1
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024; 37:e0008023. [PMID: 39360834 PMCID: PMC11629636 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
2
|
Chiang CY, West NP. The fall of the mycobacterial cell wall: interrogating peptidoglycan synthesis for novel anti-TB agents. PeerJ 2024; 12:e18404. [PMID: 39553715 PMCID: PMC11569785 DOI: 10.7717/peerj.18404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis has been a threat to human health for thousands of years and still leads to millions of deaths each year. TB is a disease that is refractory to treatment, partially due to its capacity for in-host persistence. The cell wall of mycobacteria, rich in mycolic acid, is broadly associated with bacterial persistence together with antimicrobial and immunological resistance. Enzymes for the biosynthesis of bacterial peptidoglycan, an essential component of the cell wall, have been addressed and considered as appealing drug targets in pathogens. Significant effort has been dedicated to finding inhibitors that hinder peptidoglycan biosynthesis, many with demonstrated enzymatic inhibition in vitro being published. One family of critical biosynthetic enzymes are the Mur enzymes, with many enzyme specific inhibitors having been reported. However, a lesser developed strategy which may have positive clinical implications is to take advantage of the common structural and catalytic characteristics among Mur enzymes and to allow simultaneous, multiple Mur inhibition, and avert the development of drug resistance. M. tuberculosis relies on these essential Mur enzymes, with the best-known subset being Mur ligases, but also utilizes unique functions of atypical transpeptidases resulting in peptidoglycan peptide cross-linking beneficial to the bacteria's capacity for chronic persistence in humans. A systematic review is now needed, with an emphasis on M. tuberculosis. The urgent development of novel anti-TB agents to counter rapidly developing drug resistance requires a revisit of the literature, past successes and failures, in an attempt to reveal liabilities in critical cellular functions and drive innovation.
Collapse
Affiliation(s)
- Cheng-Yu Chiang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas P. West
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Devlin KL, Leach DT, Stratton KG, Lamichhane G, Lin VS, Beatty KE. Proteomic characterization of Mycobacterium tuberculosis subjected to carbon starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623260. [PMID: 39605331 PMCID: PMC11601416 DOI: 10.1101/2024.11.12.623260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mycobacterium tuberculosis ( Mtb ) is the causative agent of tuberculosis (TB), the leading cause of infectious-disease related deaths worldwide. TB infections present as a spectrum from active to latent disease. In the human host, Mtb faces hostile environments, such as nutrient deprivation, hypoxia, and low pH. Under these conditions, Mtb can enter a dormant, but viable, state characterized by a lack of cell replication and increased resistance to antibiotics. These dormant Mtb pose a major challenge to curing infections and eradicating TB globally. In the current study, we subjected Mtb to carbon starvation (CS), a culture condition that induces growth stasis and mimics nutrient-starved conditions associated with dormancy in vivo . We provide a detailed analysis of the proteome in CS compared to replicating samples. We observed extensive proteomic reprogramming, with 36% of identified proteins significantly altered in CS. Many enzymes involved in oxidative phosphorylation and lipid metabolism were retained or upregulated in CS. The cell wall biosynthetic machinery was present in CS, although numerous changes in the abundance of peptidoglycan, arabinogalactan, and mycolic acid biosynthetic enzymes likely result in pronounced remodeling of the cell wall. Many clinically approved anti-TB drugs target cell wall biosynthesis, and we found that these enzymes were largely retained in CS. Lastly, we compared our results to those of other dormancy models and propose that CS produces a physiologically-distinct state of stasis compared to hypoxia in Mtb .
