1
|
Lisi A, Campbell MC. AncestryGrapher toolkit: Python command-line pipelines to visualize global- and local- ancestry inferences from the RFMIX version 2 software. Bioinformatics 2024; 40:btae616. [PMID: 39412440 PMCID: PMC11534077 DOI: 10.1093/bioinformatics/btae616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/21/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
SUMMARY Admixture is a fundamental process that has shaped levels and patterns of genetic variation in human populations. RFMIX version 2 (RFMIX2) utilizes a robust modeling approach to identify the genetic ancestries in admixed populations. However, this software does not have a built-in method to visually summarize the results of analyses. Here, we introduce the AncestryGrapher toolkit, which converts the numerical output of RFMIX2 into graphical representations of global and local ancestry (i.e. the per-individual ancestry components and the genetic ancestry along chromosomes, respectively). RESULTS To demonstrate the utility of our methods, we applied the AncestryGrapher toolkit to visualize the global and local ancestry of individuals in the North African Mozabite Berber population from the Human Genome Diversity Panel. Our results showed that the Mozabite Berbers derived their ancestry from the Middle East, Europe, and sub-Saharan Africa (global ancestry). We also found that the population origin of ancestry varied considerably along chromosomes (local ancestry). For example, we observed variance in local ancestry in the genomic region on Chromosome 2 containing the regulatory sequence in the MCM6 gene associated with lactase persistence, a human trait tied to the cultural development of adult milk consumption. Overall, the AncestryGrapher toolkit facilitates the exploration, interpretation, and reporting of ancestry patterns in human populations. AVAILABILITY AND IMPLEMENTATION The AncestryGrapher toolkit is free and open source on https://github.com/alisi1989/RFmix2-Pipeline-to-plot.
Collapse
Affiliation(s)
- Alessandro Lisi
- Department of Biological Sciences (Human and Evolutionary Biology Section), University of Southern California, Los Angeles, CA 90089, United States
| | - Michael C Campbell
- Department of Biological Sciences (Human and Evolutionary Biology Section), University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
2
|
Laval G, Patin E, Quintana-Murci L, Kerner G. Deep estimation of the intensity and timing of natural selection from ancient genomes. Mol Ecol Resour 2024; 24:e14015. [PMID: 39215552 DOI: 10.1111/1755-0998.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Leveraging past allele frequencies has proven to be key for identifying the impact of natural selection across time. However, this approach suffers from imprecise estimations of the intensity (s) and timing (T) of selection, particularly when ancient samples are scarce in specific epochs. Here, we aimed to bypass the computation of allele frequencies across arbitrarily defined past epochs and refine the estimations of selection parameters by implementing convolutional neural networks (CNNs) algorithms that directly use ancient genotypes sampled across time. Using computer simulations, we first show that genotype-based CNNs consistently outperform an approximate Bayesian computation (ABC) approach based on past allele frequency trajectories, regardless of the selection model assumed and the number of available ancient genotypes. When applying this method to empirical data from modern and ancient Europeans, we replicated the reported increased number of selection events in post-Neolithic Europe, independently of the continental subregion studied. Furthermore, we substantially refined the ABC-based estimations of s and T for a set of positively and negatively selected variants, including iconic cases of positive selection and experimentally validated disease-risk variants. Our CNN predictions support a history of recent positive and negative selection targeting variants associated with host defence against pathogens, aligning with previous work that highlights the significant impact of infectious diseases, such as tuberculosis, in Europe. These findings collectively demonstrate that detecting the footprints of natural selection on ancient genomes is crucial for unravelling the history of severe human diseases.
Collapse
Affiliation(s)
- Guillaume Laval
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
- Chair of Human Genomics and Evolution, Collège de France, Paris, France
| | - Gaspard Kerner
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| |
Collapse
|
3
|
Malyarchuk BA. Genetic aspects of lactase deficiency in indigenous populations of Siberia. Vavilovskii Zhurnal Genet Selektsii 2024; 28:650-658. [PMID: 39440313 PMCID: PMC11491482 DOI: 10.18699/vjgb-24-72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 10/25/2024] Open
Abstract
The ability to metabolize lactose in adulthood is associated with the persistence of lactase enzyme activity. In European populations, lactase persistence is determined mainly by the presence of the rs4988235-T variant in the MCM6 gene, which increases the expression of the LCT gene, encoding lactase. The highest rates of lactase persistence are characteristic of Europeans, and the lowest rates are found in East Asian populations. Analysis of published data on the distribution of the hypolactasia-associated variant rs4988235-C in the populations of Central Asia and Siberia showed that the frequency of this variant increases in the northeastern direction. The frequency of this allele is 87 % in Central Asia, 90.6 % in Southern Siberia, and 92.9 % in Northeastern Siberia. Consequently, the ability of the population to metabolize lactose decreases in the same geographical direction. The analysis of paleogenomic data has shown that the higher frequency of the rs4988235-T allele in populations of Central Asia and Southern Siberia is associated with the eastward spread of ancient populations of the Eastern European steppes, starting from the Bronze Age. The results of polymorphism analysis of exons and adjacent introns of the MCM6 and LCT genes in indigenous populations of Siberia indicate the possibility that polymorphic variants may potentially be related to lactose metabolism exist in East Asian populations. In East Asian populations, including Siberian ethnic groups, a ~26.5 thousand nucleotide pairs long region of the MCM6 gene, including a combination of the rs4988285-A, rs2070069-G, rs3087353-T, and rs2070068-A alleles, was found. The rs4988285 and rs2070069 loci are located in the enhancer region that regulates the activity of the LCT gene. Analysis of paleogenomic sequences showed that the genomes of Denisovans and Neanderthals are characterized by the above combination of alleles of the MCM6 gene. Thus, the haplotype discovered appears to be archaic. It could have been inherited from a common ancestor of modern humans, Neanderthals, and Denisovans, or it could have been acquired by hybridization with Denisovans or Neanderthals. The data obtained indicate a possible functional significance of archaic variants of the MCM6 gene.
Collapse
Affiliation(s)
- B A Malyarchuk
- Institute of Biological Problems of the North of the Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia
| |
Collapse
|
4
|
Bolognini D, Halgren A, Lou RN, Raveane A, Rocha JL, Guarracino A, Soranzo N, Chin CS, Garrison E, Sudmant PH. Recurrent evolution and selection shape structural diversity at the amylase locus. Nature 2024; 634:617-625. [PMID: 39232174 PMCID: PMC11485256 DOI: 10.1038/s41586-024-07911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The adoption of agriculture triggered a rapid shift towards starch-rich diets in human populations1. Amylase genes facilitate starch digestion, and increased amylase copy number has been observed in some modern human populations with high-starch intake2, although evidence of recent selection is lacking3,4. Here, using 94 long-read haplotype-resolved assemblies and short-read data from approximately 5,600 contemporary and ancient humans, we resolve the diversity and evolutionary history of structural variation at the amylase locus. We find that amylase genes have higher copy numbers in agricultural populations than in fishing, hunting and pastoral populations. We identify 28 distinct amylase structural architectures and demonstrate that nearly identical structures have arisen recurrently on different haplotype backgrounds throughout recent human history. AMY1 and AMY2A genes each underwent multiple duplication/deletion events with mutation rates up to more than 10,000-fold the single-nucleotide polymorphism mutation rate, whereas AMY2B gene duplications share a single origin. Using a pangenome-based approach, we infer structural haplotypes across thousands of humans identifying extensively duplicated haplotypes at higher frequency in modern agricultural populations. Leveraging 533 ancient human genomes, we find that duplication-containing haplotypes (with more gene copies than the ancestral haplotype) have rapidly increased in frequency over the past 12,000 years in West Eurasians, suggestive of positive selection. Together, our study highlights the potential effects of the agricultural revolution on human genomes and the importance of structural variation in human adaptation.
Collapse
Affiliation(s)
| | - Alma Halgren
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Runyang Nicolas Lou
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Joana L Rocha
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nicole Soranzo
- Human Technopole, Milan, Italy
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Biomedical Campus, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Chen-Shan Chin
- Foundation for Biological Data Science, Belmont, CA, USA
| | - Erik Garrison
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Campbell B. Recent Research on the Human Biology of Pastoralists. Am J Hum Biol 2024:e24156. [PMID: 39290108 DOI: 10.1002/ajhb.24156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Despite encroachment by agricultural systems and globalization, pastoral nomads maintain a robust presence in terms of numbers and subsistence activity. At the same time, increasing concern about climate change has promoted awareness that increased climatic fluctuation may push pastoral population past their capacity for resilience. The response of pastoralists to climate change has important implications for our evolutionary past and our increasingly problematic future. Yet, pastoralists have received less explicit attention than foragers as populations under consistent selective constraints including limited caloric intake, high levels of habitual activity, and high disease burdens. Additional factors include exposure to cold and high temperatures, as well as high altitude. Over the last 20 or so years, the use of new techniques for measuring energetics, including actigraphs and doubly labeled water have built on existing noninvasive sample collection for hormones, immune markers and genes to provide a more detailed picture of the human biology of pastoral populations. Here I consider recent work on pastoralists from Siberia and northern Europe, Africa, Asia, and South America. I survey what is known about maternal milk composition and infant health, childhood growth, lactase persistence, and adult energy expenditure and lactase persistence to build a picture of the pastoralist biological response to environmental conditions, including heat, cold, and high altitude. Where available I include information about population history because of its importance for selection. I end by outlining the impact of milk consumption and climate over the human life cycle and make suggestions for further research.
Collapse
Affiliation(s)
- Benjamin Campbell
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Górczyńska-Kosiorz S, Cichocka E, Niemiec P, Trautsolt W, Pluskiewicz W, Gumprecht J. Bone Mineral Density and the Risk of Type-2 Diabetes in Postmenopausal Women: rs4988235 Polymorphism Associated with Lactose Intolerance Effects. Nutrients 2024; 16:3002. [PMID: 39275317 PMCID: PMC11397624 DOI: 10.3390/nu16173002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Dairy products, a major source of calcium, demonstrate a number of beneficial effects, not only protecting against the development of osteoporosis (OP) but also suppressing the onset of type-2 diabetes (T2DM) and improving bone mineral density (BMD). Dairy consumption is closely linked to lactose tolerance. One of the genetic factors predisposing individuals to lactose intolerance is rs4988235 polymorphism of the MCM6 gene. The aim of this reported study was to analyse the relationship between the rs4988235 variant of the MCM6 gene and bone mineral density and the risk of type-2 diabetes in women after menopause. METHODS The study was conducted among 607 female patients in the postmenopausal period in whom bone densitometry and vitamin-D3 levels were assayed and genotyping of the rs4988235 polymorphism of MCM6 gene was performed. The obtained results were analysed for the presence of T2DM, obesity surrogates, medical data, and past medical history. RESULTS The distribution of genotype frequencies was consistent with the Hardy-Weinberg equilibrium (p > 0.050). Postmenopausal women with the GG homozygote of rs4988235 polymorphism consumed significantly less calcium (dairy), which was probably related to the observed lactose intolerance. The GG homozygote of women with rs4988235 polymorphism was significantly more likely to have T2DM relative to the A allele carriers (p = 0.023). GG homozygotes had significantly lower femoral-vertebral mineral density despite the significantly more frequent supplementation with calcium preparations (p = 0.010), vitamin D (p = 0.01), and anti-osteoporotic drugs (p = 0.040). The obtained results indicate a stronger loss of femoral-neck mineral density with age in the GG homozygotes relative to the A allele carriers (p = 0.038). CONCLUSIONS In the population of women after menopause, the carriage of the G allele of rs4988235 polymorphism of the MCM6 gene, i.e., among the patients with lactose intolerance, significantly increased the risk of developing T2DM and the loss of BMD.
