1815739 is associated with elite power athletes' performance. In this study, we investigated the association between five SNPs within the ACTN3 gene and Chinese children physical fitness. We recruited 2244 Han Chinese children participants, and measured their 25-m run, stand broad jump, 10-m shuttle run, handgrip, BMI (calculated by weight and height) data. SNPs rs1671064, rs2275998, rs2290463, rs10791881, and rs1815739 of ACTN3 gene were genotyped and analyzed in five physical fitness data. QTL analysis on genotype and physical fitness data was carried out in all samples. Furthermore, a dichotomous division of samples into an overweight group (543) and a normal group (1701) was used for an association study of overweight. In the QTL analysis, we found rs2290463 was significantly associated with stand broad jump (corrected P value = 0.009, beta = 2.692). After added age and gender as covariates in the regression test, the association became more significant (P value = 5.80 × 10- 5, corrected P value = 4.06 × 10- 4); when we used BMI as a covariate, the association still existed (P value = 4.65 × 10- 4, corrected P value = 0.001). In the association study of overweight, rs2275998 was found to be significant (OR, 95% CI = 0.733 [0.6-0.895]; Pallele = 0.011, Pgenotype = 0.024) after the Bonferroni correction, and the association did not change much after a further correction for gender, age, and stand broad jump performance. Our results showed that common variants in ACTN3 are significantly associated with both stand broad jump performance and overweight in Han Chinese children.
Collapse
Affiliation(s)
- Qiyue Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yixuan Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China.,Graduate School of Health and Sports Science, Juntendo University, Chiba, 270-1695, Japan
| | - Dandan Ke
- Human Sports Science Department, Shanghai University of Sports, Shanghai, 200438, China.,Graduate School of Health and Sports Science, Juntendo University, Chiba, 270-1695, Japan
| | - Xiaofei Wang
- Human Sports Science Department, Shanghai University of Sports, Shanghai, 200438, China
| | - Jue Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yufeng Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weijie Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yinhuan Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dong Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Shulin Cheng
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, 200042, China
| | - Ying Zhao
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, 200042, China
| | - Dajiang Lu
- Human Sports Science Department, Shanghai University of Sports, Shanghai, 200438, China
| |
Collapse
|
14
|
Chen B, Li Z, Chen J, Ji J, Shen J, Xu Y, Zhao Y, Liu D, Shen Y, Zhang W, Shen J, Wang Y, Shi Y. Association of fat mass and obesity-associated and retinitis pigmentosa guanosine triphosphatase (GTPase) regulator-interacting protein-1 like polymorphisms with body mass index in Chinese women. Endocr J 2018; 65:783-791. [PMID: 29657248 DOI: 10.1507/endocrj.ej17-0554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Body mass index (BMI) is the most commonly used quantitative measure of adiposity. It is a kind of complex genetic diseases which are caused by multiple susceptibility genes. The first intron of fat mass and obesity-associated (FTO) has been widely discovered to be associated with BMI. Retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L) is located in the upstream region of FTO and has been proved to be linked with obesity through functional tests. We carried out a genetic association analysis to figure out the role of the FTO gene and the RPGRIP1L gene in BMI. A quantitative traits study with 6,102 Chinese female samples, adjusted for age, was performed during our project. Among the twelve SNPs, rs1421085, rs1558902, rs17817449, rs8050136, rs9939609, rs7202296, rs56137030, rs9930506 and rs12149832 in the FTO gene were significantly associated with BMI after Bonferroni correction. Meanwhile, rs9934800 in the RPGRIP1L gene showed significance with BMI before Bonferroni correction, but this association was eliminated after Bonferroni correction. Our results suggested that genetic variants in the FTO gene were strongly associated with BMI in Chinese women, which may serve as targets of pharmaceutical research and development concerning BMI. Meanwhile, we didn't found the significant association between RPGRIP1L and BMI in Chinese women.
Collapse
Affiliation(s)
- Boyu Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao 266003, China
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai 200042, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jue Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingyi Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yufeng Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yingying Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Danping Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yinhuan Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Weijie Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao 266003, China
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai 200042, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Changning Mental Health Center, Shanghai 200042, China
| |
Collapse
|
15
|
Genetic analysis of common variants in the ZNF804A gene with schizophrenia and major depressive disorder. Psychiatr Genet 2018; 28:1-7. [DOI: 10.1097/ypg.0000000000000185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Liu J, Zhang HX, Li ZQ, Li T, Li JY, Wang T, Li Y, Feng GY, Shi YY, He L. The YWHAE gene confers risk to major depressive disorder in the male group of Chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:172-177. [PMID: 28414084 DOI: 10.1016/j.pnpbp.2017.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
Abstract
Schizophrenia and major depressive disorder are two major psychiatric illnesses that may share specific genetic risk factors to a certain extent. Increasing evidence suggests that the two disorders might be more closely related than previously considered. To investigate whether YWHAE gene plays a significant role in major depressive disorder in Han Chinese population, we recruited 1135 unrelated major depressive disorder patients (485 males, 650 females) and 989 unrelated controls (296 males, 693 females) of Chinese Han origin. Eleven common SNPs were genotyped using TaqMan® technology. In male-group, the allele and genotype frequencies of rs34041110 differed significantly between patients and control (Pallele=0.036486, OR[95%CI]: 1.249442(1.013988-1.539571); Pgenotype=0.045301). Also in this group, allele and genotype frequencies of rs1532976 differed significantly (Pallele=0.013242, OR[95%CI]: 1.302007(1.056501-1.604563); genotype: P=0.039152). Haplotype-analyses showed that, in male-group, positive association with major depressive disorder was found for the A-A-C-G haplotype of rs3752826-rs2131431-rs1873827-rs12452627 (χ2=20.397, P=6.38E-06, OR[95%CI]: 7.442 [2.691-20.583]), its C-A-C-G haplotype (χ2=19.122, P=1.24E-05, OR and 95%CI: 0.402 [0.264-0.612]), its C-C-T-G haplotype (χ2=9.766, P=0.001785, OR[95%CI]: 5.654 [1.664-19.211]). In female-group, positive association was found for the A-A-C-G haplotype of rs3752826-rs2131431-rs1873827-rs12452627 (χ2=78.628, P=7.94E-19, OR[95%CI]: 50.043 [11.087-225.876]), its A-C-T-G haplotype (χ2=38.806, P=4.83E-10, OR[95%CI]: 0.053 [0.015-0.192]), the C-A-C-G haplotype (χ2=18.930, P=1.37E-05, OR[95%CI]: 0.526 [0.392-0.705]), and the C-C-T-G haplotype (χ2=38.668, P=5.18E-10, OR[95%CI]: 6.130 [3.207-11.716]). Our findings support YWHAE being a risk gene for Major Depressive Disorder in the Han Chinese population.
Collapse
Affiliation(s)
- Jie Liu
- Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hong-Xin Zhang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Qiang Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tao Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun-Yan Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ti Wang
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - You Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yin Feng
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Yong Shi
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Lin He
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
17
|
Abstract
The magnitude of genetic diversity within human populations varies in a way that reflects the sequence of migrations by which people spread throughout the world. Beyond its use in human evolutionary genetics, worldwide variation in genetic diversity sometimes can interact with social processes to produce differences among populations in their relationship to modern societal problems. We review the consequences of genetic diversity differences in the settings of familial identification in forensic genetic testing, match probabilities in bone marrow transplantation, and representation in genome-wide association studies of disease. In each of these three cases, the contribution of genetic diversity to social differences follows from population-genetic principles. For a fourth setting that is not similarly grounded, we reanalyze with expanded genetic data a report that genetic diversity differences influence global patterns of human economic development, finding no support for the claim. The four examples describe a limit to the importance of genetic diversity for explaining societal differences while illustrating a distinction that certain biologically based scenarios do require consideration of genetic diversity for solving problems to which populations have been differentially predisposed by the unique history of human migrations.
Collapse
|
18
|
Association of lincRNA-p21 Haplotype with Coronary Artery Disease in a Chinese Han Population. DISEASE MARKERS 2016; 2016:9109743. [PMID: 27340317 PMCID: PMC4909913 DOI: 10.1155/2016/9109743] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022]
Abstract
lincRNA-p21 plays an important role in the pathogenesis and progression of coronary artery disease (CAD). To date, the biological significance of polymorphisms in lincRNA-p21 on CAD risk remains unknown. Here we aimed to evaluate the influence of lincRNA-p21 polymorphisms on individual susceptibility to CAD. Genotyping of four tagSNPs (rs9380586, rs4713998, rs6930083, and rs6931097) within lincRNA-p21 gene was performed in 615 CAD and 655 controls. The haplotype analysis showed that the haplotype G-A-A-G (rs9380586-rs4713998-rs6930083-rs6931097) was statistically significantly associated with the reduced risk for CAD (OR = 0.78, P = 0.023). Stratified analysis revealed that G-A-A-G haplotype was at a significantly lower risk for myocardial infarction (MI) (OR = 0.68, P = 0.010). We also found that haplotype G-A-A-G had a more pronounced decreased risk for premature CAD or MI subjects (OR = 0.67, P = 0.017 for premature CAD, and OR = 0.65, P = 0.041 for premature MI, resp.). Our data provide the first evidence that the G-A-A-G haplotype of lincRNA-p21 is associated with decreased risk of CAD and MI, particularly among premature CAD/MI in the Chinese Han population. Further studies with more subjects and in diverse ethnic populations are warranted to clarify the general validity of our findings.
