1
|
Liu Q, Zheng Y, Sturmlechner I, Jain A, Own M, Yang Q, Zhang H, Pinto e Vairo F, Cerosaletti K, Buckner JH, Warrington KJ, Koster MJ, Weyand CM, Goronzy JJ. IKZF1 and UBR4 gene variants drive autoimmunity and Th2 polarization in IgG4-related disease. J Clin Invest 2024; 134:e178692. [PMID: 38885295 PMCID: PMC11324302 DOI: 10.1172/jci178692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
IgG4-related disease (IgG4-RD) is a systemic immune-mediated fibroinflammatory disease whose pathomechanisms remain poorly understood. Here, we identified gene variants in familial IgG4-RD and determined their functional consequences. All 3 affected members of the family shared variants of the transcription factor IKAROS, encoded by IKZF1, and the E3 ubiquitin ligase UBR4. The IKAROS variant increased binding to the FYN promoter, resulting in higher transcription of FYN in T cells. The UBR4 variant prevented the lysosomal degradation of the phosphatase CD45. In the presence of elevated FYN, CD45 functioned as a positive regulatory loop, lowering the threshold for T cell activation. Consequently, T cells from the affected family members were hyperresponsive to stimulation. When transduced with a low-avidity, autoreactive T cell receptor, their T cells responded to the autoantigenic peptide. In parallel, high expression of FYN in T cells biased their differentiation toward Th2 polarization by stabilizing the transcription factor JunB. This bias was consistent with the frequent atopic manifestations in patients with IgG4-RD, including the affected family members in the present study. Building on the functional consequences of these 2 variants, we propose a disease model that is not only instructive for IgG4-RD but also for atopic diseases and autoimmune diseases associated with an IKZF1 risk haplotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Filippo Pinto e Vairo
- Center for Individualized Medicine and Department of Clinical Genomics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
2
|
Li H, Liang L, Li J. Transcriptomic Profiling in Low-Risk Thyroid Cancer Induced by Microwave Ablation. Int J Endocrinol 2024; 2024:6674506. [PMID: 38779358 PMCID: PMC11111303 DOI: 10.1155/2024/6674506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/10/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Background Peripheral blood mononuclear cells (PBMCs) serve as the immune system's primary transportation hub outside of the affected ablated tissue. This study aims to explore the transcriptomic profiling of the immune response in PBMCs induced by microwave ablation (MWA) in low-risk thyroid cancer. Methods For eight patients diagnosed with low-risk thyroid cancer, 10 ml of peripheral venous blood was collected before MWA as well as one day and one month after MWA. mRNA was extracted from PBMCs for transcriptome next-generation gene sequencing and qRT-PCR analyses. The plasma samples were used for chemokine detection purposes. Results One day and one month after MWA, there were significant changes in GSEA, particularly in the NF-kappa B-TNFα pathway, inflammatory response, and early and late estrogen response. Common changes in differently expressed genes resulted in a significant downregulation of tumor-promoting genes (BCL3, NR6A1, and PFKFB3). One day after low-risk thyroid cancer MWA, GO enrichment analysis mainly revealed processes related to oxygen transport and other pathways. One month after MWA, GO enrichment analysis mainly revealed regulation of toll-like receptor signaling and other pathways. Furthermore, inflammation-related cytokines and regulatory genes, as well as tumor-promoting cytokines and regulatory genes, were downregulated after MWA. Conclusions This study presents a comprehensive profile of the systemic immune response induced by thermal ablation for treating low-risk thyroid cancer. More significantly, this study provides valuable insight into potential references for systemic antitumor immunity of ablation against low-risk thyroid cancer. This trial is registered with ChiCTR1900024544.
Collapse
Affiliation(s)
- Huarong Li
- Department of Ultrasound, Aerospace Center Hospital, Beijing 100049, China
| | - Lei Liang
- Department of Ultrasound, Aerospace Center Hospital, Beijing 100049, China
| | - Jianming Li
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Moghbeli M. PI3K/AKT pathway as a pivotal regulator of epithelial-mesenchymal transition in lung tumor cells. Cancer Cell Int 2024; 24:165. [PMID: 38730433 PMCID: PMC11084110 DOI: 10.1186/s12935-024-03357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Lung cancer, as the leading cause of cancer related deaths, is one of the main global health challenges. Despite various progresses in diagnostic and therapeutic methods, there is still a high rate of mortality among lung cancer patients, which can be related to the lack of clinical symptoms to differentiate lung cancer from the other chronic respiratory disorders in the early tumor stages. Most lung cancer patients are identified in advanced and metastatic tumor stages, which is associated with a poor prognosis. Therefore, it is necessary to investigate the molecular mechanisms involved in lung tumor progression and metastasis in order to introduce early diagnostic markers as well as therapeutic targets. Epithelial-mesenchymal transition (EMT) is considered as one of the main cellular mechanisms involved in lung tumor metastasis, during which tumor cells gain the metastatic ability by acquiring mesenchymal characteristics. Since, majority of the oncogenic signaling pathways exert their role in tumor cell invasion by inducing the EMT process, in the present review we discussed the role of PI3K/AKT signaling pathway in regulation of EMT process during lung tumor metastasis. It has been reported that the PI3K/AKT acts as an inducer of EMT process through the activation of EMT-specific transcription factors in lung tumor cells. MicroRNAs also exerted their inhibitory effects during EMT process by inhibition of PI3K/AKT pathway. This review can be an effective step towards introducing the PI3K/AKT pathway as a suitable therapeutic target to inhibit the EMT process and tumor metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Galli TT, de Campos EC, do Nascimento Camargo L, Fukuzaki S, Dos Santos TM, Hamaguchi SSS, Bezerra SKM, Silva FJA, Rezende BG, Dos Santos Lopes FTQ, Olivo CR, Saraiva-Romanholo BM, Prado CM, Leick EA, Bourotte CLM, Benseñor IJM, Lotufo PA, Righetti RF, Tibério IFLC. Effects of environmental exposure to iron powder on healthy and elastase-exposed mice. Sci Rep 2024; 14:9134. [PMID: 38644380 PMCID: PMC11033283 DOI: 10.1038/s41598-024-59573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/12/2024] [Indexed: 04/23/2024] Open
Abstract
Prolonged exposure to iron powder and other mineral dusts can threaten the health of individuals, especially those with COPD. The goal of this study was to determine how environmental exposure to metal dust from two different mining centers in Brazil affects lung mechanics, inflammation, remodeling and oxidative stress responses in healthy and elastase-exposed mice. This study divided 72 male C57Bl/6 mice into two groups, the summer group and the winter group. These groups were further divided into six groups: control, nonexposed (SAL); nonexposed, given elastase (ELA); exposed to metal powder at a mining company (SAL-L1 and ELA-L1); and exposed to a location three miles away from the mining company (SAL-L2 and ELA-L2) for four weeks. On the 29th day of the protocol, the researchers assessed lung mechanics, bronchoalveolar lavage fluid (BALF), inflammation, remodeling, oxidative stress, macrophage iron and alveolar wall alterations (mean linear intercept-Lm). The Lm was increased in the ELA, ELA-L1 and ELA-L2 groups compared to the SAL group (p < 0.05). There was an increase in the total number of cells and macrophages in the ELA-L1 and ELA-L2 groups compared to the other groups (p < 0.05). Compared to the ELA and SAL groups, the exposed groups (ELA-L1, ELA-L2, SAL-L1, and SAL-L2) exhibited increased expression of IL-1β, IL-6, IL-10, IL-17, TNF-α, neutrophil elastase, TIMP-1, MMP-9, MMP-12, TGF-β, collagen fibers, MUC5AC, iNOS, Gp91phox, NFkB and iron positive macrophages (p < 0.05). Although we did not find differences in lung mechanics across all groups, there were low to moderate correlations between inflammation remodeling, oxidative stress and NFkB with elastance, resistance of lung tissue and iron positive macrophages (p < 0.05). Environmental exposure to iron, confirmed by evaluation of iron in alveolar macrophages and in air, exacerbated inflammation, initiated remodeling, and induced oxidative stress responses in exposed mice with and without emphysema. Activation of the iNOS, Gp91phox and NFkB pathways play a role in these changes.
Collapse
Affiliation(s)
| | | | | | - Silvia Fukuzaki
- Faculdade de Medicina (FMUSP), São Paulo, Brazil
- Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Renato Fraga Righetti
- Faculdade de Medicina (FMUSP), São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| | - Iolanda Fátima Lopes Calvo Tibério
- Faculdade de Medicina (FMUSP), São Paulo, Brazil.
- University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, SP, 01246-903 - Laboratory LIM20, Brazil.
| |
Collapse
|
5
|
Shin SJ, Ko J, Hwang HS, Huh J, Lee CW, Lee JK, Go H. Tumoural Pellino-1 expression and Pellino-1-expressive cytotoxic T-cells are associated with poor prognosis in diffuse large B-cell lymphoma. Pathology 2024; 56:374-381. [PMID: 38296676 DOI: 10.1016/j.pathol.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 02/02/2024]
Abstract
Pellino-1 plays a role in regulating inflammation and immune responses, and its effects on tumours are complex, with different outcomes reported in various studies. Additionally, the role of Pellino-1 in diffuse large B-cell lymphoma (DLBCL) has not been thoroughly investigated. We aimed to examine the expression of Pellino-1 in tumour cells and tumour-infiltrating lymphocytes (TILs) separately and identify the clinicopathological significance of Pellino-1 expression in DLBCL. We evaluated Pellino-1 expression in 104 patients with DLBCL. The density of specific cell types was quantitatively analysed using digital image analysis after a multiplex immunofluorescence staining with Pellino-1, CD20, CD8, FOXP3, and PD-1. Pellino-1 expression was mostly observed in CD20+ tumour cells and CD8+ TILs. The high CD8+/Pellino-1+ group was significantly associated with the non-GCB subtype and higher numbers of Foxp3+ T-cells. Patients with high CD20+/Pellino-1+ and high CD8+/Pellino-1+ cell densities had significantly shorter event-free survival (EFS) rates. The multivariate Cox-regression analysis showed that CD20+/Pellino-1+ cell density and CD8+/Pellino-1+ cell density were independent poor prognostic factors for EFS. Furthermore, patients with low densities of both CD20+/Pellino-1+ and CD8+/Pellino-1+ cells demonstrated a prognosis superior to that of patients with high Pellino-1+ cell densities, either alone or in combination. Additionally, the multivariate analysis demonstrated that the combination of CD20+/Pellino-1+ and CD8+/Pellino-1+ cell densities was an independent prognostic factor for EFS and overall survival. Pellino-1 expression was observed in both tumour cells and TILs, particularly in cytotoxic T-cells, and was correlated with poor outcomes in DLBCL. Thus, Pellino-1 might have an oncogenic effect on DLBCL and might be a potential target for improving cytotoxic T-cell activity.
