1
|
Yado S, Dassa B, Zoabi R, Reich-Zeliger S, Friedman N, Geiger B. Molecular mechanisms underlying the modulation of T-cell proliferation and cytotoxicity by immobilized CCL21 and ICAM1. J Immunother Cancer 2024; 12:e009011. [PMID: 38866588 PMCID: PMC11177851 DOI: 10.1136/jitc-2024-009011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Adoptive cancer immunotherapy, using engineered T-cells, expressing chimeric antigen receptor or autologous tumor infiltrating lymphocytes became, in recent years, a major therapeutic approach for diverse types of cancer. However, despite the transformative potential of adoptive cancer immunotherapy, this field still faces major challenges, manifested by the apparent decline of the cytotoxic capacity of effector CD8+ T cells upon their expansion. To address these challenges, we have developed an ex vivo "synthetic immune niche" (SIN), composed of immobilized CCL21 and ICAM1, which synergistically induce an efficient expansion of antigen-specific CD8+ T cells while retaining, and even enhancing their cytotoxic potency. METHODS To explore the molecular mechanisms through which a CCL21+ICAM1-based SIN modulates the interplay between the proliferation and cytotoxic potency of antigen-activated and CD3/CD28-activated effector CD8+ T cells, we performed integrated analysis of specific differentiation markers via flow cytometry, together with gene expression profiling. RESULTS On day 3, the transcriptomic effect induced by the SIN was largely similar for both dendritic cell (DC)/ovalbumin (OVA)-activated and anti-CD3/CD28-activated cells. Cell proliferation increased and the cells exhibited high killing capacity. On day 4 and on, the proliferation/cytotoxicity phenotypes became radically "activation-specific"; The DC/OVA-activated cells lost their cytotoxic activity, which, in turn, was rescued by the SIN treatment. On longer incubation, the cytotoxic activity further declined, and on day7, could not be rescued by the SIN. SIN stimulation following activation with anti-CD3/CD28 beads induced a major increase in the proliferative phenotype while transiently suppressing their cytotoxicity for 2-3 days and fully regaining their killing activity on day 7. Potential molecular regulatory pathways of the SIN effects were identified, based on transcriptomic and multispectral imaging profiling. CONCLUSIONS These data indicate that cell proliferation and cytotoxicity are negatively correlated, and the interplay between them is differentially regulated by the mode of initial activation. The SIN stimulation greatly enhances the cell expansion, following both activation modes, while displaying high survival and cytotoxic potency at specific time points following stimulation, suggesting that it could effectively reinforce adoptive cancer immunotherapy.
Collapse
Affiliation(s)
- Sofi Yado
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rawan Zoabi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
Cordero H. Chemokine receptors in primary and secondary lymphoid tissues. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:1-19. [PMID: 39260934 DOI: 10.1016/bs.ircmb.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors are a complex superfamily of surface G protein-coupled receptors present mostly in leukocytes. In this chapter, we review the presence and functions of chemokine receptors in the immune cells of the primary and secondary lymphoid organs. Those include bone marrow, thymus, spleen, lymph nodes, and Peyer's patches as the main components of the gut-associated lymphoid tissue. There are general groups of chemokine receptors: conventional and atypical. We will mostly cover the role of conventional chemokine receptors, which are divided into four classes (CC, CXC, CX3C, and XC). Some relevant members are CXCR4, CXCR5, CCR4 and CCR7. For example, CXCR4 is a key chemokine receptor in the bone marrow controlling from the homing of progenitor cells into the bone marrow, the development of B cells, to the homing of long-lived plasma cells to this primary lymphoid organ. CCR7 and CCR4 are two of the main players in the thymus. CCR7 along with CCR9 control the traffic of thymic seed progenitors into the thymus, while CCR4 and CCR7 are critical for the entry of thymocytes into the medulla and as controllers of the central tolerance in the thymus. CXCR4 and CXCR5 have major roles in the spleen, guiding the maturation and class-switching of B cells in the different areas of the germinal center. In the T-cell zone, CCR7 guides the differentiation of naïve T cells. CCR7 also controls and directs the entry of T cells, B cells, and dendritic cells into secondary lymphoid tissues, including the spleen and lymph nodes. As new technologies emerge, techniques such as high dimensional spectral flow cytometry or single-cell sequencing allow a more comprehensive knowledge of the chemokine receptor network and their ligands, as well as the discovery of new interactions mediating unknown and overlooked mechanisms in health and disease.
Collapse
Affiliation(s)
- Hector Cordero
- Columbia Center for Translational Immunology, Columbia University, New York, NY, United States; Immunology Group, Department of Physiology, Faculty of Veterinary, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
3
|
Du X, Li M, Huan C, Lv G. Dendritic cells in liver transplantation immune response. Front Cell Dev Biol 2023; 11:1277743. [PMID: 37900282 PMCID: PMC10606587 DOI: 10.3389/fcell.2023.1277743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs), they are considered one of the key regulatory factors in the liver immune system. There is currently much interest in modulating DC function to improve transplant immune response. In liver transplantation, DCs participate in both the promotion and inhibition of the alloreponse by adopting different phenotypes and function. Thus, in this review, we discussed the origin, maturation, migration and pathological effects of several DC subsets, including the conventional DC (cDC), plasmacytoid DC (pDC) and monocyte-derived DC (Mo-DC) in liver transplantation, and we summarized the roles of these DC subsets in liver transplant rejection and tolerance. In addition, we also outlined the latest progress in DC-based related treatment regimens. Overall, our discussion provides a beneficial resource for better understanding the biology of DCs and their manipulation to improve the immune adaptability of patients in transplant status.
Collapse
Affiliation(s)
- Xiaodong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Beppler C, Eichorst J, Marchuk K, Cai E, Castellanos CA, Sriram V, Roybal KT, Krummel MF. Hyperstabilization of T cell microvilli contacts by chimeric antigen receptors. J Cell Biol 2023; 222:e202205118. [PMID: 36520493 PMCID: PMC9757849 DOI: 10.1083/jcb.202205118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
T cells typically recognize their ligands using a defined cell biology-the scanning of their membrane microvilli (MV) to palpate their environment-while that same membrane scaffolds T cell receptors (TCRs) that can signal upon ligand binding. Chimeric antigen receptors (CARs) present both a therapeutic promise and a tractable means to study the interplay between receptor affinity, MV dynamics and T cell function. CARs are often built using single-chain variable fragments (scFvs) with far greater affinity than that of natural TCRs. We used high-resolution lattice lightsheet (LLS) and total internal reflection fluorescence (TIRF) imaging to visualize MV scanning in the context of variations in CAR design. This demonstrated that conventional CARs hyper-stabilized microvillar contacts relative to TCRs. Reducing receptor affinity, antigen density, and/or multiplicity of receptor binding sites normalized microvillar dynamics and synapse resolution, and effector functions improved with reduced affinity and/or antigen density, highlighting the importance of understanding the underlying cell biology when designing receptors for optimal antigen engagement.
Collapse
Affiliation(s)
- Casey Beppler
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| | - John Eichorst
- Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA, USA
| | - Kyle Marchuk
- Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA, USA
| | - En Cai
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos A. Castellanos
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
| | - Matthew F. Krummel
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Yunger S, Geiger B, Friedman N, Besser MJ, Adutler-Lieber S. Modulating the proliferative and cytotoxic properties of patient-derived TIL by a synthetic immune niche of immobilized CCL21 and ICAM1. Front Oncol 2023; 13:1116328. [PMID: 36937426 PMCID: PMC10020329 DOI: 10.3389/fonc.2023.1116328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
A major challenge in developing an effective adoptive cancer immunotherapy is the ex-vivo generation of tumor-reactive cells in sufficient numbers and with enhanced cytotoxic potential. It was recently demonstrated that culturing of activated murine CD8+ T-cells on a "Synthetic Immune Niche" (SIN), consisting of immobilized CCL21 and ICAM-1, enhances T-cell expansion, increases their cytotoxicity against cultured cancer cells and suppresses tumor growth in vivo. In the study reported here, we have tested the effect of the CCL21+ICAM1 SIN, on the expansion and cytotoxic phenotype of Tumor Infiltrating Lymphocytes (TIL) from melanoma patients, following activation with immobilized anti-CD3/CD28 stimulation, or commercial activation beads. The majority of TIL tested, displayed higher expansion when cultured on the coated SIN compared to cells incubated on uncoated substrate and a lower frequency of TIM-3+CD8+ cells after stimulation with anti-CD3/CD28 beads. Comparable enhancement of TIL proliferation was obtained by the CCL21+ICAM1 SIN, in a clinical setting that included a 14-day rapid expansion procedure (REP). Co-incubation of post-REP TIL with matching target cancerous cells demonstrated increased IFNγ secretion beyond baseline in most of the TIL cultures, as well as a significant increase in granzyme B levels following activation on SIN. The SIN did not significantly alter the relative frequency of CD8/CD4 populations, as well as the expression of CD28, CD25, several exhaustion markers and the differentiation status of the expanded cells. These results demonstrate the potential capacity of the CCL21+ICAM1 SIN to reinforce TIL-based immunotherapy for cancer patients.