Collapse
|
19
|
Chen J, He K, Wang Q, Li Z, Shen J, Li T, Wang M, Wen Z, Li W, Qiang Y, Wang T, Ji J, Wu N, Wang Z, Zhang B, Feng G, He L, Xu Y, Shi Y. Role played by the SP4 gene in schizophrenia and major depressive disorder in the Han Chinese population. Br J Psychiatry 2016; 208:441-5. [PMID: 26450579 DOI: 10.1192/bjp.bp.114.151688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/07/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND Psychiatric disorders such as schizophrenia and major depressive disorder (MDD) are likely to be caused by multiple susceptibility genes, each with small effects in increasing the risk of illness. Identifying DNA variants associated with schizophrenia and MDD is a crucial step in understanding the pathophysiology of these disorders. AIMS To investigate whether the SP4 gene plays a significant role in schizophrenia or MDD in the Han Chinese population. METHOD We focused on nine single nucleotide polymorphisms (SNPs) harbouring the SP4 gene and carried out case-control studies in 1235 patients with schizophrenia, 1045 patients with MDD and 1235 healthy controls recruited from the Han Chinese population. RESULTS We found that rs40245 was significantly associated with schizophrenia in both allele and genotype distributions (Pallele = 0.0005, Pallele = 0.004 after Bonferroni correction; Pgenotype = 0.0023, Pgenotype = 0.0184 after Bonferroni correction). The rs6461563 SNP was significantly associated with schizophrenia in the allele distributions (Pallele = 0.0033, Pallele = 0.0264 after Bonferroni correction). CONCLUSIONS Our results suggest that common risk factors in the SP4 gene are associated with schizophrenia, although not with MDD, in the Han Chinese population.
Collapse
Affiliation(s)
- Jianhua Chen
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Kuanjun He
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Qingzhong Wang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Shen
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Li
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Wang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zujia Wen
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjin Li
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Qiang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Ti Wang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Jue Ji
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Na Wu
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiao Wang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyin Feng
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Xu
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Polymorphisms in NRGN are associated with schizophrenia, major depressive disorder and bipolar disorder in the Han Chinese population. J Affect Disord 2016; 194:180-7. [PMID: 26828755 DOI: 10.1016/j.jad.2016.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/03/2016] [Accepted: 01/12/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND The NRGN gene locates on 11q24 and encodes a postsynaptic protein kinase substrate that binds calmodulin in the absence of calcium. In a previous genome-wide association study of schizophrenia in the Caucasian population, rs12807809 of NRGN was found to be significantly associated with schizophrenia, moreover, it was further found to be associated with bipolar disorder. METHODS We recruited 1248 schizophrenia cases, 1344 bipolar disorder cases, 1056 major depressive disorder cases, and 1248 healthy controls from Han Chinese population. Rs12807809 and another two tag SNPs of NRGN were genotyped and analyzed in three diseases respectively. A meta-analysis of rs12807809 was also conducted to verify its association with schizophrenia in Han Chinese population. RESULTS Rs7113041 was associated with bipolar disorder (odds ratio, 95% confidence interval (OR, 95% CI)=1.194, 1.032-1.383; Pgenotype=0.0126), and rs12278912 was associated with major depressive disorder (OR, 95% CI=0.789, 0.673-0.924; Pallele=0.0102, Pgenotype=0.0399) after Bonferroni correction. The "GA" haplotype of rs7113041-rs12278912 was significantly associated with schizophrenia, major depressive disorder and bipolar disorder (corresponding P values were 2.85E-04, 3.00E-03, and 5.40E-04 after Bonferroni correction). LIMITATIONS Despite the association between NRGN and psychoses we have found, we failed to validate the positive variant rs12807809, which was reported in the Caucasian genome-wide association study both in our single site association test and the meta-analysis. Functional studies are needed to illuminate the role of NRGN in the pathogenesis of these mental disorders. CONCLUSIONS Our findings prove that NRGN is a shared susceptibility gene of schizophrenia, major depression and bipolar disorder in Han Chinese, and this might provide a new target for the diagnosis and treatment of these mental disorders.
Collapse
|
21
|
Wen Z, Chen J, Khan RAW, Song Z, Wang M, Li Z, Shen J, Li W, Shi Y. Genetic association between NRG1 and schizophrenia, major depressive disorder, bipolar disorder in Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:468-78. [PMID: 26888291 DOI: 10.1002/ajmg.b.32428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Abstract
Schizophrenia, major depressive disorder, and bipolar disorder are three major psychiatric disorders affecting around 0.66%, 3.3%, and 1.5% of the Han Chinese population respectively. Several genetic linkage analyses and genome wide association studies identified NRG1 as a susceptibility gene of schizophrenia, which was validated by its role in neurodevelopment, glutamate, and other neurotransmitter receptor expression regulation. To further investigate whether NRG1 is a shared risk gene for major depressive disorder, bipolar disorder as well as schizophrenia, we performed an association study among 1,248 schizophrenia cases, 1,056 major depression cases, 1,344 bipolar disorder cases, and 1,248 controls. Totally 15 tag SNPs were genotyped and analyzed, and no population stratification was found in our sample set. Among the sites, rs4236710 (corrected Pgenotye = 0.015) and rs4512342 (Pallele = 0.03, Pgenotye = 0.045 after correction) were associated with schizophrenia, and rs2919375 (corrected Pgenotye = 0.004) was associated with major depressive disorder. The haplotype rs4512342-rs6982890 showed association with schizophrenia (P = 0.03 for haplotype "TC" after correction), and haplotype rs4531002-rs11989919 proved to be a shared risk factor for both major depressive disorder ("CC": corrected P = 0.009) and bipolar disorder ("CT": corrected P = 0.003). Our results confirmed that NRG1 was a shared common susceptibility gene for major mental disorders in Han Chinese population.
Collapse
Affiliation(s)
- Zujia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Raja Amjad Waheed Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Meng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wenjin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Changning Mental Health Center, Shanghai, P.R. China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
22
|
Wang M, Chen J, He K, Wang Q, Li Z, Shen J, Wen Z, Song Z, Xu Y, Shi Y. The NVL gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2015; 62:7-13. [PMID: 25891250 DOI: 10.1016/j.pnpbp.2015.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
NVL (nuclear VCP (valosin containing protein)/p97-Like), a member of the AAA-ATPase (ATPases associated with various cellular activities) family, encodes a novel hTERT (human telomerase reverse transcriptase)-interacting protein NVL2 which is a telomerase component essential for holoenzyme assembly. Previous researches have reported the impacts of telomerase activity on mental illness and the potential association between NVL and major depressive disorder. To validate the susceptibility of NVL to major depressive disorder, and to investigate the overlapping risk conferred by NVL for both major depressive disorder and schizophrenia, we analyzed 9 tag single nucleotide polymorphisms (tag SNPs) using TaqMan® technology, in 1045 major depressive disorder patients, 1235 schizophrenia patients and 1235 normal controls of Han Chinese origin. We found that rs10916583 (P(allele) = 0.020, P(genotype) = 0.028, OR = 1.156) and rs16846649 (adjusted P(allele) = 0.014, P(genotype) = 0.007, OR = 0.718) were associated with major depressive disorder, while rs10916583 (adjusted P(allele) = 1.08E-02, OR = 1.213), rs16846649 (adjusted P(allele) = 7.40E-06, adjusted P(genotype) = 8.07E-05, OR = 0.598) and rs10799541 (adjusted P(allele) = 8.10E-03, adjusted P(genotype) = 0.049, OR= 0.826) showed statistically significant association with schizophrenia after Bonferroni correction. Furthermore, rs10916583 (adjusted P(allele) = 9.00E-03, adjusted P(genotype) = 3.15E-02, OR = 1.187) and rs16846649 (adjusted P(allele) = 8.92E-06, adjusted P(genotype) = 8.84E-05, OR = 0.653) remained strongly associated with the analysis of combined cases of major depressive disorder and schizophrenia after Bonferroni correction. Our results indicated that the NVL gene may contain overlapping common genetic risk factors for major depressive disorder and schizophrenia in the Han Chinese population. The roles of NVL in telomerase biogenesis were also highlighted in psychiatric pathogenesis. The study on variants conferring overlapping risk for multiple psychiatric disorders could be tangible pathogenesis support and clinical or diagnostic references.