Collapse
Affiliation(s)
- Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Ko
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea; Research Institute, Curogen Co, Suwon, Republic of Korea
| | - Jin-Kwan Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea; Research Institute, Curogen Co, Suwon, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Fei X, Zhu C, Liu P, Liu S, Ren L, Lu R, Hou J, Gao Y, Wang X, Pan Y. PELI1: key players in the oncogenic characteristics of pancreatic Cancer. J Exp Clin Cancer Res 2024; 43:91. [PMID: 38528516 PMCID: PMC10962118 DOI: 10.1186/s13046-024-03008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly malignant gastrointestinal tumor, which is characterized by difficulties in early diagnosis, early metastasis, limited therapeutic response and a grim prognosis. Therefore, it is imperative to explore potential therapeutic targets for PC. Currently, although the involvement of the Pellino E3 Ubiquitin Protein Ligase 1 (PELI1) in the human growth of some malignant tumors has been demonstrated, its association with PC remains uncertain. METHODS Bioinformatics, qRT-PCR, Western blot and IHC were used to detect the expression of PELI1 in pancreas or PC tissues and cells at mRNA and protein levels. The effects of PELI1 on the proliferation and metastatic ability of pancreatic cancer in vitro and in vivo were investigated using CCK8, cloning formation, EdU, flow cytometry, IHC, Transwell assay, wound healing, nude mice subcutaneous tumorigenesis and intrasplenic injection to construct a liver metastasis model. The interactions of PELI1 with proteins as well as the main functions and pathways were investigated by protein profiling, Co-IP, GST-pull down, Immunofluorescence techniques, immunohistochemical co-localization and enrichment analysis. The rescue experiment verified the above experimental results. RESULTS The mRNA and protein expression levels of PELI1 in PC tissues were upregulated and were associated with poor prognosis of patients, in vitro and in vivo experiments confirmed that PELI1 can affect the proliferation and metastatic ability of PC cells. Co-IP, GST-pull down, and other experiments found that PELI1 interacted with Ribosomal Protein S3 (RPS3) through the FHA structural domain and promoted the polyubiquitination of RPS3 in the K48 chain, thereby activates the PI3K/Akt/GSK3β signaling pathway. Moreover, ubiquitinated degradation of RPS3 further reduces Tumor Protein P53 (p53) protein stability and increases p53 degradation by MDM2 Proto-Oncogene (MDM2). CONCLUSION PELI1 is overexpressed in PC, which increased ubiquitination of RPS3 proteins and activates the PI3K/Akt/GSK3β signaling pathway, as well as reduces the protective effect of RPS3 on p53 and promotes the degradation of the p53 protein, which facilitates the progression of PC and leads to a poor prognosis for patients. Therefore, PELI1 is a potential target for the treatment of PC.
Collapse
Affiliation(s)
- Xiaobin Fei
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Changhao Zhu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Peng Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Songbai Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, China
- Department of Hepatobiliary Surgery, Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Likun Ren
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Rishang Lu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Junyi Hou
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yongjia Gao
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Xing Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, China.
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China.
| | - Yaozhen Pan
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, China.
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China.
| |
Collapse
|
7
|
Du Y, Zhang H, Hu H. Ubiquitination of Immune System and Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:35-45. [PMID: 39546134 DOI: 10.1007/978-981-97-7288-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Ubiquitination is a post-translational modification mechanism which regulates a variety of signaling pathways and crucial biological processes. It has long been known that ubiquitination regulates the fundamental cellular processes through the induction of proteasomal degradation of target proteins. Meanwhile, the nondegradative types of polyubiquitination modification have been appreciated as important regulatory machinery by modulating the activity or subcellular localization of key signaling proteins. The function of ubiquitination plays an important role in immune responses, which helps to maintain the stability of the internal environment and to control over protein stability and function and are thus critical for the regulation of both innate and adaptive immunity. Furthermore, ubiquitination also regulates both tumor-suppressing and tumor-promoting pathways in cancer. In this review, we will discuss recent progress regarding how ubiquitination regulates immune responses, focusing on Toll-like receptors signaling in innate immunity, T cell activation, TCR signaling, and tumor immunotherapy.
Collapse
Affiliation(s)
- Yizhou Du
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
8
|
Liuu S, Nepelska M, Pfister H, Gamelas Magalhaes J, Chevalier G, Strozzi F, Billerey C, Maresca M, Nicoletti C, Di Pasquale E, Pechard C, Bardouillet L, Girardin SE, Boneca IG, Doré J, Blottière HM, Bonny C, Chene L, Cultrone A. Identification of a muropeptide precursor transporter from gut microbiota and its role in preventing intestinal inflammation. Proc Natl Acad Sci U S A 2023; 120:e2306863120. [PMID: 38127978 PMCID: PMC10756304 DOI: 10.1073/pnas.2306863120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The gut microbiota is a considerable source of biologically active compounds that can promote intestinal homeostasis and improve immune responses. Here, we used large expression libraries of cloned metagenomic DNA to identify compounds able to sustain an anti-inflammatory reaction on host cells. Starting with a screen for NF-κB activation, we have identified overlapping clones harbouring a heterodimeric ATP-binding cassette (ABC)-transporter from a Firmicutes. Extensive purification of the clone's supernatant demonstrates that the ABC-transporter allows for the efficient extracellular accumulation of three muropeptide precursor, with anti-inflammatory properties. They induce IL-10 secretion from human monocyte-derived dendritic cells and proved effective in reducing AIEC LF82 epithelial damage and IL-8 secretion in human intestinal resections. In addition, treatment with supernatants containing the muropeptide precursor reduces body weight loss and improves histological parameters in Dextran Sulfate Sodium (DSS)-treated mice. Until now, the source of peptidoglycan fragments was shown to come from the natural turnover of the peptidoglycan layer by endogenous peptidoglycan hydrolases. This is a report showing an ABC-transporter as a natural source of secreted muropeptide precursor and as an indirect player in epithelial barrier strengthening. The mechanism described here might represent an important component of the host immune homeostasis.
Collapse
Affiliation(s)
| | - Malgorzata Nepelska
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Food Microbial Ecology lab (Micalis), Université Paris-Saclay, Jouy-en-Josas78350, France
| | | | | | | | | | | | - Marc Maresca
- CNRS, Centrale Marseille, Institut des Sciences Moléculaires (iSm2) UMR7313, Aix Marseille Université, Marseille13013, France
| | - Cendrine Nicoletti
- CNRS, Centrale Marseille, Institut des Sciences Moléculaires (iSm2) UMR7313, Aix Marseille Université, Marseille13013, France
| | - Eric Di Pasquale
- Institut de NeuroPhysioPathologie (INP), Aix Marseille Université, UMR 7051, Marseille13005, France
| | | | | | - Stephen E. Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, CNRS Unité Mixe de Recherche 6047, INSERM U1306, Unité de Biologie et génétique de la paroi bactérienne, Paris75015, France
| | - Joel Doré
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Food Microbial Ecology lab (Micalis), Université Paris-Saclay, Jouy-en-Josas78350, France
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), MetaGenoPolis, Université Paris-Saclay, Jouy-en-Josas78350, France
| | - Hervé M. Blottière
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AgroParisTech, Food Microbial Ecology lab (Micalis), Université Paris-Saclay, Jouy-en-Josas78350, France
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), MetaGenoPolis, Université Paris-Saclay, Jouy-en-Josas78350, France
| | | | | | | |
Collapse
|
9
|
Yan L, Cui Y, Feng J. Biology of Pellino1: a potential therapeutic target for inflammation in diseases and cancers. Front Immunol 2023; 14:1292022. [PMID: 38179042 PMCID: PMC10765590 DOI: 10.3389/fimmu.2023.1292022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Pellino1 (Peli1) is a highly conserved E3 Ub ligase that exerts its biological functions by mediating target protein ubiquitination. Extensive evidence has demonstrated the crucial role of Peli1 in regulating inflammation by modulating various receptor signaling pathways, including interleukin-1 receptors, Toll-like receptors, nuclear factor-κB, mitogen-activated protein kinase, and phosphoinositide 3-kinase/AKT pathways. Peli1 has been implicated in the development of several diseases by influencing inflammation, apoptosis, necrosis, pyroptosis, autophagy, DNA damage repair, and glycolysis. Peli1 is a risk factor for most cancers, including breast cancer, lung cancer, and lymphoma. Conversely, Peli1 protects against herpes simplex virus infection, systemic lupus erythematosus, esophageal cancer, and toxic epidermolysis bullosa. Therefore, Peli1 is a potential therapeutic target that warrants further investigation. This comprehensive review summarizes the target proteins of Peli1, delineates their involvement in major signaling pathways and biological processes, explores their role in diseases, and discusses the potential clinical applications of Peli1-targeted therapy, highlighting the therapeutic prospects of Peli1 in various diseases.
Collapse
Affiliation(s)
| | | | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Liang Y, Zhong G, Ren M, Sun T, Li Y, Ye M, Ma C, Guo Y, Liu C. The Role of Ubiquitin-Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease. Neuromolecular Med 2023; 25:471-488. [PMID: 37698835 DOI: 10.1007/s12017-023-08755-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is mainly in middle-aged people and elderly people, and the pathogenesis of PD is complex and diverse. The ubiquitin-proteasome system (UPS) is a master regulator of neural development and the maintenance of brain structure and function. Dysfunction of components and substrates of this UPS has been linked to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Moreover, UPS can regulate α-synuclein misfolding and aggregation, mitophagy, neuroinflammation and oxidative stress to affect the development of PD. In the present study, we review the role of several related E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) on the pathogenesis of PD such as Parkin, CHIP, USP8, etc. On this basis, we summarize the connections and differences of different E3 ubiquitin ligases in the pathogenesis, and elaborate on the regulatory progress of different DUBs on the pathogenesis of PD. Therefore, we can better understand their relationships and provide feasible and valuable therapeutic clues for UPS-related PD treatment research.
Collapse
Affiliation(s)
- Yu Liang
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Guangshang Zhong
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Mingxin Ren
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yangyang Li
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Ming Ye
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Caiyun Ma
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yu Guo
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Changqing Liu
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China.
