1
|
Yan Q, Li P, Liu S, Sun Y, Chen C, Long J, Lin Y, Liang J, Wang H, Zhang L, Wang H, Wang H, Yang S, Lin M, Liu X, Yao J, Tian Z, Chen N, Yang Y, Ai Q. Dihydromyricetin treats pulmonary hypertension by modulating CKLF1/CCR5 axis-induced pulmonary vascular cell pyroptosis. Biomed Pharmacother 2024; 180:117614. [PMID: 39461017 DOI: 10.1016/j.biopha.2024.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive cardiopulmonary disease characterized by elevated pulmonary artery pressure and vascular remodeling, resulting in poor prognosis and increased mortality rates. Chemokine-like factor 1 (CKLF1) plays a significant role in inducing inflammation and cell proliferation, both of which are critical processes in the pathogenesis of various diseases. Dihydromyricetin (DMY) has garnered attention for its potent anti-inflammatory properties. This study evaluated the protective effects of DMY against PH, demonstrating that DMY treatment can mitigate pyroptosis in pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs) in vivo via the CKLF1/CCR5 axis. Results indicated significant improvements in hemodynamics, inflammatory responses, fibrosis, vascular remodeling, and right ventricular hypertrophy in PH rats following DMY treatment. Furthermore, the interaction between CKLF1 and CCR5 was investigated in CKLF1-/- rats after PH induction. DMY was found to downregulate CKLF1 expression and the inflammatory response in the lungs, with its therapeutic efficacy diminished following CKLF1 knockdown. This study underscores the therapeutic potential of DMY in the management of PH and lays a foundation for future research and clinical applications.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Li
- Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hanlong Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ling Zhang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongbin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhifeng Tian
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
2
|
Sun J, Leng J, Song L. The Evolution of NLR Inflammasome and Its Mediated Pyroptosis in Metazoa. Int J Mol Sci 2024; 25:11167. [PMID: 39456947 PMCID: PMC11508797 DOI: 10.3390/ijms252011167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) inflammasomes are multiprotein signaling platforms that control the inflammatory response and coordinate antimicrobial defense. In the present study, the distribution of NLR, Caspase-1, and gasdermin (GSDM) homologues and their structural characteristics and evolutionary relationships were systematically analyzed in metazoa according to the genomes of species. In invertebrates, there were only NLRC and/or NLRD presented from sponge to amphioxus, and according to the evolutionary tree, NLR from sponge located in the most primitive position. Caspase-1 existed in some metazoan phyla (Brachiopoda, Ectoprocta, Arthropoda, Mollusca, Annelia, Nematoda, Platyelminthes, Coelenterate, and Porifera) and its activation sites were relatively conserved. The amino acid sequences and three-dimensional structures of N-terminal CARD/Death domain of NLR and Caspase-1 were similar in species from sponge to human. NLR and Caspase-1 co-existed in species of Brachiopoda, Mollusca, Annelia, Coelenterate, and Porifera. There was only GSDME or PJVK found in some phyla of invertebrates and their cleavage sites were conserved (DxxD). And it was predicted that the NLR inflammasome in inducing pyroptosis could occur in species of Brachiopoda, Mollusca, Annelia, and Coelenterate. These studies indicated that NLR inflammasome emerged early in sponges of metazoa, and NLR inflammasome in inducing pyroptosis first appeared in Coelenterate, suggesting that inflammasome and its mediated pyroptosis had existed in the early stage of metazoa, but they had been lost in many species during evolution.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China;
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China;
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China;
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
3
|
Yang J, Ma Y, Yu J, Liu Y, Xia J, Kong X, Jin X, Li J, Lin S, Ruan Y, Yang F, Pi J. Advancing Roles and Therapeutic Potentials of Pyroptosis in Host Immune Defenses against Tuberculosis. Biomolecules 2024; 14:1255. [PMID: 39456188 PMCID: PMC11505957 DOI: 10.3390/biom14101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection, remains a deadly global public health burden. The use of recommended drug combinations in clinic has seen an increasing prevalence of drug-resistant TB, adding to the impediments to global control of TB. Therefore, control of TB and drug-resistant TB has become one of the most pressing issues in global public health, which urges the exploration of potential therapeutic targets in TB and drug-resistant TB. Pyroptosis, a form of programmed cell death characterized by cell swelling and rupture, release of cellular contents and inflammatory responses, has been found to promote pathogen clearance and adopt crucial roles in the control of bacterial infections. It has been demonstrated that Mtb can cause host cell pyroptosis, and these host cells, which are infected by Mtb, can kill Mtb accompanied by pyroptosis, while, at the same time, pyroptosis can also release intracellular Mtb, which may potentially worsen the infection by exacerbating the inflammation. Here, we describe the main pathways of pyroptosis during Mtb infection and summarize the identified effectors of Mtb that regulate pyroptosis to achieve immune evasion. Moreover, we also discuss the potentials of pyroptosis to serve as an anti-TB therapeutic target, with the aim of providing new ideas for the development of TB treatments.
Collapse
Affiliation(s)
- Jiayi Yang
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yuhe Ma
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaqi Yu
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yilin Liu
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China;
| | - Xinen Kong
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Xiaoying Jin
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaxiang Li
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Siqi Lin
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yongdui Ruan
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Fen Yang
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiang Pi
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| |
Collapse
|
4
|
Al Mamun A, Geng P, Wang S, Shao C. Role of Pyroptosis in Endometrial Cancer and Its Therapeutic Regulation. J Inflamm Res 2024; 17:7037-7056. [PMID: 39377044 PMCID: PMC11457779 DOI: 10.2147/jir.s486878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Pyroptosis is an inflammatory cell death induced by inflammasomes that release several pro-inflammatory mediators such as interleukin-18 (IL-18) and interleukin-1β (IL-1β). Pyroptosis, a type of programmed cell death, has recently received increased interest both as a therapeutic and immunological mechanism. Numerous studies have provided substantial evidence supporting the involvement of inflammasomes and pyroptosis in a variety of pathological conditions including cancers, nerve damage, inflammatory diseases and metabolic conditions. Researchers have demonstrated that dysregulation of pyroptosis and inflammasomes contribute to the progression of endometriosis and gynecological malignancies. Current research also indicates that inflammasome and pyroptosis-dependent signaling pathways may further induce the progression of endometrial cancer (EC). More specifically, dysregulation of NLR family pyrin domain 3 (NLRP3) and caspase-1-dependent pyroptosis play a contributory role in the pathogenesis and development of EC. Therefore, pyroptosis-regulated protein gasdermin D (GSDMD) may be an independent prognostic biomarker for the detection of EC. This review presents the molecular mechanisms of pyroptosis-dependent signaling pathways and their contributory role and function in advancing EC. Moreover, this review offers new insights into potential future applications and innovative approaches in utilizing pyroptosis to develop effective anti-cancer therapies.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Peiwu Geng
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Chuxiao Shao
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| |
Collapse
|
5
|
Ying S, Jihong R, Wen S, Chunfang W. Mycobacterium intracellulare mediates macrophage pyroptosis by activating AIM2 and NLRP3 inflammasomes. Vet Res Commun 2024; 48:3445-3454. [PMID: 39145856 DOI: 10.1007/s11259-024-10505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Clinically, the incidence of nontuberculous mycobacteria (NTM) lung disease is on the rise, and Mycobacterium intracellulare (M. intracellulare) has attracted much attention as a common opportunistic pathogen in clinical practice. So it is very important to study its immunopathogenic mechanism. In this study, the mechanism of M. intracellulare induced pyroptosis of macrophage was investigated. As shown in Fig. 1, the secretion of IL-1β and IL-18 in J774A.1 cells increased with time after M. intracellulare infection and was affected by caspase-1 activation and K + efflux, while caspase-1 was significantly expressed in infected cells. Further from Fig. 2, NLRP3,AIM2,ASC proteins were significantly expressed in J774A.1 cells after infection, indicating that the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasome were involved in the infection process. In addition, when caspase-1 activity and K + efflux were inhibited, the expression of related proteins was significantly reduced. It indicates that the activation of NLRP3 and AIM2 is regulated by caspase-1 and K+. Figure 3, the percentage of dead cells with cell membrane damage increases after infection and cleavage of GSDMD proteins occurs. In summary, infection of J774A.1 cells with M. intracellulare induces pyroptosis, and this process is mediated by caspase-1. Our study provides information for further understanding of the molecular mechanism of M. intracellulare infection.
Collapse
Affiliation(s)
- Sun Ying
- College of Animal Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ren Jihong
- College of Animal Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Sun Wen
- College of Animal Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wang Chunfang
- College of Animal Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Street, Changchun City, Jilin Province, 130118, China.
| |
Collapse
|
6
|
Bao X, Sun M, Meng L, Zhang H, Yi X, Zhang P. Applications of pyroptosis activators in tumor immunotherapy. Mater Today Bio 2024; 28:101191. [PMID: 39221221 PMCID: PMC11363858 DOI: 10.1016/j.mtbio.2024.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Contemporary progress in tumor immunotherapy has solidified its role as an effective approach in combating cancer. Nonetheless, the prevalent "immune cold" state within the tumor microenvironment poses a substantial barrier to its efficacy. Addressing this, pyroptosis-a gasdermin-mediated programmed cell death characterized by its inflammatory profile-emerges as a crucial mechanism. It catalyzes the release of vast quantities of pro-inflammatory cytokines and immunogens, potentially transforming immunosuppressive "cold" tumors into reactive "hot" ones. Herein, we will initially present an overview of pyroptosis as a distinct form of cell death, along with its molecular mechanisms. Subsequently, we will focus on introducing how pyroptosis activators are utilized in the field of tumor immunotherapy. Insights gained from applications of pyroptosis activators in tumor immunotherapy could lead to the development of safe and efficient pyroptosis activators, significantly enriching the arsenal for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Bao
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Mengmeng Sun
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Lingfei Meng
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Hong Zhang
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Xuan Yi
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| |
Collapse
|
7
|
Salari Namin S, Zhu YP, Croker BA, Tan Z. Turning Neutrophil Cell Death Deadly in Hypertensive Vascular Disease. Can J Cardiol 2024:S0828-282X(24)00977-2. [PMID: 39326672 DOI: 10.1016/j.cjca.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertensive vascular disease (HVD) is a major health burden globally and is a comorbidity commonly associated with other metabolic diseases. Many factors are associated with hypertensive vascular disease including obesity, diabetes, smoking, chronic kidney disease, and sterile inflammation. Increasing evidence points to neutrophils as an important component of the chronic inflammatory response in hypertensive vascular disease. Neutrophils are abundant in the circulation and can respond rapidly upon stimulation to deploy an armament of anti-microbial effector functions. One of the outcomes of neutrophil activation is the generation of Neutrophil Extracellular Traps (NETs), a regulated extrusion of chromatin and proteases. While neutrophils and NETs are well described as components of the innate immune response to infection, recent evidence implicates them in HVD. Endothelial cell activation can trigger neutrophil adhesion, activation, and production of NETs promoting vascular dysfunction, vessel remodeling, and loss of resistance. The regulated release of NETs can be controlled by the pore-forming activities of distinct cell death pathways. The best-characterized pathways in this context are apoptosis, pyroptosis, and necroptosis. In this review, we will discuss how inflammatory cell death signaling and NET formation contribute to hypertensive disease. We also examine novel therapeutic approaches to limit NET production and their future potential as therapeutic drugs in cardiovascular disorders.