Collapse
Affiliation(s)
- Meng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Kuanjun He
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, PR China
| | - Qingzhong Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Zujia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China; Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200042, PR China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai 200042, PR China.
| |
Collapse
|
23
|
Pelekanos RA, Sardesai VS, Dekker Nitert M, Callaway LK, Fisk NM, Jeffery PL. Rapid method for growth hormone receptor exon 3 delete (GHRd3) SNP genotyping from archival human placental samples. Endocrine 2015; 49:643-52. [PMID: 26067082 DOI: 10.1007/s12020-015-0647-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/01/2015] [Indexed: 12/15/2022]
Abstract
Analysis of archival samples from cohorts of pregnant women may be key to discovering prognosticators of stillbirth and pregnancy/perinatal complications. Growth hormone (GH) and its receptor (GHR) are pivotal in feto-placental development and pregnancy maintenance. We report a rapid, optimized method for genotyping the GHR full-length versus exon 3-deleted isoform (GHRd3). TaqMan single nucleotide polymorphism (SNP) genotyping proved superior to standard multiplex polymerase chain reaction (PCR) in allele detection and GHR genotyping from archived samples, including those with poor genomic deoxyribonucleic acid quality/quantity such as formalin fixed, paraffin embedded, blood, and serum. Furthermore, this assay is suitable for high through put 96 or 384-well plate quantitative PCR machines with automated genotype calling software. The TaqMan genotyping assay can increase the data obtained from precious archival human samples.
Collapse
Affiliation(s)
- Rebecca A Pelekanos
- Experimental Fetal Medicine Group, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, 4029, Australia,
| | | | | | | | | | | |
Collapse
|
24
|
Kaur H, Jajodia A, Grover S, Agarwal N, Baghel R, Kukreti R. Pharmacogenomics of neuropsychiatric disorders: analysis of genetic variability in 162 identified neuroreceptors using 1000 Genomes Project data. Pharmacogenomics 2015; 15:1575-87. [PMID: 25340732 DOI: 10.2217/pgs.14.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Neuroreceptors are considered to be primary drug targets and their abrupt signaling is a notable cause of interindividual drug response variability and treatment failure for complex neuropsychiatric diseases. In view of recent evidence, it is believed that common genetic risk factors mainly highly polymorphic neuroreceptors are being shared among neuropsychiatric disorders. MATERIALS & METHODS We identified 162 neuroreceptors from the 639 known receptors in Homo sapiens and investigated 231,683 SNPs using 1000 Genomes Project data and evaluated their biological effect using in silico tools including RegulomeDB, SIFT, PolyPhen-2 and CAROL. Furthermore, data from the 1000 Genomes Project was utilized to retrieve minor allele frequency and calculate pairwise logartithm of the odds score among these SNPs for African, American, Asian and European populations separately as well as when combined together using Haploview v4.2. LRTag was used to identify tagSNPs in populations. RESULTS A total of 52,381 (22.60%) SNPs were predicted as functionally important genetic variations. We identified sets of 603, 495, 450, 453 and 646 informative tagSNPs for African, American, Asian, European and combined populations, respectively. We propose construction of a 'neuroreceptor variants array' with these informative SNPs for future pharmacogenomic studies of neuropsychiatric disorders. CONCLUSION Such an approach might improve genotype-phenotype correlation across different populations and lead to identification of reliable genetic markers and novel drug targets. Integration of these SNPs in literature would further provide evidence relevant to underlying mechanisms of genetics based nosology, pathophysiology and development of new drugs for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Harpreet Kaur
- Genomics & Molecular Medicine Unit, CSIR-Institute of Genomics & Integrative Biology, Mall Road, Delhi-110007, India
| | | | | | | | | | | |
Collapse
|
25
|
Li JY, Tao F, Wu XX, Tan YZ, He L, Lu H. Common RASGRP1 Gene Variants That Confer Risk of Type 2 Diabetes. Genet Test Mol Biomarkers 2015; 19:439-43. [PMID: 26076219 DOI: 10.1089/gtmb.2015.0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome-wide association studies have validated the RAS guanyl nucleotide-releasing protein 1 (RASGRP1) gene as a type 2 diabetes (T2D) susceptibility locus. AIMS This study aimed to replicate and verify the association of RASGRP1 tag single-nucleotide polymorphisms with T2D in a Chinese Han population. METHODS Eleven common variants of RASGRP1 were detected using TaqMan technology in 1272 healthy controls and 1234 T2D patients. All study participants were unrelated members of the Han ethnic group in China. In this study, the rs7403531 genotype frequency differed significantly between T2D patients and controls (allele: adjusted p=8.30×10(-6), genotype: adjusted p=2.50×10(-5), OR=1.366 [95% CI=1.206-1.546]). The rs4465567-rs4567661 C-A and C-C haplotypes were also significant risk factors for T2D (adjusted p=0.0002 and p=0.0006, respectively) with a global p-value of 6.46×10(-5). These results indicate that in a Chinese Han population, RASGRP1 variants, particularly rs7403531, confer a risk for developing T2D.
Collapse
Affiliation(s)
- Jun-Yan Li
- 1 Diabetes Research Institute, Department of Endocrinology, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Feng Tao
- 1 Diabetes Research Institute, Department of Endocrinology, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Xin-Xing Wu
- 2 Shanghai Technical Institute of Electronics & Information , Shanghai, China
| | - Ying-Zi Tan
- 1 Diabetes Research Institute, Department of Endocrinology, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Lin He
- 3 Bio-X Institutes, Shanghai Jiao Tong University , Shanghai, China
| | - Hao Lu
- 1 Diabetes Research Institute, Department of Endocrinology, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai, China
| |
Collapse
|
26
|
A candidate gene study reveals association between a variant of the Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) gene and systemic sclerosis. Arthritis Res Ther 2015; 17:128. [PMID: 25986483 PMCID: PMC4437446 DOI: 10.1186/s13075-015-0641-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/24/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction The multifunctional nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ) has potent anti-fibrotic effects, and its expression and activity are impaired in patients with systemic sclerosis (SSc). We investigated PPAR-γ gene (PPARG) single nucleotide polymorphisms (SNPs) associated with SSc. Methods Tag SNPs spanning PPARG were genotyped in a European ancestry US discovery cohort comprising 152 SSc patients and 450 controls, with replication of our top signal in a European cohort (1031 SSc patients and 1014 controls from France). Clinical parameters and disease severity were analyzed to evaluate clinical associations with PPARG variants. Results In the discovery cohort, a single PPARG intronic SNP (rs10865710) was associated with SSc (p = 0.010; odds ratio = 1.52 per C allele, 95% confidence interval 1.10-2.08). This association was replicated in the French validation cohort (p = 0.052; odds ratio = 1.16 per C allele, 95% confidence interval 1.00-1.35). Meta-analysis of both cohorts indicated stronger evidence for association (p = 0.002; odds ratio = 1.22 per C allele, 95% confidence interval 1.07-1.40). The rs10865710 C allele was also associated with pulmonary arterial hypertension in the French SSc cohort (p = 0.002; odds ratio = 2.33 per C allele, 95% confidence interval 1.34-4.03). Conclusions A PPARG variant is associated with susceptibility to SSc, consistent with a role of PPAR-γ in the pathogenesis of SSc. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0641-2) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties. PLoS One 2015; 10:e0125628. [PMID: 25973611 PMCID: PMC4431842 DOI: 10.1371/journal.pone.0125628] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/16/2015] [Indexed: 11/19/2022] Open
Abstract
Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP marker set will be useful for systematic estimation of admixture structure of citrus germplasm and for diverse genetic studies.
Collapse
|
28
|
Tag SNPs for HLA-B alleles that are associated with drug response and disease risk in the Chinese Han population. THE PHARMACOGENOMICS JOURNAL 2015; 15:467-72. [PMID: 25752521 DOI: 10.1038/tpj.2015.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/30/2014] [Accepted: 01/28/2015] [Indexed: 12/22/2022]
Abstract
Multiple HLA-B alleles (haplotypes) are associated with drug-induced adverse responses and disease risks but are difficult to be directly genotyped. The goal of this study is to identify single nucleotide polymorphisms (SNPs) that are able to tag HLA-B alleles in the Chinese Han population. Twelve HLA-B alleles that are associated with drug adverse responses and disease risks were identified. They were sequenced initially in 880 Chinese Han subjects where high-density SNPs within the HLA-B gene were available. Performances of these SNPs to tag the HLA-B alleles were assessed primarily by sensitivity and specificity. Two HLA-B alleles can be reliably tagged by SNPs at 100% sensitivity and >95% specificity. For example, HLA-B*15:02 can be tagged by the 'C' allele of rs10484555, and HLA-B*58:01 can be tagged by the 'T' allele of rs9262570. These results were confirmed in 500 additional Chinese Han subjects. If confirmed in independent studies, these tag SNPs could be used as a reliable, simple and cost-effective alternative for genotyping a subset of HLA-B alleles.