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
11
|
Dai X, Park JJ, Du Y, Na Z, Lam SZ, Chow RD, Renauer PA, Gu J, Xin S, Chu Z, Liao C, Clark P, Zhao H, Slavoff S, Chen S. Massively parallel knock-in engineering of human T cells. Nat Biotechnol 2023; 41:1239-1255. [PMID: 36702900 PMCID: PMC11260498 DOI: 10.1038/s41587-022-01639-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
The efficiency of targeted knock-in for cell therapeutic applications is generally low, and the scale is limited. In this study, we developed CLASH, a system that enables high-efficiency, high-throughput knock-in engineering. In CLASH, Cas12a/Cpf1 mRNA combined with pooled adeno-associated viruses mediate simultaneous gene editing and precise transgene knock-in using massively parallel homology-directed repair, thereby producing a pool of stably integrated mutant variants each with targeted gene editing. We applied this technology in primary human T cells and performed time-coursed CLASH experiments in blood cancer and solid tumor models using CD3, CD8 and CD4 T cells, enabling pooled generation and unbiased selection of favorable CAR-T variants. Emerging from CLASH experiments, a unique CRISPR RNA (crRNA) generates an exon3 skip mutant of PRDM1 in CAR-Ts, which leads to increased proliferation, stem-like properties, central memory and longevity in these cells, resulting in higher efficacy in vivo across multiple cancer models, including a solid tumor model. The versatility of CLASH makes it broadly applicable to diverse cellular and therapeutic engineering applications.
Collapse
Affiliation(s)
- Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Yaying Du
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Paul A Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Zhiyuan Chu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Cun Liao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Hongyu Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Slavoff
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Elizaldi SR, Hawes CE, Verma A, Dinasarapu AR, Lakshmanappa YS, Schlegel BT, Rajasundaram D, Li J, Durbin-Johnson BP, Ma ZM, Beckman D, Ott S, Lifson J, Morrison JH, Iyer SS. CCR7+ CD4 T Cell Immunosurveillance Disrupted in Chronic SIV-Induced Neuroinflammation in Rhesus Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555037. [PMID: 37693567 PMCID: PMC10491118 DOI: 10.1101/2023.08.28.555037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. GRAPHICAL ABSTRACT In Brief Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.
Collapse
|
13
|
Yin Y, Zhao X, Yang L, Wang K, Sun Y, Ye J. Dietary High Glycinin Reduces Growth Performance and Impairs Liver and Intestinal Health Status of Orange-Spotted Grouper ( Epinephelus coioides). Animals (Basel) 2023; 13:2605. [PMID: 37627396 PMCID: PMC10452031 DOI: 10.3390/ani13162605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of the study was to investigate whether the negative effects of dietary glycinin are linked to the structural integrity damage, apoptosis promotion and microbiota alteration in the intestine of orange-spotted grouper (Epinephelus coioides). The basal diet (FM diet) was formulated to contain 48% protein and 11% lipid. Fish meal was replaced by soybean meal (SBM) in FM diets to prepare the SBM diet. Two experimental diets were prepared, containing 4.5% and 10% glycinin in the FM diets (G-4.5 and G-10, respectively). Triplicate groups of 20 fish in each tank (initial weight: 8.01 ± 0.10 g) were fed the four diets across an 8 week growth trial period. Fish fed SBM diets had reduced growth rate, hepatosomatic index, liver total antioxidant capacity and GSH-Px activity, but elevated liver MDA content vs. FM diets. The G-4.5 exhibited maximum growth and the G-10 exhibited a comparable growth with that of the FM diet group. The SBM and G-10 diets down-regulated intestinal tight junction function genes (occludin, claudin-3 and ZO-1) and intestinal apoptosis genes (caspase-3, caspase-8, caspase-9, bcl-2 and bcl-xL), but elevated blood diamine oxidase activity, D-lactic acid and endotoxin contents related to intestinal mucosal permeability, as well as the number of intestinal apoptosis vs FM diets. The intestinal abundance of phylum Proteobacteria and genus Vibrio in SBM diets were higher than those in groups receiving other diets. As for the expression of intestinal inflammatory factor genes, in SBM and G-10 diets vs. FM diets, pro-inflammatory genes (TNF-α, IL-1β and IL-8) were up-regulated, but anti-inflammatory genes (TGF-β1 and IL-10) were down-regulated. The results indicate that dietary 10% glycinin rather than 4.5% glycinin could decrease hepatic antioxidant ability and destroy both the intestinal microbiota profile and morphological integrity through disrupting the tight junction structure of the intestine, increasing intestinal mucosal permeability and apoptosis. These results further trigger intestinal inflammatory reactions and even enteritis, ultimately leading to the poor growth of fish.
Collapse
Affiliation(s)
- Yanxia Yin
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
| | - Xingqiao Zhao
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
| | - Lulu Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
| | - Kun Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yunzhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China; (Y.Y.); (X.Z.); (L.Y.); (K.W.); (Y.S.)
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
14
|
Shao S, Zhou D, Feng J, Liu Y, Baturuhu, Yin H, Zhan D. Regulation of inflammation and immunity in sepsis by E3 ligases. Front Endocrinol (Lausanne) 2023; 14:1124334. [PMID: 37465127 PMCID: PMC10351979 DOI: 10.3389/fendo.2023.1124334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal infection-induced immune response. Despite significant advances in supportive care, sepsis remains a considerable therapeutic challenge and is the leading cause of death in the intensive care unit (ICU). Sepsis is characterized by initial hyper-inflammation and late immunosuppression. Therefore, immune-modulatory therapies have great potential for novel sepsis therapies. Ubiquitination is an essential post-translational protein modification, which has been known to be intimately involved in innate and adaptive immune responses. Several E3 ubiquitin ligases have been implicated in innate immune signaling and T-cell activation and differentiation. In this article, we review the current literature and discuss the role of E3 ligases in the regulation of immune response and their effects on the course of sepsis to provide insights into the prevention and therapy for sepsis.
Collapse
Affiliation(s)
- Shasha Shao
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Liu
- Obstetrics and Gynecology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baturuhu
- Department of Neurosurgery Intensive Care Unit (ICU), People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Huimei Yin
- Department of Emergency Medicine, People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Daqian Zhan
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Jensen LE. Pellino Proteins in Viral Immunity and Pathogenesis. Viruses 2023; 15:1422. [PMID: 37515108 PMCID: PMC10383966 DOI: 10.3390/v15071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Pellino proteins are a family of evolutionarily conserved ubiquitin ligases involved in intracellular signaling in a wide range of cell types. They are essential for microbe detection and the initiation of innate and adaptive immune responses. Some viruses specifically target the Pellino proteins as part of their immune evasion strategies. Through studies of mouse models of viral infections in the central nervous system, heart, lungs, and skin, the Pellino proteins have been linked to both beneficial and detrimental immune responses. Only in recent years have some of the involved mechanisms been identified. The objective of this review is to highlight the many diverse aspects of viral immunity and pathogenesis that the Pellino proteins have been associated with, in order to promote further research into their functions. After a brief introduction to the cellular signaling mechanisms involving Pellino proteins, their physiological roles in the initiation of immune responses, pathogenesis through excess inflammation, immune regulation, and cell death are presented. Known viral immune evasion strategies are also described. Throughout, areas that require more in-depth investigation are identified. Future research into the functions of the Pellino protein family may reveal fundamental insights into how our immune system works. Such knowledge may be leveraged in the fight against viral infections and their sequala.
Collapse
Affiliation(s)
- Liselotte E Jensen
- Department of Microbiology, Immunology and Inflammation, Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
16
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
17
|
Laletin V, Bernard PL, Costa da Silva C, Guittard G, Nunes JA. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J Immunother Cancer 2023; 11:e005845. [PMID: 37217244 PMCID: PMC10231026 DOI: 10.1136/jitc-2022-005845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Vladimir Laletin
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Pierre-Louis Bernard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Cathy Costa da Silva
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Geoffrey Guittard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Jacques A Nunes
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| |
Collapse
|
18
|
Xu W, Yang T, Lou X, Chen J, Wang X, Hu M, An D, Gao R, Wang J, Chen X. Role of the Peli1-RIPK1 Signaling Axis in Methamphetamine-Induced Neuroinflammation. ACS Chem Neurosci 2023; 14:864-874. [PMID: 36763609 DOI: 10.1021/acschemneuro.2c00623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Severe neurological inflammation is one of the main symptoms of methamphetamine (meth)-induced brain injury. Studies have demonstrated that meth exposure facilitates neuroinflammation via Pellino E3 ubiquitin protein ligase 1 (Peli1)-mediated signaling. However, the involved mechanisms remain incompletely understood. Herein, we used Peli1-/- mice and Peli1-knockdown microglial BV2 cells to decipher the roles of Peli1 and downstream signaling in meth-induced neuroinflammation. After meth administration for seven consecutive days, Peli1-/- mice exhibited better learning and memory behavior and dramatically lower interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 levels than wild-type mice. Moreover, in vitro experiments revealed that Peli1 knockdown significantly attenuated the meth-induced upregulation of cytokines. Besides, meth markedly activated and increased the levels of receptor-interacting protein kinase 1 (RIPK1), and Peli1 knockout or knockdown prevented these effects, indicating that RIPK1 participated in meth-induced Peli1-mediated inflammation. Specifically, treating the cells with necrostatin-1(Nec-1), an antagonist of RIPK1, remarkably inhibited the meth-induced increase in IL-1β, TNF-α, and IL-6 expression, confirming the involvement of RIPK1 in Peli1-mediated neuroinflammation. Finally, meth induced a dramatic transfer of the mixed lineage kinase domain-like protein, a downstream effector of RIRK1, to the cell membrane, disrupting membrane integrity and causing cytokine excretion. Therefore, targeting the Peli1-RIPK1 signaling axis is a potentially valid therapeutic approach against meth-induced neuroinflammation.