Collapse
|
4
|
Marques PH, Jaiswal AK, de Almeida FA, Pinto UM, Ferreira-Machado AB, Tiwari S, Soares SDC, Paiva AD. Lactic acid bacteria secreted proteins as potential Listeria monocytogenes quorum sensing inhibitors. Mol Divers 2024; 28:2897-2912. [PMID: 37658910 DOI: 10.1007/s11030-023-10722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Listeria monocytogenes is an important human and animal pathogen able to cause an infection named listeriosis and is mainly transmitted through contaminated food. Among its virulence traits, the ability to form biofilms and to survive in harsh environments stand out and lead to the persistence of L. monocytogenes for long periods in food processing environments. Virulence and biofilm formation are phenotypes regulated by quorum sensing (QS) and, therefore, the control of L. monocytogenes through an anti-QS strategy is promising. This study aimed to identify, by in silico approaches, proteins secreted by lactic acid bacteria (LAB) potentially able to interfere with the agr QS system of L. monocytogenes. The genome mining of Lacticaseibacillus rhamnosus GG and Lactobacillus acidophilus NCFM revealed 151 predicted secreted proteins. Concomitantly, the three-dimensional (3D) structures of AgrB and AgrC proteins of L. monocytogenes were modeled and validated, and their active sites were predicted. Through protein-protein docking and molecular dynamic, Serine-type D-Ala-D-Ala carboxypeptidase and L,D-transpeptidase, potentially secreted by L. rhamnosus GG and L. acidophilus NCFM, respectively, were identified with high affinity to AgrB and AgrC proteins, respectively. By inhibiting the translocation of the cyclic autoinducer peptide (cyclic AIP) via AgrB, and its recognition in the active site of AgrC, these LAB proteins could disrupt L. monocytogenes communication by impairing the agr QS system. The application of the QS inhibitors predicted in this study can emerge as a promising strategy in controlling L. monocytogenes in food processing environment and as an adjunct to antibiotic therapy for the treatment of listeriosis.
Collapse
Affiliation(s)
- Pedro Henrique Marques
- Interunit Bioinformatics Graduate Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Arun Kumar Jaiswal
- Interunit Bioinformatics Graduate Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Alves de Almeida
- Instituto de Laticínios Cândido Tostes (ILCT), Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Juiz de Fora, Minas Gerais, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Sandeep Tiwari
- Institute of Biology, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Siomar de Castro Soares
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Aline Dias Paiva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
5
|
de Munnik M, Lang PA, Calvopiña K, Rabe P, Brem J, Schofield CJ. Biochemical and crystallographic studies of L,D-transpeptidase 2 from Mycobacterium tuberculosis with its natural monomer substrate. Commun Biol 2024; 7:1173. [PMID: 39294212 PMCID: PMC11410929 DOI: 10.1038/s42003-024-06785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
The essential L,D-transpeptidase of Mycobacterium tuberculosis (LdtMt2) catalyses the formation of 3 → 3 cross-links in cell wall peptidoglycan and is a target for development of antituberculosis therapeutics. Efforts to inhibit LdtMt2 have been hampered by lack of knowledge of how it binds its substrate. To address this gap, we optimised the isolation of natural disaccharide tetrapeptide monomers from the Corynebacterium jeikeium bacterial cell wall through overproduction of the peptidoglycan sacculus. The tetrapeptides were used in binding / turnover assays and biophysical studies on LdtMt2. We determined a crystal structure of wild-type LdtMt2 reacted with its natural substrate, the tetrapeptide monomer of the peptidoglycan layer. This structure shows formation of a thioester linking the catalytic cysteine and the donor substrate, reflecting an intermediate in the transpeptidase reaction; it informs on the mode of entrance of the donor substrate into the LdtMt2 active site. The results will be useful in design of LdtMt2 inhibitors, including those based on substrate binding interactions, a strategy successfully employed for other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Bollinger KW, Müh U, Ocius KL, Apostolos AJ, Pires MM, Helm RF, Popham DL, Weiss DS, Ellermeier CD. Identification of a family of peptidoglycan transpeptidases reveals that Clostridioides difficile requires noncanonical cross-links for viability. Proc Natl Acad Sci U S A 2024; 121:e2408540121. [PMID: 39150786 PMCID: PMC11348318 DOI: 10.1073/pnas.2408540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