Collapse
|
29
|
Gregersen V, Gustavsson F, Glantz M, Christensen O, Stålhammar H, Andrén A, Lindmark-Månsson H, Poulsen N, Larsen L, Paulsson M, Bendixen C. Bovine chromosomal regions affecting rheological traits in rennet-induced skim milk gels. J Dairy Sci 2015; 98:1261-72. [DOI: 10.3168/jds.2014-8136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022]
|
30
|
Lehner T, Senthil G, Addington AM. Convergence of advances in genomics, team science, and repositories as drivers of progress in psychiatric genomics. Biol Psychiatry 2015; 77:6-14. [PMID: 24503471 DOI: 10.1016/j.biopsych.2014.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
After many years of unfilled promise, psychiatric genetics has seen an unprecedented number of successes in recent years. We hypothesize that the field has reached an inflection point through a confluence of four key developments: advances in genomics; the orientation of the scientific community around large collaborative team science projects; the development of sample and data repositories; and a policy framework for sharing and accessing these resources. We discuss these domains and their effect on scientific progress and provide a perspective on why we think this is only the beginning of a new era in scientific discovery.
Collapse
Affiliation(s)
- Thomas Lehner
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
| | - Geetha Senthil
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Anjené M Addington
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Glantz M, Gustavsson F, Bertelsen HP, Stålhammar H, Lindmark-Månsson H, Paulsson M, Bendixen C, Gregersen VR. Bovine chromosomal regions affecting rheological traits in acid-induced skim milk gels. J Dairy Sci 2014; 98:1273-85. [PMID: 25529417 DOI: 10.3168/jds.2014-8137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 11/15/2014] [Indexed: 11/19/2022]
Abstract
The production of fermented milk products has increased worldwide during the last decade and is expected to continue to increase during the coming decade. The quality of these products may be optimized through breeding practices; however, the relations between cow genetics and technological properties of acid milk gels are not fully known. Therefore, the aim of this study was to identify chromosomal regions affecting acid-induced coagulation properties and possible candidate genes. Skim milk samples from 377 Swedish Red cows were rheologically analyzed for acid-induced coagulation properties using low-amplitude oscillation measurements. The resulting traits, including gel strength, coagulation time, and yield stress, were used to conduct a genome-wide association study. Single nucleotide polymorphisms (SNP) were identified using the BovineHD SNPChip (Illumina Inc., San Diego, CA), resulting in almost 621,000 segregating markers. The genome was scanned for putative quantitative trait loci (QTL) regions, haplotypes based on highly associated SNP were inferred, and the additive genetic effects of haplotypes within each QTL region were analyzed using mixed models. A total of 8 genomic regions were identified, with large effects of the significant haplotype explaining between 4.8 and 9.8% of the phenotypic variance of the studied traits. One major QTL was identified to overlap between gel strength and yield stress, the QTL identified with the most significant SNP closest to the gene coding for κ-casein (CSN3). In addition, a chromosome-wide significant region affecting yield stress on BTA 11 was identified to be colocated with PAEP, coding for β-lactoglobulin. Furthermore, the coagulation properties of the genetic variants within the 2 genes were compared with the coagulation properties identified by the patterns of the haplotypes within the regions, and it was discovered that the haplotypes were more diverse and in one case slightly better at explaining the phenotypic variance. Besides these significant QTL comprising the 2 milk proteins, 3 additional genes are proposed as possible candidates, namely RAB22A, CDH13, and STAT1, and all have previously been found to be expressed in the mammary gland. To our knowledge, this is the first attempt to map QTL regions for acid-induced coagulation properties.
Collapse
Affiliation(s)
- M Glantz
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - F Gustavsson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - H P Bertelsen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - H Stålhammar
- VikingGenetics, PO Box 64, SE-532 21 Skara, Sweden
| | - H Lindmark-Månsson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00 Lund, Sweden; Lantbrukarnas Riksförbund Dairy Sweden, Ideon Science Park, SE-223 70 Lund, Sweden
| | - M Paulsson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - C Bendixen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - V R Gregersen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark.
| |
Collapse
|
32
|
Associations between polymorphisms of HOTAIR and risk of gastric cardia adenocarcinoma in a population of north China. Tumour Biol 2014; 36:2845-54. [PMID: 25476857 DOI: 10.1007/s13277-014-2912-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 11/27/2014] [Indexed: 12/14/2022] Open
Abstract
As an important long noncoding RNA, Hox transcript antisense intergenic RNA (HOTAIR) is involved in the development and progression of various carcinomas. However, the role and genetic alterations of HOTAIR in gastric cardia adenocarcinoma (GCA) occurrence and progression have not been elucidated. We performed a case-control study in a population of north China to evaluate the possible association between haplotype-tagging SNPs (htSNPs) of the whole HOTAIR sequence and the risk of GCA as well as functional effect of the susceptibility single nucleotide polymorphism (SNP) rs12826786 on gene expression. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used to examine the genotype of htSNPs in 515 GCA patients and 654 control subjects, and the quantitative real-time reverse transcription PCR (RT-PCR) method was used to examine the expression of HOTAIR in 102 GCA patients. A family history of upper gastrointestinal cancer (UGIC) significantly increased the risk of developing GCA. Among three htSNPs of the HOTAIR gene (rs12826786 C>T, rs4759314 A>G, and rs10783618 C>T), only the T allele of rs12826786 was found to increase the risk of developing GCA and was associated with smoking habit and tumor-node-metastasis (TNM) stage. In addition, higher expression levels of HOTAIR were found in tumor tissues and rs12826786 SNP has a genotype-specific effect on HOTAIR expression. A high HOTAIR expression level was associated with poor GCA patients' survival. These results indicate that functional genotype alteration of rs12826786 SNP may influence the expression of HOTAIR, and HOTAIR may be a useful marker to predict the biological behavior of tumors and potentially a therapeutic target in GCA treatment.
Collapse
|
33
|
ITIH family genes confer risk to schizophrenia and major depressive disorder in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:34-8. [PMID: 24389398 DOI: 10.1016/j.pnpbp.2013.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 11/23/2022]
Abstract
As a major extracellular matrix component, ITIHs played an important role in inflammation and carcinogenesis. Several genome-wide association studies have reported that some positive signals which were derived from the tight linkage disequilibrium region on chromosome 3p21 were associated with both schizophrenia and bipolar disorders in the Caucasian population. To further investigate whether this genomic region is also a susceptibility locus of schizophrenia and major depressive disorder in the Han Chinese population, we conducted this study by recruiting 1235 schizophrenia patients, 1045 major depressive disorder patients and 1235 healthy control subjects in the Han Chinese samples for a case-control study. We genotyped seven SNPs within this region using TaqMan® technology. We found that rs2710322 was significantly associated with schizophrenia (adjusted P(allele) = 0.0018, adjusted P(genotype) = 0.006, OR [95% CI] = 1.278 [1.117-1.462]) while rs1042779 was weakly associated with schizophrenia (adjusted P(allele) = 0.048, OR [95% CI] = 1.164 [1.040-1.303]) and major depressive disorder (adjusted P(allele) = 0.042, OR [95% CI] = 1.178 [1.047-1.326]); it was also our finding that rs3821831 was positively associated with major depressive disorder (adjusted P(allele) = 0.003, adjusted P(genotype) = 0.006, OR [95% CI] = 1.426 [1.156-1.760]). Furthermore, no haplotype was found to be associated with schizophrenia and major depressive disorder. Via the association analysis which combines the schizophrenia and major depressive disorder cases, we also notice that rs1042779 and rs3821831 were significantly associated with combined cases (rs1042779: adjusted P(allele) = 0.012, adjusted P(genotype) = 0.018, OR [95% CI] = 1.171 [1.060-1.292]; rs3821831:adjusted P(genotype) = 0.012, OR [95% CI] = 1.193 [1.010-1.410]). Our results revealed that the shared genetic risk factors of both schizophrenia and major depressive disorder exist in ITIH family genes in the Han Chinese population.