Collapse
Affiliation(s)
- Sahand Salari Namin
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Yanfang Peipei Zhu
- Immunology Center of Georgia, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhehao Tan
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Li S, Chen T, Gao K, Yang YB, Qi B, Wang C, An T, Cai X, Wang S. Streptococcus suis Induces Macrophage M1 Polarization and Pyroptosis. Microorganisms 2024; 12:1879. [PMID: 39338553 PMCID: PMC11433784 DOI: 10.3390/microorganisms12091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus suis is an important bacterial pathogen that affects the global pig industry. The immunosuppressive nature of S. suis infection is recognized, and our previous research has confirmed thymus atrophy with a large number of necrotic cells. In this current work, we aimed to uncover the role of pyroptosis in cellular necrosis in thymic cells of S. suis-infected mice. Confocal microscopy revealed that S. suis activated the M1 phenotype and primed pyroptosis in the macrophages of atrophied thymus. Live cell imaging further confirmed that S. suis could induce porcine alveolar macrophage (PAM) pyroptosis in vitro, displaying cell swelling and forming large bubbles on the plasma membrane. Meanwhile, the levels of p-p38, p-extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) were increased, which indicated the mitogen-activated protein kinase (MAPK) and AKT pathways were also involved in the inflammation of S. suis-infected PAMs. Furthermore, RT-PCR revealed significant mRNA expression of pro-inflammatory mediators, including interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor (TNF)-α and chemokine CXCL8. The data indicated that the inflammation induced by S. suis was in parallel with pro-inflammatory activities of M1 macrophages, pyroptosis and MAPK and AKT pathways. Pyroptosis contributes to necrotic cells and thymocyte reduction in the atrophied thymus of mice.
Collapse
Affiliation(s)
- Siqi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Tianfeng Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Kexin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Yong-Bo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Baojie Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin 150069, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| |
Collapse
|
9
|
Liao Y, Zhang W, Zhou M, Zhu C, Zou Z. Ubiquitination in pyroptosis pathway: A potential therapeutic target for sepsis. Cytokine Growth Factor Rev 2024:S1359-6101(24)00068-6. [PMID: 39294049 DOI: 10.1016/j.cytogfr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Sepsis remains a significant clinical challenge, causing numerous deaths annually and representing a major global health burden. Pyroptosis, a unique form of programmed cell death characterized by cell lysis and the release of inflammatory mediators, is a crucial factor in the pathogenesis and progression of sepsis, septic shock, and organ dysfunction. Ubiquitination, a key post-translational modification influencing protein fate, has emerged as a promising target for managing various inflammatory conditions, including sepsis. This review integrates the current knowledge on sepsis, pyroptosis, and the ubiquitin system, focusing on the molecular mechanisms of ubiquitination within pyroptotic pathways activated during sepsis. By exploring how modulating ubiquitination can regulate pyroptosis and its associated inflammatory signaling pathways, this review provides insights into potential therapeutic strategies for sepsis, highlighting the need for further research into these complex molecular networks.
Collapse
Affiliation(s)
- Yan Liao
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Miao Zhou
- Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
10
|
Huang W, Chen X, Liu Z, Li C, Wei X, Zhan J, Qiu Q, Zheng J. Sphk1 regulates HMGB1 via HDAC4 and mediates epithelial pyroptosis in allergic rhinitis. World Allergy Organ J 2024; 17:100963. [PMID: 39295955 PMCID: PMC11408713 DOI: 10.1016/j.waojou.2024.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 09/21/2024] Open
Abstract
Background Allergic rhinitis (AR) is a global health issue affecting millions of individuals worldwide. Pyroptosis has emerged as a major player in the development of AR, and targeting its inhibition with specific drugs holds promise for AR treatment. However, a comprehensive understanding of the precise mechanisms underlying pyroptosis in AR remains to be explored, warranting further investigation. Objective This study aims to elucidate the roles of HMGB1, Sphk1, and HDAC4 in regulating human nasal epithelial cell (hNEC) pyroptosis and AR. Methods An in vitro AR cell culture model and an in vivo AR mouse model were established. Western blot, ELISA, histological staining, and flow cytometry were utilized to confirm the gene and protein expression. The interactions among Sphk1, HDAC4, and HMGB1 were validated through ChIP, Co-IP, and Dual-luciferase assay. Results and conclusion We identified that the expression levels of Sphk1, HMGB1, and inflammasome components, including IL-18, and IL-1β were elevated in AR patients and mouse models. Knockdown of Sphk1 inhibited hNEC pyroptosis induced by dust mite allergen. Overexpression of HDAC4 suppressed HMGB1-mediated pyroptosis in hNECs. In addition, HDAC4 was found to mediate the transcriptional regulation of HMGB1 via MEF2C, a transcription factor. Additionally, Sphk1 was shown to interact with CaMKII-δ, promoting the phosphorylation of HDAC4 and inhibiting its cytoplasmic translocation. Knockdown of HDAC4 reversed the effect of Sphk1 knockdown on pyroptosis. These discoveries offer a glimpse into the molecular mechanisms underlying AR and suggest potential therapeutic targets for the treatment of this condition.
Collapse
Affiliation(s)
- Wei Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Xi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Zizhen Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Changwu Li
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Jiabin Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Quan Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| |
Collapse
|
11
|
Li ZH, Wang Y, Yu XY. Exploring the role of pyroptosis and immune infiltration in sepsis based on bioinformatic analysis. Immunobiology 2024; 229:152826. [PMID: 38981197 DOI: 10.1016/j.imbio.2024.152826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Sepsis is a disease that is typically treated in intensive care units with high mortality and morbidity. Pyroptosis is a newly identified type of programmed cell death and is characterized by inflammatory cytokine secretion. However, the role of pyroptosis in sepsis remains unclear. METHODS GSE28750 and GSE134347 datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed pyroptosis genes (DEPGs) were identified between sepsis and healthy controls. Machine learning was used to further narrow the gene range. Receiver operating curves (ROC) were generated to estimate the diagnostic efficacy. Immune infiltration levels were estimated via single-sample gene set enrichment analysis (ssGSEA). A network database was used to predict the upstream transcription factors and miRNAs of DEPGs. Finally, the expression of the genes was validated by qRT-PCR between sepsis patients and healthy controls. RESULTS We found that the pyroptosis pathway was enriched and activated in sepsis. 8 DEPGs were identified. A heatmap showed that the genes, NLRC4, NAIP, IL-18, AIM2 and ELANE, were abundant in the sepsis samples, and the genes, NLRP1, CHMP7 and TP53, were abundant in the healthy control samples. The ssGSEA results showed that the abundances of activated dendritic cells, MDSC, macrophage, plasmacytoid dendritic cells, regulatory T-cells, and Th17-cells were significantly higher, while the activated B-cell, activated CD8 T-cell, CD56 dim tural killer cell, immature B-cell, monocyte, and T follicular helper cell abundances were lower in sepsis samples compared to healthy controls. The qRT-PCR results showed that the expression levels of NAIP, IL-18, TP53, CHMP7, NLRC4, ELANE and NLRP1 were consistant with the bioinformatic analyses, while the expression level of AIM2 has no significant difference. CONCLUSION Our study identified seven potential pyroptosis-related genes, NAIP, IL-18, TP53, CHMP7, NLRC4, ELANE and NLRP1. This study revealed that pyroptosis may promote sepsis development by activating the immune response.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Department of critical medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yi Wang
- Department of critical medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Xiang-You Yu
- Department of critical medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
12
|
Yang X, Cui X, Wang G, Zhou M, Wu Y, Du Y, Li X, Xu T. HDAC inhibitor regulates the tumor immune microenvironment via pyroptosis in triple negative breast cancer. Mol Carcinog 2024; 63:1800-1813. [PMID: 38860600 DOI: 10.1002/mc.23773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Pyroptosis, an inflammatory form of cell death, promotes the release of immunogenic substances and stimulates immune cell recruitment, a process, which could turn cold tumors into hot ones. Thus, instigating pyroptosis in triple-negative breast cancer (TNBC) serves as a viable method for restoring antitumor immunity. We analyzed the effects of Histone Deacetylase Inhibitors (HDACi) on TNBC cells using the Cell Counting Kit-8 and colony formation assay. Apoptosis and lactate dehydrogenase (LDH) release assays were utilized to determine the form of cell death. The pyroptotic executor was validated by quantitative real-time polymerase chain reaction and western blot. Transcriptome was analyzed to investigate pyroptosis-inducing mechanisms. A subcutaneously transplanted tumor model was generated in BALB/c mice to evaluate infiltration of immune cells. HDACi significantly diminished cell proliferation, and pyroptotic "balloon"-like cells became apparent. HDACi led to an intra and extracellular material exchange, signified by the release of LDH and the uptake of propidium iodide. Among the gasdermin family, TNBC cells expressed maximum quantities of GSDME, and expression of GSDMA, GSDMB, and GSDME were augmented post HDACi treatment. Pyroptosis was instigated via the activation of the caspase 3-GSDME pathway with the potential mechanisms being cell cycle arrest and altered intracellular REDOX balance due to aberrant glutathione metabolism. In vivo experiments demonstrated that HDACi can activate pyroptosis, limit tumor growth, and escalate CD8+ lymphocyte and CD11b+ cell infiltration along with an increased presence of granzyme B in tumors. HDACi can instigate pyroptosis in TNBC, promoting infiltration of immune cells and consequently intensifying the efficacy of anticancer immunity.