Collapse
Affiliation(s)
- Sharon Yunger
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Benjamin Geiger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Benjamin Geiger, ; Michal J. Besser,
| | - Nir Friedman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Michal J. Besser
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center, Rabin Medical Center, Petah Tikva, Israel
- Advanced Technology Unit, Felsenstein Medical Research Center, Petah Tikva, Israel
- *Correspondence: Benjamin Geiger, ; Michal J. Besser,
| | | |
Collapse
|
6
|
Scherm MG, Wyatt RC, Serr I, Anz D, Richardson SJ, Daniel C. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol Metab 2022; 64:101565. [PMID: 35944899 PMCID: PMC9418549 DOI: 10.1016/j.molmet.2022.101565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022] Open
Abstract
Background Scope of review Major conclusions
Collapse
|
7
|
Waldman MM, Rahkola JT, Sigler AL, Chung JW, Willett BAS, Kedl RM, Friedman RS, Jacobelli J. Ena/VASP Protein-Mediated Actin Polymerization Contributes to Naïve CD8 + T Cell Activation and Expansion by Promoting T Cell-APC Interactions In Vivo. Front Immunol 2022; 13:856977. [PMID: 35757762 PMCID: PMC9222560 DOI: 10.3389/fimmu.2022.856977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Naïve T cell activation in secondary lymphoid organs such as lymph nodes (LNs) occurs upon recognition of cognate antigen presented by antigen presenting cells (APCs). T cell activation requires cytoskeleton rearrangement and sustained interactions with APCs. Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are a family of cytoskeletal effector proteins responsible for actin polymerization and are frequently found at the leading edge of motile cells. Ena/VASP proteins have been implicated in motility and adhesion in various cell types, but their role in primary T cell interstitial motility and activation has not been explored. Our goal was to determine the contribution of Ena/VASP proteins to T cell–APC interactions, T cell activation, and T cell expansion in vivo. Our results showed that naïve T cells from Ena/VASP-deficient mice have a significant reduction in antigen-specific T cell accumulation following Listeria monocytogenes infection. The kinetics of T cell expansion impairment were further confirmed in Ena/VASP-deficient T cells stimulated via dendritic cell immunization. To investigate the cause of this T cell expansion defect, we analyzed T cell–APC interactions in vivo by two-photon microscopy and observed fewer Ena/VASP-deficient naïve T cells interacting with APCs in LNs during priming. We also determined that Ena/VASP-deficient T cells formed conjugates with significantly less actin polymerization at the T cell–APC synapse, and that these conjugates were less stable than their WT counterparts. Finally, we found that Ena/VASP-deficient T cells have less LFA-1 polarized to the T cell–APC synapse. Thus, we conclude that Ena/VASP proteins contribute to T cell actin remodeling during T cell–APC interactions, which promotes the initiation of stable T cell conjugates during APC scanning. Therefore, Ena/VASP proteins are required for efficient activation and expansion of T cells in vivo.
Collapse
Affiliation(s)
- Monique M Waldman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeremy T Rahkola
- Rocky Mountain Regional Veterans Affairs (VA) Medical Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashton L Sigler
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeffrey W Chung
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Benjamin A S Willett
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
8
|
Bala N, McGurk AI, Zilch T, Rup AN, Carter EM, Leddon SA, Fowell DJ. T cell activation niches-Optimizing T cell effector function in inflamed and infected tissues. Immunol Rev 2021; 306:164-180. [PMID: 34859453 PMCID: PMC9218983 DOI: 10.1111/imr.13047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/29/2022]
Abstract
Successful immunity to infection, malignancy, and tissue damage requires the coordinated recruitment of numerous immune cell subsets to target tissues. Once within the target tissue, effector T cells rely on local chemotactic cues and structural cues from the tissue matrix to navigate the tissue, interact with antigen-presenting cells, and release effector cytokines. This highly dynamic process has been "caught on camera" in situ by intravital multiphoton imaging. Initial studies revealed a surprising randomness to the pattern of T cell migration through inflamed tissues, behavior thought to facilitate chance encounters with rare antigen-bearing cells. Subsequent tissue-wide visualization has uncovered a high degree of spatial preference when it comes to T cell activation. Here, we discuss the basic tenants of a successful effector T cell activation niche, taking cues from the dynamics of Tfh positioning in the lymph node germinal center. In peripheral tissues, steady-state microanatomical organization may direct the location of "pop-up" de novo activation niches, often observed as perivascular clusters, that support early effector T cell activation. These perivascular activation niches appear to be regulated by site-specific chemokines that coordinate the recruitment of dendritic cells and other innate cells for local T cell activation, survival, and optimized effector function.
Collapse
Affiliation(s)
- Noor Bala
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alexander I McGurk
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Tiago Zilch
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Anastasia N Rup
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Evan M Carter
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Scott A Leddon
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Deborah J Fowell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Seillier C, Hélie P, Petit G, Vivien D, Clemente D, Le Mauff B, Docagne F, Toutirais O. Roles of the tissue-type plasminogen activator in immune response. Cell Immunol 2021; 371:104451. [PMID: 34781155 PMCID: PMC8577548 DOI: 10.1016/j.cellimm.2021.104451] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic has once again
brought to the forefront the existence of a tight link between the
coagulation/fibrinolytic system and the immunologic processes.
Tissue-type plasminogen activator (tPA) is a serine protease with a key
role in fibrinolysis by converting plasminogen into plasmin that can
finally degrade fibrin clots. tPA is released in the blood by endothelial
cells and hepatocytes but is also produced by various types of immune
cells including T cells and monocytes. Beyond its role on hemostasis, tPA
is also a potent modulator of inflammation and is involved in the
regulation of several inflammatory diseases. Here, after a brief
description of tPA structure, we review its new functions in adaptive
immunity focusing on T cells and antigen presenting cells. We intend to
synthesize the recent knowledge on proteolysis- and receptor-mediated
effects of tPA on immune response in physiological and pathological
context.
Collapse
Affiliation(s)
- Célia Seillier
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Pauline Hélie
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Gautier Petit
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Clinical Research, Caen University Hospital, CHU Caen, France
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Brigitte Le Mauff
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Olivier Toutirais
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France.
| |
Collapse
|
10
|
CXCL10 + peripheral activation niches couple preferred sites of Th1 entry with optimal APC encounter. Cell Rep 2021; 36:109523. [PMID: 34380032 PMCID: PMC9218982 DOI: 10.1016/j.celrep.2021.109523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/02/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Correct positioning of T cells within infected tissues is critical for T cell activation and pathogen control. Upon tissue entry, effector T cells must efficiently locate antigen-presenting cells (APC) for peripheral activation. We reveal that tissue entry and initial peripheral activation of Th1 effector T cells are tightly linked to perivascular positioning of chemokine-expressing APCs. Dermal inflammation induces tissue-wide de novo generation of discrete perivascular CXCL10+ cell clusters, enriched for CD11c+MHC-II+ monocyte-derived dendritic cells. These chemokine clusters are "hotspots" for both Th1 extravasation and activation in the inflamed skin. CXCR3-dependent Th1 localization to the cluster micro-environment prolongs T-APC interactions and boosts function. Both the frequency and range of these clusters are enhanced via a T helper 1 (Th1)-intrinsic, interferon-gamma (IFNγ)-dependent positive-feedback loop. Thus, the perivascular CXCL10+ clusters act as initial peripheral activation niches, optimizing controlled activation broadly throughout the tissue by coupling Th1 tissue entry with enhanced opportunities for Th1-APC encounter.
Collapse
|
11
|
Li K, Li T, Feng Z, Huang M, Wei L, Yan Z, Long M, Hu Q, Wang J, Liu S, Sgroi DC, Demehri S. CD8 + T cell immunity blocks the metastasis of carcinogen-exposed breast cancer. SCIENCE ADVANCES 2021; 7:eabd8936. [PMID: 34144976 PMCID: PMC8213232 DOI: 10.1126/sciadv.abd8936] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The link between carcinogen exposure and cancer immunogenicity is unclear. Single exposure to 12-dimethylbenz[a]anthracene (DMBA) at puberty accelerated spontaneous breast carcinogenesis in mouse mammary tumor virus-polyoma middle tumor-antigen transgenic (MMTV-PyMTtg or PyMT) and MMTV-Her2/neutg (Her2) mice. Paradoxically, DMBA-treated PyMT and Her2 animals were protected from metastasis. CD8+ T cells significantly infiltrated DMBA-exposed breast cancers. CD8+ T cell depletion resulted in severe lung and liver metastasis in DMBA-treated PyMT mice. Besides increasing tumor mutational burden, DMBA exposure up-regulated Chemokine (C-C motif) ligand 21 (CCL21) in cancer cells and heightened antigen presentation. CCL21 injection suppressed breast cancer growth, and CCL21 receptor deletion attenuated T cell immunity against cancer metastasis in DMBA-treated PyMT animals. CCL21 expression correlated with increased mutational burden and cytolytic activity across human cancers. Higher CCL21 levels correlated with increased CD8+ T cell infiltrates in human breast cancer and predicted lower breast cancer distant recurrence rate. Collectively, carcinogen exposure induces immune-activating factors within cancer cells that promote CD8+ T cell immunity against metastasis.