Collapse
Affiliation(s)
- Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Edyta Cichocka
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Wanda Trautsolt
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Wojciech Pluskiewicz
- Metabolic Bone Diseases Unit, Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
7
|
Cohen CE, Swallow DM, Walker C. The molecular basis of lactase persistence: Linking genetics and epigenetics. Ann Hum Genet 2024. [PMID: 39171584 DOI: 10.1111/ahg.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Lactase persistence (LP) - the genetic trait that determines the continued expression of the enzyme lactase into adulthood - has undergone recent, rapid positive selection since the advent of animal domestication and dairying in some human populations. While underlying evolutionary explanations have been widely posited and studied, the molecular basis of LP remains less so. This review considers the genetic and epigenetic bases of LP. Multiple single-nucleotide polymorphisms (SNPs) in an LCT enhancer in intron 13 of the neighbouring MCM6 gene are associated with LP. These SNPs alter binding of transcription factors (TFs) and likely prevent age-related increases in methylation in the enhancer, maintaining LCT expression into adulthood to cause LP. However, the complex relationship between the genetics and epigenetics of LP is not fully characterised, and the mode of action of methylation quantitative trait loci (meQTLs) (SNPs affecting methylation) generally remains poorly understood. Here, we examine published LP data to propose a model describing how methylation in the LCT enhancer is prevented in LP adults. We argue that this occurs through altered binding of the TF Oct-1 (encoded by the gene POU2F1) and neighbouring TFs GATA-6 (GATA6), HNF-3A (FOXA1) and c-Ets1 (ETS1) acting in concert. We therefore suggest a plausible new model for LCT downregulation in the context of LP, with wider relevance for future work on the mechanisms of other meQTLs.
Collapse
Affiliation(s)
- Céleste E Cohen
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), London, UK
| | - Dallas M Swallow
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), London, UK
| | - Catherine Walker
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), London, UK
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Celi A, Trelis M, Ponce L, Ortiz V, Garrigues V, Soriano JM, Merino-Torres JF. Food-Intolerance Genetic Testing: A Useful Tool for the Dietary Management of Chronic Gastrointestinal Disorders. Nutrients 2024; 16:2741. [PMID: 39203877 PMCID: PMC11357470 DOI: 10.3390/nu16162741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The rise in food intolerances and celiac disease, along with advanced diagnostic techniques, has prompted health professionals to seek effective and economical testing methods. This study evaluates combining genetic tests with routine carbohydrate-absorption breath tests to classify patients with chronic gastrointestinal disorders into therapeutic groups, enhancing dietary management and improving gut health and quality of life. Forty-nine patients with suspected carbohydrate intolerance underwent genetic testing for lactase non-persistence, hereditary fructose intolerance, and celiac disease risk. Simultaneously, breath tests assessed lactose and fructose absorption. The lactase non-persistence genotype appeared in 36.7% of cases, with one hereditary fructose-intolerance case in a heterozygous condition. Celiac disease risk markers (HLA-DQ2/8 haplotypes) were found in 49.0% of the population. Secondary lactose and/or fructose malabsorption was present in 67.3% of patients, with 66.1% of lactase non-persistence individuals showing secondary lactose malabsorption. Fructose malabsorption was prevalent in 45.8% of patients at risk for celiac disease. Two main treatment groups were defined based on genetic results, indicating primary and irreversible gastrointestinal disorder causes, followed by a sub-classification using breath test results. Genetic testing is a valuable tool for designing dietary management plans, avoiding unnecessary diet restrictions, and reducing recovery times.
Collapse
Affiliation(s)
- Alexandra Celi
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.); (J.M.S.); (J.F.M.-T.)
| | - María Trelis
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.); (J.M.S.); (J.F.M.-T.)
- Parasite & Health Research Group, Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain
| | - Lorena Ponce
- Department of Bioinformatics, Overgenes S.L., 46980 Valencia, Spain;
| | - Vicente Ortiz
- Digestive Functional Disorders Unit, Department of Gastroenterology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (V.O.); (V.G.)
| | - Vicente Garrigues
- Digestive Functional Disorders Unit, Department of Gastroenterology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (V.O.); (V.G.)
- Department of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - José M. Soriano
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.); (J.M.S.); (J.F.M.-T.)
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain
| | - Juan F. Merino-Torres
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.); (J.M.S.); (J.F.M.-T.)
- Department of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| |
Collapse
|
9
|
Aykanat T, McLennan D, Metcalfe NB, Prokkola JM. Early survival in Atlantic salmon is associated with parental genotypes at loci linked to timing of maturation. Evolution 2024; 78:1441-1452. [PMID: 38736399 DOI: 10.1093/evolut/qpae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Large effect loci often contain genes with critical developmental functions and potentially broad effects across life stages. However, their life stage-specific fitness consequences are rarely explored. In Atlantic salmon, variation in two large-effect loci, six6 and vgll3, is linked to age at maturity and several physiological and behavioral traits in early life. By genotyping the progeny of wild Atlantic salmon that were planted into natural streams with nutrient manipulations, we tested if genetic variation in these loci is associated with survival in early life. We found that higher early-life survival was linked to the genotype associated with late maturation in the vgll3, but with early maturation in the six6 locus. These effects were significant in high nutrients but not in low-nutrient streams. The differences in early survival were not explained by additive genetic effects in the offspring generation but by maternal genotypes in the six6 locus and by both parents' genotypes in the vgll3 locus. Our results suggest that indirect genetic effects of large-effect loci can be significant determinants of offspring fitness. This study demonstrates an intriguing case of how large-effect loci can exhibit complex fitness associations across life stages in the wild and indicates that predicting evolutionary dynamics is difficult.
Collapse
Affiliation(s)
- Tutku Aykanat
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Darryl McLennan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jenni M Prokkola
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (LUKE), Oulu, Finland
| |
Collapse
|
10
|
Carmody RN, Varady K, Turnbaugh PJ. Digesting the complex metabolic effects of diet on the host and microbiome. Cell 2024; 187:3857-3876. [PMID: 39059362 PMCID: PMC11309583 DOI: 10.1016/j.cell.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The past 50 years of interdisciplinary research in humans and model organisms has delivered unprecedented insights into the mechanisms through which diet affects energy balance. However, translating these results to prevent and treat obesity and its associated diseases remains challenging. Given the vast scope of this literature, we focus this Review on recent conceptual advances in molecular nutrition targeting the management of energy balance, including emerging dietary and pharmaceutical interventions and their interactions with the human gut microbiome. Notably, multiple current dietary patterns of interest embrace moderate-to-high fat intake or prioritize the timing of eating over macronutrient intake. Furthermore, the rapid expansion of microbiome research findings has complicated multiple longstanding tenets of nutrition while also providing new opportunities for intervention. Continued progress promises more precise and reliable dietary recommendations that leverage our growing knowledge of the microbiome, the changing landscape of clinical interventions, and our molecular understanding of human biology.
Collapse
Affiliation(s)
- Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Alkaraki AK, Alfonso-Sánchez MA, Peña JA, Abuelezz AI. Lactase persistence in the Jordanian population: Potential effects of the Arabian Peninsula and Sahara's aridification. Heliyon 2024; 10:e33455. [PMID: 39027493 PMCID: PMC11255666 DOI: 10.1016/j.heliyon.2024.e33455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
The single nucleotide polymorphism (SNP) -13910 C > T has proved a good predictor of the incidence of lactase persistence in Europe and South Asia. Yet, this is not the case in the Near East, although this region is a passageway between the two continents. Lactase persistence is associated with cattle breeding, which originated in the Fertile Crescent of the Near East and spread later during the Middle Neolithic throughout Europe. Here we analyzed five SNPs (-13915 T > G (rs41380347), -13910 C > T (rs4988235), -13907 C > G (rs41525747), -14009 T > G (rs869051967), and -14010 G > C (rs145946881)) in three Jordanian human groups, namely the Bedouins, Jordan valley farmers, and Jordanian urban people. The SNPs -14009 T > G and -14010 G > C were not detected in the sample, -13907 C > G was virtually non-existent, -13910 C > T showed low frequencies, and -13915 T > G exhibited salient frequencies. The estimated incidence of lactase persistence was lower in the urban population (16 %), intermediate in the Jordan Valley's farmer population (30 %), and higher among the Bedouins (62 %). In explaining our findings, we postulated climatic change brought about by the aridification episode of the Arabian Peninsula and the Sahara 4200 years ago. This climatic milestone caused the collapse of the Akkadian Empire and the Old Kingdom in Egypt. Also, it could have led to a drastic decline of cattle in the region, being replaced by the domestication of camels. Loss of traditional crops and increasing dependence on camel milk might have triggered local selective pressures, mainly associated with -13915 T > G and differentiated from the ones in Europe, associated with -13910 C > T.
Collapse
Affiliation(s)
- Almuthanna K. Alkaraki
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163, Jordan
| | - Miguel A. Alfonso-Sánchez
- Departamento de Genética, Antropología Física y Fisiología Animal. Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU), Spain
| | - Jose A. Peña
- Departamento de Genética, Antropología Física y Fisiología Animal. Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU), Spain
| | - Alanoud I. Abuelezz
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 21163, Jordan
| |
Collapse
|
12
|
Ji Y, Zhao J, Gong J, Sedlazeck FJ, Fan S. Unveiling novel genetic variants in 370 challenging medically relevant genes using the long read sequencing data of 41 samples from 19 global populations. Mol Genet Genomics 2024; 299:65. [PMID: 38972030 DOI: 10.1007/s00438-024-02158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND A large number of challenging medically relevant genes (CMRGs) are situated in complex or highly repetitive regions of the human genome, hindering comprehensive characterization of genetic variants using next-generation sequencing technologies. In this study, we employed long-read sequencing technology, extensively utilized in studying complex genomic regions, to characterize genetic alterations, including short variants (single nucleotide variants and short insertions and deletions) and copy number variations, in 370 CMRGs across 41 individuals from 19 global populations. RESULTS Our analysis revealed high levels of genetic variants in CMRGs, with 68.73% exhibiting copy number variations and 65.20% containing short variants that may disrupt protein function across individuals. Such variants can influence pharmacogenomics, genetic disease susceptibility, and other clinical outcomes. We observed significant differences in CMRG variation across populations, with individuals of African ancestry harboring the highest number of copy number variants and short variants compared to samples from other continents. Notably, 15.79% to 33.96% of short variants were exclusively detectable through long-read sequencing. While the T2T-CHM13 reference genome significantly improved the assembly of CMRG regions, thereby facilitating variant detection in these regions, some regions still lacked resolution. CONCLUSION Our results provide an important reference for future clinical and pharmacogenetic studies, highlighting the need for a comprehensive representation of global genetic diversity in the reference genome and improved variant calling techniques to fully resolve medically relevant genes.