Collapse
Affiliation(s)
- Weixiao Xu
- Department of Emergency Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Tingyu Yang
- Wujin District Center for Disease Prevention and Control, Changzhou 213100, Jiangsu, China
| | - Xinyu Lou
- The Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, Jiangsu, China
| | - Jingrong Chen
- The Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, Jiangsu, China
| | - Xi Wang
- The Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, Jiangsu, China
| | - Miaoyang Hu
- The Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, Jiangsu, China
| | - Di An
- Department of Emergency Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jun Wang
- The Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, Jiangsu, China
| | - Xufeng Chen
- Department of Emergency Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
19
|
Mo H, Wang Z, He Z, Wan J, Lu R, Wang C, Chen A, Cheng P. Decreased Peli1 expression attenuates osteoarthritis by protecting chondrocytes and inhibiting M1-polarization of macrophages. Bone Joint Res 2023; 12:121-132. [PMID: 36718653 PMCID: PMC9950670 DOI: 10.1302/2046-3758.122.bjr-2022-0214.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Pellino1 (Peli1) has been reported to regulate various inflammatory diseases. This study aims to explore the role of Peli1 in the occurrence and development of osteoarthritis (OA), so as to find new targets for the treatment of OA. METHODS After inhibiting Peli1 expression in chondrocytes with small interfering RNA (siRNA), interleukin (IL)-1β was used to simulate inflammation, and OA-related indicators such as synthesis, decomposition, inflammation, and apoptosis were detected. Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signalling pathway were detected. After inhibiting the expression of Peli1 in macrophages Raw 264.7 with siRNA and intervening with lipopolysaccharide (LPS), the polarization index of macrophages was detected, and the supernatant of macrophage medium was extracted as conditioned medium to act on chondrocytes and detect the apoptosis index. The OA model of mice was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity to reduce the expression of Peli1. The degree of cartilage destruction and synovitis were evaluated by haematoxylin and eosin (H&E) staining, Safranin O/Fast Green staining, and immunohistochemistry. RESULTS In chondrocytes, knockdown of Peli1 produced anti-inflammatory and anti-apoptotic effects by targeting the TLR and NF-κB signalling pathways. We found that in macrophages, knockdown of Peli1 can inhibit M1-type polarization of macrophages. In addition, the corresponding conditioned culture medium of macrophages applied to chondrocytes can also produce an anti-apoptotic effect. During in vivo experiments, the results have also shown that knockdown Peli1 reduces cartilage destruction and synovial inflammation. CONCLUSION Knockdown of Peli1 has a therapeutic effect on OA, which therefore makes it a potential therapeutic target for OA.Cite this article: Bone Joint Res 2023;12(2):121-132.
Collapse
Affiliation(s)
- Haokun Mo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junlai Wan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenwen Wang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, Anmin Chen. E-mail:
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Chen H, Hou Y, Zhai Y, Yang J, Que L, Liu J, Lu L, Ha T, Li C, Xu Y, Li J, Li Y. Peli1 deletion in macrophages attenuates myocardial ischemia/reperfusion injury by suppressing M1 polarization. J Leukoc Biol 2023; 113:95-108. [PMID: 36822176 DOI: 10.1093/jleuko/qiac012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 01/18/2023] Open
Abstract
The polarization of macrophages to the M1 or M2 phenotype has a pivotal role in inflammatory response following myocardial ischemia/reperfusion injury. Peli1, an E3 ubiquitin ligase, is closely associated with inflammation and autoimmunity as an important regulatory protein in the Toll-like receptor signaling pathway. We aimed to explore the function of Peli1 in macrophage polarization under myocardial ischemia/reperfusion injury and elucidate the possible mechanisms. We show here that Peli1 is upregulated in peripheral blood mononuclear cells from patients with myocardial ischemia/reperfusion, which is correlated with myocardial injury and cardiac dysfunction. We also found that the proportion of M1 macrophages was reduced and myocardial infarct size was decreased, paralleling improvement of cardiac function in mice with Peli1 deletion in hematopoietic cells or macrophages. Macrophage Peli1 deletion lessened M1 polarization and reduced the migratory ability in vitro. Mechanistically, Peli1 contributed to M1 polarization by promoting K63-linked ubiquitination and nuclear translocation of IRF5. Moreover, Peli1 deficiency in macrophages reduced the apoptosis of cardiomyocytes in vivo and in vitro. Together, our study demonstrates that Peli1 deficiency in macrophages suppresses macrophage M1 polarization and alleviates myocardial ischemia/reperfusion injury by inhibiting the nuclear translocation of IRF5, which may serve as a potential intervention target for myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yuxing Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China.,Department of Pathology, Wannan Medical College, 22 Wenchang West Road, Wuhu 241002, Anhui, China
| | - Yali Zhai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Jie Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Linli Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Jichun Liu
- Department of Cardiology, Affiliated Yijishan Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Linming Lu
- Department of Pathology, Wannan Medical College, 22 Wenchang West Road, Wuhu 241002, Anhui, China
| | - Tuanzhu Ha
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, United States
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, United States
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| |
Collapse
|
21
|
Diener C, Hart M, Fecher-Trost C, Knittel J, Rheinheimer S, Meyer MR, Mayer J, Flockerzi V, Keller A, Meese E. Outside the limit: questioning the distance restrictions for cooperative miRNA binding sites. Cell Mol Biol Lett 2023; 28:8. [PMID: 36694129 PMCID: PMC9875415 DOI: 10.1186/s11658-023-00421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Among the concepts in biology that are widely taken granted is a potentiated cooperative effect of multiple miRNAs on the same target. This strong hypothesis contrasts insufficient experimental evidence. The quantity as well as the quality of required side constraints of cooperative binding remain largely hidden. For miR-21-5p and miR-155-5p, two commonly investigated regulators across diseases, we selected 15 joint target genes. These were chosen to represent various neighboring 3'UTR binding site constellations, partially exceeding the distance rules that have been established for over a decade. We identified different cooperative scenarios with the binding of one miRNA enhancing the binding effects of the other miRNA and vice versa. Using both, reporter assays and whole proteome analyses, we observed these cooperative miRNA effects for genes that bear 3'UTR binding sites at distances greater than the previously defined limits. Astonishingly, the experiments provide even stronger evidence for cooperative miRNA effects than originally postulated. In the light of these findings the definition of targetomes specified for single miRNAs need to be refined by a concept that acknowledges the cooperative effects of miRNAs.
Collapse
Affiliation(s)
- Caroline Diener
- grid.11749.3a0000 0001 2167 7588Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Martin Hart
- grid.11749.3a0000 0001 2167 7588Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Claudia Fecher-Trost
- grid.11749.3a0000 0001 2167 7588Department of Experimental and Clinical Pharmacology & Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Jessica Knittel
- grid.11749.3a0000 0001 2167 7588Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Stefanie Rheinheimer
- grid.11749.3a0000 0001 2167 7588Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Markus R. Meyer
- grid.11749.3a0000 0001 2167 7588Department of Experimental and Clinical Toxicology & Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Jens Mayer
- grid.11749.3a0000 0001 2167 7588Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- grid.11749.3a0000 0001 2167 7588Department of Experimental and Clinical Pharmacology & Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Andreas Keller
- grid.11749.3a0000 0001 2167 7588Chair for Clinical Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany ,grid.461899.bHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Eckart Meese
- grid.11749.3a0000 0001 2167 7588Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
22
|
Kim SH, Oh J, Roh WS, Park J, Chung KB, Lee GH, Lee YS, Kim JH, Lee HK, Lee H, Park CO, Kim DY, Lee MG, Kim TG. Pellino-1 promotes intrinsic activation of skin-resident IL-17A-producing T cells in psoriasis. J Allergy Clin Immunol 2023; 151:1317-1328. [PMID: 36646143 DOI: 10.1016/j.jaci.2022.12.823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Psoriasis is a chronically relapsing inflammatory skin disease primarily perpetuated by skin-resident IL-17-producing T (T17) cells. Pellino-1 (Peli1) belongs to a member of E3 ubiquitin ligase mediating immune receptor signaling cascades, including nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway. OBJECTIVE We explored the potential role of Peli1 in psoriatic inflammation in the context of skin-resident T17 cells. METHODS We performed single-cell RNA sequencing of relapsing and resolved psoriatic lesions with analysis for validation data set of psoriasis. Mice with systemic and conditional depletion of Peli1 were generated to evaluate the role of Peli1 in imiquimod-induced psoriasiform dermatitis. Pharmacologic inhibition of Peli1 in human CD4+ T cells and ex vivo human skin cultures was also examined to evaluate its potential therapeutic implications. RESULTS Single-cell RNA sequencing analysis revealed distinct T-cell subsets in relapsing psoriasis exhibiting highly enriched gene signatures for (1) tissue-resident T cells, (2) T17 cells, and (3) NF-κB signaling pathway including PELI1. Peli1-deficient mice were profoundly protected from psoriasiform dermatitis, with reduced IL-17A production and NF-κB activation in γδ T17 cells. Mice with conditional depletion of Peli1 treated with FTY720 revealed that Peli1 was intrinsically required for the skin-resident T17 cell immune responses. Notably, pharmacologic inhibition of Peli1 significantly ameliorated murine psoriasiform dermatitis and IL-17A production from the stimulated human CD4+ T cells and ex vivo skin explants modeling psoriasis. CONCLUSION Targeting Peli1 would be a promising therapeutic strategy for psoriasis by limiting skin-resident T17 cell immune responses.
Collapse
Affiliation(s)
- Sung Hee Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jongwook Oh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Won Seok Roh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeyun Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Bae Chung
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | - Jong Hoon Kim
- Deparment of Dermatology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Korea
| | - Chang-Ook Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Do-Young Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Geol Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Regulatory T Cells Overexpressing Peli1 Show Better Efficacy in Repairing Ovarian Endocrine Function in Autoimmune Premature Ovarian Insufficiency. J Transl Med 2023; 103:100005. [PMID: 37039145 DOI: 10.1016/j.labinv.2022.100005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023] Open
Abstract
Regulatory T (Treg) cell dysfunction is involved in the pathogenesis of autoimmune premature ovarian insufficiency (POI). Adoptive transfer of Treg cells has been shown to be effective in the treatment of autoimmune POI in mice. However, the therapeutic effect of Treg cell therapy is limited because the phenotype and function of Treg cells is not properly maintained when they are reinfused in an inflammatory environment. Therefore, enhancing the function of Treg cells using genetic engineering is of great significance for improving the efficacy of Treg cells in the treatment of immune diseases. In this study, we investigated the role of the E3 ubiquitinated ligase Pellino 1 (Peli1) in the proliferation and immunosuppressive function of Treg cells and the therapeutic effect of Treg cells overexpressing Peli1 on autoimmune POI. The results showed that the overexpression of Peli1 promoted cell proliferation and enhanced the immunosuppressive function of Treg cells in vitro. After the adoptive transfer of Treg cells overexpressing Peli1 in autoimmune POI mice, the apoptosis rate of ovarian granulosa cells declined. The levels of the inflammatory inhibitors interleukin 10 and transforming growth factor-β as well as the ovarian hormone estradiol were elevated. The number of primordial, primary, secondary, and mature follicles was restored to a certain extent compared with those in control subjects. These results revealed that the adoptive transfer of Treg cells overexpressing Peli1 promoted its efficacy against zona pellucida protein 3 peptide-induced POI, which provides new insights into the treatment of autoimmune POI.