Collapse
Affiliation(s)
- Kaiwen Li
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Tiancheng Li
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhaoyi Feng
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mei Huang
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Zhiyu Yan
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Dennis C Sgroi
- Molecular Pathology Unit, Department of Pathology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
12
|
Eberlein J, Davenport B, Nguyen TT, Victorino F, Jhun K, van der Heide V, Kuleshov M, Ma'ayan A, Kedl R, Homann D. Chemokine Signatures of Pathogen-Specific T Cells I: Effector T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2169-2187. [PMID: 32948687 DOI: 10.4049/jimmunol.2000253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
The choreography of complex immune responses, including the priming, differentiation, and modulation of specific effector T cell populations generated in the immediate wake of an acute pathogen challenge, is in part controlled by chemokines, a large family of mostly secreted molecules involved in chemotaxis and other patho/physiological processes. T cells are both responsive to various chemokine cues and a relevant source for certain chemokines themselves; yet, the actual range, regulation, and role of effector T cell-derived chemokines remains incompletely understood. In this study, using different in vivo mouse models of viral and bacterial infection as well as protective vaccination, we have defined the entire spectrum of chemokines produced by pathogen-specific CD8+ and CD4+T effector cells and delineated several unique properties pertaining to the temporospatial organization of chemokine expression patterns, synthesis and secretion kinetics, and cooperative regulation. Collectively, our results position the "T cell chemokine response" as a notably prominent, largely invariant, yet distinctive force at the forefront of pathogen-specific effector T cell activities and establish novel practical and conceptual approaches that may serve as a foundation for future investigations into the role of T cell-produced chemokines in infectious and other diseases.
Collapse
Affiliation(s)
- Jens Eberlein
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Bennett Davenport
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tom T Nguyen
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Francisco Victorino
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin Jhun
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Verena van der Heide
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maxim Kuleshov
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dirk Homann
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
13
|
Lee BJ, Mace EM. From stem cell to immune effector: how adhesion, migration, and polarity shape T-cell and natural killer cell lymphocyte development in vitro and in vivo. Mol Biol Cell 2020; 31:981-991. [PMID: 32352896 PMCID: PMC7346728 DOI: 10.1091/mbc.e19-08-0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Lymphocyte development is a complex and coordinated pathway originating from pluripotent stem cells during embryogenesis and continuing even as matured lymphocytes are primed and educated in adult tissue. Hematopoietic stem cells develop in a specialized niche that includes extracellular matrix and supporting stromal and endothelial cells that both maintain stem cell pluripotency and enable the generation of differentiated cells. Cues for lymphocyte development include changes in integrin-dependent cell motility and adhesion which ultimately help to determine cell fate. The capacity of lymphocytes to adhere and migrate is important for modulating these developmental signals both by regulating the cues that the cell receives from the local microenvironment as well as facilitating the localization of precursors to tissue niches throughout the body. Here we consider how changing migratory and adhesive phenotypes contribute to human natural killer (NK)- and T-cell development as they undergo development from precursors to mature, circulating cells and how our understanding of this process is informed by in vitro models of T- and NK cell generation.
Collapse
Affiliation(s)
- Barclay J. Lee
- Department of Bioengineering, Rice University, Houston, TX 77005
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
14
|
Sharma S, Kadam P, Dubinett S. CCL21 Programs Immune Activity in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:67-78. [PMID: 32060847 DOI: 10.1007/978-3-030-36667-4_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CCL21 promotes immune activity in the tumor microenvironment (TME) by colocalizing dendritic cells (DC) and T cells programing ectopic lymph node architectural structures that correlate with cancer prognosis. Innovative strategies to deliver CCL21 in cancer patients will reactivate the downregulated immune activity in the TME. Immune escape mechanisms are upregulated in the TME that promote tumor immune evasion. CCL21 combined with inhibition of dominant pathways of immune evasion will aid in the development of effective immunotherapy for cancer.
Collapse
Affiliation(s)
- Sherven Sharma
- Department of Medicine, UCLA Lung Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. .,Molecular Gene Medicine Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Pournima Kadam
- Molecular Gene Medicine Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Steven Dubinett
- Department of Medicine, UCLA Lung Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Molecular Gene Medicine Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
15
|
Avota E, de Lira MN, Schneider-Schaulies S. Sphingomyelin Breakdown in T Cells: Role of Membrane Compartmentalization in T Cell Signaling and Interference by a Pathogen. Front Cell Dev Biol 2019; 7:152. [PMID: 31457008 PMCID: PMC6700246 DOI: 10.3389/fcell.2019.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids are major components of cellular membranes, and at steady-state level, their metabolic fluxes are tightly controlled. On challenge by external signals, they undergo rapid turnover, which substantially affects the biophysical properties of membrane lipid and protein compartments and, consequently, signaling and morphodynamics. In T cells, external cues translate into formation of membrane microdomains where proximal signaling platforms essential for metabolic reprograming and cytoskeletal reorganization are organized. This review will focus on sphingomyelinases, which mediate sphingomyelin breakdown and ensuing ceramide release that have been implicated in T-cell viability and function. Acting at the sphingomyelin pool at the extrafacial or cytosolic leaflet of cellular membranes, acid and neutral sphingomyelinases organize ceramide-enriched membrane microdomains that regulate T-cell homeostatic activity and, upon stimulation, compartmentalize receptors, membrane proximal signaling complexes, and cytoskeletal dynamics as essential for initiating T-cell motility and interaction with endothelia and antigen-presenting cells. Prominent examples to be discussed in this review include death receptor family members, integrins, CD3, and CD28 and their associated signalosomes. Progress made with regard to experimental tools has greatly aided our understanding of the role of bioactive sphingolipids in T-cell biology at a molecular level and of targets explored by a model pathogen (measles virus) to specifically interfere with their physiological activity.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Maria Nathalia de Lira
- Institute for Virology and Immunobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
16
|
Abstract
Dendritic cells (DCs) can be viewed as translators between innate and adaptive immunity. They integrate signals derived from tissue infection or damage and present processed antigen from these sites to naive T cells in secondary lymphoid organs while also providing multiple soluble and surface-bound signals that help to guide T cell differentiation. DC-mediated tailoring of the appropriate T cell programme ensures a proper cascade of immune responses that adequately targets the insult. Recent advances in our understanding of the different types of DC subsets along with the cellular organization and orchestration of DC and lymphocyte positioning in secondary lymphoid organs over time has led to a clearer understanding of how the nature of the T cell response is shaped. This Review discusses how geographical organization and ordered sequences of cellular interactions in lymph nodes and the spleen regulate immunity.
Collapse
Affiliation(s)
- S C Eisenbarth
- Department of Laboratory Medicine, Immunobiology, Section of Allergy & Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Sandor AM, Lindsay RS, Dyjack N, Whitesell JC, Rios C, Bradley BJ, Haskins K, Serreze DV, Geurts AM, Chen YG, Seibold MA, Jacobelli J, Friedman RS. CD11c + Cells Are Gatekeepers for Lymphocyte Trafficking to Infiltrated Islets During Type 1 Diabetes. Front Immunol 2019; 10:99. [PMID: 30766536 PMCID: PMC6365440 DOI: 10.3389/fimmu.2019.00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease that affects more than 19 million people with incidence increasing rapidly worldwide. For T cells to effectively drive T1D, they must first traffic to the islets and extravasate through the islet vasculature. Understanding the cues that lead to T cell entry into inflamed islets is important because diagnosed T1D patients already have established immune infiltration of their islets. Here we show that CD11c+ cells are a key mediator of T cell trafficking to infiltrated islets in non-obese diabetic (NOD) mice. Using intravital 2-photon islet imaging we show that T cell extravasation into the islets is an extended process, with T cells arresting in the islet vasculature in close proximity to perivascular CD11c+ cells. Antigen is not required for T cell trafficking to infiltrated islets, but T cell chemokine receptor signaling is necessary. Using RNAseq, we show that islet CD11c+ cells express over 20 different chemokines that bind chemokine receptors expressed on islet T cells. One highly expressed chemokine-receptor pair is CXCL16-CXCR6. However, NOD. CXCR6-/- mice progressed normally to T1D and CXCR6 deficient T cells trafficked normally to the islets. Even with CXCR3 and CXCR6 dual deficiency, T cells trafficked to infiltrated islets. These data reinforce that chemokine receptor signaling is highly redundant for T cell trafficking to inflamed islets. Importantly, depletion of CD11c+ cells strongly inhibited T cell trafficking to infiltrated islets of NOD mice. We suggest that targeted depletion of CD11c+ cells associated with the islet vasculature may yield a therapeutic target to inhibit T cell trafficking to inflamed islets to prevent progression of T1D.