Collapse
Affiliation(s)
- Yanfeng Ji
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Junfan Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Jiao Gong
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
13
|
Çokoğlu SS, Koptekin D, Fidan FR, Somel M. Investigating food production-associated DNA methylation changes in paleogenomes: Lack of consistent signals beyond technical noise. Evol Appl 2024; 17:e13743. [PMID: 38957308 PMCID: PMC11217591 DOI: 10.1111/eva.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024] Open
Abstract
The Neolithic transition introduced major diet and lifestyle changes to human populations across continents. Beyond well-documented bioarcheological and genetic effects, whether these changes also had molecular-level epigenetic repercussions in past human populations has been an open question. In fact, methylation signatures can be inferred from UDG-treated ancient DNA through postmortem damage patterns, but with low signal-to-noise ratios; it is thus unclear whether published paleogenomes would provide the necessary resolution to discover systematic effects of lifestyle and diet shifts. To address this we compiled UDG-treated shotgun genomes of 13 pre-Neolithic hunter-gatherers (HGs) and 21 Neolithic farmers (NFs) individuals from West and North Eurasia, published by six different laboratories and with coverage c.1×-58× (median = 9×). We used epiPALEOMIX and a Monte Carlo normalization scheme to estimate methylation levels per genome. Our paleomethylome dataset showed expected genome-wide methylation patterns such as CpG island hypomethylation. However, analyzing the data using various approaches did not yield any systematic signals for subsistence type, genetic sex, or tissue effects. Comparing the HG-NF methylation differences in our dataset with methylation differences between hunter-gatherers versus farmers in modern-day Central Africa also did not yield consistent results. Meanwhile, paleomethylome profiles did cluster strongly by their laboratories of origin. Using larger data volumes, minimizing technical noise and/or using alternative protocols may be necessary for capturing subtle environment-related biological signals from paleomethylomes.
Collapse
Affiliation(s)
| | - Dilek Koptekin
- Department of BiologyMiddle East Technical UniversityAnkaraTurkey
| | | | - Mehmet Somel
- Department of BiologyMiddle East Technical UniversityAnkaraTurkey
| |
Collapse
|
14
|
Bolognini D, Halgren A, Lou RN, Raveane A, Rocha JL, Guarracino A, Soranzo N, Chin J, Garrison E, Sudmant PH. Global diversity, recurrent evolution, and recent selection on amylase structural haplotypes in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579378. [PMID: 38370750 PMCID: PMC10871346 DOI: 10.1101/2024.02.07.579378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The adoption of agriculture, first documented ~12,000 years ago in the Fertile Crescent, triggered a rapid shift toward starch-rich diets in human populations. Amylase genes facilitate starch digestion and increased salivary amylase copy number has been observed in some modern human populations with high starch intake, though evidence of recent selection is lacking. Here, using 52 long-read diploid assemblies and short read data from ~5,600 contemporary and ancient humans, we resolve the diversity, evolutionary history, and selective impact of structural variation at the amylase locus. We find that amylase genes have higher copy numbers in populations with agricultural subsistence compared to fishing, hunting, and pastoral groups. We identify 28 distinct amylase structural architectures and demonstrate that nearly identical structures have arisen recurrently on different haplotype backgrounds throughout recent human history. AMY1 and AMY2A genes each exhibit multiple duplications/deletions with mutation rates >10,000-fold the SNP mutation rate, whereas AMY2B gene duplications share a single origin. Using a pangenome graph-based approach to infer structural haplotypes across thousands of humans, we identify extensively duplicated haplotypes present at higher frequencies in modern day populations with traditionally agricultural diets. Leveraging 533 ancient human genomes we find that duplication-containing haplotypes (i.e. haplotypes with more amylase gene copies than the ancestral haplotype) have increased in frequency more than seven-fold over the last 12,000 years providing evidence for recent selection in West Eurasians. Together, our study highlights the potential impacts of the agricultural revolution on human genomes and the importance of long-read sequencing in identifying signatures of selection at structurally complex loci.
Collapse
Affiliation(s)
| | - Alma Halgren
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Runyang Nicolas Lou
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | | | - Joana L Rocha
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, USA
| | | | - Jason Chin
- Foundation for Biological Data Science, Belmont, USA
| | - Erik Garrison
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, USA
| |
Collapse
|
15
|
Chen L, Ma J, Xu W, Shen F, Yang Z, Sonne C, Dietz R, Li L, Jie X, Li L, Yan G, Zhang X. Comparative transcriptome and methylome of polar bears, giant and red pandas reveal diet-driven adaptive evolution. Evol Appl 2024; 17:e13731. [PMID: 38894980 PMCID: PMC11183199 DOI: 10.1111/eva.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Epigenetic regulation plays an important role in the evolution of species adaptations, yet little information is available on the epigenetic mechanisms underlying the adaptive evolution of bamboo-eating in both giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens). To investigate the potential contribution of epigenetic to the adaptive evolution of bamboo-eating in giant and red pandas, we performed hepatic comparative transcriptome and methylome analyses between bamboo-eating pandas and carnivorous polar bears (Ursus maritimus). We found that genes involved in carbohydrate, lipid, amino acid, and protein metabolism showed significant differences in methylation and expression levels between the two panda species and polar bears. Clustering analysis of gene expression revealed that giant pandas did not form a sister group with the more closely related polar bears, suggesting that the expression pattern of genes in livers of giant pandas and red pandas have evolved convergently driven by their similar diets. Compared to polar bears, some key genes involved in carbohydrate metabolism and biological oxidation and cholesterol synthesis showed hypomethylation and higher expression in giant and red pandas, while genes involved in fat digestion and absorption, fatty acid metabolism, lysine degradation, resistance to lipid peroxidation and detoxification showed hypermethylation and low expression. Our study elucidates the special nutrient utilization mechanism of giant pandas and red pandas and provides some insights into the molecular mechanism of their adaptive evolution of bamboo feeding. This has important implications for the breeding and conservation of giant pandas and red pandas.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Jinnan Ma
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
- College of Continuing EducationYunnan Normal UniversityKunmingChina
| | - Wencai Xu
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered WildlifeChengdu Research Base of Giant Panda BreedingChengduChina
| | | | - Christian Sonne
- Arctic Research Centre, Faculty of Science and Technology, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | - Rune Dietz
- Arctic Research Centre, Faculty of Science and Technology, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | - Linzhu Li
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Xiaodie Jie
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Lu Li
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Guoqiang Yan
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Xiuyue Zhang
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
16
|
Mezzetti M, Passamonti MM, Dall’Asta M, Bertoni G, Trevisi E, Ajmone Marsan P. Emerging Parameters Justifying a Revised Quality Concept for Cow Milk. Foods 2024; 13:1650. [PMID: 38890886 PMCID: PMC11171858 DOI: 10.3390/foods13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Milk has become a staple food product globally. Traditionally, milk quality assessment has been primarily focused on hygiene and composition to ensure its safety for consumption and processing. However, in recent years, the concept of milk quality has expanded to encompass a broader range of factors. Consumers now also consider animal welfare, environmental impact, and the presence of additional beneficial components in milk when assessing its quality. This shifting consumer demand has led to increased attention on the overall production and sourcing practices of milk. Reflecting on this trend, this review critically explores such novel quality parameters, offering insights into how such practices meet the modern consumer's holistic expectations. The multifaceted aspects of milk quality are examined, revealing the intertwined relationship between milk safety, compositional integrity, and the additional health benefits provided by milk's bioactive properties. By embracing sustainable farming practices, dairy farmers and processors are encouraged not only to fulfill but to anticipate consumer standards for premium milk quality. This comprehensive approach to milk quality underscores the necessity of adapting dairy production to address the evolving nutritional landscape and consumption patterns.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Matilde Maria Passamonti
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Margherita Dall’Asta
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Giuseppe Bertoni
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Erminio Trevisi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
- Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy
| | - Paolo Ajmone Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| |
Collapse
|
17
|
Kamal MM, Mia MS, Faruque MO, Rabby MG, Islam MN, Talukder MEK, Wani TA, Rahman MA, Hasan MM. In silico functional, structural and pathogenicity analysis of missense single nucleotide polymorphisms in human MCM6 gene. Sci Rep 2024; 14:11607. [PMID: 38773180 PMCID: PMC11109216 DOI: 10.1038/s41598-024-62299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) are one of the most common determinants and potential biomarkers of human disease pathogenesis. SNPs could alter amino acid residues, leading to the loss of structural and functional integrity of the encoded protein. In humans, members of the minichromosome maintenance (MCM) family play a vital role in cell proliferation and have a significant impact on tumorigenesis. Among the MCM members, the molecular mechanism of how missense SNPs of minichromosome maintenance complex component 6 (MCM6) contribute to DNA replication and tumor pathogenesis is underexplored and needs to be elucidated. Hence, a series of sequence and structure-based computational tools were utilized to determine how mutations affect the corresponding MCM6 protein. From the dbSNP database, among 15,009 SNPs in the MCM6 gene, 642 missense SNPs (4.28%), 291 synonymous SNPs (1.94%), and 12,500 intron SNPs (83.28%) were observed. Out of the 642 missense SNPs, 33 were found to be deleterious during the SIFT analysis. Among these, 11 missense SNPs (I123S, R207C, R222C, L449F, V456M, D463G, H556Y, R602H, R633W, R658C, and P815T) were found as deleterious, probably damaging, affective and disease-associated. Then, I123S, R207C, R222C, V456M, D463G, R602H, R633W, and R658C missense SNPs were found to be highly harmful. Six missense SNPs (I123S, R207C, V456M, D463G, R602H, and R633W) had the potential to destabilize the corresponding protein as predicted by DynaMut2. Interestingly, five high-risk mutations (I123S, V456M, D463G, R602H, and R633W) were distributed in two domains (PF00493 and PF14551). During molecular dynamics simulations analysis, consistent fluctuation in RMSD and RMSF values, high Rg and hydrogen bonds in mutant proteins compared to wild-type revealed that these mutations might alter the protein structure and stability of the corresponding protein. Hence, the results from the analyses guide the exploration of the mechanism by which these missense SNPs of the MCM6 gene alter the structural integrity and functional properties of the protein, which could guide the identification of ways to minimize the harmful effects of these mutations in humans.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Sohel Mia
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Omar Faruque
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Numan Islam
- Department of Food Engineering, North Pacific International University of Bangladesh, Dhaka, Bangladesh
| | | | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - M Atikur Rahman
- Department of Biological Sciences, Alabama State University, 915 S Jackson St, Montgomery, AL, 36104, USA.
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
18
|
Kleisner K, Pokorný Š, Černý V. Sexually dimorphic traits are associated with subsistence strategy in African faces from the Sahel/Savannah belt. Am J Hum Biol 2024; 36:e24008. [PMID: 37897188 DOI: 10.1002/ajhb.24008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVES Previous research revealed that in some African populations, food-production strategies are associated with facial shape. Nomadic pastoralists living in the African Sahel/Savannah belt have a different facial morphology than their sedentary neighbors. We investigated whether the lifestyle associated with a subsistence pattern has an impact on sexual dimorphism in the facial structure. METHODS We employed several methods from geometric morphometrics and demonstrated such effect in four ethnically distinct populations that share the same geographic space. RESULTS We show that the facial traits which correlate with a subsistence strategy are systematically associated with levels of facial sex-typicality. In particular, we found that faces with more pronounced pastoralist features have on average more masculine facial traits and that this effect is more pronounced in men than in women. CONCLUSIONS In general, though, the magnitude of overall facial dimorphism does not differ between pastoralists and farmers. Pastoralists (in contrast to farmers) tend to have a more masculine facial morphology but facial differences between the sexes are in both groups the same.