Collapse
|
34
|
Mei C, Hou M, Guo S, Hua F, Zheng D, Xu F, Jiang Y, Li L, Qiao Y, Fan Y, Zhou Q. Polymorphisms in DNA repair genes of XRCC1, XPA, XPC, XPD and associations with lung cancer risk in Chinese people. Thorac Cancer 2014; 5:232-42. [PMID: 26767006 DOI: 10.1111/1759-7714.12073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The carcinogenic chemicals and reactive oxygen species in tobacco can result in DNA damage. DNA repair genes play an important role in maintaining genome integrity. Genetic polymorphisms of DNA repair genes and smoking may contribute to susceptibility of lung cancer. METHODS In this hospital-based case-control study, we investigated the relationship between 13 tagging single nucleotide polymorphisms (SNPs) in base excision repair pathway and nucleotide excision repair pathway genes, smoking, and lung cancer susceptibility. Thirteen tag SNPs were genotyped in 265 lung cancer patients and 301 healthy controls. Logistic regression and multifactor dimensionality reduction method were applied to explore the association and high-order gene-gene and gene-smoking interaction. RESULTS In single tag SNP analysis, XPA rs2808668, XPC rs2733533, and XPD rs1799787 were significantly associated with lung cancer susceptibility. Joint effects analysis of XPA rs2808668, XPC rs2733533 and XPD rs1799787 showed that there was an increased risk of lung cancer with increasing numbers of risk alleles. Haplotype analysis showed that XRCC1 (rs25487, rs1799782, rs3213334) GCC had a positive association with lung cancer. Analysis of gene-gene and gene-smoking interaction by multifactor dimensionality reduction showed that a positive interaction existed between the four genes and smoking. The two-factor model, including XPC rs2755333 and smoking, had the best prediction ability for lung cancer. Compared with the C/C genotype of XPC rs2733533 and no smoking, the combination of genotype A carriers with XPC rs2733533 and heavy smokers (≥30 pack-year) had a 13.32-fold risk of lung cancer. CONCLUSION Our results suggest multiple genetic variants in multiple DNA repair genes may jointly contribute to lung cancer risk through gene-gene and gene-smoking interactions.
Collapse
Affiliation(s)
- Chaorong Mei
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China; Tibet Chengdu branch of West China Hospital, Sichuan University Changdu, China
| | - Mei Hou
- Cancer Center, West China Hospital, Sichuan University Chengdu, China
| | - Shanxian Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Feng Hua
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Dejie Zheng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Feng Xu
- Cancer Center, West China Hospital, Sichuan University Chengdu, China
| | - Yong Jiang
- Department of Cancer Epidemiology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Lu Li
- Cancer Center, West China Hospital, Sichuan University Chengdu, China
| | - Youlin Qiao
- Department of Cancer Epidemiology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| |
Collapse
|
35
|
Wang X, Liu W, Sun CL, Armenian SH, Hakonarson H, Hageman L, Ding Y, Landier W, Blanco JG, Chen L, Quiñones A, Ferguson D, Winick N, Ginsberg JP, Keller F, Neglia JP, Desai S, Sklar CA, Castellino SM, Cherrick I, Dreyer ZE, Hudson MM, Robison LL, Yasui Y, Relling MV, Bhatia S. Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the children's oncology group. J Clin Oncol 2014; 32:647-53. [PMID: 24470002 PMCID: PMC3927733 DOI: 10.1200/jco.2013.50.3557] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The strong dose-dependent association between anthracyclines and cardiomyopathy is further exacerbated by the co-occurrence of cardiovascular risk factors (diabetes and hypertension). The high morbidity associated with cardiomyopathy necessitates an understanding of the underlying pathogenesis so that targeted interventions can be developed. PATIENTS AND METHODS By using a two-stage design, we investigated host susceptibility to anthracycline-related cardiomyopathy by using the ITMAT/Broad CARe cardiovascular single nucleotide polymorphism (SNP) array to profile common SNPs in 2,100 genes considered relevant to de novo cardiovascular disease. RESULTS By using a matched case-control design (93 cases, 194 controls), we identified a common SNP, rs2232228, in the hyaluronan synthase 3 (HAS3) gene that exerts a modifying effect on anthracycline dose-dependent cardiomyopathy risk (P = 5.3 × 10(-7)). Among individuals with rs2232228 GG genotype, cardiomyopathy was infrequent and not dose related. However, in individuals exposed to high-dose (> 250 mg/m(2)) anthracyclines, the rs2232228 AA genotype conferred an 8.9-fold (95% CI, 2.1- to 37.5-fold; P = .003) increased cardiomyopathy risk compared with the GG genotype. This gene-environment interaction was successfully replicated in an independent set of 76 patients with anthracycline-related cardiomyopathy. Relative HAS3 mRNA levels measured in healthy hearts tended to be lower among individuals with AA compared with GA genotypes (P = .09). CONCLUSION Hyaluronan (HA) produced by HAS3 is a ubiquitous component of the extracellular matrix and plays an active role in tissue remodeling. In addition, HA is known to reduce reactive oxygen species (ROS) -induced cardiac injury. The high cardiomyopathy risk associated with AA genotype could be due to inadequate remodeling and/or inadequate protection of the heart from ROS-mediated injury on high anthracycline exposure.
Collapse
Affiliation(s)
- Xuexia Wang
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Wei Liu and Yutaka Yasui, University of Alberta; Sunil Desai, Stollery Children's Hospital, Edmonton, AB, Canada; Can-Lan Sun, Saro H. Armenian, Lindsey Hageman, Yan Ding, Wendy Landier, and Smita Bhatia, City of Hope, Duarte; Lu Chen, University of Southern California, Los Angeles, CA; Hakon Hakonarson and Jill P. Ginsberg, Children's Hospital of Philadelphia, Philadelphia, PA; Javier G. Blanco, Alfo Quiñones, and Daniel Ferguson, The State University of New York at Buffalo, Buffalo; Charles A. Sklar, Memorial Sloan-Kettering Cancer Center, New York City; Irene Cherrick, Upstate Medical University, Syracuse, NY; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Baylor College of Medicine, Houston, TX; Frank Keller, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA; Joseph P. Neglia, University of Minnesota Medical School, Minneapolis, MN; Sharon M. Castellino, Wake Forest University Health Sciences, Winston-Salem, NC; and Melissa M. Hudson, Leslie L. Robison, and Mary V. Relling, St. Jude Children's Research Hospital, Memphis, TN
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
He K, An Z, Wang Q, Li T, Li Z, Chen J, Li W, Wang T, Ji J, Feng G, Lin H, Yi Q, Shi Y. CACNA1C, schizophrenia and major depressive disorder in the Han Chinese population. Br J Psychiatry 2014; 204:36-9. [PMID: 24262814 DOI: 10.1192/bjp.bp.113.126979] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Common psychiatric disorders are highly heritable, indicating that genetic factors play an important role in their aetiology. The CACNA1C gene, which codes for subunit alpha-1C of the Cav1.2 voltage-dependent L-type calcium channel, has been consistently found to be the shared risk gene for several kinds of mental disorder. AIMS To investigate whether CACNA1C is a susceptibility gene for schizophrenia and major depressive disorder in the Han Chinese population. METHOD We carried out a case-control study of 1235 patients with schizophrenia, 1045 with major depressive disorder and 1235 healthy controls. A tag single nucleotide polymorphism (SNP) rs1006737 along with another 10 tag SNPs in the CACNA1C gene were genotyped in all samples. RESULTS We found that rs1006737 was associated with both schizophrenia (P(allele) = 0.0014, P(genotype) = 0.006, odds ratio (OR) = 1.384, 95% CI 1.134-1.690) and major depressive disorder (P(allele) = 0.0007, P(genotype) = 0.003, OR = 1.425, 95% CI 1.160-1.752). CONCLUSIONS Our findings support CACNA1C being a risk gene for both schizophrenia and major depressive disorder in the Han Chinese population.