Collapse
Affiliation(s)
- Adam M Sandor
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Robin S Lindsay
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Jennifer C Whitesell
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Brenda J Bradley
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
18
|
Hudson KE, Wong ASL, Richards AL, Kapp LM, Zimring JC. Alloimmunogenicity of an isolated MHC allele is affected by the context of MHC mismatch in a murine model. Transfusion 2019; 59:744-753. [PMID: 30681727 DOI: 10.1111/trf.15109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Humoral alloimmunization to human leukocyte antigen (HLA) can represent a barrier to solid-organ transplantation, can lead to a refractory state in patients requiring platelet transfusion, and can also contribute to transfusion-related acute lung injury (TRALI). While exposure to HLA-mismatched cells/tissues are generally required for HLA alloimmunization, the effect of the extent of major histocompatibility complex (MHC) mismatch between donor and recipient is poorly understood. STUDY DESIGN AND METHODS A novel mouse was generated that allows the expression of a single MHC Class I alloantigen, Kd . Alloimmune responses to Kd were studied in C57BL/6 mice transfused with splenocytes from different donor mice, allowing the analysis of responses to Kd as an isolated alloantigen, or in the context of additional mismatched MHC molecules. Advanced tools were utilized to study responses to Kd , including T-cell receptor transgenic mice that recognize the immunodominant Kd peptide presented by C57BL/6 mice to CD4+ T cells. RESULTS A single MHC Class I alloantigen mismatch is less immunogenic than when the same alloantigen is encountered in the context of additional mismatched MHC alloantigens. This difference is due, at least in part, to induction of CD4+ helper T cells, as the effect is overcome by increasing either mature CD4+ T-cell help through immunization or by increasing the precursor frequency of naïve CD4+ T cells by adoptive transfer from T-cell receptor transgenic donors. CONCLUSION These findings indicate that the immunogenicity of a single alloantigen can be affected by the context in which it is encountered, demonstrating the potential for cooperative effects between different mismatched MHC alloantigens.
Collapse
Affiliation(s)
- Krystalyn E Hudson
- BloodworksNW Research Institute, Seattle, Washington.,Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington
| | | | | | - Linda M Kapp
- BloodworksNW Research Institute, Seattle, Washington
| | - James C Zimring
- BloodworksNW Research Institute, Seattle, Washington.,Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington.,Department of Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
19
|
Laufer JM, Kindinger I, Artinger M, Pauli A, Legler DF. CCR7 Is Recruited to the Immunological Synapse, Acts as Co-stimulatory Molecule and Drives LFA-1 Clustering for Efficient T Cell Adhesion Through ZAP70. Front Immunol 2019; 9:3115. [PMID: 30692994 PMCID: PMC6339918 DOI: 10.3389/fimmu.2018.03115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022] Open
Abstract
The chemokine receptor CCR7 guides T cells and dendritic cells to and within lymph nodes to launch the onset of adaptive immunity. Here, we demonstrate that CCR7 in addition acts as a potent co-stimulatory molecule in T cell activation. We found that antigen recognition and engagement of the TCR results in CCR7 accumulation at the immunological synapse where CCR7 and the TCR co-localize within sub-synaptic vesicles. We demonstrate that CCR7 triggering alone is sufficient to recruit and activate ZAP70, a critical kinase for T cell activation, through Src kinase, whereas TCR CCR7 co-stimulation results in increased and prolonged ZAP70 kinase activity. Finally, we show that ZAP70, acting as adapter molecule, is critical for CCR7-mediated inside-out signaling to integrins, thereby modulating LFA-1 valency regulation to promote cell adhesion, a key step in immunological synapse formation and efficient T cell activation.
Collapse
Affiliation(s)
- Julia M Laufer
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ilona Kindinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
20
|
Adutler-Lieber S, Friedman N, Geiger B. Expansion and Antitumor Cytotoxicity of T-Cells Are Augmented by Substrate-Bound CCL21 and Intercellular Adhesion Molecule 1. Front Immunol 2018; 9:1303. [PMID: 29942308 PMCID: PMC6004589 DOI: 10.3389/fimmu.2018.01303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
Adoptive immunotherapy is based on ex vivo expansion and stimulation of T-cells, followed by their transfer into patients. The need for the ex vivo culturing step provides opportunities for modulating the properties of transferred T-cells, enhancing their antitumor abilities, and increasing their number. Here, we present a synthetic immune niche (SIN) that increases the number and antitumor activity of cytotoxic CD8+ T-cells. We first evaluated the effect of various SIN compositions that mimic the physiological microenvironment encountered by T-cells during their activation and expansion in the lymph node. We found that substrates coated with the chemokine CCL21 together with the adhesion molecule intercellular adhesion molecule 1 significantly increase the number of ovalbumin-specific murine CD8+ T-cells activated by antigen-loaded dendritic cells or activation microbeads. Notably, cells cultured on these substrates also displayed augmented cytotoxic activity toward ovalbumin-expressing melanoma cells, both in culture and in vivo. This increase in specific cytotoxic activity was associated with a major increase in the cellular levels of the killing-mediator granzyme B. Our results suggest that this SIN may be used for generating T-cells with augmented cytotoxic function, for use in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Moreau HD, Piel M, Voituriez R, Lennon-Duménil AM. Integrating Physical and Molecular Insights on Immune Cell Migration. Trends Immunol 2018; 39:632-643. [PMID: 29779848 DOI: 10.1016/j.it.2018.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
The function of most immune cells depends on their ability to migrate through complex microenvironments, either randomly to patrol for the presence of antigens or directionally to reach their next site of action. The actin cytoskeleton and its partners are key conductors of immune cell migration as they control the intrinsic migratory properties of leukocytes as well as their capacity to respond to cues present in their environment. In this review we focus on the latest discoveries regarding the role of the actomyosin cytoskeleton in optimizing immune cell migration in complex environments, with a special focus on recent insights provided by physical modeling.
Collapse
Affiliation(s)
- Hélène D Moreau
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France.
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Raphaël Voituriez
- Laboratoire Jean Perrin, UM 8237 CNRS/UPMC, 4 place Jussieu, 75005 Paris, France
| | | |
Collapse
|
22
|
Laufer JM, Legler DF. Beyond migration-Chemokines in lymphocyte priming, differentiation, and modulating effector functions. J Leukoc Biol 2018; 104:301-312. [PMID: 29668063 DOI: 10.1002/jlb.2mr1217-494r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
Chemokines and their receptors coordinate the positioning of leukocytes, and lymphocytes in particular, in space and time. Discrete lymphocyte subsets, depending on their activation and differentiation status, express various sets of chemokine receptors to be recruited to distinct tissues. Thus, the network of chemokines and their receptors ensures the correct localization of specialized lymphocyte subsets within the appropriate microenvironment enabling them to search for cognate antigens, to become activated, and to fulfill their effector functions. The chemokine system therefore is vital for the initiation as well as the regulation of immune responses to protect the body from pathogens while maintaining tolerance towards self. Besides the well investigated function of orchestrating directed cell migration, chemokines additionally act on lymphocytes in multiple ways to shape immune responses. In this review, we highlight and discuss the role of chemokines and chemokine receptors in controlling cell-to-cell contacts required for lymphocyte arrest on endothelial cells and immunological synapse formation, in lymphocyte priming and differentiation, survival, as well as in modulating effector functions.
Collapse
Affiliation(s)
- Julia M Laufer
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
23
|
Panagioti E, Klenerman P, Lee LN, van der Burg SH, Arens R. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections. Front Immunol 2018; 9:276. [PMID: 29503649 PMCID: PMC5820320 DOI: 10.3389/fimmu.2018.00276] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines.
Collapse
Affiliation(s)
- Eleni Panagioti
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lian N. Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
24
|
Hähnlein JS, Ramwadhdoebe TH, Semmelink JF, Choi IY, Berger FH, Maas M, Gerlag DM, Tak PP, Geijtenbeek TBH, van Baarsen LGM. Distinctive expression of T cell guiding molecules in human autoimmune lymph node stromal cells upon TLR3 triggering. Sci Rep 2018; 8:1736. [PMID: 29379035 PMCID: PMC5789053 DOI: 10.1038/s41598-018-19951-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Infections are implicated in autoimmunity. Autoantibodies are produced in lymphoid tissue where lymph node stromal cells (LNSCs) regulate lymphocyte function. Infections can alter the interaction between LNSCs and lymphocytes resulting in defective immune responses. In rheumatoid arthritis (RA) autoantibody production precedes clinical disease allowing identification of at risk individuals. We investigated the ability of human LNSCs derived from RA, RA-risk and healthy individuals to sense and respond to pathogens. Human LNSCs cultured directly from freshly collected lymph node biopsies expressed TLR1-9 with exception of TLR7. In all donors TLR3 triggering induced expression of ISGs, IL-6 and adhesion molecules like VCAM-1 and ICAM-1. Strikingly, T cell guiding chemokines CCL19 and IL-8 as well as the antiviral gene MxA were less induced upon TLR3 triggering in autoimmune LNSCs. This observed decrease, found already in LNSCs of RA-risk individuals, may lead to incorrect positioning of lymphocytes and aberrant immune responses during viral infections.
Collapse
Affiliation(s)
- Janine S Hähnlein
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamara H Ramwadhdoebe
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna F Semmelink
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ivy Y Choi
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ferco H Berger
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Danielle M Gerlag
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Clinical Unit Cambridge, GlaxoSmithKline, Cambridge, UK
| | - Paul P Tak
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Ghent University, Ghent, Belgium
- University of Cambridge, Cambridge, UK
- GlaxoSmithKline, Stevenage, UK
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa G M van Baarsen
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Lancaster JN, Li Y, Ehrlich LIR. Chemokine-Mediated Choreography of Thymocyte Development and Selection. Trends Immunol 2017; 39:86-98. [PMID: 29162323 DOI: 10.1016/j.it.2017.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
Abstract
As they differentiate, thymocytes encounter spatially restricted cues critical for differentiation and selection of a functional, self-tolerant T cell repertoire. Sequential migration of developing T cells through distinct thymic microenvironments is enforced by the ordered expression of chemokine receptors. Herein, we provide an updated perspective on T cell differentiation through the lens of recent advances that illuminate the dynamics of chemokine-driven thymocyte migration, localization, and interactions with stromal cells. We consider these findings in the context of earlier groundwork exploring the contribution of chemokines to T cell development, recent advances regarding the specificity of chemokine signaling, and novel techniques for evaluating the T cell repertoire. We suggest future research should amalgamate visualization of localized cellular interactions with downstream molecular signals.