Most bacteria are surrounded by a cell wall that contains peptidoglycan (PG), a large polymer composed of glycan strands held together by short peptide cross-links. There are two major types of cross-links, termed 4-3 and 3-3 based on the amino acids involved. 4-3 cross-links are created by penicillin-binding proteins, while 3-3 cross-links are created by L,D-transpeptidases (LDTs). In most bacteria, the predominant mode of cross-linking is 4-3, and these cross-links are essential for viability, while 3-3 cross-links comprise only a minor fraction and are not essential. However, in the opportunistic intestinal pathogen Clostridioides difficile, about 70% of the cross-links are 3-3. We show here that 3-3 cross-links and LDTs are essential for viability in C. difficile. We also show that C. difficile has five LDTs, three with a YkuD catalytic domain as in all previously known LDTs and two with a VanW catalytic domain, whose function was until now unknown. The five LDTs exhibit extensive functional redundancy. VanW domain proteins are found in many gram-positive bacteria but scarce in other lineages. We tested seven non-C. difficile VanW domain proteins and confirmed LDT activity in three cases. In summary, our findings uncover a previously unrecognized family of PG cross-linking enzymes, assign a catalytic function to VanW domains, and demonstrate that 3-3 cross-linking is essential for viability in C. difficile, the first time this has been shown in any bacterial species. The essentiality of LDTs in C. difficile makes them potential targets for antibiotics that kill C. difficile selectively.
Collapse
Affiliation(s)
- Kevin W. Bollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | | | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| |
Collapse
|
7
|
Lippincott CK, Lamichhane G. Case Commentary: Dual β-lactam as part of regimen to treat Mycobacterium abscessus lung disease. Antimicrob Agents Chemother 2024; 68:e0058524. [PMID: 38837394 PMCID: PMC11232395 DOI: 10.1128/aac.00585-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Individuals with compromised lung function and immunity are susceptible to developing chronic Mycobacterium abscessus infection. Current treatment recommendations typically involve using one β-lactam antibiotic in combination with non-β-lactam antibiotics. However, a recent case study (B. Becken, K. M. Dousa, J. L. Johnson, S. M. Holland, and R. A. Bonomo, Antimicrob Agents Chemother 68:e00319-24, 2024, https://doi.org/10.1128/aac.00319-24) demonstrated successful treatment of chronic M. abscessus lung disease in a child using two β-lactam antibiotics simultaneously. This commentary reviews the emerging evidence and outstanding questions regarding dual β-lactam therapy for M. abscessus infections.
Collapse
Affiliation(s)
- Christopher K. Lippincott
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Negatu DA, Aragaw WW, Dartois V, Dick T. A pairwise approach to revitalize β-lactams for the treatment of TB. Antimicrob Agents Chemother 2024; 68:e0003424. [PMID: 38690896 PMCID: PMC11620507 DOI: 10.1128/aac.00034-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/07/2024] [Indexed: 05/03/2024] Open
Abstract
The dual β-lactam approach has been successfully applied to overcome target redundancy in nontuberculous mycobacteria. Surprisingly, this approach has not been leveraged for Mycobacterium tuberculosis, despite the high conservation of peptidoglycan synthesis. Through a comprehensive screen of oral β-lactam pairs, we have discovered that cefuroxime strongly potentiates the bactericidal activity of tebipenem and sulopenem-advanced clinical candidates-and amoxicillin, at concentrations achieved clinically. β-lactam pairs thus have the potential to reduce TB treatment duration.