Collapse
Affiliation(s)
- Kuanjun He
- Kuanjun He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai and College of Life Science, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia; Zhiguo An, MS, Department of Psychiatry, the First Teaching Hospital of Xinjiang Medical University, Urumqi; Qingzhong Wang, PhD, Tao Li, PhD, Zhiqiang Li, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai; Jianhua Chen, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai and Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai; Wenjin Li, PhD, Ti Wang, PhD, Jue Ji, BM, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai and College of Life Science, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia; Guoyin Feng, BM, Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai; He Lin, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai; Qizhong Yi, MD, PhD, Department of Psychiatry, the First Teaching Hospital of Xinjiang Medical University, Urumqi; Yongyong Shi, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai and Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Louwers YV, Stolk L, Uitterlinden AG, Laven JSE. Cross-ethnic meta-analysis of genetic variants for polycystic ovary syndrome. J Clin Endocrinol Metab 2013; 98:E2006-12. [PMID: 24106282 DOI: 10.1210/jc.2013-2495] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Genome-wide association studies (GWAS) have revealed new susceptibility loci for Chinese patients with polycystic ovary syndrome (PCOS). Because ethnic background adds to phenotypic diversities in PCOS, it seems plausible that genetic variants associated with PCOS act differently in various ethnic populations. OBJECTIVE We studied cross-ethnic effects of Chinese PCOS loci (ie, LHCGR, THADA, DENND1A, FSHR, c9orf3, YAP1, RAB5B/SUOX, HMGA2, TOX3, INSR, SUMO1P1) in patients of Northern European descent. DESIGN This study was a genetic association study conducted at an University Medical Center. PATIENTS Association was studied in 703 Dutch PCOS patients and 2164 Dutch controls. To assess the cross-ethnic effect, we performed a meta-analysis of the Dutch data combined with results of previously published studies in PCOS patients from China (n = 2254) and the United States (n = 2618). Adjusted for multiple testing, a P value <3.1 × 10⁻³ was considered statistically significant. RESULTS Meta-analysis of the Chinese, US, and Dutch data resulted in 12 significant variants mapping to the YAP1 (P value = 1.0 × 10⁻⁹), RAB5B/SUOX (P value = 3.8 × 10⁻¹¹), LHCGR (P value = 4.1 × 10⁻⁴), THADA (P value = 2.2 × 10⁻⁴ and P value = 1.3 × 10⁻³), DENND1A (P value = 2.3 × 10⁻³ and P value = 2.5 × 10⁻³), FSHR (P value = 3.8 × 10⁻⁵ and P value = 3.6 × 10⁻⁴), c9orf3 (P value = 2.0 × 10⁻⁶ and P value = 9.2 × 10⁻⁶), SUMO1P1 (P value = 2.3 × 10⁻³) loci with odds ratios ranging from 1.19 to 1.45 and 0.79 to 0.87. CONCLUSIONS Overall, we observed for 12 of 17 genetic variants mapping to the Chinese PCOS loci similar effect size and identical direction in PCOS patients from Northern European ancestry, indicating a common genetic risk profile for PCOS across populations. Therefore, it is expected that large GWAS in PCOS patients from Northern European ancestry will partly identify similar loci as the GWAS in Chinese PCOS patients.
Collapse
Affiliation(s)
- Yvonne V Louwers
- MD, Department of Gynecology and Obstetrics, Room Na-1524, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Wang Y, Wang ZM, Teng YC, Shi JX, Wang HF, Yuan WT, Chu X, Wang DF, Wang W, Huang W. An SNP of the ZBTB38 gene is associated with idiopathic short stature in the Chinese Han population. Clin Endocrinol (Oxf) 2013; 79:402-8. [PMID: 23302005 DOI: 10.1111/cen.12145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/08/2012] [Accepted: 01/04/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Idiopathic short stature (ISS) refers to extreme short stature without any diagnostic explanation. Recently, three genome-wide association studies discovered associations between the ZBTB38 and adult height in different populations. Therefore, variations in the ZBTB38 might contribute to ISS. Furthermore, one study in Korean population showed that ZBTB38 gene was significantly associated with adult height, but not with ISS. We want to examine whether the variants in ZBTB38 are associated with ISS in Chinese Han. METHODS A case-control association study was performed in 268 ISS patients and 513 healthy controls from Chinese Han population. Fourteen tag SNPs were selected and genotyped using SNaPshot method. Furthermore, expression of mRNA was quantified by RT-qPCR, and assessment of allelic expression imbalance was conducted with SNaPshot method. RESULTS Seven ZBTB38 SNPs were significantly associated with ISS by allele tests (rs724016, rs1582874, rs11919556, rs6440006, rs7612543, rs62282002, rs18651435). And five loci were associated with ISS according to genotype (rs11919556, rs16851419, rs6440006, rs62282002, rs18651435). Notably, after applying the stringent Bonferroni correction for multiple testing, one SNP, rs16851435, remained significantly associated by allele and genotype (P = 5·30 × 10⁻⁴ for allele and P = 0·002 for genotype). Furthermore, the rs16851435 alleles were investigated association with ZTBT38 mRNA expression levels. The G allele showed a higher transcriptional activity than the T allele (P = 0·002). CONCLUSIONS Our study indicated that the nonsynonymous SNP (rs16851435:T > G,p.Ser319Ala) of ZBTB38 was contributed to susceptibility of ISS in the Chinese Han population.
Collapse
Affiliation(s)
- Ying Wang
- School of Medicine, Ruijin Hospital Affiliated to Shanghai Jiaotong University (SJTU), Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Urayama KY, Chokkalingam AP, Metayer C, Hansen H, May S, Ramsay P, Wiemels JL, Wiencke JK, Trachtenberg E, Thompson P, Ishida Y, Brennan P, Jolly KW, Termuhlen AM, Taylor M, Barcellos LF, Buffler PA. SNP association mapping across the extended major histocompatibility complex and risk of B-cell precursor acute lymphoblastic leukemia in children. PLoS One 2013; 8:e72557. [PMID: 23991122 PMCID: PMC3749982 DOI: 10.1371/journal.pone.0072557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/12/2013] [Indexed: 02/01/2023] Open
Abstract
The extended major histocompatibility complex (xMHC) is the most gene-dense region of the genome and harbors a disproportionately large number of genes involved in immune function. The postulated role of infection in the causation of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) suggests that the xMHC may make an important contribution to the risk of this disease. We conducted association mapping across an approximately 4 megabase region of the xMHC using a validated panel of single nucleotide polymorphisms (SNPs) in childhood BCP-ALL cases (n=567) enrolled in the Northern California Childhood Leukemia Study (NCCLS) compared with population controls (n=892). Logistic regression analyses of 1,145 SNPs, adjusted for age, sex, and Hispanic ethnicity indicated potential associations between several SNPs and childhood BCP-ALL. After accounting for multiple comparisons, one of these included a statistically significant increased risk associated with rs9296068 (OR=1.40, 95% CI=1.19-1.66, corrected p=0.036), located in proximity to HLA-DOA. Sliding window haplotype analysis identified an additional locus located in the extended class I region in proximity to TRIM27 tagged by a haplotype comprising rs1237485, rs3118361, and rs2032502 (corrected global p=0.046). Our findings suggest that susceptibility to childhood BCP-ALL is influenced by genetic variation within the xMHC and indicate at least two important regions for future evaluation.
Collapse
Affiliation(s)
- Kevin Y Urayama
- School of Public Health, University of California, Berkeley, Berkeley, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Acute graft-versus-host disease (GVHD) afflicts as much as 80% of all patients who receive an unrelated donor hematopoietic cell transplant (HCT) for the treatment of blood disorders, even with optimal donor HLA matching and use of prophylactic immunosuppressive agents. Of patients who develop acute GVHD, many are at risk for chronic GVHD and bear the burden of considerable morbidity and lowered quality of life years after transplantation. The immunogenetic basis of GVHD has been the subject of intensive investigation, with the classic HLA genetic loci being the best-characterized determinants. Recent information on the major histocompatibility complex (MHC) region of chromosome 6 as an important source of untyped genetic variation has shed light on novel GVHD determinants. These data open new paradigms for understanding the genetic basis of GVHD.
Collapse
|
41
|
Cavallari LH, Klein TE, Huang SM. Governmental and Academic Efforts to Advance the Field of Pharmacogenomics. Pharmacogenomics 2013. [DOI: 10.1016/b978-0-12-391918-2.00003-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
42
|
Williams JS, Chamarthi B, Goodarzi MO, Pojoga LH, Sun B, Garza AE, Raby BA, Adler GK, Hopkins PN, Brown NJ, Jeunemaitre X, Ferri C, Fang R, Leonor T, Cui J, Guo X, Taylor KD, Chen YDI, Xiang A, Raffel LJ, Buchanan TA, Rotter JI, Williams GH, Shi Y. Lysine-specific demethylase 1: an epigenetic regulator of salt-sensitive hypertension. Am J Hypertens 2012; 25:812-7. [PMID: 22534796 DOI: 10.1038/ajh.2012.43] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Hypertension (HTN) represents a complex heritable disease in which environmental factors may directly affect gene function via epigenetic mechanisms. The aim of this study was to test the hypothesis that dietary salt influences the activity of a histone-modifying enzyme, lysine-specific demethylase 1 (LSD-1), which in turn is associated with salt-sensitivity of blood pressure (BP). METHODS Animal and human studies were performed. Salt-sensitivity of LSD-1 expression was assessed in wild-type (WT) and LSD-1 heterozygote knockout (LSD-1(+/-)) mice. Clinical relevance was tested by multivariate associations between single-nuclear polymorphisms (SNPs) in the LSD-1 gene and salt-sensitivity of BP, with control of dietary sodium, in a primary African-American hypertensive cohort and two replication hypertensive cohorts (Caucasian and Mexican-American). RESULTS LSD-1 expression was modified by dietary salt in WT mice with lower levels associated with liberal salt intake. LSD-1(+/-) mice expressed lower LSD-1 protein levels than WT mice in kidney tissue. Similar to LSD-1(+/-) mice, African-American minor allele carriers of two LSD-1 SNPs displayed greater change in systolic BP (SBP) in response to change from low to liberal salt diet (rs671357, P = 0.01; rs587168, P = 0.005). This association was replicated in the Hispanic (rs587168, P = 0.04) but not the Caucasian cohort. Exploratory analyses demonstrated decreased serum aldosterone concentrations in African-American minor allele carriers similar to findings in the LSD-1(+/-) mice, decreased α-EnaC expression in LSD-1(+/-) mice, and impaired renovascular responsiveness to salt loading in minor allele carriers. CONCLUSION The results of this translational research study support a role for LSD-1 in the pathogenesis of salt-sensitive HTN.