Collapse
Affiliation(s)
- Jessica N Lancaster
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yu Li
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
26
|
Ferreira CP, Cariste LM, Santos Virgílio FD, Moraschi BF, Monteiro CB, Vieira Machado AM, Gazzinelli RT, Bruna-Romero O, Menin Ruiz PL, Ribeiro DA, Lannes-Vieira J, Lopes MDF, Rodrigues MM, de Vasconcelos JRC. LFA-1 Mediates Cytotoxicity and Tissue Migration of Specific CD8 + T Cells after Heterologous Prime-Boost Vaccination against Trypanosoma cruzi Infection. Front Immunol 2017; 8:1291. [PMID: 29081775 PMCID: PMC5645645 DOI: 10.3389/fimmu.2017.01291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022] Open
Abstract
Integrins mediate the lymphocyte migration into an infected tissue, and these cells are essential for controlling the multiplication of many intracellular parasites such as Trypanosoma cruzi, the causative agent of Chagas disease. Here, we explore LFA-1 and VLA-4 roles in the migration of specific CD8+ T cells generated by heterologous prime-boost immunization during experimental infection with T. cruzi. To this end, vaccinated mice were treated with monoclonal anti-LFA-1 and/or anti-VLA-4 to block these molecules. After anti-LFA-1, but not anti-VLA-4 treatment, all vaccinated mice displayed increased blood and tissue parasitemia, and quickly succumbed to infection. In addition, there was an accumulation of specific CD8+ T cells in the spleen and lymph nodes and a decrease in the number of those cells, especially in the heart, suggesting that LFA-1 is important for the output of specific CD8+ T cells from secondary lymphoid organs into infected organs such as the heart. The treatment did not alter CD8+ T cell effector functions such as the production of pro-inflammatory cytokines and granzyme B, and maintained the proliferative capacity after treatment. However, the specific CD8+ T cell direct cytotoxicity was impaired after LFA-1 blockade. Also, these cells expressed higher levels of Fas/CD95 on the surface, suggesting that they are susceptible to programmed cell death by the extrinsic pathway. We conclude that LFA-1 plays an important role in the migration of specific CD8+ T cells and in the direct cytotoxicity of these cells.
Collapse
Affiliation(s)
- Camila Pontes Ferreira
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, São Paulo, Brazil.,Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Leonardo Moro Cariste
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, São Paulo, Brazil.,Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
| | - Fernando Dos Santos Virgílio
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, São Paulo, Brazil.,Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Barbara Ferri Moraschi
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, São Paulo, Brazil.,Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | - Ricardo Tostes Gazzinelli
- René Rachou Research Center, Fiocruz, Minas Gerais, Brazil.,Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Oscar Bruna-Romero
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - Joseli Lannes-Vieira
- Biology Interactions Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Marcela de Freitas Lopes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio Martins Rodrigues
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, São Paulo, Brazil.,Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - José Ronnie Carvalho de Vasconcelos
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, São Paulo, Brazil.,Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Ki S, Thyagarajan HM, Hu Z, Lancaster JN, Ehrlich LIR. EBI2 contributes to the induction of thymic central tolerance in mice by promoting rapid motility of medullary thymocytes. Eur J Immunol 2017; 47:1906-1917. [PMID: 28741728 DOI: 10.1002/eji.201747020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/14/2017] [Accepted: 07/21/2017] [Indexed: 11/08/2022]
Abstract
Maturing thymocytes enter the thymic medulla, where they encounter numerous self-antigens presented by antigen presenting cells (APCs). Those thymocytes that are strongly self-reactive undergo either negative selection or diversion into the regulatory T-cell lineage. Although the majority of the proteome is expressed in the medulla, many self-antigens are expressed by only a minor fraction of medullary APCs; thus, thymocytes must efficiently enter the medulla and scan APCs to ensure central tolerance. Chemokine receptors promote lymphocyte migration, organization within tissues, and interactions with APCs in lymphoid organs. The chemokine receptor EBI2 governs localization of T cells, B cells, and dendritic cells (DCs) during immune responses in secondary lymphoid organs. However, the role of EBI2 in thymocyte development has not been elucidated. Here, we demonstrate that EBI2 is expressed by murine CD4+ single positive (CD4SP) thymocytes and thymic DCs. EBI2 deficiency alters the TCR repertoire, but does not grossly impact thymocyte cellularity or subset distribution. EBI2 deficiency also impairs negative selection of OT-II TCR transgenic thymocytes responding to an endogenous self-antigen. Two-photon imaging revealed that EBI2 deficiency results in reduced migration and impaired medullary accumulation of CD4SP thymocytes. These data identify a role for EBI2 in promoting efficient thymic central tolerance.
Collapse
Affiliation(s)
- Sanghee Ki
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Hiran M Thyagarajan
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Zicheng Hu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jessica N Lancaster
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
28
|
Substrate-bound CCL21 and ICAM1 combined with soluble IL-6 collectively augment the expansion of antigen-specific murine CD4 + T cells. Blood Adv 2017; 1:1016-1030. [PMID: 29296744 DOI: 10.1182/bloodadvances.2016001545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/13/2017] [Indexed: 01/24/2023] Open
Abstract
Immune processes within the complex microenvironment of the lymph node involve multiple intercellular, cell-matrix, and paracrine interactions, resulting in the expansion of antigen-specific T cells. Inspired by the lymph node microenvironment, we aimed to develop an ex vivo "synthetic immune niche" (SIN), which could effectively stimulate the proliferation of antigen-activated CD4+ T cells. This engineered SIN consisted of surfaces coated with the chemokine C-C motif ligand 21 (CCL21) and with the intercellular adhesion molecule 1 (ICAM1), coupled with the soluble cytokine interleukin 6 (IL-6) added to the culture medium. When activated by ovalbumin-loaded dendritic cells, OT-II T cells growing on regular uncoated culture plates form nonadherent, dynamic clusters around the dendritic cells. We found that functionalization of the plate surface with CCL21 and ICAM1 and the addition of IL-6 to the medium dramatically increases T-cell proliferation and transforms the culture topology from that of suspended 3-dimensional cell clusters into a firm, substrate-attached monolayer of cells. Our findings demonstrate that the components of this SIN collectively modulate T-cell interactions and augment both the proliferation and survival of T cells in an antigen-specific manner, potentially serving as a powerful approach for expanding immunotherapeutic T cells.
Collapse
|
29
|
Al-Jokhadar M, Al-Mandily A, Zaid K, Azar Maalouf E. CCR7 and CXCR4 Expression in Primary Head and Neck Squamous Cell Carcinomas and Nodal Metastases – a Clinical and Immunohistochemical Study. Asian Pac J Cancer Prev 2017; 18:1093-1104. [PMID: 28547946 PMCID: PMC5494221 DOI: 10.22034/apjcp.2017.18.4.1093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Squamous cell carcinomas (SCCs) are common head and neck malignancies demonstrating lymph node LN involvement. Recently chemokine receptor overxpression has been reported in many cancers. Of particular interest, CCR7 appears to be a strong mediator of LN metastases, while CXCR4 may mediate distant metastases. Any relations between their expression in primary HNSCCs and metastatic lymph nodes need to be clarified. Aims: To investigate CCR7 andCXCR4 expression in primary HNSCCs of all tumor sizes, clinical stages and histological grades, as well as involved lymph nodes, then make comparisons, also with control normal oral epithelium. Materials and Methods: The sample consisted of 60 formalin-fixed, paraffin-embedded specimens of primary HNSCCs, 77 others of metastasi-positive lymph nodes, and 10 of control normal oral epithelial tissues. Sections were conventionally stained with H&E and immunohistochemically with monoclonal anti-CCR7 and monoclonal anti-CXCR4 antibodies. Positive cells were counted under microscopic assessment in four fields (X40) per case. Results: There was no variation among primary HNSCC tumors staining positive for CCR7 and CXCR4 with tumor size of for CCR7 with lymph node involvement. However, a difference was noted between primary HNSCC tumors stained by CXCR4 with a single as compared to more numerous node involvement. CXCR4 appear to vary with the clinical stagebut no links were noted with histological grades. Staining for primary HNSCC tumors and metastatic lymph nodes correlated.