Collapse
Affiliation(s)
- Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xiaoqing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Mengying Zhou
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yonglin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Laboratory of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| |
Collapse
|
13
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Liu Z, Sun L, Li L, Miao EA, Amer AO, Wozniak DJ, Wen H. Pseudomonas aeruginosa Mediates Host Necroptosis through Rhl-Pqs Quorum Sensing Interaction. Immunohorizons 2024; 8:721-728. [PMID: 39312394 PMCID: PMC11447673 DOI: 10.4049/immunohorizons.2400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen that can cause serious infections in immunocompromised patients. Quorum sensing (QS), a communication system evolved by P. aeruginosa to survey its density, is well acknowledged to be involved in various activities during bacterial infection. Recent studies have revealed the link between P. aeruginosa QS and host innate immune response. Previous evidence suggests that programmed cell death exists in response to P. aeruginosa infection. However, it remains unclear whether QS plays a role in the host programmed cell death process during the infection. In this study, we found that the deficiency of one of QS subsystems, rhl, markedly increased mouse bone marrow macrophage cell death induced by P. aeruginosa, which was accompanied by elevated phosphorylation of RIPK3 and MLKL. This highly increased necroptosis activation was caused by the upregulation of another QS subsystem, pqs, because the deletion of pqs in rhl-deficient P. aeruginosa abolished macrophage necroptosis in vitro and in vivo. In sum, our data highlight the cross-talk between P. aeruginosa QS and host necroptosis, which is executed through the rhl-pqs axis.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH
| | - Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Lupeng Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
- Department of Pathology, Duke University School of Medicine, Durham, NC
- Department of Cell Biology, Duke University School of Medicine, Durham, NC
| | - Edward A Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
- Department of Pathology, Duke University School of Medicine, Durham, NC
- Department of Cell Biology, Duke University School of Medicine, Durham, NC
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH
| | - Haitao Wen
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
15
|
Wen Z, Yuan T, Liu J, Wang D, Ni J, Yan X, Tang J, Tang J, Wu X, Wang Z. Atg16l2 augments Nlrc4 inflammasome activation by facilitating NAIPs-NLRC4 association. Eur J Immunol 2024:e2451078. [PMID: 39175123 DOI: 10.1002/eji.202451078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
As cytoplasmic protein complexes that are pivotal for innate immunity, inflammasomes act primarily through the detection of pathogen- or danger-associated molecular patterns. Nucleotide oligomerisation domain-like receptor family and caspase activation recruitment domain-containing protein 4 (NLRC4) inflammasomes identify and eliminate intracellular pathogens, a process contingent on the ligand-recognition capabilities of neuronal apoptosis inhibitory proteins (NAIPs). Upon detection of specific molecules indicative of intracellular infection, NAIPs discern distinct pathogenic components and subsequently transmit signals to NLRC4, thus initiating their activation and triggering an inflammatory response. However, the mechanisms underlying NLRC4 inflammasome remain unclear. In this study, we elucidated the critical role of ATG16L2 in activating the NLRC4 inflammasome. ATG16L2-deficient macrophages exhibited reduced NLRC4 inflammasome activation, characterised by decreased oligomerisation of apoptosis-associated speck-like protein containing a CARD and attenuated cleavage of Pro-caspase-1, Pro-IL-1β and gasdermin D. Co-immunoprecipitation assays revealed an interaction between ATG16L2 and NAIPs. Furthermore, ATG16L2 enhanced the association between NAIPs and NLRC4 by binding to NAIPs. For ATG16L2-knockout mice infected with Salmonella typhimurium, pathogen clearance and survival rates markedly decreased. Collectively, our findings suggest that ATG16L2 is a significant modulator of the innate immune system, influencing the activity of the NLRC4 inflammasome and the host's defensive response to intracellular pathogens.
Collapse
Affiliation(s)
- Zhoujin Wen
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianli Yuan
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongyang Wang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehan Yan
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Tang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Tang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Lu KC, Tsai KW, Wang YK, Hu WC. Types of cell death and their relations to host immunological pathways. Aging (Albany NY) 2024; 16:11755-11768. [PMID: 39120579 PMCID: PMC11346778 DOI: 10.18632/aging.206035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Various immune pathways have been identified in the host, including TH1, TH2, TH3, TH9, TH17, TH22, TH1-like, and THαβ immune reactions. While TH2 and TH9 responses primarily target multicellular parasites, host immune pathways directed against viruses, intracellular microorganisms (such as bacteria, protozoa, and fungi), and extracellular microorganisms can employ programmed cell death mechanisms to initiate immune responses or execute effective strategies for pathogen elimination. The types of programmed cell death involved include apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and NETosis. Specifically, apoptosis is associated with host anti-virus eradicable THαβ immunity, autophagy with host anti-virus tolerable TH3 immunity, pyroptosis with host anti-intracellular microorganism eradicable TH1 immunity, ferroptosis with host anti-intracellular microorganism tolerable TH1-like immunity, necroptosis with host anti-extracellular microorganism eradicable TH22 immunity, and NETosis with host anti-extracellular microorganism tolerable TH17 immunity.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Department of Medicine, Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC
- Department of Medicine, Division of Nephrology, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan, ROC
| | - Yu-Kuen Wang
- Department of Obstetrics and Gynecology, Taoyuan Armed Forced General Hospital, Taiwan, ROC
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wan-Chung Hu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan, ROC
- Department of Clinical pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan, ROC
- Department of Biotechnology, Ming Chuan University, Taoyuan City 333, Taiwan, ROC
| |
Collapse
|
17
|
Su Z, Su W, Li C, Ding P, Lao K, Li Y, Wang Y. Identification and Immune Characteristics Study of Pyroptosis‑Related Genes in Endometriosis. Biochem Genet 2024; 62:2810-2829. [PMID: 38017285 DOI: 10.1007/s10528-023-10583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023]
Abstract
Endometriosis (EMT) is a prevalent gynecological disorder characterized by pain and infertility associated with the menstrual cycle. Pyroptosis, an emerging cell death mechanism, has been implicated in the pathogenesis of diverse diseases, highlighting its pivotal role in disease progression. Therefore, our study aimed to investigate the impact of pyroptosis in EMT using a comprehensive bioinformatics approach. We initially obtained two datasets from the Gene Expression Omnibus database and performed differential expression analysis to identify pyroptosis-related genes (PRGs) that were differentially expressed between EMT and non-EMT samples. Subsequently, several machine learning algorithms, namely least absolute shrinkage selection operator regression, support vector machine-recursive feature elimination, and random forest algorithms were used to identify a hub gene to construct an effective diagnostic model for EMT. Receiver operating characteristic curve analysis, nomogram, calibration curve, and decision curve analysis were applied to validate the performance of the model. Based on the selected hub gene, differential expression analysis between high- and low-expression groups was conducted to explore the functions and signaling pathways related to it. Additionally, the correlation between the hub gene and immune cells was investigated to gain insights into the immune microenvironment of EMT. Finally, a pyroptosis-related competing endogenous RNA network was constructed to elucidate the regulatory interactions of the hub gene. Our study revealed the potential contribution of a specific PRG to the pathogenesis of EMT, providing a novel perspective for clinical diagnosis and treatment of EMT.
Collapse
Affiliation(s)
- Zhe Su
- Department of Reproductive Medicine, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, China
| | - Wenjing Su
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Chenglong Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Peihui Ding
- Department of Reproductive Medicine, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, China
| | - Kaixue Lao
- Department of Reproductive Medicine, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, China
| | - Yiqian Li
- Department of Reproductive Medicine, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, China
| | - Yanlin Wang
- Department of Reproductive Medicine, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, China.
| |
Collapse
|
18
|
Liu Z, Li S, Wang C, Vidmar KJ, Bracey S, Li L, Willard B, Miyagi M, Lan T, Dickinson BC, Osme A, Pizarro TT, Xiao TS. Palmitoylation at a conserved cysteine residue facilitates gasdermin D-mediated pyroptosis and cytokine release. Proc Natl Acad Sci U S A 2024; 121:e2400883121. [PMID: 38980908 PMCID: PMC11260154 DOI: 10.1073/pnas.2400883121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Gasdermin D (GSDMD)-mediated pyroptotic cell death drives inflammatory cytokine release and downstream immune responses upon inflammasome activation, which play important roles in host defense and inflammatory disorders. Upon activation by proteases, the GSDMD N-terminal domain (NTD) undergoes oligomerization and membrane translocation in the presence of lipids to assemble pores. Despite intensive studies, the molecular events underlying the transition of GSDMD from an autoinhibited soluble form to an oligomeric pore form inserted into the membrane remain incompletely understood. Previous work characterized S-palmitoylation for gasdermins from bacteria, fungi, invertebrates, as well as mammalian gasdermin E (GSDME). Here, we report that a conserved residue Cys191 in human GSDMD was S-palmitoylated, which promoted GSDMD-mediated pyroptosis and cytokine release. Mutation of Cys191 or treatment with palmitoyltransferase inhibitors cyano-myracrylamide (CMA) or 2-bromopalmitate (2BP) suppressed GSDMD palmitoylation, its localization to the membrane and dampened pyroptosis or IL-1β secretion. Furthermore, Gsdmd-dependent inflammatory responses were alleviated by inhibition of palmitoylation in vivo. By contrast, coexpression of GSDMD with palmitoyltransferases enhanced pyroptotic cell death, while introduction of exogenous palmitoylation sequences fully restored pyroptotic activities to the C191A mutant, suggesting that palmitoylation-mediated membrane localization may be distinct from other molecular events such as GSDMD conformational change during pore assembly. Collectively, our study suggests that S-palmitoylation may be a shared regulatory mechanism for GSDMD and other gasdermins, which points to potential avenues for therapeutically targeting S-palmitoylation of gasdermins in inflammatory disorders.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Sai Li
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Chuanping Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Kaylynn J. Vidmar
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Syrena Bracey
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Ling Li
- Proteomics and Metabolic Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44196
| | - Belinda Willard
- Proteomics and Metabolic Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44196
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH44106
| | - Tong Lan
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | | | - Abdullah Osme
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
19
|
Luyendyk JP, Morozova E, Copple BL. Good Cells Go Bad: Immune Dysregulation in the Transition from Acute Liver Injury to Liver Failure After Acetaminophen Overdose. Drug Metab Dispos 2024; 52:722-728. [PMID: 38050055 PMCID: PMC11257689 DOI: 10.1124/dmd.123.001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
The role of inflammatory cells and other components of the immune system in acetaminophen (APAP)-induced liver injury and repair has been extensively investigated. Although this has resulted in a wealth of information regarding the function and regulation of immune cells in the liver after injury, apparent contradictions have fueled controversy around the central question of whether the immune system is beneficial or detrimental after APAP overdose. Ultimately, this may not be a simple assignment of "good" or "bad." Clinical studies have clearly demonstrated an association between immune dysregulation and a poor outcome in patients with severe liver damage/liver failure induced by APAP overdose. To date, studies in mice have not uniformly replicated this connection. The apparent disconnect between clinical and experimental studies has perhaps stymied progress and further complicated investigation of the immune system in APAP-induced liver injury. Mouse models are often dismissed as not recapitulating the clinical scenario. Moreover, clinical investigation is most often focused on the most severe APAP overdose patients, those with liver failure. Notably, recent studies have made it apparent that the functional role of the immune system in the pathogenesis of APAP-induced liver injury is highly context dependent and greatly influenced by the experimental conditions. In this review, we highlight some of these recent findings and suggest strategies seeking to resolve and build on existing disconnects in the literature. SIGNIFICANCE STATEMENT: Acetaminophen overdose is the most frequent cause of acute liver failure in the United States. Studies indicate that dysregulated innate immunity contributes to the transition from acute liver injury to acute liver failure. In this review, we discuss the evidence for this and the potential underlying causes.