Collapse
Affiliation(s)
- Dereje A. Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
9
|
Nantongo M, Nguyen DC, Bethel CR, Taracila MA, Li Q, Dousa KM, Shin E, Kurz SG, Nguyen L, Kreiswirth BN, Boom WH, Plummer MS, Bonomo RA. Durlobactam, a Diazabicyclooctane β-Lactamase Inhibitor, Inhibits BlaC and Peptidoglycan Transpeptidases of Mycobacterium tuberculosis. ACS Infect Dis 2024; 10:1767-1779. [PMID: 38619138 DOI: 10.1021/acsinfecdis.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Peptidoglycan synthesis is an underutilized drug target in Mycobacterium tuberculosis (Mtb). Diazabicyclooctanes (DBOs) are a class of broad-spectrum β-lactamase inhibitors that also inhibit certain peptidoglycan transpeptidases that are important in mycobacterial cell wall synthesis. We evaluated the DBO durlobactam as an inhibitor of BlaC, the Mtb β-lactamase, and multiple Mtb peptidoglycan transpeptidases (PonA1, LdtMt1, LdtMt2, LdtMt3, and LdtMt5). Timed electrospray ionization mass spectrometry (ESI-MS) captured acyl-enzyme complexes with BlaC and all transpeptidases except LdtMt5. Inhibition kinetics demonstrated durlobactam was a potent and efficient DBO inhibitor of BlaC (KI app 9.2 ± 0.9 μM, k2/K 5600 ± 560 M-1 s-1) and similar to clavulanate (KI app 3.3 ± 0.6 μM, k2/K 8400 ± 840 M-1 s-1); however, durlobactam had a lower turnover number (tn = kcat/kinact) than clavulanate (1 and 8, respectively). KI app values with durlobactam and clavulanate were similar for peptidoglycan transpeptidases, but ESI-MS captured durlobactam complexes at more time points. Molecular docking and simulation demonstrated several productive interactions of durlobactam in the active sites of BlaC, PonA1, and LdtMt2. Antibiotic susceptibility testing was conducted on 11 Mtb isolates with amoxicillin, ceftriaxone, meropenem, imipenem, clavulanate, and durlobactam. Durlobactam had a minimum inhibitory concentration (MIC) range of 0.5-16 μg/mL, similar to the ranges for meropenem (1-32 μg/mL) and imipenem (0.5-64 μg/mL). In β-lactam + durlobactam combinations (1:1 mass/volume), MICs were lowered 4- to 64-fold for all isolates except one with meropenem-durlobactam. This work supports further exploration of novel β-lactamase inhibitors that target BlaC and Mtb peptidoglycan transpeptidases.
Collapse
Affiliation(s)
- Mary Nantongo
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - David C Nguyen
- Division of Infectious Diseases, Department of Pediatrics and Division of Infectious Diseases, and Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Christopher R Bethel
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magdalena A Taracila
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Qing Li
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Khalid M Dousa
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Medical Service, Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), Cleveland, Ohio 44106, United States
| | - Eunjeong Shin
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Sebastian G Kurz
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tübingen, 72076 Tübingen, Germany
| | - Liem Nguyen
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack, New Jersey 07110, United States
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Mark S Plummer
- Biopharmaworks, Groton, Connecticut 06340, United States
| | - Robert A Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Medical Service, Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), Cleveland, Ohio 44106, United States
- CWRU-Cleveland VAMC Center for Antibiotic Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106, United States
- Departments of Biochemistry, Pharmacology, and Proteomics and Bioinformatics, CWRU, Cleveland, Ohio 44106, United States
- Cleveland Geriatrics Research Education and Clinical Center (GRECC), VANEOHS, Cleveland, Ohio 44106, United States
| |
Collapse
|
10
|
Bartlett HP, Dawson CC, Glickman CM, Osborn DW, Evans CR, Garcia BJ, Frost LC, Cummings JE, Whittel N, Slayden RA, Holder JW. Targeting intracellular nontuberculous mycobacteria and M. tuberculosis with a bactericidal enzymatic cocktail. Microbiol Spectr 2024; 12:e0353423. [PMID: 38534149 PMCID: PMC11064574 DOI: 10.1128/spectrum.03534-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
To address intracellular mycobacterial infections, we developed a cocktail of four enzymes that catalytically attack three layers of the mycobacterial envelope. This cocktail is delivered to macrophages, through a targeted liposome presented here as ENTX_001. Endolytix Cocktail 1 (EC1) leverages mycobacteriophage lysin enzymes LysA and LysB, while also including α-amylase and isoamylase for degradation of the mycobacterial envelope from outside of the cell. The LysA family of proteins from mycobacteriophages has been shown to cleave the peptidoglycan layer, whereas LysB is an esterase that hydrolyzes the linkage between arabinogalactan and mycolic acids of the mycomembrane. The challenge of gaining access to the substrates of LysA and LysB provided exogenously was addressed by adding amylase enzymes that degrade the extracellular capsule shown to be present in Mycobacterium tuberculosis. This enzybiotic approach avoids antimicrobial resistance, specific receptor-mediated binding, and intracellular DNA surveillance pathways that limit many bacteriophage applications. We