Collapse
Affiliation(s)
- Maya Al-Jokhadar
- Department of Oral Histology and Pathology, Faculty of Dentistry, Damascus University, Damascus, Syria.
| | | | | | | |
Collapse
|
30
|
Ma HD, Ma WT, Liu QZ, Zhao ZB, Liu MZY, Tsuneyama K, Gao JM, Ridgway WM, Ansari AA, Gershwin ME, Fei YY, Lian ZX. Chemokine receptor CXCR3 deficiency exacerbates murine autoimmune cholangitis by promoting pathogenic CD8 + T cell activation. J Autoimmun 2017; 78:19-28. [PMID: 28129932 DOI: 10.1016/j.jaut.2016.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
Abstract
CXC Chemokine Receptor 3 (CXCR3) is functionally pleiotropic and not only plays an important role in chemotaxis, but also participates in T cell differentiation and may play a critical role in inducing and maintaining immune tolerance. These observations are particularly critical for autoimmune cholangitis in which CXCR3 positive T cells are found around the portal areas of both humans and mouse models of primary biliary cholangitis (PBC). Herein, we investigated the role of CXCR3 in the pathogenesis of autoimmune cholangitis. We have taken advantage of a unique CXCR3 knockout dnTGFβRII mouse to focus on the role of CXCR3, both by direct observation of its influence on the natural course of disease, as well as through adoptive transfer studies into Rag-/- mice. We report herein that not only do CXCR3 deficient mice develop an exacerbation of autoimmune cholangitis associated with an expanded effector memory T cell number, but also selective adoptive transfer of CXCR3 deficient CD8+ T cells induces autoimmune cholangitis. In addition, gene microarray analysis of CXCR3 deficient CD8+ T cells reveal an intense pro-inflammatory profile. Our data suggests that the altered gene profiles induced by CXCR3 deficiency promotes autoimmune cholangitis through pathogenic CD8+ T cells. These data have significance for human PBC and other autoimmune liver diseases in which therapeutic intervention might be directed to chemokines and/or their receptors.
Collapse
Affiliation(s)
- Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen-Tao Ma
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing-Zhi Liu
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Bin Zhao
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Mu-Zi-Ying Liu
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Koichi Tsuneyama
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Jin-Ming Gao
- Department of Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, OH, USA
| | - Aftab A Ansari
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Yun-Yun Fei
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China; Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China.
| |
Collapse
|
31
|
Gregor CE, Foeng J, Comerford I, McColl SR. Chemokine-Driven CD4 + T Cell Homing: New Concepts and Recent Advances. Adv Immunol 2017; 135:119-181. [DOI: 10.1016/bs.ai.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Boldajipour B, Nelson A, Krummel MF. Tumor-infiltrating lymphocytes are dynamically desensitized to antigen but are maintained by homeostatic cytokine. JCI Insight 2016; 1:e89289. [PMID: 27942588 DOI: 10.1172/jci.insight.89289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
T cells that enter tumors are largely tolerized, but how that process is choreographed and how the ensuing "dysfunctional" tumor-infiltrating lymphocytes (TILs) are maintained are poorly understood and are difficult to assess in spontaneous disease. We exploited an autochthonous model of breast cancer for high-resolution imaging of the early and later stages of tumor residence to understand the relationships between cellular behaviors and cellular phenotypes. "Dysfunctional" differentiation began within the first days of tumor residence with an initial phase in which T cells arrest, largely on tumor-associated macrophages. Within 10 days, cellular motility increased and resembled a random walk, suggesting a relative absence of TCR signaling. We then studied the concurrent and apparently contradictory phenomenon that many of these cells express molecular markers of activation and were visualized undergoing active cell division. We found that whereas proliferation did not require ongoing TCR/ZAP70 signaling, instead this is driven in part by intratumoral IL-15 cytokine. Thus, TILs undergo sequential reprogramming by the tumor microenvironment and are actively retained, even while being antigen insensitive. We conclude that this program effectively fills the niche with ineffective yet cytokine-dependent TILs, and we propose that these might compete with new clones, when they arise.
Collapse
Affiliation(s)
| | | | - Matthew F Krummel
- Department of Pathology and.,Biological Imaging Development Center, UCSF, San Francisco, California, USA
| |
Collapse
|
33
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
34
|
Rossi B, Constantin G. Live Imaging of Immune Responses in Experimental Models of Multiple Sclerosis. Front Immunol 2016; 7:506. [PMID: 27917173 PMCID: PMC5116921 DOI: 10.3389/fimmu.2016.00506] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most common animal model of multiple sclerosis (MS), a chronic inflammatory autoimmune disease of the central nervous system (CNS) characterized by multifocal perivascular infiltrates that predominantly comprise lymphocytes and macrophages. During EAE, autoreactive T cells first become active in the secondary lymphoid organs upon contact with antigen-presenting cells (APCs), and then gain access to CNS parenchyma, through a compromised blood–brain barrier, subsequently inducing inflammation and demyelination. Two-photon laser scanning microscopy (TPLSM) is an ideal tool for intravital imaging because of its low phototoxicity, deep tissue penetration, and high resolution. In the last decade, TPLSM has been used to visualize the behavior of T cells and their contact with APCs in the lymph nodes (LNs) and target tissues in several models of autoimmune diseases. The leptomeninges and cerebrospinal fluid represent particularly important points for T cell entry into the CNS and reactivation following contact with local APCs during the preclinical phase of EAE. In this review, we highlight recent findings concerning the pathogenesis of EAE and MS, emphasizing the use of TPLSM to characterize T cell activation in the LNs and CNS, as well as the mechanisms of tolerance induction. Furthermore, we discuss how advanced imaging unveils disease mechanisms and helps to identify novel therapeutic strategies to treat CNS autoimmunity and inflammation.
Collapse
Affiliation(s)
- Barbara Rossi
- Section of General Pathology, Department of Medicine, University of Verona , Verona , Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona , Verona , Italy
| |
Collapse
|
35
|
Lorenz N, Loef EJ, Kelch ID, Verdon DJ, Black MM, Middleditch MJ, Greenwood DR, Graham ES, Brooks AE, Dunbar PR, Birch NP. Plasmin and regulators of plasmin activity control the migratory capacity and adhesion of human T cells and dendritic cells by regulating cleavage of the chemokine CCL21. Immunol Cell Biol 2016; 94:955-963. [PMID: 27301418 DOI: 10.1038/icb.2016.56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/18/2016] [Accepted: 06/03/2016] [Indexed: 01/14/2023]
Abstract
The homeostatic chemokine CCL21 has a pivotal role in lymphocyte homing and compartment localisation within the lymph node, and also affects adhesion between immune cells. The effects of CCL21 are modulated by its mode of presentation, with different cellular responses seen for surface-bound and soluble forms. Here we show that plasmin cleaves surface-bound CCL21 to release the C-terminal peptide responsible for CCL21 binding to glycosaminoglycans on the extracellular matrix and cell surfaces, thereby generating the soluble form. Loss of this anchoring peptide enabled the chemotactic activity of CCL21 and reduced cell tethering. Tissue plasminogen activator did not cleave CCL21 directly but enhanced CCL21 processing through generation of plasmin from plasminogen. The tissue plasminogen activator inhibitor neuroserpin prevented processing of CCL21 and blocked the effects of soluble CCL21 on cell migration. Similarly, the plasmin-specific inhibitor α2-antiplasmin inhibited CCL21-mediated migration of human T cells and dendritic cells and tethering of T cells to APCs. We conclude that the plasmin system proteins plasmin, tissue plasminogen activator and neuroserpin regulate CCL21 function in the immune system by controlling the balance of matrix- and cell-bound CCL21.
Collapse
Affiliation(s)
- Natalie Lorenz
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Evert Jan Loef
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Inken D Kelch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Daniel J Verdon
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Moyra M Black
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Martin J Middleditch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Auckland Science Analytical Services, University of Auckland, Auckland, New Zealand
| | - David R Greenwood
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E Scott Graham
- Centre for Brain Research, Rangahau Roro, Aotearoa, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Anna Es Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Rangahau Roro, Aotearoa, New Zealand
- Brain Research New Zealand, Rangahau Roro, Aotearoa, New Zealand
| |
Collapse
|
36
|
Ozga AJ, Moalli F, Abe J, Swoger J, Sharpe J, Zehn D, Kreutzfeldt M, Merkler D, Ripoll J, Stein JV. pMHC affinity controls duration of CD8+ T cell-DC interactions and imprints timing of effector differentiation versus expansion. J Exp Med 2016; 213:2811-2829. [PMID: 27799622 PMCID: PMC5110015 DOI: 10.1084/jem.20160206] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/01/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
Ozga and colleagues use intravital two-photon microscopy and quantitative whole-organ imaging to reveal the dynamics of early affinity-driven CD8+ T cell activation. During adaptive immune responses, CD8+ T cells with low TCR affinities are released early into the circulation before high-affinity clones become dominant at later time points. How functional avidity maturation is orchestrated in lymphoid tissue and how low-affinity cells contribute to host protection remains unclear. In this study, we used intravital imaging of reactive lymph nodes (LNs) to show that T cells rapidly attached to dendritic cells irrespective of TCR affinity, whereas one day later, the duration of these stable interactions ceased progressively with lowering peptide major histocompatibility complex (pMHC) affinity. This correlated inversely BATF (basic leucine zipper transcription factor, ATF-like) and IRF4 (interferon-regulated factor 4) induction and timing of effector differentiation, as low affinity–primed T cells acquired cytotoxic activity earlier than high affinity–primed ones. After activation, low-affinity effector CD8+ T cells accumulated at efferent lymphatic vessels for egress, whereas high affinity–stimulated CD8+ T cells moved to interfollicular regions in a CXCR3-dependent manner for sustained pMHC stimulation and prolonged expansion. The early release of low-affinity effector T cells led to rapid target cell elimination outside reactive LNs. Our data provide a model for affinity-dependent spatiotemporal orchestration of CD8+ T cell activation inside LNs leading to functional avidity maturation and uncover a role for low-affinity effector T cells during early microbial containment.