Collapse
Affiliation(s)
- James P Luyendyk
- Departments of Pathobiology and Diagnostic Investigation (J.P.L., E.M.) and Pharmacology and Toxicology (B.L.C.), Michigan State University, East Lansing, Michigan
| | - Elena Morozova
- Departments of Pathobiology and Diagnostic Investigation (J.P.L., E.M.) and Pharmacology and Toxicology (B.L.C.), Michigan State University, East Lansing, Michigan
| | - Bryan L Copple
- Departments of Pathobiology and Diagnostic Investigation (J.P.L., E.M.) and Pharmacology and Toxicology (B.L.C.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
20
|
Zhang Z, Bi Y, Zhou F, Zhang D, Xu S, Zhang X, Fan Z, Yao Z, He Y. Huajuxiaoji Formula Alleviates Phenyl Sulfate-Induced Diabetic Kidney Disease by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis. J Diabetes Res 2024; 2024:8772009. [PMID: 39040854 PMCID: PMC11262882 DOI: 10.1155/2024/8772009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/22/2023] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Background: One of the most common microvascular complications of diabetes is diabetic kidney disease (DKD). The Huajuxiaoji formula (HJXJ) has shown clinical efficacy for DKD; however, its regulatory mechanisms against DKD remain elusive. We investigated NLRP3 inflammasome and the mechanisms of HJXJ by which HJXJ alleviates DKD. Methods: Phenyl sulfate (PS) was used to establish DKD models. HJXJ was administered to mice through intragastric or made into a pharmaceutical serum for the cell cultures. Biological indicator levels in mouse blood and urine were analyzed, and kidney tissues were used for HE, Masson, and PAS staining. ELISA and western blotting were used to detect inflammatory cytokines and protein levels, respectively. Reactive oxygen species (ROS) production and pyroptosis were evaluated using flow cytometry. Lentiviral vector-mediated overexpression of NLRP3 was performed to determine whether NLRP3 participates in the antipyroptotic effect of HJXJ. Results: HJXJ significantly reduced the severity of the injury and, in a dose-dependent manner, decreased the levels of biological markers including creatinine, blood urea nitrogen, urine protein, and endotoxin, as well as inflammatory cytokines such as interleukin (IL)-1β, IL-18, tumor necrosis factor-α, and IL-6 in DKD mice. Treatment with HJXJ reversed the downregulation of podocin, nephrin, ZO-1, and occludin and upregulated ROS, NLRP3, Caspase-1 P20, and GSDMD-N induced by PS. Moreover, the upregulation of NLRP3 expression increased the number of cells positive for pyroptosis. HJXJ suppressed pyroptosis and inflammasome activation by inhibiting NLRP3 expression. Conclusions: Generally, HJXJ has the potential to reduce DKD injury and exerts anti-DKD effects by inhibiting the NLRP3-mediated NLRP3 inflammasome activation and pyroptosis in vitro and in vivo.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yueping Bi
- Department of Chinese MedicineYinhang Community Health Service Center of Yangpu District, Shanghai 200438, China
| | - Fengzhu Zhou
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Duanchun Zhang
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Siyu Xu
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xinyi Zhang
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zhaohua Fan
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zheng Yao
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanming He
- Department of EndocrinologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
21
|
Shippy DC, Evered AH, Ulland TK. Ketone body metabolism and the NLRP3 inflammasome in Alzheimer's disease. Immunol Rev 2024. [PMID: 38989642 DOI: 10.1111/imr.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder and the most common form of dementia. AD pathology is characterized by senile plaques and neurofibrillary tangles (NFTs) composed of amyloid-β (Aβ) and hyperphosphorylated tau, respectively. Neuroinflammation has been shown to drive Aβ and tau pathology, with evidence suggesting the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as a key pathway in AD pathogenesis. NLRP3 inflammasome activation in microglia, the primary immune effector cells of the brain, results in caspase-1 activation and secretion of IL-1β and IL-18. Recent studies have demonstrated a dramatic interplay between the metabolic state and effector functions of immune cells. Microglial metabolism in AD is of particular interest, as ketone bodies (acetone, acetoacetate (AcAc), and β-hydroxybutyrate (BHB)) serve as an alternative energy source when glucose utilization is compromised in the brain of patients with AD. Furthermore, reduced cerebral glucose metabolism concomitant with increased BHB levels has been demonstrated to inhibit NLRP3 inflammasome activation. Here, we review the role of the NLRP3 inflammasome and microglial ketone body metabolism in AD pathogenesis. We also highlight NLRP3 inflammasome inhibition by several ketone body therapies as a promising new treatment strategy for AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Abigail H Evered
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Cellular and Molecular Pathology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Wang J, Wu Z, Zhu M, Zhao Y, Xie J. ROS induced pyroptosis in inflammatory disease and cancer. Front Immunol 2024; 15:1378990. [PMID: 39011036 PMCID: PMC11246884 DOI: 10.3389/fimmu.2024.1378990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Pyroptosis, a form of caspase-1-dependent cell death, also known as inflammation-dependent death, plays a crucial role in diseases such as stroke, heart disease, or tumors. Since its elucidation, pyroptosis has attracted widespread attention from various sectors. Reactive oxygen species (ROS) can regulate numerous cellular signaling pathways. Through further research on ROS and pyroptosis, the level of ROS has been revealed to be pivotal for the occurrence of pyroptosis, establishing a close relationship between the two. This review primarily focuses on the molecular mechanisms of ROS and pyroptosis in tumors and inflammatory diseases, exploring key proteins that may serve as drug targets linking ROS and pyroptosis and emerging fields targeting pyroptosis. Additionally, the potential future development of compounds and proteins that influence ROS-regulated cell pyroptosis is anticipated, aiming to provide insights for the development of anti-tumor and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Ziyong Wu
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Min Zhu
- Department of Pharmacy, Xuchang Central Hospital, Xuchang, Henan, China
| | - Yang Zhao
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Jingwen Xie
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
- Department of Health, Chongqing Industry & Trade Polytechnic, Chongqing, China
| |
Collapse
|
23
|
Kozlovski I, Jaimes-Becerra A, Sharoni T, Lewandowska M, Karmi O, Moran Y. Induction of apoptosis by double-stranded RNA was present in the last common ancestor of cnidarian and bilaterian animals. PLoS Pathog 2024; 20:e1012320. [PMID: 39012849 PMCID: PMC11251625 DOI: 10.1371/journal.ppat.1012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.
Collapse
Affiliation(s)
- Itamar Kozlovski
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ton Sharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ola Karmi
- Research Infrastructure Facility, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
24
|
Wang Y, Gao Y, Shi H, Gao R, Yang J, Qu Y, Hu S, Zhang J, Wang J, Cao J, Zhang F, Ge J. CCL11 released by GSDMD-mediated macrophage pyroptosis regulates angiogenesis after hindlimb ischemia. Cell Death Discov 2024; 10:294. [PMID: 38906863 PMCID: PMC11192718 DOI: 10.1038/s41420-023-01764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 06/23/2024] Open
Abstract
Peripheral vascular disease (PVD) is an emerging public health burden with a high rate of disability and mortality. Gasdermin D (GSDMD) has been reported to exert pyroptosis and play a critical role in the pathophysiology of many cardiovascular diseases. We ought to determine the role of GSDMD in the regulation of perfusion recovery after hindlimb ischemia (HLI). Our study revealed that GSDMD-mediated pyroptosis occurred in HLI. GSDMD deletion aggravated perfusion recovery and angiogenesis in vitro and in vivo. However, how GSDMD regulates angiogenesis after ischemic injury remains unclear. We then found that GSDMD-mediated pyroptosis exerted the angiogenic capacity in macrophages rather than endothelial cells after HLI. GSDMD deletion led to a lower level of CCL11 in mice serum. GSDMD knockdown in macrophages downregulated the expression and decreased the releasing level of CCL11. Furthermore, recombinant CCL11 improved endothelial functions and angiogenesis, which was attenuated by CCL11 antibody. Taken together, these results demonstrate that GSDMD promotes angiogenesis by releasing CCL11, thereby improving blood flow perfusion recovery after hindlimb ischemic injury. Therefore, CCL11 may be a novel target for prevention and treatment of vascular ischemic diseases.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yang Gao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Huairui Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Rifeng Gao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 200240, Shanghai, China
| | - Ji'e Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Ya'nan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Shiyu Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jian Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jingpu Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jiatian Cao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Feng Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, 200032, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, 200032, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, 200032, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
25
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Pyroptosis in Diabetic Peripheral Neuropathy and its Therapeutic Regulation. J Inflamm Res 2024; 17:3839-3864. [PMID: 38895141 PMCID: PMC11185259 DOI: 10.2147/jir.s465203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Pyroptosis is a pro-inflammatory form of cell death resulting from the activation of gasdermins (GSDMs) pore-forming proteins and the release of several pro-inflammatory factors. However, inflammasomes are the intracellular protein complexes that cleave gasdermin D (GSDMD), leading to the formation of robust cell membrane pores and the initiation of pyroptosis. Inflammasome activation and gasdermin-mediated membrane pore formation are the important intrinsic processes in the classical pyroptotic signaling pathway. Overactivation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome triggers pyroptosis and amplifies inflammation. Current evidence suggests that the overactivation of inflammasomes and pyroptosis may further induce the progression of cancers, nerve injury, inflammatory disorders and metabolic dysfunctions. Current evidence also indicates that pyroptosis-dependent cell death accelerates the progression of diabetes and its frequent consequences including diabetic peripheral neuropathy (DPN). Pyroptosis-mediated inflammatory reaction further exacerbates DPN-mediated CNS injury. Accumulating evidence shows that several molecular signaling mechanisms trigger pyroptosis in insulin-producing cells, further leading to the development of DPN. Numerous studies have suggested that certain natural compounds or drugs may possess promising pharmacological properties by modulating inflammasomes and pyroptosis, thereby offering potential preventive and practical therapeutic approaches for the treatment and management of DPN. This review elaborates on the underlying molecular mechanisms of pyroptosis and explores possible therapeutic strategies for regulating pyroptosis-regulated cell death in the pharmacological treatment of DPN.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| |
Collapse
|
26
|
Xian J, Wu W, Chen X, Bao H, Zhang S, Sheng X, Chen S. SNORD99 promotes endometrial cancer development by inhibiting GSDMD-mediated pyroptosis through 2'-O-methylation modification. J Cell Mol Med 2024; 28:e18500. [PMID: 39450788 PMCID: PMC11193114 DOI: 10.1111/jcmm.18500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 10/26/2024] Open
Abstract
Eukaryotic cells possess multiple mechanisms of self-destruction, including pyroptosis and necroptosis. Pyroptosis is a type of programmed cell death characterized by cellular rupture and linked to inflammation. SnoRNA, a small non-coding RNA in the nucleolus, can dysregulate specific RNAs through 2'-O-methylation, contributing to tumorigenesis. Our StarBase and qRT-PCR analysis revealed SNORD99 upregulation in endometrial cancer (EC) tissue compared to normal tissue, suggesting its role in pathogenesis. SNORD99 overexpression enhanced migration and proliferation of EC cells, while ASO-mediated suppression reduced malignant cell spread and division. RNA-seq and base-comparing analysis identified GSDMD's differential expression upon SNORD99 overexpression, forming the SNORD99-FBL RNP complex. RTL-P experiments showed SNORD99 increased GSDMD's 2'-O-methylation. SNORD99 reduced GSDMD, caspase-1, and NLRP3 protein levels, implicating its role in pyroptosis. Optical and electron microscopy confirmed enhanced pyroptosis features. In summary, SNORD99 modifies GSDMD via 2'-O-methylation, suppressing pyroptosis and promoting EC progression. Developing pyroptosis-inducing drugs may offer new cancer treatment avenues.