Collapse
|
24
|
Pando A, Schorl C, Fast LD, Reagan JL. Tumor Derived Extracellular Vesicles Modulate Gene Expression in T cells. Gene 2023; 850:146920. [DOI: 10.1016/j.gene.2022.146920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022]
|
25
|
Tangos M, Budde H, Kolijn D, Sieme M, Zhazykbayeva S, Lódi M, Herwig M, Gömöri K, Hassoun R, Robinson EL, Meister TL, Jaquet K, Kovács Á, Mustroph J, Evert K, Babel N, Fagyas M, Lindner D, Püschel K, Westermann D, Mannherz HG, Paneni F, Pfaender S, Tóth A, Mügge A, Sossalla S, Hamdani N. SARS-CoV-2 infects human cardiomyocytes promoted by inflammation and oxidative stress. Int J Cardiol 2022; 362:196-205. [PMID: 35643215 PMCID: PMC9132721 DOI: 10.1016/j.ijcard.2022.05.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Introduction The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Although the mechanisms underlying SARS-CoV-2-related cardiac damage remain elusive, inflammation (i.e. ‘cytokine storm’) and oxidative stress are likely involved. Methods and results Here we sought to determine: 1) if cardiomyocytes are targeted by SARS-CoV-2 and 2) how inflammation and oxidative stress promote the viral entry into cardiac cells. We analysed pro-inflammatory and oxidative stress and its impact on virus entry and virus-associated cardiac damage from SARS-CoV-2 infected patients and compared it to left ventricular myocardial tissues obtained from non-infected transplanted hearts either from end stage heart failure or non-failing hearts (donor group). We found that neuropilin-1 potentiates SARS-CoV-2 entry into human cardiomyocytes, a phenomenon driven by inflammatory and oxidant signals. These changes accounted for increased proteases activity and apoptotic markers thus leading to cell damage and apoptosis. Conclusion This study provides new insights into the mechanisms of SARS-CoV-2 entry into the heart and defines promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities.
Collapse
Affiliation(s)
- Melina Tangos
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Detmar Kolijn
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Marcel Sieme
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Saltanat Zhazykbayeva
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Mária Lódi
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Medical Faculty, Bochum, Germany
| | - Melissa Herwig
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Kamilla Gömöri
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Emma Louise Robinson
- School of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Toni Luise Meister
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Kornelia Jaquet
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Miklós Fagyas
- Center for Molecular Cardiology, University of Zürich, University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | - Diana Lindner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Germany
| | - Hans Georg Mannherz
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland; University Heart Center, Cardiology, Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, Debrecen, Hungary
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany; Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
26
|
Raimondo S, Urzì O, Meraviglia S, Di Simone M, Corsale AM, Rabienezhad Ganji N, Palumbo Piccionello A, Polito G, Lo Presti E, Dieli F, Conigliaro A, Alessandro R. Anti-inflammatory properties of lemon-derived extracellular vesicles are achieved through the inhibition of ERK/NF-κB signalling pathways. J Cell Mol Med 2022; 26:4195-4209. [PMID: 35789531 PMCID: PMC9344827 DOI: 10.1111/jcmm.17404] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 05/08/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is associated with the occurrence of several diseases. However, the side effects of anti-inflammatory drugs prompt the identification of new therapeutic strategies. Plant-derived extracellular vesicles (PDEVs) are gaining increasing interest in the scientific community for their biological properties. We isolated PDEVs from the juice of Citrus limon L. (LEVs) and characterized their flavonoid, limonoid and lipid contents through reversed-phase high-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (RP-HPLC-ESI-Q-TOF-MS). To investigate whether LEVs have a protective role on the inflammatory process, murine and primary human macrophages were pre-treated with LEVs for 24 h and then were stimulated with lipopolysaccharide (LPS). We found that pre-treatment with LEVs decreased gene and protein expression of pro-inflammatory cytokines, such as IL-6, IL1-β and TNF-α, and reduced the nuclear translocation and phosphorylation of NF-κB in LPS-stimulated murine macrophages. The inhibition of NF-κB activation was associated with the reduction in ERK1-2 phosphorylation. Furthermore, the ability of LEVs to decrease pro-inflammatory cytokines and increase anti-inflammatory molecules was confirmed ex vivo in human primary T lymphocytes. In conclusion, we demonstrated that LEVs exert anti-inflammatory effects both in vitro and ex vivo by inhibiting the ERK1-2/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Stefania Raimondo
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica AvanzataUniversità degli Studi di PalermoPalermoItaly
| | - Ornella Urzì
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica AvanzataUniversità degli Studi di PalermoPalermoItaly
| | - Serena Meraviglia
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica AvanzataUniversità degli Studi di PalermoPalermoItaly
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR)AOUP Paolo GiacconePalermoItaly
| | - Marta Di Simone
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica AvanzataUniversità degli Studi di PalermoPalermoItaly
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR)AOUP Paolo GiacconePalermoItaly
| | - Anna Maria Corsale
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica AvanzataUniversità degli Studi di PalermoPalermoItaly
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR)AOUP Paolo GiacconePalermoItaly
| | - Nima Rabienezhad Ganji
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica AvanzataUniversità degli Studi di PalermoPalermoItaly
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Giulia Polito
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation (IRIB)National Research Council (CNR)PalermoItaly
| | - Francesco Dieli
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica AvanzataUniversità degli Studi di PalermoPalermoItaly
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR)AOUP Paolo GiacconePalermoItaly
| | - Alice Conigliaro
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica AvanzataUniversità degli Studi di PalermoPalermoItaly
| | - Riccardo Alessandro
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica AvanzataUniversità degli Studi di PalermoPalermoItaly
- Institute for Biomedical Research and Innovation (IRIB)National Research Council (CNR)PalermoItaly
| |
Collapse
|
27
|
Burger F, Baptista D, Roth A, Brandt KJ, Miteva K. The E3 Ubiquitin Ligase Peli1 Deficiency Promotes Atherosclerosis Progression. Cells 2022; 11:cells11132014. [PMID: 35805095 PMCID: PMC9265341 DOI: 10.3390/cells11132014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Atherosclerosis is a chronic inflammatory vascular disease and the main cause of death and morbidity. Emerging evidence suggests that ubiquitination plays an important role in the pathogenesis of atherosclerosis including control of vascular inflammation, vascular smooth muscle cell (VSMC) function and atherosclerotic plaque stability. Peli1 a type of E3 ubiquitin ligase has emerged as a critical regulator of innate and adaptive immunity, however, its role in atherosclerosis remains to be elucidated. Methods: Apoe−/− mice and Peli1-deficient Apoe−/− Peli1−/− mice were subject to high cholesterol diet. Post sacrifice, serum was collected, and atherosclerotic plaque size and parameters of atherosclerotic plaque stability were evaluated. Immunoprofiling and foam cell quantification were performed. Results: Peli1 deficiency does not affect atherosclerosis lesion burden and cholesterol levels, but promotes VSMCs foam cells formation, necrotic core expansion, collagen, and fibrous cap reduction. Apoe−/− Peli1−/− mice exhibit a storm of inflammatory cytokines, expansion of Th1, Th1, Th17, and Tfh cells, a decrease in regulatory T and B cells and induction of pro-atherogenic serum level of IgG2a and IgE. Conclusions: In the present study, we uncover a crucial role for Peli1 in atherosclerosis as an important regulator of inflammation and VSMCs phenotypic modulation and subsequently atherosclerotic plaque destabilization.
Collapse
|
28
|
Vazquez C, Jurado KA. Neurotropic RNA Virus Modulation of Immune Responses within the Central Nervous System. Int J Mol Sci 2022; 23:ijms23074018. [PMID: 35409387 PMCID: PMC8999457 DOI: 10.3390/ijms23074018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
The central nervous system (CNS) necessitates intricately coordinated immune responses to prevent neurological disease. However, the emergence of viruses capable of entering the CNS and infecting neurons threatens this delicate balance. Our CNS is protected from foreign invaders and excess solutes by a semipermeable barrier of endothelial cells called the blood–brain barrier. Thereby, viruses have implemented several strategies to bypass this protective layer and modulate immune responses within the CNS. In this review, we outline these immune regulatory mechanisms and provide perspectives on future questions in this rapidly expanding field.
Collapse
|
29
|
Cammann C, Israel N, Slevogt H, Seifert U. Recycling and Reshaping-E3 Ligases and DUBs in the Initiation of T Cell Receptor-Mediated Signaling and Response. Int J Mol Sci 2022; 23:ijms23073424. [PMID: 35408787 PMCID: PMC8998186 DOI: 10.3390/ijms23073424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
T cell activation plays a central role in supporting and shaping the immune response. The induction of a functional adaptive immune response requires the control of signaling processes downstream of the T cell receptor (TCR). In this regard, protein phosphorylation and dephosphorylation have been extensively studied. In the past decades, further checkpoints of activation have been identified. These are E3 ligases catalyzing the transfer of ubiquitin or ubiquitin-like proteins to protein substrates, as well as specific peptidases to counteract this reaction, such as deubiquitinating enzymes (DUBs). These posttranslational modifications can critically influence protein interactions by targeting proteins for degradation by proteasomes or mediating the complex formation required for active TCR signaling. Thus, the basic aspects of T cell development and differentiation are controlled by defining, e.g., the threshold of activation in positive and negative selection in the thymus. Furthermore, an emerging role of ubiquitination in peripheral T cell tolerance has been described. Changes in the function and abundance of certain E3 ligases or DUBs involved in T cell homeostasis are associated with the development of autoimmune diseases. This review summarizes the current knowledge of E3 enzymes and their target proteins regulating T cell signaling processes and discusses new approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (C.C.); (U.S.); Tel.: +49-3834-86-5568 (C.C.); +49-3834-86-5587 (U.S.)
| | - Nicole Israel
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Hortense Slevogt
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745 Jena, Germany;
- Department of Pulmonary Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (C.C.); (U.S.); Tel.: +49-3834-86-5568 (C.C.); +49-3834-86-5587 (U.S.)
| |
Collapse
|
30
|
Yang CA, Huang YL, Chiang BL. Innate immune response analysis in COVID-19 and kawasaki disease reveals MIS-C predictors. J Formos Med Assoc 2022; 121:623-632. [PMID: 34193364 PMCID: PMC8214167 DOI: 10.1016/j.jfma.2021.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/PURPOSE The association between dysregulated innate immune responses seen in Kawasaki disease (KD) with predisposition to Kawasaki-like multisystem inflammatory syndrome in children (MIS-C) remains unclear. We aimed to compare the innate immunity transcriptome signature between COVID-19 and KD, and to analyze the interactions of these molecules with genes known to predispose to KD. METHODS Transcriptome datasets of COVID-19 and KD cohorts (E-MTAB-9357, GSE-63881, GSE-68004) were downloaded from ArrayExpress for innate immune response analyses. Network analysis was used to determine enriched pathways of interactions. RESULTS Upregulations of IRAK4, IFI16, STING, STAT3, PYCARD, CASP1, IFNAR1 and CD14 genes were observed in blood cells of acute SARS-CoV-2 infections with moderate severity. In the same patient group, increased expressions of TLR2, TLR7, IRF3, and CD36 were also noted in blood drawn a few days after COVID-19 diagnosis. Elevated blood PYCARD level was associated with severe COVID-19 in adults. Similar gene expression signature except differences in TLR8, NLRP3, STING and IRF3 levels was detected in KD samples. Network analysis on innate immune genes and genes associated with KD susceptibility identified enriched pathways of interactions. Furthermore, higher expression levels of KD susceptibility genes HLA-DOB, PELI1 and FCGR2A correlated with COVID-19 of different severities. CONCLUSION Our findings suggest that most enriched innate immune response pathways were shared between transcriptomes of KD and COVID-19 with moderate severity. Genetic polymorphisms associated with innate immune dysregulation and KD susceptibility, together with variants in STING and STAT3, might predict COVID-19 severity and potentially susceptibility to COVID-19 related MIS-C.