Collapse
Affiliation(s)
- Aleksandra J Ozga
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Jun Abe
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Jim Swoger
- Systems Biology Research Unit, European Molecular Biology Laboratory/Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - James Sharpe
- Systems Biology Research Unit, European Molecular Biology Laboratory/Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, Centre des laboratoires d'Epalinges, 1066 Epalinges, Switzerland.,Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III of Madrid, 28911 Madrid, Spain.,Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, 28007 Madrid, Spain
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
37
|
Gaylo A, Schrock DC, Fernandes NRJ, Fowell DJ. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning. Front Immunol 2016; 7:428. [PMID: 27790220 PMCID: PMC5063845 DOI: 10.3389/fimmu.2016.00428] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell's antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function.
Collapse
Affiliation(s)
- Alison Gaylo
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| | - Dillon C. Schrock
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| | - Ninoshka R. J. Fernandes
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| | - Deborah J. Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
38
|
Sarkar S, Sabhachandani P, Stroopinsky D, Palmer K, Cohen N, Rosenblatt J, Avigan D, Konry T. Dynamic analysis of immune and cancer cell interactions at single cell level in microfluidic droplets. BIOMICROFLUIDICS 2016; 10:054115. [PMID: 27795747 PMCID: PMC5065572 DOI: 10.1063/1.4964716] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/29/2016] [Indexed: 05/06/2023]
Abstract
Cell-cell communication mediates immune responses to physiological stimuli at local and systemic levels. Intercellular communication occurs via a direct contact between cells as well as by secretory contact-independent mechanisms. However, there are few existing methods that allow quantitative resolution of contact-dependent and independent cellular processes in a rapid, precisely controlled, and dynamic format. This study utilizes a high-throughput microfluidic droplet array platform to analyze cell-cell interaction and effector functions at single cell level. Controlled encapsulation of distinct heterotypic cell pairs was achieved in a single-step cell loading process. Dynamic analysis of dendritic cell (DC)-T cell interactions demonstrated marked heterogeneity in the type of contact and duration. Non-stimulated DCs and T cells interacted less frequently and more transiently while antigen and chemokine-loaded DCs and T cells depicted highly stable interactions in addition to transient and sequential contact. The effector function of CD8+ T cells was assessed via cytolysis of multiple myeloma cell line. Variable cell conjugation periods and killing time were detected irrespective of the activation of T cells, although activated T cells delivered significantly higher cytotoxicity. T cell alloreactivity against the target cells was partially mediated by secretion of interferon gamma, which was abrogated by the addition of a neutralizing antibody. These results suggest that the droplet array-based microfluidic platform is a powerful technique for dynamic phenotypic screening and potentially applicable for evaluation of novel cell-based immunotherapeutic agents.
Collapse
Affiliation(s)
- S Sarkar
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - P Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - D Stroopinsky
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - K Palmer
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - N Cohen
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - J Rosenblatt
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - D Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - T Konry
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
39
|
Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol 2016; 34:203-42. [DOI: 10.1146/annurev-immunol-041015-055649] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Schulz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | | | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
40
|
Manipulating leukocyte interactions in vivo through optogenetic chemokine release. Blood 2016; 127:e35-41. [PMID: 27057000 DOI: 10.1182/blood-2015-11-684852] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/29/2016] [Indexed: 12/13/2022] Open
Abstract
Light-mediated release of signaling ligands, such as chemoattractants, growth factors, and cytokines is an attractive strategy for investigation and therapeutic targeting of leukocyte communication and immune responses. We introduce a versatile optogenetic method to control ligand secretion, combining UV-conditioned endoplasmic reticulum-to-Golgi trafficking and a furin-processing step. As proof of principle, we achieved light-triggered chemokine secretion and demonstrated that a brief pulse of chemokine release can mediate a rapid flux of leukocyte contacts with target cells in vitro and in vivo. This approach opens new possibilities for dynamic investigation of leukocyte communication in vivo and may confer the potential to control the local release of soluble mediators in the context of immune cell therapies.
Collapse
|
41
|
Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 2016; 531:513-7. [PMID: 26982733 DOI: 10.1038/nature16985] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
Lung metastasis is the lethal determinant in many cancers and a number of lines of evidence point to monocytes and macrophages having key roles in its development. Yet little is known about the immediate fate of incoming tumour cells as they colonize this tissue, and even less known about how they make first contact with the immune system. Primary tumours liberate circulating tumour cells (CTCs) into the blood and we have developed a stable intravital two-photon lung imaging model in mice for direct observation of the arrival of CTCs and subsequent host interaction. Here we show dynamic generation of tumour microparticles in shear flow in the capillaries within minutes of CTC entry. Rather than dispersing under flow, many of these microparticles remain attached to the lung vasculature or independently migrate along the inner walls of vessels. Using fluorescent lineage reporters and flow cytometry, we observed 'waves' of distinct myeloid cell subsets that load differentially and sequentially with this CTC-derived material. Many of these tumour-ingesting myeloid cells collectively accumulated in the lung interstitium along with the successful metastatic cells and, as previously understood, promote the development of successful metastases from surviving tumour cells. Although the numbers of these cells rise globally in the lung with metastatic exposure and ingesting myeloid cells undergo phenotypic changes associated with microparticle ingestion, a consistently sparse population of resident conventional dendritic cells, among the last cells to interact with CTCs, confer anti-metastatic protection. This work reveals that CTC fragmentation generates immune-interacting intermediates, and defines a competitive relationship between phagocyte populations for tumour loading during metastatic cell seeding.
Collapse
|
42
|
Hu Z, Lancaster JN, Sasiponganan C, Ehrlich LIR. CCR4 promotes medullary entry and thymocyte-dendritic cell interactions required for central tolerance. ACTA ACUST UNITED AC 2015; 212:1947-65. [PMID: 26417005 PMCID: PMC4612092 DOI: 10.1084/jem.20150178] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/20/2015] [Indexed: 11/24/2022]
Abstract
Hu et al. show that the chemokine receptor CCR4 is involved in thymocyte medullary entry, interactions with dendritic cells, and negative selection. In the absence of CCR4, central tolerance is not established, promoting autoimmunity. Autoimmunity results from a breakdown in central or peripheral tolerance. To establish central tolerance, developing T cells must enter the thymic medulla, where they scan antigen-presenting cells (APCs) displaying a diverse array of autoantigens. If a thymocyte is activated by a self-antigen, the cell undergoes either deletion or diversion into the regulatory T cell (T reg) lineage, thus maintaining self-tolerance. Mechanisms promoting thymocyte medullary entry and interactions with APCs are incompletely understood. CCR4 is poised to contribute to central tolerance due to its expression by post-positive selection thymocytes, and expression of its ligands by medullary thymic dendritic cells (DCs). Here, we use two-photon time-lapse microscopy to demonstrate that CCR4 promotes medullary entry of the earliest post-positive selection thymocytes, as well as efficient interactions between medullary thymocytes and DCs. In keeping with the contribution of thymic DCs to central tolerance, CCR4 is involved in regulating negative selection of polyclonal and T cell receptor (TCR) transgenic thymocytes. In the absence of CCR4, autoreactive T cells accumulate in secondary lymphoid organs and autoimmunity ensues. These studies reveal a previously unappreciated role for CCR4 in the establishment of central tolerance.
Collapse
Affiliation(s)
- Zicheng Hu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Jessica N Lancaster
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Chayanit Sasiponganan
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
43
|
Hu Z, Lancaster JN, Ehrlich LIR. The Contribution of Chemokines and Migration to the Induction of Central Tolerance in the Thymus. Front Immunol 2015; 6:398. [PMID: 26300884 PMCID: PMC4528182 DOI: 10.3389/fimmu.2015.00398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/20/2015] [Indexed: 02/01/2023] Open
Abstract
As T cells develop, they migrate throughout the thymus where they undergo essential bi-directional signaling with stromal cells in distinct thymic microenvironments. Immature thymocyte progenitors are located in the thymic cortex. Following T cell receptor expression and positive selection, thymocytes undergo a dramatic transition: they become rapidly motile and relocate to the thymic medulla. Antigen-presenting cells (APCs) within the cortex and medulla display peptides derived from a wide array of self-proteins, which promote thymocyte self-tolerance. If a thymocyte is auto-reactive against such antigens, it undergoes either negative selection, via apoptosis, or differentiation into the regulatory T cell lineage. This induction of central tolerance is critical for prevention of autoimmunity. Chemokines and adhesion molecules play an essential role in tolerance induction, as they promote migration of developing thymocytes through the different thymic microenvironments and enhance interactions with APCs displaying self-antigens. Herein, we review the contribution of chemokines and other regulators of thymocyte localization and motility to T cell development, with a focus on their contribution to the induction of central tolerance.
Collapse
Affiliation(s)
- Zicheng Hu
- Ehrlich Laboratory, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, TX , USA
| | - Jessica Naomi Lancaster
- Ehrlich Laboratory, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, TX , USA
| | - Lauren I R Ehrlich
- Ehrlich Laboratory, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, TX , USA
| |
Collapse
|
44
|
Abstract
Effector CD8(+) T cells scan tissues to locate and kill infected host cells. In this issue of Immunity, Hickman et al. (2015) show that the exploration is not random: infected monocytes attract their assassins by secreting chemokines, which accelerates clearance of epicutaneous vaccinia virus infection.