Collapse
Affiliation(s)
- Jing‐yuan Xian
- Department of Obstetrics and Gynecology, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong‐Hong Kong‐Macao Greater Bay Area Higher Education Joint Laboratory of Maternal‐Fetal MedicineThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Wu Wu
- Department of Obstetrics and Gynecology, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong‐Hong Kong‐Macao Greater Bay Area Higher Education Joint Laboratory of Maternal‐Fetal MedicineThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xi Chen
- Department of Obstetrics and Gynecology, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong‐Hong Kong‐Macao Greater Bay Area Higher Education Joint Laboratory of Maternal‐Fetal MedicineThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hai‐juan Bao
- Department of Obstetrics and Gynecology, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong‐Hong Kong‐Macao Greater Bay Area Higher Education Joint Laboratory of Maternal‐Fetal MedicineThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Song Zhang
- Department of Thoracic SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xiu‐Jie Sheng
- Department of Obstetrics and Gynecology, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong‐Hong Kong‐Macao Greater Bay Area Higher Education Joint Laboratory of Maternal‐Fetal MedicineThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong‐Hong Kong‐Macao Greater Bay Area Higher Education Joint Laboratory of Maternal‐Fetal MedicineThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
27
|
Song R, He S, Wu Y, Tan S. Pyroptosis in sepsis induced organ dysfunction. Curr Res Transl Med 2024; 72:103419. [PMID: 38246070 DOI: 10.1016/j.retram.2023.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 01/23/2024]
Abstract
As an uncontrolled inflammatory response to infection, sepsis and sepsis induced organ dysfunction are great threats to the lives of septic patients. Unfortunately, the pathogenesis of sepsis is complex and multifactorial, which still needs to be elucidated. Pyroptosis is a newly discovered atypical form of inflammatory programmed cell death, which depends on the Caspase-1 dependent classical pathway or the non-classical Caspase-11 (mouse) or Caspase-4/5 (human) dependent pathway. Many studies have shown that pyroptosis is related to sepsis. The Gasdermin proteins are the key molecules in the membrane pores formation in pyroptosis. After cut by inflammatory caspase, the Gasdermin N-terminal fragments with perforation activity are released to cause pyroptosis. Pyroptosis is closely related to the occurrence and development of sepsis induced organ dysfunction. In this review, we summarized the molecular mechanism of pyroptosis, the key role of pyroptosis in sepsis and sepsis induced organ dysfunction, with the aim to bring new diagnostic biomarkers and potential therapeutic targets to improve sepsis clinical treatments.
Collapse
Affiliation(s)
- Ruoyu Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China.
| | - Shijun He
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Yongbin Wu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Sipin Tan
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China.
| |
Collapse
|
28
|
Han B, Choukér A, Moser D. Differential effects of acute and chronic hydrocortisone treatment on pyroptosis. Heliyon 2024; 10:e31156. [PMID: 38784563 PMCID: PMC11112316 DOI: 10.1016/j.heliyon.2024.e31156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Pyroptosis is a programmed and inflammation-inducing cell death that occurs predominantly in macrophages. It is characterized by the inflammasome-mediated activation of caspase-1, leading to cell lysis. During pyroptosis, pro-inflammatory mediators such as IL-1β are released extracellularly to further recruit and activate other immune cells. Thus, pyroptosis plays a crucial role in the prevention of the spread of pathogens. The clinically applied synthetic glucocorticoid, hydrocortisone (HC), has strong immunoregulatory properties. It may act as an immunosuppressive agent by negatively regulating pro-inflammatory gene transcription but has also shown immune-sensitizing properties. The conditions that determine the immunosuppressive or immune-sensitizing actions of HC during an infection are not fully clear. We hypothesized that the outcome may differ depending on the onset and duration of its administration. Therefore, we investigated the impact of acute (treatment upon infection) and chronic (24 h pre-treatment before infection) HC treatment on pyroptosis induction and execution in THP-1 macrophage-like cells. The focus was on pyroptosis-associated signaling pathways, inflammasome assembly and activation, IL-1β, and cell death. Physiological HC concentration and HC deprivation were used as controls. Compared to the physiological concentration, cells displayed augmented inflammasome activation and IL-1β release following acute HC treatment. Conversely, the whole pyroptosis machinery was suppressed by chronic HC administration. These in vitro investigations demonstrate pro-inflammatory actions of acute HC exposure and the immunosuppressive effects of chronic treatment. These differential effects on pyroptosis emphasize the importance of individualized HC medication in patients upon infection, and suggest the inclusion of IL-1β as a marker for current immune capacities.
Collapse
Affiliation(s)
- Bing Han
- Laboratory of Translational Research ‘Stress and Immunity’, Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Germany
| | - Alexander Choukér
- Laboratory of Translational Research ‘Stress and Immunity’, Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Germany
| | - Dominique Moser
- Laboratory of Translational Research ‘Stress and Immunity’, Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Germany
| |
Collapse
|
29
|
Zhra M, Qasem RJ, Aldossari F, Saleem R, Aljada A. A Comprehensive Exploration of Caspase Detection Methods: From Classical Approaches to Cutting-Edge Innovations. Int J Mol Sci 2024; 25:5460. [PMID: 38791499 PMCID: PMC11121653 DOI: 10.3390/ijms25105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The activation of caspases is a crucial event and an indicator of programmed cell death, also known as apoptosis. These enzymes play a central role in cancer biology and are considered one promising target for current and future advancements in therapeutic interventions. Traditional methods of measuring caspase activity such as antibody-based methods provide fundamental insights into their biological functions, and are considered essential tools in the fields of cell and cancer biology, pharmacology and toxicology, and drug discovery. However, traditional methods, though extensively used, are now recognized as having various shortcomings. In addition, these methods fall short of providing solutions to and matching the needs of the rapid and expansive progress achieved in studying caspases. For these reasons, there has been a continuous improvement in detection methods for caspases and the network of pathways involved in their activation and downstream signaling. Over the past decade, newer methods based on cutting-edge state-of-the-art technologies have been introduced to the biomedical community. These methods enable both the temporal and spatial monitoring of the activity of caspases and their downstream substrates, and with enhanced accuracy and precision. These include fluorescent-labeled inhibitors (FLIs) for live imaging, single-cell live imaging, fluorescence resonance energy transfer (FRET) sensors, and activatable multifunctional probes for in vivo imaging. Recently, the recruitment of mass spectrometry (MS) techniques in the investigation of these enzymes expanded the repertoire of tools available for the identification and quantification of caspase substrates, cleavage products, and post-translational modifications in addition to unveiling the complex regulatory networks implicated. Collectively, these methods are enabling researchers to unravel much of the complex cellular processes involved in apoptosis, and are helping generate a clearer and comprehensive understanding of caspase-mediated proteolysis during apoptosis. Herein, we provide a comprehensive review of various assays and detection methods as they have evolved over the years, so to encourage further exploration of these enzymes, which should have direct implications for the advancement of therapeutics for cancer and other diseases.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Rani J. Qasem
- Department of Pharmacology and Pharmacy Practice, College of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fai Aldossari
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Rimah Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
30
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Lovelace-Macon L, Baker SM, Ducken D, Seal S, Rerolle G, Tomita D, Smith KD, Schwarz S, West TE. Flagellin-modulated inflammasome pathways characterize the human alveolar macrophage response to Burkholderia pseudomallei, a lung-tropic pathogen. Infect Immun 2024; 92:e0006024. [PMID: 38619302 PMCID: PMC11075458 DOI: 10.1128/iai.00060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
Melioidosis is an emerging tropical infection caused by inhalation, inoculation, or ingestion of the flagellated, facultatively intracellular pathogen Burkholderia pseudomallei. The melioidosis case fatality rate is often high, and pneumonia, the most common presentation, doubles the risk of death. The alveolar macrophage is a sentinel pulmonary host defense cell, but the human alveolar macrophage in B. pseudomallei infection has never been studied. The objective of this study was to investigate the host-pathogen interaction of B. pseudomallei infection with the human alveolar macrophage and to determine the role of flagellin in modulating inflammasome-mediated pathways. We found that B. pseudomallei infects primary human alveolar macrophages but is gradually restricted in the setting of concurrent cell death. Electron microscopy revealed cytosolic bacteria undergoing division, indicating that B. pseudomallei likely escapes the alveolar macrophage phagosome and may replicate in the cytosol, where it triggers immune responses. In paired human blood monocytes, uptake and intracellular restriction of B. pseudomallei are similar to those observed in alveolar macrophages, but cell death is reduced. The alveolar macrophage cytokine response to B. pseudomallei is characterized by marked interleukin (IL)-18 secretion compared to monocytes. Both cytotoxicity and IL-18 secretion in alveolar macrophages are partially flagellin dependent. However, the proportion of IL-18 release that is driven by flagellin is greater in alveolar macrophages than in monocytes. These findings suggest differential flagellin-mediated inflammasome pathway activation in the human alveolar macrophage response to B. pseudomallei infection and expand our understanding of intracellular pathogen recognition by this unique innate immune lung cell.