Collapse
Affiliation(s)
- Chin-An Yang
- College of Medicine, China Medical University, Taichung, 40402, Taiwan; Divisions of Laboratory Medicine and Pediatrics, China Medical University Hsinchu Hospital, Zhubei City, Hsinchu County, 302, Taiwan
| | - Ya-Ling Huang
- Divisions of Laboratory Medicine and Pediatrics, China Medical University Hsinchu Hospital, Zhubei City, Hsinchu County, 302, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
31
|
Zhang E, Li X. The Emerging Roles of Pellino Family in Pattern Recognition Receptor Signaling. Front Immunol 2022; 13:728794. [PMID: 35197966 PMCID: PMC8860249 DOI: 10.3389/fimmu.2022.728794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
The Pellino family is a novel and well-conserved E3 ubiquitin ligase family and consists of Pellino1, Pellino2, and Pellino3. Each family member exhibits a highly conserved structure providing ubiquitin ligase activity without abrogating cell and structure-specific function. In this review, we mainly summarized the crucial roles of the Pellino family in pattern recognition receptor-related signaling pathways: IL-1R signaling, Toll-like signaling, NOD-like signaling, T-cell and B-cell signaling, and cell death-related TNFR signaling. We also summarized the current information of the Pellino family in tumorigenesis, microRNAs, and other phenotypes. Finally, we discussed the outstanding questions of the Pellino family in immunity.
Collapse
Affiliation(s)
- E Zhang
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- *Correspondence: Xia Li,
| |
Collapse
|
32
|
Park J, Lee SY, Jeon Y, Kim KM, Lee JK, Ko J, Park EJ, Yoon JS, Kang BE, Ryu D, Lee H, Shin SJ, Go H, Lee CW. The Pellino1-PKCθ signaling axis is an essential target for improving anti-tumor CD8+ T-lymphocyte function. Cancer Immunol Res 2022; 10:327-342. [DOI: 10.1158/2326-6066.cir-21-0419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
|
33
|
Colon cancer cells acquire immune regulatory molecules from tumor-infiltrating lymphocytes by trogocytosis. Proc Natl Acad Sci U S A 2021; 118:2110241118. [PMID: 34819374 DOI: 10.1073/pnas.2110241118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Cancer cells can develop an immunosuppressive tumor microenvironment to control tumor-infiltrating lymphocytes. The underlying mechanisms still remain unclear. Here, we report that mouse and human colon cancer cells acquire lymphocyte membrane proteins including cellular markers such as CD4 and CD45. We observed cell populations harboring both a tumor-specific marker and CD4 in the tumor microenvironment. Sorted cells from these populations were capable of forming organoids, identifying them as cancer cells. Live imaging analysis revealed that lymphocyte membrane proteins were transferred to cancer cells via trogocytosis. As a result of the transfer in vivo, cancer cells also acquired immune regulatory surface proteins such as CTLA4 and Tim3, which suppress activation of immune cells [T. L. Walunas et al, Immunity 1, 405-413 (1994) and L. Monney et al., Nature 415, 536-541 (2002)]. RNA sequencing analysis of ex vivo-cocultured splenocytes with trogocytic cancer cells showed reductions in Th1 activation and natural killer cell signaling pathways compared with the nontrogocytic control. Cancer cell trogocytosis was confirmed in the patient-derived xenograft models of colorectal cancer and head and neck cancer. These findings suggest that cancer cells utilize membrane proteins expressed in lymphocytes, which in turn contribute to the development of the immunosuppressive tumor microenvironment.
Collapse
|
34
|
Dai D, Zhou H, Yin L, Ye F, Yuan X, You T, Zhao X, Long W, Wang D, He X, Feng J, Chen D. PELI1 promotes radiotherapy sensitivity by inhibiting noncanonical NF-κB in esophageal squamous cancer. Mol Oncol 2021; 16:1384-1401. [PMID: 34738714 PMCID: PMC8936515 DOI: 10.1002/1878-0261.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022] Open
Abstract
The low sensitivity of radiotherapy is the main cause of tumor tolerance against ionizing radiation (IR). However, the molecular mechanisms by which radiosensitivity is controlled remain elusive. Here, we observed that high expression of pellino E3 ubiquitin protein ligase 1 (PELI1) was correlated with improved prognosis in human esophageal squamous cell carcinoma stage III patients that received adjuvant radiotherapy. Moreover, we found PELI1‐mediated IR‐induced tumor cell apoptosis in vivo and in vitro. Mechanistically, PELI1 mediated the lysine 48 (Lys48)–linked polyubiquitination and degradation of NF‐κB–inducing kinase (NIK; also known as MAP3K14), the master kinase of the noncanonical NF‐κB pathway, thereby inhibiting IR‐induced activation of the noncanonical NF‐κB signaling pathway during radiotherapy. As a consequence, PELI1 inhibited the noncanonical NF‐κB–induced expression of the anti‐apoptotic gene BCL2 like 1 (Bclxl; also known as BCL2L1), leading to an enhancement of the IR‐induced apoptosis signaling pathway and ultimately promoting IR‐induced apoptosis in tumor cells. Therefore, Bclxl or NIK knockdown abolished the apoptosis‐resistant effect in PELI1‐knockdown tumor cells after radiotherapy. These findings establish PELI1 as a critical tumor intrinsic regulator in controlling the sensitivity of tumor cells to radiotherapy through modulating IR‐induced noncanonical NF‐κB expression.
Collapse
Affiliation(s)
- Dongfang Dai
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongping Zhou
- Department of Radiotherapy, The Affiliated BenQ Hospital of Nanjing Medical University, China
| | - Li Yin
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Fei Ye
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Yuan
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tao You
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaohui Zhao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Weiguo Long
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
35
|
Oleszycka E, Rodgers AM, Xu L, Moynagh PN. Dendritic Cell-Specific Role for Pellino2 as a Mediator of TLR9 Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2021; 207:2325-2336. [PMID: 34588221 PMCID: PMC8525870 DOI: 10.4049/jimmunol.2100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Ubiquitination regulates immune signaling, and multiple E3 ubiquitin ligases have been studied in the context of their role in immunity. Despite this progress, the physiological roles of the Pellino E3 ubiquitin ligases, especially Pellino2, in immune regulation remain largely unknown. Accordingly, this study aimed to elucidate the role of Pellino2 in murine dendritic cells (DCs). In this study, we reveal a critical role of Pellino2 in regulation of the proinflammatory response following TLR9 stimulation. Pellino2-deficient murine DCs show impaired secretion of IL-6 and IL-12. Loss of Pellino2 does not affect TLR9-induced activation of NF-κB or MAPKs, pathways that drive expression of IL-6 and IL-12. Furthermore, DCs from Pellino2-deficient mice show impaired production of type I IFN following endosomal TLR9 activation, and it partly mediates a feed-forward loop of IFN-β that promotes IL-12 production in DCs. We also observe that Pellino2 in murine DCs is downregulated following TLR9 stimulation, and its overexpression induces upregulation of both IFN-β and IL-12, demonstrating the sufficiency of Pellino2 in driving these responses. This suggests that Pellino2 is critical for executing TLR9 signaling, with its expression being tightly regulated to prevent excessive inflammatory response. Overall, this study highlights a (to our knowledge) novel role for Pellino2 in regulating DC functions and further supports important roles for Pellino proteins in mediating and controlling immunity. Pellino2 mediates TLR9-induced cytokine production in dendritic cells. Pellino2 does not play a role in TLR9 signaling in macrophages. Pellino2 is a limiting factor for TLR9 signaling in dendritic cells.
Collapse
Affiliation(s)
- Ewa Oleszycka
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and
| | - Aoife M Rodgers
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and
| | - Linan Xu
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and
| | - Paul N Moynagh
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and .,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
36
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
37
|
Cristea I, Bruland O, Rødahl E, Bredrup C. K + regulates relocation of Pellino-2 to the site of NLRP3 inflammasome activation in macrophages. FEBS Lett 2021; 595:2437-2446. [PMID: 34387857 DOI: 10.1002/1873-3468.14176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 11/09/2022]
Abstract
Pellino proteins are E3 ubiquitin ligases involved in the innate immune system. Recently, Pellino-2 was reported to modulate the activation of the mouse Nlrp3 inflammasome. We examined the intracellular localization of human Pellino-2 in THP1-derived macrophages during activation with LPS and ATP. We observed that Pellino-2 changed intracellular localization and colocalized with the inflammasome proteins NLRP3 and ASC late in the assembly of the inflammasome. Colocalization with NLRP3 and ASC was also seen in cells maintained in potassium-free medium. The colocalization and inflammasome activation were abrogated by several potassium channel inhibitors, supporting a role for potassium efflux in modulating intracellular localization of Pellino-2. The data suggest that Pellino-2 is essential for mediating the effect of potassium efflux on inflammasome activation.