Collapse
Affiliation(s)
- Karel Kleisner
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Šimon Pokorný
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Viktor Černý
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
19
|
Angima G, Qu Y, Park SH, Dallas DC. Prebiotic Strategies to Manage Lactose Intolerance Symptoms. Nutrients 2024; 16:1002. [PMID: 38613035 PMCID: PMC11013211 DOI: 10.3390/nu16071002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Lactose intolerance, which affects about 65-75% of the world's population, is caused by a genetic post-weaning deficiency of lactase, the enzyme required to digest the milk sugar lactose, called lactase non-persistence. Symptoms of lactose intolerance include abdominal pain, bloating and diarrhea. Genetic variations, namely lactase persistence, allow some individuals to metabolize lactose effectively post-weaning, a trait thought to be an evolutionary adaptation to dairy consumption. Although lactase non-persistence cannot be altered by diet, prebiotic strategies, including the consumption of galactooligosaccharides (GOSs) and possibly low levels of lactose itself, may shift the microbiome and mitigate symptoms of lactose consumption. This review discusses the etiology of lactose intolerance and the efficacy of prebiotic approaches like GOSs and low-dose lactose in symptom management.
Collapse
Affiliation(s)
- Gloria Angima
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (G.A.); (Y.Q.)
| | - Yunyao Qu
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (G.A.); (Y.Q.)
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331, USA
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (G.A.); (Y.Q.)
| | - David C. Dallas
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (G.A.); (Y.Q.)
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
20
|
González A, Fullaondo A, Odriozola A. Impact of evolution on lifestyle in microbiome. ADVANCES IN GENETICS 2024; 111:149-198. [PMID: 38908899 DOI: 10.1016/bs.adgen.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter analyses the interaction between microbiota and humans from an evolutionary point of view. Long-term interactions between gut microbiota and host have been generated as a result of dietary choices through coevolutionary processes, where mutuality of advantage is essential. Likewise, the characteristics of the intestinal environment have made it possible to describe different intrahost evolutionary mechanisms affecting microbiota. For its part, the intestinal microbiota has been of great importance in the evolution of mammals, allowing the diversification of dietary niches, phenotypic plasticity and the selection of host phenotypes. Although the origin of the human intestinal microbial community is still not known with certainty, mother-offspring transmission plays a key role, and it seems that transmissibility between individuals in adulthood also has important implications. Finally, it should be noted that certain aspects inherent to modern lifestyle, including refined diets, antibiotic intake, exposure to air pollutants, microplastics, and stress, could negatively affect the diversity and composition of our gut microbiota. This chapter aims to combine current knowledge to provide a comprehensive view of the interaction between microbiota and humans throughout evolution.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
21
|
Pajic P, Landau L, Gokcumen O, Ruhl S. Emergence of saliva protein genes in the secretory calcium-binding phosphoprotein (SCPP) locus and accelerated evolution in primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580359. [PMID: 38405690 PMCID: PMC10888740 DOI: 10.1101/2024.02.14.580359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Genes within the secretory calcium-binding phosphoprotein (SCPP) family evolved in conjunction with major evolutionary milestones: the formation of a calcified skeleton in vertebrates, the emergence of tooth enamel in fish, and the introduction of lactation in mammals. The SCPP gene family also contains genes expressed primarily and abundantly in human saliva. Here, we explored the evolution of the saliva-related SCPP genes by harnessing currently available genomic and transcriptomic resources. Our findings provide insights into the expansion and diversification of SCPP genes, notably identifying previously undocumented convergent gene duplications. In primate genomes, we found additional duplication and diversification events that affected genes coding for proteins secreted in saliva. These saliva-related SCPP genes exhibit signatures of positive selection in the primate lineage while the other genes in the same locus remain conserved. We found that regulatory shifts and gene turnover events facilitated the accelerated gain of salivary expression. Collectively, our results position the SCPP gene family as a hotbed of evolutionary innovation, suggesting the potential role of dietary and pathogenic pressures in the adaptive diversification of the saliva composition in primates, including humans.
Collapse
Affiliation(s)
- Petar Pajic
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Luane Landau
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, NY 14214, USA
| |
Collapse
|
22
|
Jelenkovic A, Ibáñez-Zamacona ME, Rebato E. Human adaptations to diet: Biological and cultural coevolution. ADVANCES IN GENETICS 2024; 111:117-147. [PMID: 38908898 DOI: 10.1016/bs.adgen.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Modern humans evolved in Africa some 200,000 years ago, and since then, human populations have expanded and diversified to occupy a broad range of habitats and use different subsistence modes. This has resulted in different adaptations, such as differential responses to diseases and different abilities to digest or tolerate certain foods. The shift from a subsistence strategy based on hunting and gathering during the Palaeolithic to a lifestyle based on the consumption of domesticated animals and plants in the Neolithic can be considered one of the most important dietary transitions of Homo sapiens. In this text, we review four examples of gene-culture coevolution: (i) the persistence of the enzyme lactase after weaning, which allows the digestion of milk in adulthood, related to the emergence of dairy farming during the Neolithic; (ii) the population differences in alcohol susceptibility, in particular the ethanol intolerance of Asian populations due to the increased accumulation of the toxic acetaldehyde, related to the spread of rice domestication; (iii) the maintenance of gluten intolerance (celiac disease) with the subsequent reduced fitness of its sufferers, related to the emergence of agriculture and (iv) the considerable variation in the biosynthetic pathway of long-chain polyunsaturated fatty acids in native populations with extreme diets.
Collapse
Affiliation(s)
- Aline Jelenkovic
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - María Eugenia Ibáñez-Zamacona
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Esther Rebato
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
23
|
Pivirotto A, Peles N, Hey J. Allele age estimators designed for whole genome datasets show only a modest decrease in accuracy when applied to whole exome datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578465. [PMID: 38370640 PMCID: PMC10871225 DOI: 10.1101/2024.02.01.578465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Personalized genomics in the healthcare system is becoming increasingly accessible as the costs of sequencing decreases. With the increase in number of genomes, larger numbers of rare variants are being discovered and much work is being done to identify their functional impacts in relation to disease phenotypes. One way to characterize these variants is to estimate the time the mutation entered the population. However, allele age estimators such as Relate, Genealogical Estimator of Variant Age, and time of coalescence, were developed based on the assumption that datasets include the entire genome. We examined the performance of each of these estimators on simulated exome data under a neutral constant population size model and found that each provides usable estimates of allele age from whole-exome datasets. To test the robustness of these methods, analyses were undertaken to simulate data under a population expansion model and background selection. Relate performs the best amongst all three estimators with Pearson coefficients of 0.64 and 0.68 (neutral constant and expansion population model) with a 17 percent and 15 percent drop in accuracy between whole genome and whole exome estimations. Of the three estimators, Relate is best able to parallelize to yield quick results with little resources, however even Relate is only able to scale to thousands of samples making it unable to match the hundreds of thousands of samples being currently released. While more work is needed to expand the capabilities of current methods of estimating allele age, these methods estimate the age of mutations with a modest decrease in performance.
Collapse
Affiliation(s)
- Alyssa Pivirotto
- Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA USA
| | - Noah Peles
- Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA USA
| | - Jody Hey
- Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA USA
| |
Collapse
|
24
|
Durkin SM, Ballinger MA, Nachman MW. Tissue-specific and cis-regulatory changes underlie parallel, adaptive gene expression evolution in house mice. PLoS Genet 2024; 20:e1010892. [PMID: 38306396 PMCID: PMC10866503 DOI: 10.1371/journal.pgen.1010892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/14/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Changes in gene regulation have long been appreciated as a driving force of adaptive evolution, however the relative contributions of cis- and trans-acting changes to gene regulation over short evolutionary timescales remain unclear. Instances of recent, parallel phenotypic evolution provide an opportunity to assess whether parallel patterns are seen at the level of gene expression, and to assess the relative contribution of cis- and trans- changes to gene regulation in the early stages of divergence. Here, we studied gene expression in liver and brown adipose tissue in two wild-derived strains of house mice that independently adapted to cold, northern environments, and we compared them to a strain of house mice from a warm, tropical environment. To investigate gene regulatory evolution, we studied expression in parents and allele-specific expression in F1 hybrids of crosses between warm-adapted and cold-adapted strains. First, we found that the different cold-adapted mice showed both unique and shared changes in expression, but that the proportion of shared changes (i.e. parallelism) was greater than expected by chance. Second, we discovered that expression evolution occurred largely at tissue-specific and cis-regulated genes, and that these genes were over-represented in parallel cases of evolution. Finally, we integrated the expression data with scans for selection in natural populations and found substantial parallelism in the two northern populations for genes under selection. Furthermore, selection outliers were associated with cis-regulated genes more than expected by chance; cis-regulated genes under selection influenced phenotypes such as body size, immune functioning, and activity level. These results demonstrate that parallel patterns of gene expression in mice that have independently adapted to cold environments are driven largely by tissue-specific and cis-regulatory changes, providing insight into the mechanisms of adaptive gene regulatory evolution at the earliest stages of divergence.
Collapse
Affiliation(s)
- Sylvia M. Durkin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Mallory A. Ballinger
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael W. Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
25
|
Ali HAA, Coulson T, Clegg SM, Quilodrán CS. The effect of divergent and parallel selection on the genomic landscape of divergence. Mol Ecol 2024; 33:e17225. [PMID: 38063473 DOI: 10.1111/mec.17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 01/25/2024]
Abstract
While the role of selection in divergence along the speciation continuum is theoretically well understood, defining specific signatures of selection in the genomic landscape of divergence is empirically challenging. Modelling approaches can provide insight into the potential role of selection on the emergence of a heterogenous genomic landscape of divergence. Here, we extend and apply an individual-based approach that simulates the phenotypic and genotypic distributions of two populations under a variety of selection regimes, genotype-phenotype maps, modes of migration, and genotype-environment interactions. We show that genomic islands of high differentiation and genomic valleys of similarity may respectively form under divergent and parallel selection between populations. For both types of between-population selection, negative and positive frequency-dependent selection within populations generated genomic islands of higher magnitude and genomic valleys of similarity, respectively. Divergence rates decreased under strong dominance with divergent selection, as well as in models including genotype-environment interactions under parallel selection. For both divergent and parallel selection models, divergence rate was higher under an intermittent migration regime between populations, in contrast to a constant level of migration across generations, despite an equal number of total migrants. We highlight that interpreting a particular evolutionary history from an observed genomic pattern must be done cautiously, as similar patterns may be obtained from different combinations of evolutionary processes. Modelling approaches such as ours provide an opportunity to narrow the potential routes that generate the genomic patterns of specific evolutionary histories.