Collapse
Affiliation(s)
- Lara Lovelace-Macon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sarah M. Baker
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Deirdre Ducken
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sudeshna Seal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Guilhem Rerolle
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Diane Tomita
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kelly D. Smith
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Sandra Schwarz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - T. Eoin West
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Luo W, Du C, Huang H, Kong J, Ge Z, Lin L, Wang H. The Role of Macrophage Death in Periodontitis: A Review. Inflammation 2024:10.1007/s10753-024-02015-4. [PMID: 38691250 DOI: 10.1007/s10753-024-02015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 01/21/2024] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Periodontitis, an infectious inflammatory disease influenced by various factors, disrupts the delicate balance between the host microbiota and immunity. The resulting excessive immune response exacerbates the progressive destruction of the supporting periodontal tissue. Macrophages are essential elements of the host innate immune system. They are pivotal components in the periodontal immune microenvironment and actively participate in both physiological and pathological processes of periodontal tissue. When confronted with periodontitis-related irritant factors, macrophages may differentiate to pro- or anti-inflammatory subtypes that affect tissue homeostasis. Additionally, macrophages may die in response to bacterial infections, potentially affecting the severity of periodontitis. This article reviews the typical mechanisms underlying macrophage death and its effects on periodontitis. We describe five forms of macrophage death in periodontitis: apoptosis, pyroptosis, necroptosis, ferroptosis, and ETosis. Our review of macrophage death in the pathophysiology of periodontitis enhances comprehension of the pathogenesis of periodontitis that will be useful for clinical practice. Although our review elucidates the complex mechanisms by which macrophage death and inflammatory pathways perpetuate periodontitis, unresolved issues remain, necessitating further research.
Collapse
Affiliation(s)
- Wen Luo
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Chengying Du
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Hsiuwei Huang
- School of Stomatology, China Medical University, North Second Road 92, Shenyang, 110002, Liaoning Province, China
| | - Jie Kong
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Ziming Ge
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China
| | - Li Lin
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China.
| | - Hongyan Wang
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110000, Liaoning Province, China.
| |
Collapse
|
33
|
Liu H, Liu H, Huang G, Yuan H, Zhang X. The roles of pyroptosis in genitourinary diseases. Int Urol Nephrol 2024; 56:1515-1523. [PMID: 38103146 PMCID: PMC11001749 DOI: 10.1007/s11255-023-03894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Pyroptosis, a form of programmed cell death distinct from apoptosis and necrosis, is thought to be closely associated with the pathogenesis of diseases. Recently, the association between pyroptosis and urinary diseases has attracted considerable attention, and a comprehensive review focusing on this issue is not available. In this study, we reviewed the role of pyroptosis in the development and progression of benign urinary diseases and urinary malignancies. Based on this, pyroptosis has been implicated in the development of urinary diseases. In summary, this review sheds light on future research directions and provides novel ideas for using pyroptosis as a powerful tool to fight urinary diseases.
Collapse
Affiliation(s)
- Haopeng Liu
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Guoshuai Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Hexing Yuan
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| | - Xuefeng Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| |
Collapse
|
34
|
Kappelhoff S, Margheritis EG, Cosentino K. New insights into Gasdermin D pore formation. Biochem Soc Trans 2024; 52:681-692. [PMID: 38497302 DOI: 10.1042/bst20230549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Gasdermin D (GSDMD) is a pore-forming protein that perforates the plasma membrane (PM) during pyroptosis, a pro-inflammatory form of cell death, to induce the unconventional secretion of inflammatory cytokines and, ultimately, cell lysis. GSDMD is activated by protease-mediated cleavage of its active N-terminal domain from the autoinhibitory C-terminal domain. Inflammatory caspase-1, -4/5 are the main activators of GSDMD via either the canonical or non-canonical pathways of inflammasome activation, but under certain stimuli, caspase-8 and other proteases can also activate GSDMD. Activated GSDMD can oligomerize and assemble into various nanostructures of different sizes and shapes that perforate cellular membranes, suggesting plasticity in pore formation. Although the exact mechanism of pore formation has not yet been deciphered, cysteine residues are emerging as crucial modulators of the oligomerization process. GSDMD pores and thus the outcome of pyroptosis can be modulated by various regulatory mechanisms. These include availability of activated GSDMD at the PM, control of the number of GSDMD pores by PM repair mechanisms, modulation of the lipid environment and post-translational modifications. Here, we review the latest findings on the mechanisms that induce GSDMD to form membrane pores and how they can be tightly regulated for cell content release and cell fate modulation.
Collapse
Affiliation(s)
- Shirin Kappelhoff
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Eleonora G Margheritis
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Katia Cosentino
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
35
|
Liu Y, Lu M, Sun Q, Guo Z, Lin Y, Li S, Huang Y, Li Y, Fu Q. Magnolol attenuates macrophage pyroptosis triggered by Streptococcus equi subsp. zooepidemicus. Int Immunopharmacol 2024; 131:111922. [PMID: 38522137 DOI: 10.1016/j.intimp.2024.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/11/2023] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) is a zoonotic bacterial pathogen that causes life-threatening infections and various diseases such as meningitis, endocarditis and pneumonia. With the use of antibiotics being severely restricted in the international community, an alternative to antibiotics is urgently needed against bacterial. In the present study, the herbal extract magnolol protected mice against SEZ infection, reflected by increased survival rate and reduced bacterial burden. A pro-inflammatory form of cell death occurred in SEZ-infected macrophage. Magnolol downregulated the expression of pyroptosis-related proteins and reduced the formation of cell membrane pores in infected macrophages to suppress the development of subsequent inflammation. We further demonstrated that magnolol directly suppressed SEZ-induced macrophage pyroptosis, which partially protected macrophages from SEZ infection. Our study revealed that magnolol suppressed inflammation and protected mice against SEZ infection, providing a possible treatment for SEZ infection.
Collapse
Affiliation(s)
- Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Meijun Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qian Sun
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Guo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yongjin Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shun Li
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yajuan Li
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China.
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China.
| |
Collapse
|
36
|
Thal DR, Gawor K, Moonen S. Regulated cell death and its role in Alzheimer's disease and amyotrophic lateral sclerosis. Acta Neuropathol 2024; 147:69. [PMID: 38583129 DOI: 10.1007/s00401-024-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
37
|
Wei X, Yi J, Zhang C, Wang M, Wang R, Xu W, Zhao M, Zhao M, Yang T, Wei W, Jin S, Gao H. Enhancement of the Tumor Suppression Effect of High-dose Radiation by Low-dose Pre-radiation Through Inhibition of DNA Damage Repair and Increased Pyroptosis. Dose Response 2024; 22:15593258241245804. [PMID: 38617388 PMCID: PMC11010768 DOI: 10.1177/15593258241245804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Radiation therapy has been a critical and effective treatment for cancer. However, not all cells are destroyed by radiation due to the presence of tumor cell radioresistance. In the current study, we investigated the effect of low-dose radiation (LDR) on the tumor suppressive effect of high-dose radiation (HDR) and its mechanism from the perspective of tumor cell death mode and DNA damage repair, aiming to provide a foundation for improving the efficacy of clinical tumor radiotherapy. We found that LDR pre-irradiation strengthened the HDR-inhibited A549 cell proliferation, HDR-induced apoptosis, and G2 phase cell cycle arrest under co-culture conditions. RNA-sequencing showed that differentially expressed genes after irradiation contained pyroptosis-related genes and DNA damage repair related genes. By detecting pyroptosis-related proteins, we found that LDR could enhance HDR-induced pyroptosis. Furthermore, under co-culture conditions, LDR pre-irradiation enhances the HDR-induced DNA damage and further suppresses the DNA damage-repairing process, which eventually leads to cell death. Lastly, we established a tumor-bearing mouse model and further demonstrated that LDR local pre-irradiation could enhance the cancer suppressive effect of HDR. To summarize, our study proved that LDR pre-irradiation enhances the tumor-killing function of HDR when cancer cells and immune cells were coexisting.
Collapse
Affiliation(s)
- Xinfeng Wei
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Junxuan Yi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Citong Zhang
- Department of Oral Comprehensive Therapy, School of Stomatology, Jilin University, Changchun, China
| | - Mingwei Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Rui Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Weiqiang Xu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Mengdie Zhao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Teng Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Wei Wei
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Hui Gao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Ernst C, Andreassen PR, Giger GH, Nguyen BD, Gäbelein CG, Guillaume-Gentil O, Fattinger SA, Sellin ME, Hardt WD, Vorholt JA. Direct Salmonella injection into enteroid cells allows the study of host-pathogen interactions in the cytosol with high spatiotemporal resolution. PLoS Biol 2024; 22:e3002597. [PMID: 38684033 PMCID: PMC11057982 DOI: 10.1371/journal.pbio.3002597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Chantal Ernst
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Gabriel H. Giger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikael E. Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Flis W, Socha MW. The Role of the NLRP3 Inflammasome in the Molecular and Biochemical Mechanisms of Cervical Ripening: A Comprehensive Review. Cells 2024; 13:600. [PMID: 38607039 PMCID: PMC11012148 DOI: 10.3390/cells13070600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The uterine cervix is one of the key factors involved in ensuring a proper track of gestation and labor. At the end of the gestational period, the cervix undergoes extensive changes, which can be summarized as a transformation from a non-favorable cervix to one that is soft and prone to dilation. During a process called cervical ripening, fundamental remodeling of the cervical extracellular matrix (ECM) occurs. The cervical ripening process is a derivative of many interlocking and mutually driving biochemical and molecular pathways under the strict control of mediators such as inflammatory cytokines, nitric oxide, prostaglandins, and reactive oxygen species. A thorough understanding of all these pathways and learning about possible triggering factors will allow us to develop new, better treatment algorithms and therapeutic goals that could protect women from both dysfunctional childbirth and premature birth. This review aims to present the possible role of the NLRP3 inflammasome in the cervical ripening process, emphasizing possible mechanisms of action and regulatory factors.