Collapse
Affiliation(s)
- Ileana Cristea
- Department of Clinical Medicine, University of Bergen, Norway
| | - Ove Bruland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Eyvind Rødahl
- Department of Clinical Medicine, University of Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Bredrup
- Department of Clinical Medicine, University of Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
38
|
Spies LML, Verhoog NJD, Louw A. Acquired Glucocorticoid Resistance Due to Homologous Glucocorticoid Receptor Downregulation: A Modern Look at an Age-Old Problem. Cells 2021; 10:2529. [PMID: 34685511 PMCID: PMC8533966 DOI: 10.3390/cells10102529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.
Collapse
Affiliation(s)
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch 7200, South Africa; (L.-M.L.S.); (N.J.D.V.)
| |
Collapse
|
39
|
Elizarova A, Ozturk M, Guler R, Medvedeva YA. MIREyA: a computational approach to detect miRNA-directed gene activation. F1000Res 2021; 10:249. [PMID: 34527215 PMCID: PMC8411277 DOI: 10.12688/f1000research.28142.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Emerging studies demonstrate the ability of microRNAs (miRNAs) to activate genes via different mechanisms. Specifically, miRNAs may trigger an enhancer promoting chromatin remodelling in the enhancer region, thus activating the enhancer and its target genes. Here we present MIREyA, a pipeline developed to predict such miRNA-gene-enhancer trios based on an expression dataset which obviates the need to write custom scripts. We applied our pipeline to primary murine macrophages infected by Mycobacterium tuberculosis (HN878 strain) and detected Mir22, Mir221, Mir222, Mir155 and Mir1956, which could up-regulate genes related to immune responses. We believe that MIREyA is a useful tool for detecting putative miRNA-directed gene activation cases. MIREyA is available from: https://github.com/veania/MIREyA.
Collapse
Affiliation(s)
- Anna Elizarova
- Group of Regulatory Transcriptomics and Epigenomics, Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, 117312, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701, Russian Federation
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology, Cape Town, Cape Town, 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Cape Town, 7925, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town, Cape Town, 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Cape Town, 7925, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Yulia A Medvedeva
- Group of Regulatory Transcriptomics and Epigenomics, Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, 117312, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701, Russian Federation
| |
Collapse
|
40
|
Kye YC, Lee GW, Lee SW, Ju YJ, Kim HO, Yun CH, Cho JH. STAT1 maintains naïve CD8 + T cell quiescence by suppressing the type I IFN-STAT4-mTORC1 signaling axis. SCIENCE ADVANCES 2021; 7:eabg8764. [PMID: 34516905 PMCID: PMC8442933 DOI: 10.1126/sciadv.abg8764] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Naïve CD8+ T cell quiescence is maintained at a steady state. Although this state of quiescence involves various cell-intrinsic and cell-extrinsic regulators, the mechanisms underlying this regulation remain incompletely understood. Here, we found that signal transducer and activator of transcription 1 (STAT1), a key transcription factor downstream of interferon receptor (IFNR) signaling, plays a cell-intrinsic role in maintaining naïve CD8+ T cell quiescence. STAT1-deficient mice showed enhanced proliferation of peripheral naïve CD8+ T cells, which resulted in an abnormal increase in the number of CD44hi memory/activated phenotype cells and an enlargement of secondary lymphoid tissues. This phenomenon was not observed in IFNR-deficient mice but was paradoxically dependent on type I interferon and its alternative signaling pathway via the STAT4–RagD–lysosomal mTORC1 axis. Collectively, these findings underline the importance of STAT1 in regulating the homeostasis of peripheral naïve CD8+ T cells by suppressing their responsiveness to homeostatic cues at a steady state.
Collapse
Affiliation(s)
- Yoon-Chul Kye
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Gil-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
- Department of Microbiology and Immunology and Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun 58128, Korea
- Immunotherapy Innovation Center, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Sung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
- Department of Microbiology and Immunology and Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun 58128, Korea
- Immunotherapy Innovation Center, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Young-Jun Ju
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Hee-Ok Kim
- Immunotherapy Innovation Center, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jae-Ho Cho
- Department of Microbiology and Immunology and Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun 58128, Korea
- Immunotherapy Innovation Center, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Sciences Graduate Program, Chonnam National University, Hwasun 58128, Korea
| |
Collapse
|
41
|
Zhang J, Wang Y, Yu H, Chen G, Wang L, Liu F, Yuan J, Ni Q, Xia X, Wan Y. Mapping the spatial distribution of T cells in repertoire dimension. Mol Immunol 2021; 138:161-171. [PMID: 34428621 DOI: 10.1016/j.molimm.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 01/13/2023]
Abstract
T cells mediate adaptive immunity in diverse anatomic compartments through recognition of specific antigens via unique T cell receptor (TCR) structures. However, little is known about the spatial distribution of an organism's TCR repertoire. Here, using high-throughput TCR sequencing (TCRseq), we investigated the TCR repertoires of sixteen tissues in healthy C57B/L6 mice. We found that TCR repertoires generally classified into three categories (lymph nodes, non-lymph node tissues and small intestine) based on sequence similarity. Clonal distribution and diversity analyses showed that small intestine compartment had a more skewed repertoire as compared to lymph nodes and non-lymph node tissues. However, analysis of TRBV and TRBJ gene usage across tissue compartments, as well as comparison of CDR3 length distributions, showed no significant tissue-dependent differences. Interestingly, analysis of clonotype sharing between mice showed that although non-redundant public clonotypes were found more easily in lymph nodes, small intestinal CD4 + T cells harbored more abundant public clonotypes. These findings under healthy physiological conditions offer an important reference dataset, which may contribute to our ability to better manipulate T cell responses against infection and vaccination.
Collapse
Affiliation(s)
- Junying Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China
| | - Yu Wang
- Zunyi Medical University, Zunyi, 563003, China
| | - Haili Yu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Fang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, 518036, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China.
| | - Xuefeng Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China.
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China; School of Big Data & Software Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
42
|
Yang C, Zhao K, Chen X, Jiang L, Li P, Huang P. Pellino1 deficiency reprograms cardiomyocytes energy metabolism in lipopolysaccharide-induced myocardial dysfunction. Amino Acids 2021; 53:713-737. [PMID: 33885999 PMCID: PMC8128834 DOI: 10.1007/s00726-021-02978-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/03/2021] [Indexed: 11/30/2022]
Abstract
Pellino1 has been shown to regulate proinflammatory genes by activating the nuclear factor kappa B (NF-κB) and Toll-like receptor (TLR) signaling pathways, which are important in the pathological development of lipopolysaccharide (LPS)-induced myocarditis. However, it is still unknown whether silencing Pellino1 (si-Pellino1) has a therapeutic effect on this disease. Here, we showed that silencing Pellino1 can be a potential protective strategy for abnormal myocardial energy metabolism in LPS-induced myocarditis. We used liquid chromatography electrospray–ionization tandem mass spectrometry (LC–MS/MS) to analyze samples from si-Pellino1 neonatal rat cardiac myocytes (NRCMs) treated with LPS or left untreated. After normalization of the data, metabolite interaction analysis of matched KEGG pathway associations following si-Pellino1 treatment was applied, accompanied by interaction analysis of gene and metabolite associations after this treatment. Moreover, we used western blot (WB) and polymerase chain reaction (PCR) analyses to determine the expression of genes involved in regulating cardiac energy and energy metabolism in different groups. LC–MS-based metabolic profiling analysis demonstrated that si-Pellino1 treatment could alleviate or even reverse LPS-induced cellular damage by altering cardiomyocytes energy metabolism accompanied by changes in key genes (Cs, Cpt2, and Acadm) and metabolites (3-oxoocotanoyl-CoA, hydroxypyruvic acid, lauroyl-CoA, and NADPH) in NRCMs. Overall, our study unveiled the promising cardioprotective effect of silencing Pellino1 in LPS-induced myocarditis through fuel and energy metabolic regulation, which can also serve as biomarkers for this disease.
Collapse
Affiliation(s)
- Chuanxi Yang
- Department of Cardiology, Medical School of Southeast University, Nanjing, China.,Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xufeng Chen
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lei Jiang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Peipei Huang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
43
|
ElTanbouly MA, Noelle RJ. Rethinking peripheral T cell tolerance: checkpoints across a T cell's journey. Nat Rev Immunol 2021; 21:257-267. [PMID: 33077935 DOI: 10.1038/s41577-020-00454-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/10/2023]
Abstract
Following their exit from the thymus, T cells are endowed with potent effector functions but must spare host tissue from harm. The fate of these cells is dictated by a series of checkpoints that regulate the quality and magnitude of T cell-mediated immunity, known as tolerance checkpoints. In this Perspective, we discuss the mediators and networks that control the six main peripheral tolerance checkpoints throughout the life of a T cell: quiescence, ignorance, anergy, exhaustion, senescence and death. At the naive T cell stage, two intrinsic checkpoints that actively maintain tolerance are quiescence and ignorance. In the presence of co-stimulation-deficient T cell activation, anergy is a dominant hallmark that mandates T cell unresponsiveness. When T cells are successfully stimulated and reach the effector stage, exhaustion and senescence can limit excessive inflammation and prevent immunopathology. At every stage of the T cell's journey, cell death exists as a checkpoint to limit clonal expansion and to terminate unrestrained responses. Here, we compare and contrast the T cell tolerance checkpoints and discuss their specific roles, with the aim of providing an integrated view of T cell peripheral tolerance and fate regulation.
Collapse
Affiliation(s)
- Mohamed A ElTanbouly
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
44
|
The ubiquitin ligase Peli1 inhibits ICOS and thereby Tfh-mediated immunity. Cell Mol Immunol 2021; 18:969-978. [PMID: 33707688 PMCID: PMC8115645 DOI: 10.1038/s41423-021-00660-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/13/2021] [Indexed: 11/11/2022] Open
Abstract
T follicular helper (Tfh) cells are crucial for regulating autoimmune inflammation and protective immunity against viral infection. However, the molecular mechanism controlling Tfh cell differentiation is poorly understood. Here, through two mixed bone marrow chimeric experiments, we identified Peli1, a T cell-enriched E3 ubiquitin ligase, as an intrinsic regulator that inhibits Tfh cell differentiation. Peli1 deficiency significantly promoted c-Rel-mediated inducible T-cell costimulator (ICOS) expression, and PELI1 mRNA expression was negatively associated with ICOS expression on human CD4+ T cells. Mechanistically, increased ICOS expression on Peli1-KO CD4+ T cells enhanced the activation of PI3K-AKT signaling and thus suppressed the expression of Klf2, a transcription factor that inhibits Tfh differentiation. Therefore, reconstitution of Klf2 abolished the differences in Tfh differentiation and germinal center reaction between WT and Peli1-KO cells. As a consequence, Peli1-deficient CD4+ T cells promoted lupus-like autoimmunity but protected against H1N1 influenza virus infection in mouse models. Collectively, our findings established Peli1 as a critical negative regulator of Tfh differentiation and indicated that targeting Peli1 may have beneficial therapeutic effects in Tfh-related autoimmunity or infectious diseases.