Collapse
Affiliation(s)
- Hisham A A Ali
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Tim Coulson
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Sonya M Clegg
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Claudio S Quilodrán
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Brown EA, Kales S, Boyle MJ, Vitti J, Kotliar D, Schaffner S, Tewhey R, Sabeti PC. Three linked variants have opposing regulatory effects on isovaleryl-CoA dehydrogenase gene expression. Hum Mol Genet 2024; 33:270-283. [PMID: 37930192 PMCID: PMC10800014 DOI: 10.1093/hmg/ddad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
While genome-wide association studies (GWAS) and positive selection scans identify genomic loci driving human phenotypic diversity, functional validation is required to discover the variant(s) responsible. We dissected the IVD gene locus-which encodes the isovaleryl-CoA dehydrogenase enzyme-implicated by selection statistics, multiple GWAS, and clinical genetics as important to function and fitness. We combined luciferase assays, CRISPR/Cas9 genome-editing, massively parallel reporter assays (MPRA), and a deletion tiling MPRA strategy across regulatory loci. We identified three regulatory variants, including an indel, that may underpin GWAS signals for pulmonary fibrosis and testosterone, and that are linked on a positively selected haplotype in the Japanese population. These regulatory variants exhibit synergistic and opposing effects on IVD expression experimentally. Alleles at these variants lie on a haplotype tagged by the variant most strongly associated with IVD expression and metabolites, but with no functional evidence itself. This work demonstrates how comprehensive functional investigation and multiple technologies are needed to discover the true genetic drivers of phenotypic diversity.
Collapse
Affiliation(s)
- Elizabeth A Brown
- The Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
| | - Susan Kales
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, United States
| | - Michael James Boyle
- The Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
| | - Joseph Vitti
- The Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
| | - Dylan Kotliar
- The Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
| | - Steve Schaffner
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
| | - Ryan Tewhey
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, United States
| | - Pardis C Sabeti
- The Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
- Howard Hughes Medical Institute, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
| |
Collapse
|
27
|
Pettie KP, Mumbach M, Lea AJ, Ayroles J, Chang HY, Kasowski M, Fraser HB. Chromatin activity identifies differential gene regulation across human ancestries. Genome Biol 2024; 25:21. [PMID: 38225662 PMCID: PMC10789071 DOI: 10.1186/s13059-024-03165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Current evidence suggests that cis-regulatory elements controlling gene expression may be the predominant target of natural selection in humans and other species. Detecting selection acting on these elements is critical to understanding evolution but remains challenging because we do not know which mutations will affect gene regulation. RESULTS To address this, we devise an approach to search for lineage-specific selection on three critical steps in transcriptional regulation: chromatin activity, transcription factor binding, and chromosomal looping. Applying this approach to lymphoblastoid cells from 831 individuals of either European or African descent, we find strong signals of differential chromatin activity linked to gene expression differences between ancestries in numerous contexts, but no evidence of functional differences in chromosomal looping. Moreover, we show that enhancers rather than promoters display the strongest signs of selection associated with sites of differential transcription factor binding. CONCLUSIONS Overall, our study indicates that some cis-regulatory adaptation may be more easily detected at the level of chromatin than DNA sequence. This work provides a vast resource of genomic interaction data from diverse human populations and establishes a novel selection test that will benefit future study of regulatory evolution in humans and other species.
Collapse
Affiliation(s)
- Kade P Pettie
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Maxwell Mumbach
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julien Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Maya Kasowski
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Biová J, Kaňovská I, Chan YO, Immadi MS, Joshi T, Bilyeu K, Škrabišová M. Natural and artificial selection of multiple alleles revealed through genomic analyses. Front Genet 2024; 14:1320652. [PMID: 38259621 PMCID: PMC10801239 DOI: 10.3389/fgene.2023.1320652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
Genome-to-phenome research in agriculture aims to improve crops through in silico predictions. Genome-wide association study (GWAS) is potent in identifying genomic loci that underlie important traits. As a statistical method, increasing the sample quantity, data quality, or diversity of the GWAS dataset positively impacts GWAS power. For more precise breeding, concrete candidate genes with exact functional variants must be discovered. Many post-GWAS methods have been developed to narrow down the associated genomic regions and, ideally, to predict candidate genes and causative mutations (CMs). Historical natural selection and breeding-related artificial selection both act to change the frequencies of different alleles of genes that control phenotypes. With higher diversity and more extensive GWAS datasets, there is an increased chance of multiple alleles with independent CMs in a single causal gene. This can be caused by the presence of samples from geographically isolated regions that arose during natural or artificial selection. This simple fact is a complicating factor in GWAS-driven discoveries. Currently, none of the existing association methods address this issue and need to identify multiple alleles and, more specifically, the actual CMs. Therefore, we developed a tool that computes a score for a combination of variant positions in a single candidate gene and, based on the highest score, identifies the best number and combination of CMs. The tool is publicly available as a Python package on GitHub, and we further created a web-based Multiple Alleles discovery (MADis) tool that supports soybean and is hosted in SoyKB (https://soykb.org/SoybeanMADisTool/). We tested and validated the algorithm and presented the utilization of MADis in a pod pigmentation L1 gene case study with multiple CMs from natural or artificial selection. Finally, we identified a candidate gene for the pod color L2 locus and predicted the existence of multiple alleles that potentially cause loss of pod pigmentation. In this work, we show how a genomic analysis can be employed to explore the natural and artificial selection of multiple alleles and, thus, improve and accelerate crop breeding in agriculture.
Collapse
Affiliation(s)
- Jana Biová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czechia
| | - Ivana Kaňovská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czechia
| | - Yen On Chan
- MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Manish Sridhar Immadi
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, United States
| | - Trupti Joshi
- MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, United States
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, United States
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri-Columbia, Columbia, MO, United States
| | - Kristin Bilyeu
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Columbia, MO, United States
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czechia
| |
Collapse
|
29
|
Kaput J, Monteiro JP. Human Nutrition Research in the Data Era: Results of 11 Reports on the Effects of a Multiple-Micronutrient-Intervention Study. Nutrients 2024; 16:188. [PMID: 38257081 PMCID: PMC10819666 DOI: 10.3390/nu16020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Large datasets have been used in molecular and genetic research for decades, but only a few studies have included nutrition and lifestyle factors. Our team conducted an n-of-1 intervention with 12 vitamins and five minerals in 9- to 13-year-old Brazilian children and teens with poor healthy-eating indices. A unique feature of the experimental design was the inclusion of a replication arm. Twenty-six types of data were acquired including clinical measures, whole-genome mapping, whole-exome sequencing, and proteomic and a variety of metabolomic measurements over two years. A goal of this study was to use these diverse data sets to discover previously undetected physiological effects associated with a poor diet that include a more complete micronutrient composition. We summarize the key findings of 11 reports from this study that (i) found that LDL and total cholesterol and fasting glucose decreased in the population after the intervention but with inter-individual variation; (ii) associated a polygenic risk score that predicted baseline vitamin B12 levels; (iii) identified metabotypes linking diet intake, genetic makeup, and metabolic physiology; (iv) found multiple biomarkers for nutrient and food groups; and (v) discovered metabolites and proteins that are associated with DNA damage. This summary also highlights the limitations and lessons in analyzing diverse omic data.
Collapse
Affiliation(s)
| | - Jacqueline Pontes Monteiro
- Faculty of Medicine of Ribeirão Preto, Department of Pediatrics, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil;
| |
Collapse
|
30
|
Barreiro LB. The evolutionary tale of lactase persistence in humans. Nat Rev Genet 2024; 25:7. [PMID: 37749209 DOI: 10.1038/s41576-023-00660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Affiliation(s)
- Luis B Barreiro
- Department of Medicine, Genetic Section, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
31
|
Sinha MK, Kumaresan A, Rao Talluri T, Ebenezer Samuel King JP, Prakash MA, Nag P, Paul N, Raval K, Kamaraj E, V A. Single nucleotide polymorphisms cumulating to genetic variation for fertility in crossbred ( Bos taurus × Bos indicus) bull spermatozoa. Anim Biotechnol 2023; 34:2875-2886. [PMID: 36137067 DOI: 10.1080/10495398.2022.2124166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Spermatozoa from high-fertile (HF) and low-fertile (LF) breeding bulls were subjected to high-throughput next-generation sequencing to identify important Single nucleotide polymorphisms (SNPs) and novel variants associated with fertility. A total of 77,038 genome-wide SNPs were identified, among which, 10,788 were novel variants. A total of 42,290 and 34,748 variants were recorded with 6115 and 4673 novel variants in in HF and LF bulls, respectively. Higher number of SNPs were identified in HF compared to LF bulls. GO analysis of filtered genes with significant variations in HF bulls indicated their involvement in oxidative phosphorylation and metabolic pathways. GO analysis of filtered genes with significant variation in LF bulls revealed their involvement in Ca2++ ion binding, structural constituent of ribosome, and biological processes like translation and ribosomal small subunit assembly. The study identified SNPs in candidate genes including TPT1, BOLA-DRA, CD74, RPS17, RPS28, RPS29, RPL14, RPL13, and RPS27A, which are linked to sperm functionality, survival, oxidative stress, and bull fertility. The identified SNPs could be used in selection of bulls for high fertility and the variation in these genes could be established as an explanation for the fertility differences in bulls upon validation in large number of bulls.
Collapse
Affiliation(s)
| | - Arumugam Kumaresan
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Thirumala Rao Talluri
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Mani Arul Prakash
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Nilendu Paul
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kathan Raval
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Elango Kamaraj
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Aranganathan V
- Jain University (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
32
|
Amin MR, Hasan M, Arnab SP, DeGiorgio M. Tensor Decomposition-based Feature Extraction and Classification to Detect Natural Selection from Genomic Data. Mol Biol Evol 2023; 40:msad216. [PMID: 37772983 PMCID: PMC10581699 DOI: 10.1093/molbev/msad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Inferences of adaptive events are important for learning about traits, such as human digestion of lactose after infancy and the rapid spread of viral variants. Early efforts toward identifying footprints of natural selection from genomic data involved development of summary statistic and likelihood methods. However, such techniques are grounded in simple patterns or theoretical models that limit the complexity of settings they can explore. Due to the renaissance in artificial intelligence, machine learning methods have taken center stage in recent efforts to detect natural selection, with strategies such as convolutional neural networks applied to images of haplotypes. Yet, limitations of such techniques include estimation of large numbers of model parameters under nonconvex settings and feature identification without regard to location within an image. An alternative approach is to use tensor decomposition to extract features from multidimensional data although preserving the latent structure of the data, and to feed these features to machine learning models. Here, we adopt this framework and present a novel approach termed T-REx, which extracts features from images of haplotypes across sampled individuals using tensor decomposition, and then makes predictions from these features using classical machine learning methods. As a proof of concept, we explore the performance of T-REx on simulated neutral and selective sweep scenarios and find that it has high power and accuracy to discriminate sweeps from neutrality, robustness to common technical hurdles, and easy visualization of feature importance. Therefore, T-REx is a powerful addition to the toolkit for detecting adaptive processes from genomic data.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mahmudul Hasan
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
33
|
Pollen AA, Kilik U, Lowe CB, Camp JG. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat Rev Genet 2023; 24:687-711. [PMID: 36737647 PMCID: PMC9897628 DOI: 10.1038/s41576-022-00568-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/05/2023]
Abstract
Our ancestors acquired morphological, cognitive and metabolic modifications that enabled humans to colonize diverse habitats, develop extraordinary technologies and reshape the biosphere. Understanding the genetic, developmental and molecular bases for these changes will provide insights into how we became human. Connecting human-specific genetic changes to species differences has been challenging owing to an abundance of low-effect size genetic changes, limited descriptions of phenotypic differences across development at the level of cell types and lack of experimental models. Emerging approaches for single-cell sequencing, genetic manipulation and stem cell culture now support descriptive and functional studies in defined cell types with a human or ape genetic background. In this Review, we describe how the sequencing of genomes from modern and archaic hominins, great apes and other primates is revealing human-specific genetic changes and how new molecular and cellular approaches - including cell atlases and organoids - are enabling exploration of the candidate causal factors that underlie human-specific traits.