Collapse
|
43
|
Li Y, Wang K, Dai L, Wang P, Song C, Shi J, Ren P, Ye H, Zhang J. HapMap-based study of CIP2A gene polymorphisms and HCC susceptibility. Oncol Lett 2012; 4:358-364. [PMID: 22844383 DOI: 10.3892/ol.2012.728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022] Open
Abstract
CIP2A is a human oncoprotein that inhibits PP2A and stabilizes c-myc in human malignancies. Autoantibodies to CIP2A protein have been reported to be present in higher levels in sera from patients with hepatocellular carcinoma (HCC) than in sera of healthy individuals. The CIP2A gene has been demonstrated as a potential cancer susceptibility gene. To elucidate whether common CIP2A variants are associated with HCC susceptibility, we conducted a case-control study comprising 233 cases of HCC and 280 controls matched on age, gender and ethnicity in the Chinese Han population. Two haplotype-tagging single nucleotide polymorphisms (htSNPs) (rs2278911 and rs4855656) from the HapMap database were analyzed, which provide an almost complete coverage of the genetic variations in the CIP2A gene. We found that neither of these htSNPs and haplotypes were associated with the risk of HCC. However, an interaction was observed between hepatitis virus B and C infection (HBV and HCV) and the C carriers (TC or CC) of rs2278911 on HCC risk (OR=12.35; 95% CI, 4.93-19.87). No such association was found for rs4855656. Our study also demonstrated that two htSNPs (rs2278911 and rs4855656) in the CIP2A gene are not associated with the risk of HCC. HBV and HCV infection was found to exert a synergistic effect on the risk of HCC in individuals with the C carriers (TC or CC) of rs2278911 in the Chinese Han population.
Collapse
Affiliation(s)
- Yuchun Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Krithika S, Valladares-Salgado A, Peralta J, Escobedo-de La Peña J, Kumate-Rodríguez J, Cruz M, Parra EJ. Evaluation of the imputation performance of the program IMPUTE in an admixed sample from Mexico City using several model designs. BMC Med Genomics 2012; 5:12. [PMID: 22549150 PMCID: PMC3436779 DOI: 10.1186/1755-8794-5-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/01/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We explored the imputation performance of the program IMPUTE in an admixed sample from Mexico City. The following issues were evaluated: (a) the impact of different reference panels (HapMap vs. 1000 Genomes) on imputation; (b) potential differences in imputation performance between single-step vs. two-step (phasing and imputation) approaches; (c) the effect of different INFO score thresholds on imputation performance and (d) imputation performance in common vs. rare markers. METHODS The sample from Mexico City comprised 1,310 individuals genotyped with the Affymetrix 5.0 array. We randomly masked 5% of the markers directly genotyped on chromosome 12 (n=1,046) and compared the imputed genotypes with the microarray genotype calls. Imputation was carried out with the program IMPUTE. The concordance rates between the imputed and observed genotypes were used as a measure of imputation accuracy and the proportion of non-missing genotypes as a measure of imputation efficacy. RESULTS The single-step imputation approach produced slightly higher concordance rates than the two-step strategy (99.1% vs. 98.4% when using the HapMap phase II combined panel), but at the expense of a lower proportion of non-missing genotypes (85.5% vs. 90.1%). The 1,000 Genomes reference sample produced similar concordance rates to the HapMap phase II panel (98.4% for both datasets, using the two-step strategy). However, the 1000 Genomes reference sample increased substantially the proportion of non-missing genotypes (94.7% vs. 90.1%). Rare variants (<1%) had lower imputation accuracy and efficacy than common markers. CONCLUSIONS The program IMPUTE had an excellent imputation performance for common alleles in an admixed sample from Mexico City, which has primarily Native American (62%) and European (33%) contributions. Genotype concordances were higher than 98.4% using all the imputation strategies, in spite of the fact that no Native American samples are present in the HapMap and 1000 Genomes reference panels. The best balance of imputation accuracy and efficiency was obtained with the 1,000 Genomes panel. Rare variants were not captured effectively by any of the available panels, emphasizing the need to be cautious in the interpretation of association results for imputed rare variants.
Collapse
Affiliation(s)
- S Krithika
- Department of Anthropology, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
During the 1990s and the first several years of this century, microsatellites or short tandem repeats were the workhorse genetic markers for hypothesis-independent studies in human genetics, facilitating genome-wide linkage studies and allelic imbalance studies. However, the rise of higher throughput and cost-effective single-nucleotide polymorphism (SNP) platforms led to the era of the SNP for genome scans. Nevertheless, it is important to note that microsatellites remain highly informative and useful measures of genomic variation for linkage and association studies. Their continued advantage in complementing SNPs lies in their greater allelic diversity than biallelic SNPs as well as in their population history, in which single-step expansion or contraction of the tandem repeat on the background of ancestral SNP haplotypes can break up common haplotypes, leading to greater haplotype diversity within the linkage disequilibrium block of interest. In fact, microsatellites have starred in association studies leading to widely replicated discoveries of type 2 diabetes (TCF7L2) and prostate cancer genes (the 8q21 region). At the end of the day, it will be important to catalog all variation, including SNPs, microsatellites, copy number variations, and polymorphic inversions in human genetic studies. This article describes the utilities of microsatellites and experimental approaches in their use.
Collapse
|
46
|
Schuetz JM, Daley D, Graham J, Berry BR, Gallagher RP, Connors JM, Gascoyne RD, Spinelli JJ, Brooks-Wilson AR. Genetic variation in cell death genes and risk of non-Hodgkin lymphoma. PLoS One 2012; 7:e31560. [PMID: 22347493 PMCID: PMC3274532 DOI: 10.1371/journal.pone.0031560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/13/2012] [Indexed: 12/18/2022] Open
Abstract
Background Non-Hodgkin lymphomas are a heterogeneous group of solid tumours that constitute the 5th highest cause of cancer mortality in the United States and Canada. Poor control of cell death in lymphocytes can lead to autoimmune disease or cancer, making genes involved in programmed cell death of lymphocytes logical candidate genes for lymphoma susceptibility. Materials and Methods We tested for genetic association with NHL and NHL subtypes, of SNPs in lymphocyte cell death genes using an established population-based study. 17 candidate genes were chosen based on biological function, with 123 SNPs tested. These included tagSNPs from HapMap and novel SNPs discovered by re-sequencing 47 cases in genes for which SNP representation was judged to be low. The main analysis, which estimated odds ratios by fitting data to an additive logistic regression model, used European ancestry samples that passed quality control measures (569 cases and 547 controls). A two-tiered approach for multiple testing correction was used: correction for number of tests within each gene by permutation-based methodology, followed by correction for the number of genes tested using the false discovery rate. Results Variant rs928883, near miR-155, showed an association (OR per A-allele: 2.80 [95% CI: 1.63–4.82]; pF = 0.027) with marginal zone lymphoma that is significant after correction for multiple testing. Conclusions This is the first reported association between a germline polymorphism at a miRNA locus and lymphoma.