show this cocktail of enzymes is bactericidal in vitro against both rapid- and slow-growing nontuberculous mycobacteria (NTM) as well as M. tuberculosis strains. The EC1 cocktail shows superior killing activity when compared to previously characterized LysB alone. EC1 is also powerfully synergistic with standard-of-care antibiotics. In addition to in vitro killing of NTM, ENTX_001 demonstrates the rescue of infected macrophages from necrotic death by Mycobacteroides abscessus and Mycobacterium avium. Here, we demonstrate shredding of mycobacterial cells by EC1 into cellular debris as a mechanism of bactericide.IMPORTANCEThe world needs entirely new forms of antibiotics as resistance to chemical antibiotics is a critical problem facing society. We addressed this need by developing a targeted enzyme therapy for a broad range of species and strains within mycobacteria and highly related genera including nontuberculous mycobacteria such as Mycobacteroides abscessus, Mycobacterium avium, Mycobacterium intracellulare, as well as Mycobacterium tuberculosis. One advantage of this approach is the ability to drive our lytic enzymes through encapsulation into macrophage-targeted liposomes resulting in attack of mycobacteria in the cells that harbor them where they hide from the adaptive immune system and grow. Furthermore, this approach shreds mycobacteria independent of cell physiology as the drug targets the mycobacterial envelope while sidestepping the host range limitations observed with phage therapy and resistance to chemical antibiotics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jason E. Cummings
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Nicholas Whittel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Richard A. Slayden
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
11
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
12
|
Olivença F, Pires D, Silveiro C, Gama B, Holtreman F, Anes E, Catalão MJ. Ethambutol and meropenem/clavulanate synergy promotes enhanced extracellular and intracellular killing of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0158623. [PMID: 38411952 PMCID: PMC10989012 DOI: 10.1128/aac.01586-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/27/2024] [Indexed: 02/28/2024] Open
Abstract
Increasing evidence supports the repositioning of beta-lactams for tuberculosis (TB) therapy, but further research on their interaction with conventional anti-TB agents is still warranted. Moreover, the complex cell envelope of Mycobacterium tuberculosis (Mtb) may pose an additional obstacle to beta-lactam diffusion. In this context, we aimed to identify synergies between beta-lactams and anti-TB drugs ethambutol (EMB) and isoniazid (INH) by assessing antimicrobial effects, intracellular activity, and immune responses. Checkerboard assays with H37Rv and eight clinical isolates, including four drug-resistant strains, exposed that only treatments containing EMB and beta-lactams achieved synergistic effects. Meanwhile, the standard EMB and INH association failed to produce any synergy. In Mtb-infected THP-1 macrophages, combinations of EMB with increasing meropenem (MEM) concentrations consistently displayed superior killing activities over the individual antibiotics. Flow cytometry with BODIPY FL vancomycin, which binds directly to the peptidoglycan (PG), confirmed an increased exposure of this layer after co-treatment. This was reinforced by the high IL-1β secretion levels found in infected macrophages after incubation with MEM concentrations above 5 mg/L, indicating an exposure of the host innate response sensors to pathogen-associated molecular patterns in the PG. Our findings show that the proposed impaired access of beta-lactams to periplasmic transpeptidases is counteracted by concomitant administration with EMB. The efficiency of this combination may be attributed to the synchronized inhibition of arabinogalactan and PG synthesis, two key cell wall components. Given that beta-lactams exhibit a time-dependent bactericidal activity, a more effective pathogen recognition and killing prompted by this association may be highly beneficial to optimize TB regimens containing carbapenems.IMPORTANCEAddressing drug-resistant tuberculosis with existing therapies is challenging and the treatment success rate is lower when compared to drug-susceptible infection. This study demonstrates that pairing beta-lactams with ethambutol (EMB) significantly improves their efficacy against Mycobacterium tuberculosis (Mtb). The presence of EMB enhances beta-lactam access through the cell wall, which may translate into a prolonged contact between the drug and its targets at a concentration that effectively kills the pathogen. Importantly, we showed that the effects of the EMB and meropenem (MEM)/clavulanate combination were maintained intracellularly. These results are of high significance considering that the time above the minimum inhibitory concentration is the main determinant of beta-lactam efficacy. Moreover, a correlation was established between incubation with higher MEM concentrations during macrophage infection and increased IL-1β secretion. This finding unveils a previously overlooked aspect of carbapenem repurposing against tuberculosis, as certain Mtb strains suppress the secretion of this key pro-inflammatory cytokine to evade host surveillance.