Collapse
Affiliation(s)
- Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Umut Kilik
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
34
|
Lieberman DE, Worthington S, Schell LD, Parkent CM, Devinsky O, Carmody RN. Comparing measured dietary variation within and between tropical hunter-gatherer groups to the Paleo Diet. Am J Clin Nutr 2023; 118:549-560. [PMID: 37343704 DOI: 10.1016/j.ajcnut.2023.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Although human diets varied considerably before the spread of agriculture, public perceptions of preagricultural diets have been strongly influenced by the Paleo Diet, which prescribes percentage calorie ranges of 19-35% protein, 22-40% carbohydrate, and 28-47% fat, and prohibits foods with added sugar, dairy, grains, most starchy tubers, and legumes. However, the empirical basis for Paleolithic nutrition remains unclear, with some of its assumptions challenged by the archaeological record and theoretical first principles. OBJECTIVES We assessed the variation in diets among tropical hunter-gatherers, including the effect of collection methods on implied macronutrient percentages. METHODS We analyzed data on animal food, plant food, and honey consumption by weight and kcal from 15 high-quality published ethnographic studies representing 11 recent tropical hunter-gatherer groups. We used Bayesian analyses to perform inference and included data collection methods and environmental variables as predictors in our models. RESULTS Our analyses reveal high levels of variation in animal versus plant foods consumed and in corresponding percentages of protein, fat, and carbohydrates. In addition, studies that weighed food items consumed in and out of camp and across seasons and years reported higher consumption of animal foods, which varied with annual mean temperature. CONCLUSIONS The ethnographic evidence from tropical foragers refutes the concept of circumscribed macronutrient ranges modeling preagricultural diets.
Collapse
Affiliation(s)
- Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.
| | - Steven Worthington
- Institute for Quantitative Social Science, Harvard University, Cambridge, MA, United States
| | - Laura D Schell
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Christine M Parkent
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States; Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, United States
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.
| |
Collapse
|
35
|
Iwasaki RL, Satta Y. Spatial and temporal diversity of positive selection on shared haplotypes at the PSCA locus among worldwide human populations. Heredity (Edinb) 2023; 131:156-169. [PMID: 37353592 PMCID: PMC10382566 DOI: 10.1038/s41437-023-00631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023] Open
Abstract
Selection on standing genetic variation is important for rapid local genetic adaptation when the environment changes. We report that, for the prostate stem cell antigen (PSCA) gene, different populations have different target haplotypes, even though haplotypes are shared among populations. The C-C-A haplotype, whereby the first C is located at rs2294008 of PSCA and is a low risk allele for gastric cancer, has become a target of positive selection in Asia. Conversely, the C-A-G haplotype carrying the same C allele has become a selection target mainly in Africa. However, Asian and African share both haplotypes, consistent with the haplotype divergence time (170 kya) prior to the out-of-Africa dispersal. The frequency of C-C-A/C-A-G is 0.344/0.278 in Asia and 0.209/0.416 in Africa. Two-dimensional site frequency spectrum analysis revealed that the extent of intra-allelic variability of the target haplotype is extremely small in each local population, suggesting that C-C-A or C-A-G is under ongoing hard sweeps in local populations. From the time to the most recent common ancestor (TMRCA) of selected haplotypes, the onset times of positive selection were recent (3-55 kya), concurrently with population subdivision from a common ancestor. Additionally, estimated selection coefficients from ABC analysis were up to ~3%, similar to those at other loci under recent positive selection. Phylogeny of local populations and TMRCA of selected haplotypes revealed that spatial and temporal switching of positive selection targets is a unique and novel feature of ongoing selection at PSCA. This switching may reflect the potential of rapid adaptability to distinct environments.
Collapse
Affiliation(s)
- Risa L Iwasaki
- Department of Evolutionary Studies of Biosystems, School of Advanced Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI, Hayama, Kanagawa, 240-0193, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, School of Advanced Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan.
- Research Center for Integrative Evolutionary Science, SOKENDAI, Hayama, Kanagawa, 240-0193, Japan.
| |
Collapse
|
36
|
Konner M, Eaton SB. Hunter-gatherer diets and activity as a model for health promotion: Challenges, responses, and confirmations. Evol Anthropol 2023; 32:206-222. [PMID: 37417918 DOI: 10.1002/evan.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 07/27/2022] [Accepted: 04/17/2023] [Indexed: 07/08/2023]
Abstract
Beginning in 1985, we and others presented estimates of hunter-gatherer (and ultimately ancestral) diet and physical activity, hoping to provide a model for health promotion. The Hunter-Gatherer Model was designed to offset the apparent mismatch between our genes and the current Western-type lifestyle, a mismatch that arguably affects prevalence of many chronic degenerative diseases. The effort has always been controversial and subject to both scientific and popular critiques. The present article (1) addresses eight such challenges, presenting for each how the model has been modified in response, or how the criticism can be rebutted; (2) reviews new epidemiological and experimental evidence (including especially randomized controlled clinical trials); and (3) shows how official recommendations put forth by governments and health authorities have converged toward the model. Such convergence suggests that evolutionary anthropology can make significant contributions to human health.
Collapse
Affiliation(s)
- Melvin Konner
- Department of Anthropology, Program in Anthropology and Human Biology, Emory University, Atlanta, Georgia, USA
| | - S Boyd Eaton
- Department of Radiology, Emory University School of Medicine (Emeritus), Adjunct Lecturer, Department of Anthropology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Kable ME, Chin EL, Huang L, Stephensen CB, Lemay DG. Association of Estimated Daily Lactose Consumption, Lactase Persistence Genotype (rs4988235), and Gut Microbiota in Healthy Adults in the United States. J Nutr 2023; 153:2163-2173. [PMID: 37354976 DOI: 10.1016/j.tjnut.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Lactase persistence (LP) is a heritable trait in which lactose can be digested throughout adulthood. Lactase nonpersistent (LNP) individuals who consume lactose may experience microbial adaptations in response to undigested lactose. OBJECTIVES The objective of the study was to estimate lactose from foods reported in the Automated Self-Administered 24-Hour Dietary Assessment Tool (ASA24) and determine the interaction between lactose consumption, LP genotype, and gut microbiome in an observational cross-sectional study of healthy adults in the United States (US). METHODS Average daily lactose consumption was estimated for 279 healthy US adults, genotyped for the lactase gene -13910G>A polymorphism (rs4988235) by matching ASA24-reported foods to foods in the Nutrition Coordinating Center Food and Nutrient Database. Analysis of covariance was used to identify whether the A genotype (LP) influenced lactose and total dairy consumption, with total energy intake and weight as covariates. The 16S rRNA V4/V5 region, amplified from bacterial DNA extracted from each frozen stool sample, was sequenced using Illumina MiSeq (300 bp paired-end) and analyzed using Quantitative Insights Into Microbial Ecology (QIIME)2 (version 2019.10). Differential abundances of bacterial taxa were analyzed using DESeq2 likelihood ratio tests. RESULTS Across a diverse set of ethnicities, LP subjects consumed more lactose than LNP subjects. Lactobacillaceae abundance was highest in LNP subjects who consumed more than 12.46 g/d (upper tercile). Within Caucasians and Hispanics, family Lachnospiraceae was significantly enriched in the gut microbiota of LNP individuals consuming the upper tercile of lactose across both sexes. CONCLUSIONS Elevated lactose consumption in individuals with the LNP genotype is associated with increased abundance of family Lactobacillaceae and Lachnospriaceae, taxa that contain multiple genera capable of utilizing lactose. This trial was registered on clinicaltrials.gov as NCT02367287.
Collapse
Affiliation(s)
- Mary E Kable
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; Department of Nutrition, University of California-Davis, Davis, CA, USA.
| | - Elizabeth L Chin
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Liping Huang
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; Department of Nutrition, University of California-Davis, Davis, CA, USA
| | - Charles B Stephensen
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; Department of Nutrition, University of California-Davis, Davis, CA, USA
| | - Danielle G Lemay
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; Department of Nutrition, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
38
|
Kemeter LM, Birzer A, Heym S, Thoma-Kress AK. Milk Transmission of Mammalian Retroviruses. Microorganisms 2023; 11:1777. [PMID: 37512949 PMCID: PMC10386362 DOI: 10.3390/microorganisms11071777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The transmission of viruses from one host to another typically occurs through horizontal or vertical pathways. The horizontal pathways include transmission amongst individuals, usually through bodily fluids or excretions, while vertical transmission transpires from mother to their offspring, either during pregnancy, childbirth, or breastfeeding. While there are more than 200 human pathogenic viruses to date, only a small number of them are known to be transmitted via breast milk, including cytomegalovirus (CMV), human immunodeficiency virus type 1 (HIV-1), and human T cell lymphotropic virus type 1 (HTLV-1), the latter two belonging to the family Retroviridae. Breast milk transmission is a common characteristic among mammalian retroviruses, but there is a lack of reports summarizing our knowledge regarding this route of transmission of mammalian retroviruses. Here, we provide an overview of the transmission of mammalian exogenous retroviruses with a focus on Orthoretrovirinae, and we highlight whether they have been described or suspected to be transmitted through breast milk, covering various species. We also elaborate on the production and composition of breast milk and discuss potential entry sites of exogenous mammalian retroviruses during oral transmission.
Collapse
Affiliation(s)
| | | | | | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.M.K.); (A.B.); (S.H.)
| |
Collapse
|
39
|
Arnab SP, Amin MR, DeGiorgio M. Uncovering Footprints of Natural Selection Through Spectral Analysis of Genomic Summary Statistics. Mol Biol Evol 2023; 40:msad157. [PMID: 37433019 PMCID: PMC10365025 DOI: 10.1093/molbev/msad157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
Natural selection leaves a spatial pattern along the genome, with a haplotype distribution distortion near the selected locus that fades with distance. Evaluating the spatial signal of a population-genetic summary statistic across the genome allows for patterns of natural selection to be distinguished from neutrality. Considering the genomic spatial distribution of multiple summary statistics is expected to aid in uncovering subtle signatures of selection. In recent years, numerous methods have been devised that consider genomic spatial distributions across summary statistics, utilizing both classical machine learning and deep learning architectures. However, better predictions may be attainable by improving the way in which features are extracted from these summary statistics. We apply wavelet transform, multitaper spectral analysis, and S-transform to summary statistic arrays to achieve this goal. Each analysis method converts one-dimensional summary statistic arrays to two-dimensional images of spectral analysis, allowing simultaneous temporal and spectral assessment. We feed these images into convolutional neural networks and consider combining models using ensemble stacking. Our modeling framework achieves high accuracy and power across a diverse set of evolutionary settings, including population size changes and test sets of varying sweep strength, softness, and timing. A scan of central European whole-genome sequences recapitulated well-established sweep candidates and predicted novel cancer-associated genes as sweeps with high support. Given that this modeling framework is also robust to missing genomic segments, we believe that it will represent a welcome addition to the population-genomic toolkit for learning about adaptive processes from genomic data.