Collapse
Affiliation(s)
- Johanna M. Schuetz
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Denise Daley
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jinko Graham
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Brian R. Berry
- Department of Pathology, Royal Jubilee Hospital, Victoria, British Columbia, Canada
| | | | - Joseph M. Connors
- Division of Medical Oncology and Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Randy D. Gascoyne
- Department of Pathology and Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - John J. Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela R. Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
47
|
Ferreira RC, Pan-Hammarström Q, Graham RR, Fontán G, Lee AT, Ortmann W, Wang N, Urcelay E, Fernández-Arquero M, Núñez C, Jorgensen G, Ludviksson BR, Koskinen S, Haimila K, Padyukov L, Gregersen PK, Hammarström L, Behrens TW. High-density SNP mapping of the HLA region identifies multiple independent susceptibility loci associated with selective IgA deficiency. PLoS Genet 2012; 8:e1002476. [PMID: 22291608 PMCID: PMC3266887 DOI: 10.1371/journal.pgen.1002476] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/29/2011] [Indexed: 01/24/2023] Open
Abstract
Selective IgA deficiency (IgAD; serum IgA<0.07 g/l) is the most common form of human primary immune deficiency, affecting approximately 1∶600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is underscored by the recent identification of several new risk genes in a genome-wide association study. Among the characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976 matched controls from 3 independent European populations. We confirmed the complex nature of the association with the HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69×10(-57); OR = 2.80) resulting from the combined independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional secondary signals were associated with the DRB1*0102 (combined P = 5.86×10(-17); OR = 4.28) and the DRB1*1501 (combined P = 2.24×10(-35); OR = 0.13) alleles. Despite the strong population-specific frequencies of HLA alleles, we found a remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at characterizing the precise functional variants contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Ricardo C. Ferreira
- Genentech, South San Francisco, California, United States of America
- * E-mail: (RCF); (LH); (TWB)
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Robert R. Graham
- Genentech, South San Francisco, California, United States of America
| | - Gumersindo Fontán
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain
| | - Annette T. Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Ward Ortmann
- Genentech, South San Francisco, California, United States of America
| | - Ning Wang
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Elena Urcelay
- Department of Clinical Immunology, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Concepción Núñez
- Department of Clinical Immunology, Hospital Clínico San Carlos, Madrid, Spain
| | - Gudmundur Jorgensen
- Landspitali–University Hospital and the Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Björn R. Ludviksson
- Landspitali–University Hospital and the Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sinikka Koskinen
- Finnish Red Cross Blood Service, Clinical Laboratory, Helsinki, Finland
| | - Katri Haimila
- Finnish Red Cross Blood Service, Clinical Laboratory, Helsinki, Finland
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter K. Gregersen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
- * E-mail: (RCF); (LH); (TWB)
| | - Timothy W. Behrens
- Genentech, South San Francisco, California, United States of America
- * E-mail: (RCF); (LH); (TWB)
| |
Collapse
|
48
|
Gregersen VR, Conley LN, Sørensen KK, Guldbrandtsen B, Velander IH, Bendixen C. Genome-wide association scan and phased haplotype construction for quantitative trait loci affecting boar taint in three pig breeds. BMC Genomics 2012; 13:22. [PMID: 22244367 PMCID: PMC3315726 DOI: 10.1186/1471-2164-13-22] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 01/13/2012] [Indexed: 11/29/2022] Open
Abstract
Background Boar taint is the undesirable smell and taste of pork meat derived from some entire male pigs. The main causes of boar taint are the two compounds androstenone and skatole (3-methyl-indole). The steroid androstenone is a sex pheromone produced in the testis of the boars. Skatole is produced from tryptophan by bacteria in the intestine of the pigs. In many countries pigs are castrated as piglets to avoid boar taint, however, this is undesirable for animal welfare reasons. Genetic variations affecting the level of boar taint have previously been demonstrated in many breeds. In the study presented in this paper, markers and haplotypes, which can be applied to DNA-based selection schemes in order to reduce or eliminate the boar taint problem, are identified. Results Approximately 30,000 SNPs segregating in 923 boars from three Danish breeds; Duroc, Landrace, and Yorkshire, were used to conduct genome wide association studies of boar taint compounds. At 46 suggestive quantitative trait loci (QTL), 25 haplotypes and three single markers with effects were identified. Furthermore, 40% of the haplotypes mapped to previously identified regions. Haplotypes were also analysed for effects of slaughter weight and meat content. The most promising haplotype was identified on Sus scrofa chromosome 1. The gain in fixed effect of having this haplotype on level of androstenone in Landrace was identified to be high (1.279 μg/g). In addition, this haplotype explained 16.8% of the phenotypic variation within the trait. The haplotype was identified around the gene CYB5A which is known to have an indirect impact on the amount of androstenone. In addition to CYB5A, the genes SRD5A2, LOC100518755, and CYP21A2 are candidate genes for other haplotypes affecting androstenone, whereas, candidate genes for the indolic compounds were identified to be SULT1A1 and CYP2E1. Conclusions Despite the small sample size, a total of 25 haplotypes and three single markers were identified including genomic regions not previously reported. The haplotypes that were analysed showed large effects on trait level. However, little overlap of QTL between breeds was observed.
Collapse
Affiliation(s)
- Vivi R Gregersen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, P,O, Box 50, DK-8830 Tjele, Denmark
| | | | | | | | | | | |
Collapse
|
49
|
Ollitrault P, Terol J, Garcia-Lor A, Bérard A, Chauveau A, Froelicher Y, Belzile C, Morillon R, Navarro L, Brunel D, Talon M. SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genomics 2012; 13:13. [PMID: 22233093 PMCID: PMC3320530 DOI: 10.1186/1471-2164-13-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/10/2012] [Indexed: 01/18/2024] Open
Abstract
Background With the increasing availability of EST databases and whole genome sequences, SNPs have become the most abundant and powerful polymorphic markers. However, SNP chip data generally suffers from ascertainment biases caused by the SNP discovery and selection process in which a small number of individuals are used as discovery panels. The ongoing International Citrus Genome Consortium sequencing project of the highly heterozygous Clementine and sweet orange genomes will soon result in the release of several hundred thousand SNPs. The primary goals of this study were: (i) to estimate the transferability within the genus Citrus of SNPs discovered from Clementine BACend sequencing (BES), (ii) to estimate bias associated with the very narrow discovery panel, and (iii) to evaluate the usefulness of the Clementine-derived SNP markers for diversity analysis and comparative mapping studies between the different cultivated Citrus species. Results Fifty-four accessions covering the main Citrus species and 52 interspecific hybrids between pummelo and Clementine were genotyped on a GoldenGate array platform using 1,457 SNPs mined from Clementine BES and 37 SNPs identified between and within C. maxima, C. medica, C. reticulata and C. micrantha. Consistent results were obtained from 622 SNP loci. Of these markers, 116 displayed incomplete transferability primarily in C. medica, C. maxima and wild Citrus species. The two primary biases associated with the SNP mining in Clementine were an overestimation of the C. reticulata diversity and an underestimation of the interspecific differentiation. However, the genetic stratification of the gene pool was high, with very frequent significant linkage disequilibrium. Furthermore, the shared intraspecific polymorphism and accession heterozygosity were generally enough to perform interspecific comparative genetic mapping. Conclusions A set of 622 SNP markers providing consistent results was selected. Of the markers mined from Clementine, 80.5% were successfully transferred to the whole Citrus gene pool. Despite the ascertainment biases in relation to the Clementine origin, the SNP data confirm the important stratification of the gene pools around C. maxima, C. medica and C. reticulata as well as previous hypothesis on the origin of secondary species. The implemented SNP marker set will be very useful for comparative genetic mapping in Citrus and genetic association in C. reticulata.
Collapse
Affiliation(s)
- Patrick Ollitrault
- CIRAD, UMR AGAP, Avenue Agropolis, TA A-108/02, 34398 Montpellier, Cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gong J, Campos H, McGarvey S, Wu Z, Goldberg R, Baylin A. Genetic variation in stearoyl-CoA desaturase 1 is associated with metabolic syndrome prevalence in Costa Rican adults. J Nutr 2011; 141:2211-8. [PMID: 22049297 PMCID: PMC3223878 DOI: 10.3945/jn.111.143503] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1) activity, a key regulator of lipid metabolism, may be associated with the development of metabolic syndrome (MetS). We examined the association of genetic variation in the SCD1 gene with the occurrence of MetS and its five components in a population of Costa Rican adults (n = 2152; mean age, 58 y; range, 18-86 y). Associations of tag single nucleotide polymorphisms (tagSNP) of the SCD1 gene with prevalence of MetS and its five components were analyzed by use of log-Poisson models with robust variance estimates and linear regression models, respectively. The likelihood ratio was used to test potential gene-fatty acid interactive effects with adipose tissue α-linolenic acid. One tagSNP (rs1502593) was significantly associated with an increased prevalence of MetS in the total study sample. Compared with the common homozygous CC genotype, the CT and TT genotypes for rs1502593 were associated with higher prevalence ratios (PR) of MetS for CT vs. CC: [PR = 1.22 (95% CI = 1.03, 1.44)] and for TT vs. CC [PR = 1.24 (95% CI = 1.01, 1.52)]. Among women, we observed borderline positive associations between systolic blood pressure and fasting blood sugar levels and rs1502593 (P = 0.05 and 0.06). Compared to the common haplotype (frequency ≥ 5%) with no minor alleles of SCD1 tagSNP, the other two observed common haplotypes carrying the rs1502593 minor allele were significantly associated with elevated prevalence of MetS. No gene-fatty acid interactive effects were observed. Our results suggest that genetic variation in the SCD1 gene may play a role in the development of MetS.
Collapse
Affiliation(s)
- Jian Gong
- Department of Community Health, Brown University, Providence, RI
| | - Hannia Campos
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Stephen McGarvey
- Department of Community Health, Brown University, Providence, RI
| | - Zhijin Wu
- Department of Community Health, Brown University, Providence, RI
| | - Robert Goldberg
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA; and
| | - Ana Baylin
- Department of Community Health, Brown University, Providence, RI,Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI,To whom correspondence should be addressed. E-mail:
| |
Collapse
|