Collapse
|
45
|
Nasser MW, Elbaz M, Ahirwar DK, Ganju RK. Conditioning solid tumor microenvironment through inflammatory chemokines and S100 family proteins. Cancer Lett 2015; 365:11-22. [PMID: 25963887 DOI: 10.1016/j.canlet.2015.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/13/2022]
Abstract
Recently, there has been growing attention to the role of the tumor microenvironment (TME) in cancer growth, metastasis and emergence of chemotherapy resistance. Stromal and tumor cells make up the TME and interact with each other through a complex cross-talk manner. This interaction is facilitated by a variety of growth factors, cytokines, chemokines and S100 proteins. In this review, we focus on chemokines and their cognate receptors in regulating the tumorigenic process. Chemokines are cytokines that have chemotactic potential. Chemokine receptors are expressed on tumor cells and stromal cells. Chemokines and their cognate receptors modulate tumor growth and metastasis in a paracrine and autocrine manner. They play a major role in the modulation of stromal cell recruitment, angiogenic potential, cancer cell proliferation, survival, adhesion, invasion and metastasis to distant sites. In addition, a new class of calcium binding family S100 proteins has been getting attention as they play significant roles in tumor progression and metastasis by modulating TME. Here, we highlight recent developments regarding the inflammatory chemokine/S100 protein systems in the TME. We also focus on how chemokines/S100 proteins, through their role in the TME, modulate cancer cell ability to grow, proliferate, invade and metastasize to different organs. This review highlights the possibility of using the chemokine/chemokine receptor axis as a promising strategy in cancer therapy, the current difficulties in achieving this goal, and how it could be overcome for successful future therapeutic intervention.
Collapse
Affiliation(s)
- Mohd W Nasser
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA.
| | - Mohamad Elbaz
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA
| | - Dinesh K Ahirwar
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology, Comprehensive Cancer Center, The Ohio State Medical Center, Columbus, OH, USA
| |
Collapse
|
46
|
Cascio G, Martín-Cófreces NB, Rodríguez-Frade JM, López-Cotarelo P, Criado G, Pablos JL, Rodríguez-Fernández JL, Sánchez-Madrid F, Mellado M. CXCL12 Regulates through JAK1 and JAK2 Formation of Productive Immunological Synapses. THE JOURNAL OF IMMUNOLOGY 2015; 194:5509-19. [PMID: 25917087 DOI: 10.4049/jimmunol.1402419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
Abstract
The adaptive immune response requires interaction between T cells and APC to form a specialized structure termed the immune synapse (IS). Although the TCR is essential for IS organization, other factors such as chemokines participate in this process. In this study, we show that the chemokine CXCL12-mediated signaling contributes to correct IS organization and therefore influences T cell activation. CXCR4 downregulation or blockade on T cells caused defective actin polymerization at the contact site with APC, altered microtubule-organizing center polarization and the IS structure, and reduced T cell/APC contact duration. T cell activation was thus inhibited, as shown by reduced expression of CD25 and CD69 markers and of IL-2 mRNA levels. The results indicate that, through Gi and JAK1 and 2 kinases activation, CXCL12 signaling cooperates to build the IS and to maintain adhesive contacts between APC and T cells, required for continuous TCR signaling.
Collapse
Affiliation(s)
- Graciela Cascio
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, E-28049 Madrid, Spain
| | - Noa B Martín-Cófreces
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, E-28006 Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, E-28049 Madrid, Spain
| | - Pilar López-Cotarelo
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, E-28029 Madrid, Spain; Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Cientificas, E-28040 Madrid, Spain; and
| | - Gabriel Criado
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Sanitaria Hospital 12 de Octubre, E-28041 Madrid, Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Sanitaria Hospital 12 de Octubre, E-28041 Madrid, Spain
| | - José Luis Rodríguez-Fernández
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, E-28029 Madrid, Spain; Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Cientificas, E-28040 Madrid, Spain; and
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, E-28006 Madrid, Spain
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, E-28049 Madrid, Spain;
| |
Collapse
|
47
|
Gorbachev AV, Fairchild RL. Regulation of chemokine expression in the tumor microenvironment. Crit Rev Immunol 2015; 34:103-20. [PMID: 24940911 DOI: 10.1615/critrevimmunol.2014010062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemokines are chemotactic cytokines critical for homeostatic and inflammation-induced trafficking of leukocytes during immune responses, hematopoesis, wound healing, and tumorigenesis. Despite three decades of intensive study of the chemokine network, the molecular mechanisms regulating chemokine expression during tumor growth are not well understood. In this review, we focus on the role of chemokines in both tumor growth and anti-tumor immune responses and on molecular mechanisms employed by tumor cells to regulate chemokine expression in the tumor microenvironment. Multiple mechanisms used by tumors to regulate chemokine production, including those revealed by very recent studies (such as DNA methylation or post-translational nitrosylation of chemokines) are discussed. Concluding the review, we discuss how understanding of these regulatory mechanisms can be used in cancer therapy to suppress tumor growth and/or to promote immune-mediated eradication of tumors.
Collapse
Affiliation(s)
| | - Robert L Fairchild
- Department of Immunology and Urological Institute, Cleveland Clinic Foundation, Cleveland, OH 44195 and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
48
|
An evolving autoimmune microenvironment regulates the quality of effector T cell restimulation and function. Proc Natl Acad Sci U S A 2014; 111:9223-8. [PMID: 24927530 DOI: 10.1073/pnas.1322193111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Defining the processes of autoimmune attack of tissues is important for inhibiting continued tissue destruction. In type 1 diabetes, it is not known how cytotoxic effector T cell responses evolve over time in the pancreatic islets targeted for destruction. We used two-photon microscopy of live, intact, individual islets to investigate how progression of islet infiltration altered the behavior of infiltrating islet-specific CD8(+) T cells. During early-islet infiltration, T-cell interactions with CD11c(+) antigen-presenting cells (APCs) were stable and real-time imaging of T cell receptor (TCR) clustering provided evidence of TCR recognition in these stable contacts. Early T cell-APC encounters supported production of IFN-γ by T effectors, and T cells at this stage also killed islet APCs. At later stages of infiltration, T-cell motility accelerated, and cytokine production was lost despite the presence of higher numbers of infiltrating APCs that were able to trigger T-cell signaling in vitro. Using timed introduction of effector T cells, we demonstrate that elements of the autoimmune-tissue microenvironment control the dynamics of autoantigen recognition by T cells and their resulting pathogenic effector functions.
Collapse
|
49
|
CCL21 Cancer Immunotherapy. Cancers (Basel) 2014; 6:1098-110. [PMID: 24810425 PMCID: PMC4074818 DOI: 10.3390/cancers6021098] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 03/22/2014] [Accepted: 04/28/2014] [Indexed: 01/15/2023] Open
Abstract
Cancer, a major health problem, affects 12 million people worldwide every year. With surgery and chemo-radiation the long term survival rate for the majority of cancer patients is dismal. Thus novel treatments are urgently needed. Immunotherapy, the harnessing of the immune system to destroy cancer cells is an attractive option with potential for long term anti-tumor benefit. Cytokines are biological response modifiers that stimulate anti-tumor immune responses. In this review, we discuss the anti-tumor efficacy of the chemotactic cytokine CCL21 and its pre-clinical and clinical application in cancer.
Collapse
|
50
|
Krupnick AS, Lin X, Li W, Higashikubo R, Zinselmeyer BH, Hartzler H, Toth K, Ritter JH, Berezin MY, Wang ST, Miller MJ, Gelman AE, Kreisel D. Central memory CD8+ T lymphocytes mediate lung allograft acceptance. J Clin Invest 2014; 124:1130-43. [PMID: 24569377 PMCID: PMC3938255 DOI: 10.1172/jci71359] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/05/2013] [Indexed: 12/31/2022] Open
Abstract
Memory T lymphocytes are commonly viewed as a major barrier for long-term survival of organ allografts and are thought to accelerate rejection responses due to their rapid infiltration into allografts, low threshold for activation, and ability to produce inflammatory mediators. Because memory T cells are usually associated with rejection, preclinical protocols have been developed to target this population in transplant recipients. Here, using a murine model, we found that costimulatory blockade-mediated lung allograft acceptance depended on the rapid infiltration of the graft by central memory CD8+ T cells (CD44(hi)CD62L(hi)CCR7+). Chemokine receptor signaling and alloantigen recognition were required for trafficking of these memory T cells to lung allografts. Intravital 2-photon imaging revealed that CCR7 expression on CD8+ T cells was critical for formation of stable synapses with antigen-presenting cells, resulting in IFN-γ production, which induced NO and downregulated alloimmune responses. Thus, we describe a critical role for CD8+ central memory T cells in lung allograft acceptance and highlight the need for tailored approaches for tolerance induction in the lung.
Collapse
Affiliation(s)
- Alexander Sasha Krupnick
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Xue Lin
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wenjun Li
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ryuiji Higashikubo
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bernd H. Zinselmeyer
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hollyce Hartzler
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kelsey Toth
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jon H. Ritter
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mikhail Y. Berezin
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Steven T. Wang
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mark J. Miller
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrew E. Gelman
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery and
Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Radiology and
Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|