Collapse
Affiliation(s)
- Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
40
|
Jorgensen K, Song D, Weinstein J, Garcia OA, Pearson LN, Inclán M, Rivera-Chira M, León-Velarde F, Kiyamu M, Brutsaert TD, Bigham AW, Lee FS. High-Altitude Andean H194R HIF2A Allele Is a Hypomorphic Allele. Mol Biol Evol 2023; 40:msad162. [PMID: 37463421 PMCID: PMC10370452 DOI: 10.1093/molbev/msad162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
For over 10,000 years, Andeans have resided at high altitude where the partial pressure of oxygen challenges human survival. Recent studies have provided evidence for positive selection acting in Andeans on the HIF2A (also known as EPAS1) locus, which encodes for a central transcription factor of the hypoxia-inducible factor pathway. However, the precise mechanism by which this allele might lead to altitude-adaptive phenotypes, if any, is unknown. By analyzing whole genome sequencing data from 46 high-coverage Peruvian Andean genomes, we confirm evidence for positive selection acting on HIF2A and a unique pattern of variation surrounding the Andean-specific single nucleotide variant (SNV), rs570553380, which encodes for an H194R amino acid substitution in HIF-2α. Genotyping the Andean-associated SNV rs570553380 in a group of 299 Peruvian Andeans from Cerro de Pasco, Peru (4,338 m), reveals a positive association with increased fraction of exhaled nitric oxide, a marker of nitric oxide biosynthesis. In vitro assays show that the H194R mutation impairs binding of HIF-2α to its heterodimeric partner, aryl hydrocarbon receptor nuclear translocator. A knockin mouse model bearing the H194R mutation in the Hif2a gene displays decreased levels of hypoxia-induced pulmonary Endothelin-1 transcripts and protection against hypoxia-induced pulmonary hypertension. We conclude the Andean H194R HIF2A allele is a hypomorphic (partial loss of function) allele.
Collapse
Affiliation(s)
- Kelsey Jorgensen
- Department of Anthropology, University of California, Los Angeles, CA, USA
| | - Daisheng Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julien Weinstein
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed A Garcia
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Laurel N Pearson
- Department of Anthropology, The Pennsylvania State University, State College, PA, USA
| | - María Inclán
- División de. Estudios Políticos, Centro de Investigación y Docencia Económicas, Mexico City, CDMX, Mexico
| | - Maria Rivera-Chira
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Fabiola León-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, CA, USA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
41
|
Veilleux CC, Garrett EC, Pajic P, Saitou M, Ochieng J, Dagsaan LD, Dominy NJ, Perry GH, Gokcumen O, Melin AD. Human subsistence and signatures of selection on chemosensory genes. Commun Biol 2023; 6:683. [PMID: 37400713 DOI: 10.1038/s42003-023-05047-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Chemosensation (olfaction, taste) is essential for detecting and assessing foods, such that dietary shifts elicit evolutionary changes in vertebrate chemosensory genes. The transition from hunting and gathering to agriculture dramatically altered how humans acquire food. Recent genetic and linguistic studies suggest agriculture may have precipitated olfactory degeneration. Here, we explore the effects of subsistence behaviors on olfactory (OR) and taste (TASR) receptor genes among rainforest foragers and neighboring agriculturalists in Africa and Southeast Asia. We analyze 378 functional OR and 26 functional TASR genes in 133 individuals across populations in Uganda (Twa, Sua, BaKiga) and the Philippines (Agta, Mamanwa, Manobo) with differing subsistence histories. We find no evidence of relaxed selection on chemosensory genes in agricultural populations. However, we identify subsistence-related signatures of local adaptation on chemosensory genes within each geographic region. Our results highlight the importance of culture, subsistence economy, and drift in human chemosensory perception.
Collapse
Affiliation(s)
- Carrie C Veilleux
- Department of Anatomy, Midwestern University, 19555 N 59th Ave, Glendale, AZ, 85308, USA.
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Eva C Garrett
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Department of Anthropology, Boston University, 232 Bay State Road, Boston, MA, 02215, USA
| | - Petar Pajic
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY, 14260, USA
| | - Marie Saitou
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY, 14260, USA
| | - Joseph Ochieng
- Department of Anatomy, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lilia D Dagsaan
- National Commission for Indigenous Peoples, Botolan, Philippines
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH, 03755, USA
| | - George H Perry
- Departments of Anthropology and Biology, The Pennsylvania State University, 410 Carpenter Building, University Park, PA, 16802, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY, 14260, USA
| | - Amanda D Melin
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
- Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
42
|
Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. Physiol Rev 2023; 103:2171-2229. [PMID: 36603157 PMCID: PMC10151058 DOI: 10.1152/physrev.00040.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.
Collapse
Affiliation(s)
- Michael Vaill
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Kunio Kawanishi
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nissi Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Pascal Gagneux
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
43
|
Massri AJ, McDonald B, Wray GA, McClay DR. Feedback circuits are numerous in embryonic gene regulatory networks and offer a stabilizing influence on evolution of those networks. EvoDevo 2023; 14:10. [PMID: 37322563 DOI: 10.1186/s13227-023-00214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
The developmental gene regulatory networks (dGRNs) of two sea urchin species, Lytechinus variegatus (Lv) and Strongylocentrotus purpuratus (Sp), have remained remarkably similar despite about 50 million years since a common ancestor. Hundreds of parallel experimental perturbations of transcription factors with similar outcomes support this conclusion. A recent scRNA-seq analysis suggested that the earliest expression of several genes within the dGRNs differs between Lv and Sp. Here, we present a careful reanalysis of the dGRNs in these two species, paying close attention to timing of first expression. We find that initial expression of genes critical for cell fate specification occurs during several compressed time periods in both species. Previously unrecognized feedback circuits are inferred from the temporally corrected dGRNs. Although many of these feedbacks differ in location within the respective GRNs, the overall number is similar between species. We identify several prominent differences in timing of first expression for key developmental regulatory genes; comparison with a third species indicates that these heterochronies likely originated in an unbiased manner with respect to embryonic cell lineage and evolutionary branch. Together, these results suggest that interactions can evolve even within highly conserved dGRNs and that feedback circuits may buffer the effects of heterochronies in the expression of key regulatory genes.
Collapse
Affiliation(s)
| | - Brennan McDonald
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Gregory A Wray
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - David R McClay
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA.
| |
Collapse
|
44
|
Bľandová G, Patlevičová A, Palkovičová J, Pavlíková Š, Beňuš R, Repiská V, Baldovič M. Pilot study of correlation of selected genetic factors with cribra orbitalia in individuals from a medieval population from Slovakia. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2023; 41:1-7. [PMID: 36812666 DOI: 10.1016/j.ijpp.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the potential genetic etiology of cribra orbitalia noted on human skeletal remains. MATERIALS We obtained and analyzed ancient DNA of 43 individuals with cribra orbitalia. The analyzed set represented medieval individuals from two cemeteries in western Slovakia, Castle Devín (11th-12th century AD) and Cífer-Pác (8th-9th century AD). METHODS We performed a sequence analysis of 5 variants in 3 genes associated with anemia (HBB, G6PD, PKLR), which are the most common pathogenic variants in present day of European populations, and one variant MCM6:c.1917 + 326 C>T (rs4988235) associated with lactose intolerance. RESULTS DNA variants associated with anemia were not found in the samples. The allele frequency of MCM6:c.1917 + 326 C was 0.875. This frequency is higher but not statistically significant in individuals displaying cribra orbitalia compared to individuals without the lesion. SIGNIFICANCE This study seeks to expand our knowledge of the etiology of cribra orbitalia by exploring the potential association between the lesion and the presence of alleles linked to hereditary anemias and lactose intolerance. LIMITATIONS A relatively small set of individuals were analyzed, so an unequivocal conclusion cannot be drawn. Hence, although it is unlikely, a genetic form of anemia caused by rare variants cannot be ruled out. SUGGESTIONS FOR FURTHER RESEARCH Genetic research based on larger sample sizes and in more diverse geographical regions.
Collapse
Affiliation(s)
- Gabriela Bľandová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Andrea Patlevičová
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Jana Palkovičová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Štefánia Pavlíková
- Department of Anthropology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Radoslav Beňuš
- Department of Anthropology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Marian Baldovič
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia; Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Ilkovičova 8, 841 04 Bratislava, Slovakia.
| |
Collapse
|
45
|
Gaudin RGN, Figueiro G, Flores-Gutiérrez S, Mut P, Vega-Requena Y, Luna-Andrada L, Ackermann E, Hidalgo PC, Carracedo A, Torres M, Sans M. DNA polymorphisms associated with lactase persistence, self-perceived symptoms of lactose intolerance, milk and dairy consumption, and ancestry, in the Uruguayan population. Am J Hum Biol 2023; 35:e23868. [PMID: 36695417 DOI: 10.1002/ajhb.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Uruguay has one of the highest per capita milk intakes worldwide, even with a limited supply of lactose-free products; furthermore, the admixed nature of its population is well known, and various frequencies of lactase persistence (LP) are observed in the source populations. We aimed to contribute to the understanding of the relation between allelic variants associated with LP, milk consumption, digestive symptoms, and genetic ancestry in the Uruguayan population. Samples of saliva or peripheral blood were collected from 190 unrelated individuals from two regions of Uruguay, genotypes for polymorphic sites in a fragment within the LCT enhancer were determined and allelic frequencies calculated in all of them. Data were collected on frequency of milk and dairy consumption and self-reported symptoms in a subsample of 153 individuals. Biparental and maternal ancestry was determined by analyzing individual ancestry markers and mitochondrial DNA. Twenty-nine percentage of individuals reported symptoms attributed to the ingestion of fresh milk, with abdominal pain, bloating and flatulence being the most frequent. European LP-associated allele T-13910 showed a frequency of 33%, while other LP-associated alleles like G-13915 and T-14011 were observed in very low frequencies. Associations between self-reported symptoms, fresh milk intake, and C/T-13910 genotype were statistically significant. No evidence of association between genetic ancestry and C/T-13910 was found, although individuals carrying one T-13910 allele appeared to have more European ancestry. In conclusion, the main polymorphism capable of predicting lactose intolerance in Uruguayans is C/T-13910, although more studies are required to unravel the relation between genotype and lactase activity, especially in heterozygotes.