Collapse
Affiliation(s)
- Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| |
Collapse
|
40
|
Zhao Z, Zhang Y, Luo B. The role of pyroptosis in viral infection. Arch Virol 2024; 169:69. [PMID: 38456965 DOI: 10.1007/s00705-024-05978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/17/2023] [Indexed: 03/09/2024]
Abstract
Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death, which is an important natural immune response. Pyroptosis plays a major role in combating pathogenic infections. The mechanism of pyroptosis is distinct from other forms of cell death and is characterized by its dependence on inflammatory caspases (mainly caspases 1, 4, 5, and 11). Activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory vesicles is involved in caspase-1 activation and cleavage, which in turn triggers cleavage and multimerization of multiple gasdermin family members, including gasdermin-D (GSDMD). This further leads to cell perforation and cellular distension, causing cell membrane rupture, resulting in a massive efflux of cell contents, which triggers inflammatory reactions. In recent years, detailed study of viral diseases, has demonstrated that pyroptosis is closely associated with the development of viral diseases. This article focuses on the mechanism of pyroptosis and the connection between pyroptosis and viral infection.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
41
|
Lokken-Toyli KL, Diaz-Ochoa VE, Camacho L, Stull-Lane AR, Van Hecke AER, Mooney JP, Muñoz AD, Walker GT, Hampel D, Jiang X, Labuda JC, Depew CE, McSorley SJ, Stephensen CB, Tsolis RM. Vitamin A deficiency impairs neutrophil-mediated control of Salmonella via SLC11A1 in mice. Nat Microbiol 2024; 9:727-736. [PMID: 38374245 PMCID: PMC10914596 DOI: 10.1038/s41564-024-01613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
In sub-Saharan Africa, multidrug-resistant non-typhoidal Salmonella serovars are a common cause of fatal bloodstream infection. Malnutrition is a predisposing factor, but the underlying mechanisms are unknown. Here we show that vitamin A deficiency, one of the most prevalent micronutrient deficits afflicting African children, increases susceptibility to disseminated non-typhoidal Salmonella disease in mice and impairs terminal neutrophil maturation. Immature neutrophils had reduced expression of Slc11a1, a gene that encodes a metal ion transporter generally thought to restrict pathogen growth in macrophages. Adoptive transfer of SLC11A1-proficient neutrophils, but not SLC11A1-deficient neutrophils, reduced systemic Salmonella burden in Slc11a1-/- mice or mice with vitamin A deficiency. Loss of terminal granulopoiesis regulator CCAAT/enhancer-binding protein ϵ (C/EBPϵ) also decreased neutrophil-mediated control of Salmonella, but not that mediated by peritoneal macrophages. Susceptibility to infection increased in Cebpe-/- Slc11a1+/+ mice compared with wild-type controls, in an Slc11a1-expression-dependent manner. These data suggest that SLC11A1 deficiency impairs Salmonella control in part by blunting neutrophil-mediated defence.
Collapse
Affiliation(s)
- Kristen L Lokken-Toyli
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Vladimir E Diaz-Ochoa
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Lizbeth Camacho
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Annica R Stull-Lane
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Amber E R Van Hecke
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Jason P Mooney
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Ariel D Muñoz
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Gregory T Walker
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Daniela Hampel
- Western Human Nutrition Research Center, US Department of Agriculture, Davis, CA, USA
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Xiaowen Jiang
- Western Human Nutrition Research Center, US Department of Agriculture, Davis, CA, USA
| | - Jasmine C Labuda
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Claire E Depew
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Charles B Stephensen
- Western Human Nutrition Research Center, US Department of Agriculture, Davis, CA, USA
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
42
|
Wilburn WJ, Gabure S, Whalen MM. Interleukin 1β and interleukin 6 production in human immune cells is stimulated by the antibacterial compound Triclosan. Arch Toxicol 2024; 98:883-895. [PMID: 38055018 PMCID: PMC10922422 DOI: 10.1007/s00204-023-03654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Triclosan (TCS) is an antimicrobial compound widely used in personal hygiene products such as mouthwash and toothpaste; and has been found in human blood, breast milk, and urine. Interleukin (IL)-6 and IL-1 beta (IL-1β) are pro-inflammatory cytokines regulating cell growth, tissue repair, and immune function; increased levels of each have been associated with many diseases, including cancer. Previous studies showed that TCS at concentrations between 0.05 and 5 µM consistently increased the secretion of IL-1β and IL-6 from human immune cells within 24 h of exposure. The current study demonstrates that this increase in secretion was not due simply to release of existing stores but was due to an increase in cellular production/levels (both secreted and intracellular levels) of each of these cytokines. Production of IL-1β and IL-6 was increased by exposure to one or more concentration of TCS at each length of exposure (10 min, 30 min, 6 h, and 24 h). TCS-induced stimulation of cytokine production was shown to be dependent on the mitogen-activated protein kinase (MAPK) p44/42 (ERK 1/2). It was also shown that these TCS-induced increases in IL-1β and IL6 production were accompanied by increased mRNA for IL-1β and IL-6. The ability of TCS to increase production indicates that rather than activating a self-limiting process of depleting cells of already existing stores of IL-1β or IL-6, TCS can stimulate a process that has the capacity to provide sustained production of these cytokines and thus may lead to chronic inflammation and its pathological consequences.
Collapse
Affiliation(s)
- Wendy J Wilburn
- Department of Biology, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209, USA
| | - Sahra Gabure
- Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209, USA
| | - Margaret M Whalen
- Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209, USA.
| |
Collapse
|
43
|
Wang H, Zhu S, Zhou Z, Wang Z, Zhuang W, Xue D, Lu Z, Zheng Q, Ding L, Ren L, Luo W, Wang R, Ge G, Xia L, Li G, Wu H. TR4 worsen urosepsis by regulating GSDMD. Eur J Med Res 2024; 29:151. [PMID: 38429762 PMCID: PMC10908015 DOI: 10.1186/s40001-024-01742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Urosepsis is a life-threatening organ disease in which pathogenic microorganisms in the urine enter the blood through the vessels, causing an imbalance in the immune response to infection. The aim of this study was to elucidate the role of testicular orphan receptor 4 (TR4) in urosepsis. METHODS The role of TR4 in the progression and prognosis of urosepsis was confirmed by analyzing data from online databases and clinical human samples. To mimic urosepsis, we injected E. coli bacteria into the renal pelvis of mice to create a urosepsis model. Hematoxylin and eosin staining was used to observe histopathological changes in urosepsis. The effects of the upregulation or downregulation of TR4 on macrophage pyroptosis were verified in vitro. Chromatin immunoprecipitation assay was used to verify the effect of TR4 on Gasdermin D (GSDMD) transcription. RESULTS TR4 was more highly expressed in the nonsurviving group than in the surviving group. Furthermore, overexpressing TR4 promoted inflammatory cytokine expression, and knocking down TR4 attenuated inflammatory cytokine expression. Mechanistically, TR4 promoted pyroptosis by regulating the expression of GSDMD in urosepsis. Furthermore, we also found that TR4 knockdown protected mice from urosepsis induced by the E. coli. CONCLUSIONS TR4 functions as a key regulator of urosepsis by mediating pyroptosis, which regulates GSDMD expression. Targeting TR4 may be a potential strategy for urosepsis treatment.
Collapse
Affiliation(s)
- Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Shibin Zhu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhenwei Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhenghui Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Liangliang Ren
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wenqing Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Guangju Ge
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Haiyang Wu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
44
|
Chen L, Fang H, Li X, Yu P, Guan Y, Xiao C, Deng Z, Hei Z, Chen C, Luo C. Connexin32 gap junction channels deliver miR155-3p to mediate pyroptosis in renal ischemia-reperfusion injury. Cell Commun Signal 2024; 22:121. [PMID: 38347637 PMCID: PMC10863161 DOI: 10.1186/s12964-023-01443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVES To explore whether the gap junction (GJ) composed by connexin32(Cx32) mediated pyroptosis in renal ischemia-reperfusion(I/R) injury via transmitting miR155-3p, with aim to provide new strategies for the prevention and treatment of acute kidney injury (AKI) after renal I/R. METHODS 8-10 weeks of male C57BL/ 6 wild-type mice and Cx32 knockdown mice were divided into two groups respectively: control group and renal I/R group. MCC950 (50 mg/kg. ip.) was used to inhibit NLRP3 in vivo. Human kidney tubular epithelial cells (HK - 2) and rat kidney tubular epithelial cells (NRK-52E) were divided into high-density group and low-density group, and treated with hypoxia reoxygenation (H/R) to mimic I/R. The siRNA and plasmid of Cx32, mimic and inhibitor of miR155-3p were transfected into HK - 2 cells respectively. Kidney pathological and functional injuries were measured. Western Blot and immunofluorescent staining were used to observe the expression of NLRP3, GSDMD, GSDMD-N, IL - 18, and mature IL-18. The secretion of IL-18 and IL-1β in serum, kidney tissue and cells supernatant were detected by enzyme-linked immuno sorbent assay (ELISA) kit, and the expression of NLPR3 and miR155-3p were detected by RT-qPCR and fluorescence in situ hybridization (FISH). RESULTS Tubular pyroptosis were found to promote AKI after I/R in vivo and Cx32-GJ regulated pyroptosis by affecting the expression of miR155-3p after renal I/R injury. In vitro, H/R could lead to pyroptosis in HK-2 and NRK-52E cells. When the GJ channels were not formed, and Cx32 was inhibited or knockdown, the expression of miR155-3p was significantly reduced and the pyroptosis was obviously inhibited, leading to the reduction of injury and the increase of survival rate. Moreover, regulating the level of miR155-3p could affect survival rate and pyroptosis in vitro after H/R. CONCLUSIONS The GJ channels composed of Cx32 regulated tubular pyroptosis in renal I/R injury by transmitting miR155-3p. Inhibition of Cx32 could reduce the level of miR155-3p further to inhibit pyroptosis, leading to alleviation of renal I/R injury which provided a new strategy for preventing the occurrence of AKI. Video Abstract.