Collapse
|
45
|
Kolijn D, Pabel S, Tian Y, Lódi M, Herwig M, Carrizzo A, Zhazykbayeva S, Kovács Á, Fülöp GÁ, Falcão-Pires I, Reusch PH, Linthout SV, Papp Z, van Heerebeek L, Vecchione C, Maier LS, Ciccarelli M, Tschöpe C, Mügge A, Bagi Z, Sossalla S, Hamdani N. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res 2021; 117:495-507. [PMID: 32396609 DOI: 10.1093/cvr/cvaa123] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS Sodium-glucose-cotransporter-2 inhibitors showed favourable cardiovascular outcomes, but the underlying mechanisms are still elusive. This study investigated the mechanisms of empagliflozin in human and murine heart failure with preserved ejection fraction (HFpEF). METHODS AND RESULTS The acute mechanisms of empagliflozin were investigated in human myocardium from patients with HFpEF and murine ZDF obese rats, which were treated in vivo. As shown with immunoblots and ELISA, empagliflozin significantly suppressed increased levels of ICAM-1, VCAM-1, TNF-α, and IL-6 in human and murine HFpEF myocardium and attenuated pathological oxidative parameters (H2O2, 3-nitrotyrosine, GSH, lipid peroxide) in both cardiomyocyte cytosol and mitochondria in addition to improved endothelial vasorelaxation. In HFpEF, we found higher oxidative stress-dependent activation of eNOS leading to PKGIα oxidation. Interestingly, immunofluorescence imaging and electron microscopy revealed that oxidized PKG1α in HFpEF appeared as dimers/polymers localized to the outer-membrane of the cardiomyocyte. Empagliflozin reduced oxidative stress/eNOS-dependent PKGIα oxidation and polymerization resulting in a higher fraction of PKGIα monomers, which translocated back to the cytosol. Consequently, diminished NO levels, sGC activity, cGMP concentration, and PKGIα activity in HFpEF increased upon empagliflozin leading to improved phosphorylation of myofilament proteins. In skinned HFpEF cardiomyocytes, empagliflozin improved cardiomyocyte stiffness in an anti-oxidative/PKGIα-dependent manner. Monovariate linear regression analysis confirmed the correlation of oxidative stress and PKGIα polymerization with increased cardiomyocyte stiffness and diastolic dysfunction of the HFpEF patients. CONCLUSION Empagliflozin reduces inflammatory and oxidative stress in HFpEF and thereby improves the NO-sGC-cGMP-cascade and PKGIα activity via reduced PKGIα oxidation and polymerization leading to less pathological cardiomyocyte stiffness.
Collapse
Affiliation(s)
- Detmar Kolijn
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Yanna Tian
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mária Lódi
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Melissa Herwig
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Albino Carrizzo
- Vascular Pathophysiology Unit - I.R.C.C.S. Neuromed, 86077, Pozzilli (IS), Italy
| | - Saltanat Zhazykbayeva
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Gábor Á Fülöp
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, University of Porto, Porto, Portugal
| | - Peter H Reusch
- Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Campus Virchow Clinic, Berlin, Germany
- Department of Cardiology and Pneumology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site, Berlin, Germany
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Carmine Vecchione
- Vascular Pathophysiology Unit - I.R.C.C.S. Neuromed, 86077, Pozzilli (IS), Italy
- Department of Medicine Surgery and Dentistry - University of Salerno, 84081, Baronissi (SA), Italy
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Michele Ciccarelli
- Department of Medicine Surgery and Dentistry - University of Salerno, 84081, Baronissi (SA), Italy
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Campus Virchow Clinic, Berlin, Germany
- Department of Cardiology and Pneumology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site, Berlin, Germany
| | - Andreas Mügge
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen
- DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
46
|
Ko C, Zhang L, Jie Z, Zhu L, Zhou X, Xie X, Gao T, Yang J, Cheng X, Sun S. The E3 ubiquitin ligase Peli1 regulates the metabolic actions of mTORC1 to suppress antitumor T cell responses. EMBO J 2021; 40:e104532. [PMID: 33215753 PMCID: PMC7809702 DOI: 10.15252/embj.2020104532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor-infiltrating CD4 and CD8 T cells. The Peli1-deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild-type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1-inhibitory proteins, TSC1 and TSC2. Peli1 mediates non-degradative ubiquitination of TSC1, thereby promoting TSC1-TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1-mediated actions on T cell metabolism and antitumor immunity.
Collapse
Affiliation(s)
- Chun‐Jung Ko
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Lingyun Zhang
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Center for Reproductive MedicineHenan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zuliang Jie
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Lele Zhu
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xiaofei Zhou
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xiaoping Xie
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Tianxiao Gao
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Jin‐Young Yang
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Biological SciencesPusan National UniversityBusanSouth Korea
| | - Xuhong Cheng
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Shao‐Cong Sun
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical SciencesHoustonTXUSA
| |
Collapse
|
47
|
Zhou X, Sun SC. Targeting ubiquitin signaling for cancer immunotherapy. Signal Transduct Target Ther 2021; 6:16. [PMID: 33436547 PMCID: PMC7804490 DOI: 10.1038/s41392-020-00421-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy has become an attractive approach of cancer treatment with tremendous success in treating various advanced malignancies. The development and clinical application of immune checkpoint inhibitors represent one of the most extraordinary accomplishments in cancer immunotherapy. In addition, considerable progress is being made in understanding the mechanism of antitumor immunity and characterizing novel targets for developing additional therapeutic approaches. One active area of investigation is protein ubiquitination, a post-translational mechanism of protein modification that regulates the function of diverse immune cells in antitumor immunity. Accumulating studies suggest that E3 ubiquitin ligases and deubiquitinases form a family of potential targets to be exploited for enhancing antitumor immunity in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Yang CA, Chiang BL. Inflammasomes and Childhood Autoimmune Diseases: A Review of Current Knowledge. Clin Rev Allergy Immunol 2020; 61:156-170. [PMID: 33236284 PMCID: PMC7685913 DOI: 10.1007/s12016-020-08825-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
Inflammasomes are multiprotein complexes capable of sensing pathogen-associated molecular patterns (PAMPs), danger-associated molecular patterns (DAMPs), and cellular perturbations. Upon stimulation, the inflammasomes activate the production of the pro-inflammatory cytokines IL-1β and IL-18 and induce gasdermin D-mediated pyroptosis. Dysregulated inflammasome signaling could lead to hyperinflammation in response to environmental triggers, thus contributing to the pathogenesis of childhood autoimmune/autoinflammatory diseases. In this review, we group childhood rheumatic diseases into the autoinflammation to autoimmunity spectrum and discuss about the involvement of inflammasomes in disease mechanisms. Genetic mutations in inflammasome components cause monogenic autoinflammatory diseases, while inflammasome-related genetic variants have been implicated in polygenic childhood rheumatic diseases. We highlight the reported associations of inflammasome signaling-related genetic polymorphisms/protein levels with pediatric autoimmune disease susceptibility and disease course. Furthermore, we discuss about the use of IL-1 receptor antagonist as an adjunctive therapy in several childhood autoimmune diseases, including macrophage activation syndrome (MAS) and multisystem inflammatory syndrome in children (MIS-C) related to COVID-19. A comprehensive multi-cohort comparison on inflammasome gene expression profile in different pediatric rheumatic diseases is needed to identify patient subsets that might benefit from the adjunctive therapy of IL-1β inhibitors.
Collapse
Affiliation(s)
- Chin-An Yang
- Division of Laboratory Medicine and Division of Pediatrics, China Medical University Hsinchu Hospital, Jubei, Hsinchu, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
49
|
Yang T, Zang S, Wang Y, Zhu Y, Jiang L, Chen X, Zhang X, Cheng J, Gao R, Xiao H, Wang J. Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2: Roles of the TLR4/TRIF/Peli1 signaling axis. Toxicol Lett 2020; 333:150-158. [DOI: 10.1016/j.toxlet.2020.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
|
50
|
Park GY, Lee GW, Kim S, Hong H, Park JS, Cho JH, Lee Y. Deletion Timing of Cic Alleles during Hematopoiesis Determines the Degree of Peripheral CD4 + T Cell Activation and Proliferation. Immune Netw 2020; 20:e43. [PMID: 33163251 PMCID: PMC7609164 DOI: 10.4110/in.2020.20.e43] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/01/2022] Open
Abstract
Capicua (CIC) is a transcriptional repressor that regulates several developmental processes. CIC deficiency results in lymphoproliferative autoimmunity accompanied by expansion of CD44hiCD62Llo effector/memory and follicular Th cell populations. Deletion of Cic alleles in hematopoietic stem cells (Vav1-Cre-mediated knockout of Cic) causes more severe autoimmunity than that caused by the knockout of Cic in CD4+CD8+ double positive thymocytes (Cd4-Cre-mediated knockout of Cic). In this study, we compared splenic CD4+ T cell activation and proliferation between whole immune cell-specific Cic-null (Cicf/f;Vav1-Cre) and T cell-specific Cic-null (Cicf/f;Cd4-Cre) mice. Hyperactivation and hyperproliferation of CD4+ T cells were more apparent in Cicf/f;Vav1-Cre mice than in Cicf/f;Cd4-Cre mice. Cicf/f;Vav1-Cre CD4+ T cells more rapidly proliferated and secreted larger amounts of IL-2 upon TCR stimulation than did Cicf/f;Cd4-Cre CD4+ T cells, while the TCR stimulation-induced activation of the TCR signaling cascade and calcium flux were comparable between them. Mixed wild-type and Cicf/f;Vav1-Cre bone marrow chimeras also exhibited more apparent hyperactivation and hyperproliferation of Cic-deficient CD4+ T cells than did mixed wild-type and Cicf/f;Cd4-Cre bone marrow chimeras. Taken together, our data demonstrate that CIC deficiency at the beginning of T cell development endows peripheral CD4+ T cells with enhanced T cell activation and proliferative capability.
Collapse
Affiliation(s)
- Guk-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Gil-Woo Lee
- Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Medical Research Center for Combinatorial Tumor Immunotherapy, Immunotherapy Innovation Center, Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Korea
| | - Soeun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Hyebeen Hong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jong Seok Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jae-Ho Cho
- Medical Research Center for Combinatorial Tumor Immunotherapy, Immunotherapy Innovation Center, Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|