Collapse
Affiliation(s)
- Raúl Germán Negro Gaudin
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Figueiro
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay
| | - Sara Flores-Gutiérrez
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay
| | - Patricia Mut
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay
| | - Yasser Vega-Requena
- Polo de Desarrollo Universitario Diversidad Genética Humana, Centro Universitario Regional Noreste, Tacuarembó, Universidad de la República, Montevideo, Uruguay
| | - Lorena Luna-Andrada
- Polo de Desarrollo Universitario Diversidad Genética Humana, Centro Universitario Regional Noreste, Tacuarembó, Universidad de la República, Montevideo, Uruguay
| | - Elizabeth Ackermann
- Polo de Desarrollo Universitario Diversidad Genética Humana, Centro Universitario Regional Noreste, Tacuarembó, Universidad de la República, Montevideo, Uruguay
| | - Pedro C Hidalgo
- Polo de Desarrollo Universitario Diversidad Genética Humana, Centro Universitario Regional Noreste, Tacuarembó, Universidad de la República, Montevideo, Uruguay
| | - Angel Carracedo
- Grupo de Medicina Xenómica, Centro en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica (SERGAS)-CIBERER, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Torres
- Fundación Pública Galega de Medicina Xenómica (SERGAS)-CIBERER, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mónica Sans
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
46
|
Caro-Consuegra R, Lucas-Sánchez M, Comas D, Bosch E. Identifying signatures of positive selection in human populations from North Africa. Sci Rep 2023; 13:8166. [PMID: 37210386 DOI: 10.1038/s41598-023-35312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Because of its location, North Africa (NA) has witnessed continuous demographic movements with an impact on the genomes of present-day human populations. Genomic data describe a complex scenario with varying proportions of at least four main ancestry components: Maghrebi, Middle Eastern-, European-, and West-and-East-African-like. However, the footprint of positive selection in NA has not been studied. Here, we compile genome-wide genotyping data from 190 North Africans and individuals from surrounding populations, investigate for signatures of positive selection using allele frequencies and linkage disequilibrium-based methods and infer ancestry proportions to discern adaptive admixture from post-admixture selection events. Our results show private candidate genes for selection in NA involved in insulin processing (KIF5A), immune function (KIF5A, IL1RN, TLR3), and haemoglobin phenotypes (BCL11A). We also detect signatures of positive selection related to skin pigmentation (SLC24A5, KITLG), and immunity function (IL1R1, CD44, JAK1) shared with European populations and candidate genes associated with haemoglobin phenotypes (HPSE2, HBE1, HBG2), other immune-related (DOCK2) traits, and insulin processing (GLIS3) traits shared with West and East African populations. Finally, the SLC8A1 gene, which codifies for a sodium-calcium exchanger, was the only candidate identified under post-admixture selection in Western NA.
Collapse
Affiliation(s)
- Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Marcel Lucas-Sánchez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - David Comas
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
47
|
Chen SAA, Kern AF, Ang RML, Xie Y, Fraser HB. Gene-by-environment interactions are pervasive among natural genetic variants. CELL GENOMICS 2023; 3:100273. [PMID: 37082145 PMCID: PMC10112290 DOI: 10.1016/j.xgen.2023.100273] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/09/2022] [Accepted: 01/31/2023] [Indexed: 04/22/2023]
Abstract
Gene-by-environment (GxE) interactions, in which a genetic variant's phenotypic effect is condition specific, are fundamental for understanding fitness landscapes and evolution but have been difficult to identify at the single-nucleotide level. Although many condition-specific quantitative trait loci (QTLs) have been mapped, these typically contain numerous inconsequential variants in linkage, precluding understanding of the causal GxE variants. Here, we introduce BARcoded Cas9 retron precise parallel editing via homology (CRISPEY-BAR), a high-throughput precision genome editing strategy, and use it to map GxE interactions of naturally occurring genetic polymorphisms impacting yeast growth. We identified hundreds of GxE variants within condition-specific QTLs, revealing unexpected genetic complexity. Moreover, we found that 93.7% of non-neutral natural variants within ergosterol biosynthesis pathway genes showed GxE interactions, including many impacting antifungal drug resistance through diverse molecular mechanisms. In sum, our results suggest an extremely complex, context-dependent fitness landscape characterized by pervasive GxE interactions while also demonstrating massively parallel genome editing as an effective means for investigating this complexity.
Collapse
Affiliation(s)
- Shi-An A. Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexander F. Kern
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roy Moh Lik Ang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yihua Xie
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
48
|
Amin MR, Hasan M, Arnab SP, DeGiorgio M. Tensor decomposition based feature extraction and classification to detect natural selection from genomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.527731. [PMID: 37034767 PMCID: PMC10081272 DOI: 10.1101/2023.03.27.527731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Inferences of adaptive events are important for learning about traits, such as human digestion of lactose after infancy and the rapid spread of viral variants. Early efforts toward identifying footprints of natural selection from genomic data involved development of summary statistic and likelihood methods. However, such techniques are grounded in simple patterns or theoretical models that limit the complexity of settings they can explore. Due to the renaissance in artificial intelligence, machine learning methods have taken center stage in recent efforts to detect natural selection, with strategies such as convolutional neural networks applied to images of haplotypes. Yet, limitations of such techniques include estimation of large numbers of model parameters under non-convex settings and feature identification without regard to location within an image. An alternative approach is to use tensor decomposition to extract features from multidimensional data while preserving the latent structure of the data, and to feed these features to machine learning models. Here, we adopt this framework and present a novel approach termed T-REx , which extracts features from images of haplotypes across sampled individuals using tensor decomposition, and then makes predictions from these features using classical machine learning methods. As a proof of concept, we explore the performance of T-REx on simulated neutral and selective sweep scenarios and find that it has high power and accuracy to discriminate sweeps from neutrality, robustness to common technical hurdles, and easy visualization of feature importance. Therefore, T-REx is a powerful addition to the toolkit for detecting adaptive processes from genomic data.
Collapse
|
49
|
Weil PP, Reincke S, Hirsch CA, Giachero F, Aydin M, Scholz J, Jönsson F, Hagedorn C, Nguyen DN, Thymann T, Pembaur A, Orth V, Wünsche V, Jiang PP, Wirth S, Jenke ACW, Sangild PT, Kreppel F, Postberg J. Uncovering the gastrointestinal passage, intestinal epithelial cellular uptake and AGO2 loading of milk miRNAs in neonates using xenomiRs as tracers. Am J Clin Nutr 2023:S0002-9165(23)46299-5. [PMID: 36963568 DOI: 10.1016/j.ajcnut.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Human breast milk has a high microRNA (miRNA) content. It remains unknown whether and how milk miRNAs might affect intestinal gene regulation and homeostasis of the developing microbiome after initiation of enteral nutrition. However, this requires that relevant milk miRNA amounts survive gastrointestinal passage, are taken up by cells, and become available to the RNA interference (RNAi) machinery. It seems important to dissect the fate of these miRNAs after oral ingestion and gastrointestinal passage. OBJECTIVE Our goal was to analyze the potential transmissibility of milk miRNAs via the gastrointestinal system in neonate humans and a porcine model in vivo to contribute to the discussion whether milk miRNAs could influence gene regulation in neonates and thus might vertically transmit developmental relevant signals. DESIGN We performed cross-species profiling of miRNAs via deep-sequencing and utilized dietary xenobiotic taxon-specific milk miRNA (xenomiRs) as tracers in human and porcine neonates, followed by functional studies in primary human fetal intestinal epithelial cells (HIEC-6) using Ad5-mediated miRNA-gene transfer. RESULTS Mammals share many milk miRNAs yet exhibit taxon-specific miRNA fingerprints. We traced bovine-specific miRNAs from formula-nutrition in human preterm stool and 9 days after onset of enteral feeding in intestinal cells of preterm piglets. Thereafter, several xenomiRs accumulated in the intestinal cells. Moreover, few hours after introducing enteral feeding in preterm piglets with supplemented reporter miRNAs (cel-miR-39-5p/-3p), we observed their enrichment in blood serum and in AGO2-immunocomplexes from intestinal biopsies. CONCLUSIONS Milk-derived miRNAs survived gastrointestinal passage in human and porcine neonates. Bovine-specific miRNAs accumulated in intestinal cells of preterm piglets after enteral feeding with bovine colostrum/formula. In piglets, colostrum supplementation with cel-miR-39-5p/-3p resulted in increased blood levels of cel-miR-39-3p and argonaute RISC catalytic component 2 (AGO2) loading in intestinal cells. This suggests the possibility of vertical transmission of miRNA signaling from milk through the neonatal digestive tract.
Collapse
Affiliation(s)
- Patrick Philipp Weil
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Susanna Reincke
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Christian Alexander Hirsch
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Federica Giachero
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Malik Aydin
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany; HELIOS University Hospital Wuppertal, Children's Hospital, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Jonas Scholz
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Franziska Jönsson
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anton Pembaur
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Valerie Orth
- HELIOS University Hospital Wuppertal, Department of Surgery II, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Victoria Wünsche
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Ping-Ping Jiang
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark; School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Stefan Wirth
- HELIOS University Hospital Wuppertal, Children's Hospital, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Andreas C W Jenke
- Klinikum Kassel, Zentrum für Kinder- und Jugendmedizin, Neonatologie und allgemeine Pädiatrie, Mönchebergstr. 41-43, 34125 Kassel, Germany.
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Jan Postberg
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| |
Collapse
|
50
|
Wang H, Yang MA, Wangdue S, Lu H, Chen H, Li L, Dong G, Tsring T, Yuan H, He W, Ding M, Wu X, Li S, Tashi N, Yang T, Yang F, Tong Y, Chen Z, He Y, Cao P, Dai Q, Liu F, Feng X, Wang T, Yang R, Ping W, Zhang Z, Gao Y, Zhang M, Wang X, Zhang C, Yuan K, Ko AMS, Aldenderfer M, Gao X, Xu S, Fu Q. Human genetic history on the Tibetan Plateau in the past 5100 years. SCIENCE ADVANCES 2023; 9:eadd5582. [PMID: 36930720 PMCID: PMC10022901 DOI: 10.1126/sciadv.add5582] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Using genome-wide data of 89 ancient individuals dated to 5100 to 100 years before the present (B.P.) from 29 sites across the Tibetan Plateau, we found plateau-specific ancestry across plateau populations, with substantial genetic structure indicating high differentiation before 2500 B.P. Northeastern plateau populations rapidly showed admixture associated with millet farmers by 4700 B.P. in the Gonghe Basin. High genetic similarity on the southern and southwestern plateau showed population expansion along the Yarlung Tsangpo River since 3400 years ago. Central and southeastern plateau populations revealed extensive genetic admixture within the plateau historically, with substantial ancestry related to that found in southern and southwestern plateau populations. Over the past ~700 years, substantial gene flow from lowland East Asia further shaped the genetic landscape of present-day plateau populations. The high-altitude adaptive EPAS1 allele was found in plateau populations as early as in a 5100-year-old individual and showed a sharp increase over the past 2800 years.
Collapse
Affiliation(s)
- Hongru Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Melinda A. Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Hongliang Lu
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Honghai Chen
- School of Cultural Heritage, Northwest University, Xi’an 710069, China
| | - Linhui Li
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Guanghui Dong
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Haibing Yuan
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Manyu Ding
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Shuai Li
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Norbu Tashi
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tsho Yang
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Feng Yang
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Zujun Chen
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Yuanhong He
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Zhaoxia Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhang
- School of Cultural Heritage, Northwest University, Xi’an 710069, China
| | - Xiaoji Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Mark Aldenderfer
- Department of Anthropology and Heritage Studies, University of California, Merced, Merced, CA 95343, USA
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Qi Zhi Institute, Shanghai 200232, China
| |
Collapse
|