Collapse
Affiliation(s)
- Liubing Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Hongyi Fang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Xiaoyun Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Peiling Yu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Yu Guan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Cuicui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Zhizhao Deng
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.
| | - Chenfang Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
45
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
46
|
Li Z, Wang B, Tian L, Zheng B, Zhao X, Liu R. Methane-Rich Saline Suppresses ER-Mitochondria Contact and Activation of the NLRP3 Inflammasome by Regulating the PERK Signaling Pathway to Ameliorate Intestinal Ischemia‒Reperfusion Injury. Inflammation 2024; 47:376-389. [PMID: 37898993 PMCID: PMC10799159 DOI: 10.1007/s10753-023-01916-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 10/31/2023]
Abstract
Intestinal ischemia‒reperfusion (I/R) injury is a common pathological process in patients undergoing gastrointestinal surgery, leading to local intestinal damage and increased microvascular permeability, eventually causing extraintestinal multiple organ dysfunction or sepsis. The NLRP3-mediated inflammatory response is associated with I/R injury. Methane saline (MS) has anti-pyroptosis properties. This study aims to explore the protective effect of MS on intestinal I/R injury and its potential mechanisms. After MS pretreatment, the in vivo model was established by temporarily clipping the mouse superior mesentery artery with a noninvasive vascular clamp, and the in vitro model was established by OGD/R on Caco-2 cells. The results of HE and TUNEL staining showed intestinal barrier damage after I/R injury, which was consistent with the IHC staining results of tight junction proteins. Moreover, the expression of the NLRP3 signaling pathway was increased after I/R injury, and inhibition of NLRP3 activation reduced Caco-2 cell injury, indicating that NLRP3-mediated pyroptosis was one of the main forms of cell death after I/R injury. Subsequently, we found that MS treatment ameliorated intestinal barrier function after I/R injury by suppressing NLRP3-mediated pyroptosis. MS treatment also reduced mitochondria-associated membrane (MAM) formation, which was considered to be a platform for activation of the NLRP3 inflammasome. Importantly, MS reduced ER stress, which was related to the PERK signaling pathway. Knocking down PERK, a key protein involved in ER stress and MAM formation, reversed the protective effect of MS, indicating that MS suppressed NLRP3 by reducing ER stress and MAM formation. In conclusion, we believe that MS suppresses MAMs and activation of the NLRP3 inflammasome by regulating the PERK signaling pathway to ameliorate intestinal I/R injury.
Collapse
Affiliation(s)
- Zeyu Li
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, People's Republic of China.
| | - Ben Wang
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, People's Republic of China
| | - Lifei Tian
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, People's Republic of China
| | - Bobo Zheng
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, People's Republic of China
| | - Xu Zhao
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, People's Republic of China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, People's Republic of China
| |
Collapse
|
47
|
Li H, Gong J, Bian F, Yu F, Yuan H, Hu F. The role and mechanism of NLRP3 in wasp venom-induced acute kidney injury. Toxicon 2024; 238:107570. [PMID: 38103798 DOI: 10.1016/j.toxicon.2023.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Inflammation and pyroptosis have crucial impacts on the development of acute kidney injury (AKI) and have been validated in a variety of existing AKI animal models. However, the mechanisms underlying wasp venom-induced AKI are still unclear. The involvement of nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) in some mouse models of AKI has been extensively documented, and its crucial function in controlling inflammation and pyroptosis has been highlighted. The objective of our study was to investigate the role and mechanism of NLRP3 in inflammation and pyroptosis associated with wasp venom-induced AKI. METHODS A mouse model of AKI induced by wasp venom pre-injected with an NLRP3 inhibitor was used to study the role and mechanism of NLRP3. To verify the importance of NLRP3, western blotting was performed to assess the expression of NLRP3, caspase-1 p20, and gasdermin D (GSDMD)-N. Additionally, quantitative real-time polymerase was used to determine the expression of NLRP3, caspase-1, and GSDMD. Furthermore, enzyme-linked immunosorbent assay was utilized to measure the levels of interleukin (IL)-1β and IL-18. RESULTS NLRP3 was found to be the downstream signal of the stimulator of interferon genes in the wasp sting venom-induced AKI model. The administration of wasp venom in mice significantly upregulated the expression of NLRP3, leading to renal dysfunction, inflammation, and pyroptosis. Treatment with an NLRP3 inhibitor reversed the renal damage induced by wasp venom and attenuated pathological injury, inflammatory response, and pyroptosis. CONCLUSION NLRP3 activation is associated with renal failure, inflammatory response and pyroptosis in the hyper early phase of wasp venom-induced AKI. The inhibition of NLRP3 significantly weakened this phenomenon. These findings could potentially offer a viable therapeutic approach for AKI triggered by wasp venom.
Collapse
Affiliation(s)
- Haoran Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianhua Gong
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fang Bian
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fanglin Yu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| |
Collapse
|
48
|
Yang C, Zhu Q, Chen Y, Ji K, Li S, Wu Q, Pan Q, Li J. Review of the Protective Mechanism of Curcumin on Cardiovascular Disease. Drug Des Devel Ther 2024; 18:165-192. [PMID: 38312990 PMCID: PMC10838105 DOI: 10.2147/dddt.s445555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death worldwide and has been the focus of research in the medical community. Curcumin is a polyphenolic compound extracted from the root of turmeric. Curcumin has been shown to have a variety of pharmacological properties over the past decades. Curcumin can significantly protect cardiomyocyte injury after ischemia and hypoxia, inhibit myocardial hypertrophy and fibrosis, improve ventricular remodeling, reduce drug-induced myocardial injury, improve diabetic cardiomyopathy(DCM), alleviate vascular endothelial dysfunction, inhibit foam cell formation, and reduce vascular smooth muscle cells(VSMCs) proliferation. Clinical studies have shown that curcumin has a protective effect on blood vessels. Toxicological studies have shown that curcumin is safe. But high doses of curcumin also have some side effects, such as liver damage and defects in embryonic heart development. This article reviews the mechanism of curcumin intervention on CVDs in recent years, in order to provide reference for the development of new drugs in the future.
Collapse
Affiliation(s)
- Chunkun Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Yanbo Chen
- Department of Arrhythmia, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Qian Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
49
|
Vinţeler N, Feurdean CN, Petkes R, Barabas R, Boşca BA, Muntean A, Feștilă D, Ilea A. Biomaterials Functionalized with Inflammasome Inhibitors-Premises and Perspectives. J Funct Biomater 2024; 15:32. [PMID: 38391885 PMCID: PMC10889089 DOI: 10.3390/jfb15020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
This review aimed at searching literature for data regarding the inflammasomes' involvement in the pathogenesis of oral diseases (mainly periodontitis) and general pathologies, including approaches to control inflammasome-related pathogenic mechanisms. The inflammasomes are part of the innate immune response that activates inflammatory caspases by canonical and noncanonical pathways, to control the activity of Gasdermin D. Once an inflammasome is activated, pro-inflammatory cytokines, such as interleukins, are released. Thus, inflammasomes are involved in inflammatory, autoimmune and autoinflammatory diseases. The review also investigated novel therapies based on the use of phytochemicals and pharmaceutical substances for inhibiting inflammasome activity. Pharmaceutical substances can control the inflammasomes by three mechanisms: inhibiting the intracellular signaling pathways (Allopurinol and SS-31), blocking inflammasome components (VX-765, Emricasan and VX-740), and inhibiting cytokines mediated by the inflammasomes (Canakinumab, Anakinra and Rilonacept). Moreover, phytochemicals inhibit the inflammasomes by neutralizing reactive oxygen species. Biomaterials functionalized by the adsorption of therapeutic agents onto different nanomaterials could represent future research directions to facilitate multimodal and sequential treatment in oral pathologies.
Collapse
Affiliation(s)
- Norina Vinţeler
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Claudia Nicoleta Feurdean
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Regina Petkes
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Reka Barabas
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Bianca Adina Boşca
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandrina Muntean
- Department of Paediatric, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Dana Feștilă
- Department of Orthodontics, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
50
|
Yang M, Ge X, Zhou L, Guo X, Han J, Zhang Y, Yang H. Preparation and characterization of monoclonal antibodies against porcine gasdermin D protein. Appl Microbiol Biotechnol 2024; 108:173. [PMID: 38267794 PMCID: PMC10808365 DOI: 10.1007/s00253-023-12938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
Pyroptosis is a newly discovered type of pro-inflammatory programmed cell death that plays a vital role in various processes such as inflammations, immune responses, and pathogen infections. As one of the main executioners of pyroptosis, gasdermin D (GSDMD) is a membrane pore-forming protein that typically exists in a self-inhibitory state. Once activated, GSDMD will be cleaved into an N-terminal fragment with pore-forming activity, becoming the key indicator of pyroptosis activation, and a C-terminal fragment. Although commercial antibodies against human and murine GSDMD proteins are currently available, their reactivity with porcine GSDMD (pGSDMD) is poor, which limits research on the biological functions of pGSDMD and pyroptosis in pigs in vivo and in vitro. Here, five monoclonal antibodies (mAbs) were prepared by immunizing BALB/c mice with procaryotically expressed full-length pGSDMD, all of which did not cross react with human and murine GSDMD proteins. Epitope mapping demonstrated that 15H6 recognizes amino acids (aa) at positions 28-34 of pGSDMD (LQTSDRF), 19H3 recognizes 257-260aa (PPQF), 23H10 and 27A10 recognize 78-82aa (GPFYF), and 25E2 recognizes 429-435aa (PPTLLGS). The affinity constant and isotype of 15H6, 19H3, 23H10, 27A10, and 25E2 mAbs were determined to be 1.32 × 10-9, 3.66 × 10-9, 9.04 × 10-9, 1.83 × 10-9, and 8.00 × 10-8 mol/L and IgG1/κ, IgG2a/κ, IgG2a/κ, IgG1/κ, and IgG1/κ, respectively. Heavy- and light-chain variable regions sequencing showed that the heavy-chain complementarity-determining region (CDR) sequences of all five mAbs are completely different, while the light-chain CDR sequences of the four mAbs that recognize the N-terminus of pGSDMD are identical. Our prepared mAbs provide valuable materials for studying pGSDMD function and pyroptosis. KEY POINTS: • A total of five mouse anti-pGSDMD mAbs were prepared, of which four recognize the N-terminus of pGSDMD and one recognize its C-terminus. • The main performance parameters of the five mAbs, including epitope, antibody titer, affinity constant, isotype, and heavy- and light-chain CDR, were characterized. • All five mAbs specifically recognize pGSDMD protein and do not cross react with human and murine GSDMD proteins.
Collapse
Affiliation(s)
- Minhui Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| |
Collapse
|