Collapse
Affiliation(s)
- Francisco Olivença
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - David Pires
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Centre for Interdisciplinary Research in Health, Lisbon, Portugal
| | - Cátia Silveiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Bianca Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico Holtreman
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Elsa Anes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Bollinger KW, Müh U, Ocius KL, Apostolos AJ, Pires MM, Helm RF, Popham DL, Weiss DS, Ellermeier CD. Identification of a new family of peptidoglycan transpeptidases reveals atypical crosslinking is essential for viability in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584917. [PMID: 38559057 PMCID: PMC10980060 DOI: 10.1101/2024.03.14.584917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Clostridioides difficile, the leading cause of antibiotic-associated diarrhea, relies primarily on 3-3 crosslinks created by L,D-transpeptidases (LDTs) to fortify its peptidoglycan (PG) cell wall. This is unusual, as in most bacteria the vast majority of PG crosslinks are 4-3 crosslinks, which are created by penicillin-binding proteins (PBPs). Here we report the unprecedented observation that 3-3 crosslinking is essential for viability in C. difficile. We also report the discovery of a new family of LDTs that use a VanW domain to catalyze 3-3 crosslinking rather than a YkuD domain as in all previously known LDTs. Bioinformatic analyses indicate VanW domain LDTs are less common than YkuD domain LDTs and are largely restricted to Gram-positive bacteria. Our findings suggest that LDTs might be exploited as targets for antibiotics that kill C. difficile without disrupting the intestinal microbiota that is important for keeping C. difficile in check.
Collapse
Affiliation(s)
- Kevin W. Bollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Present address: Haleon, 1211 Sherwood Ave, Richmond, VA 23220
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, IA USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, IA USA
| |
Collapse
|
14
|
Jacobs LMC, Consol P, Chen Y. Drug Discovery in the Field of β-Lactams: An Academic Perspective. Antibiotics (Basel) 2024; 13:59. [PMID: 38247618 PMCID: PMC10812508 DOI: 10.3390/antibiotics13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
β-Lactams are the most widely prescribed class of antibiotics that inhibit penicillin-binding proteins (PBPs), particularly transpeptidases that function in peptidoglycan synthesis. A major mechanism of antibiotic resistance is the production of β-lactamase enzymes, which are capable of hydrolyzing β-lactam antibiotics. There have been many efforts to counter increasing bacterial resistance against β-lactams. These studies have mainly focused on three areas: discovering novel inhibitors against β-lactamases, developing new β-lactams less susceptible to existing resistance mechanisms, and identifying non-β-lactam inhibitors against cell wall transpeptidases. Drug discovery in the β-lactam field has afforded a range of research opportunities for academia. In this review, we summarize the recent new findings on both β-lactamases and cell wall transpeptidases because these two groups of enzymes are evolutionarily and functionally connected. Many efforts to develop new β-lactams have aimed to inhibit both transpeptidases and β-lactamases, while several promising novel β-lactamase inhibitors have shown the potential to be further developed into transpeptidase inhibitors. In addition, the drug discovery progress against each group of enzymes is presented in three aspects: understanding the targets, screening methodology, and new inhibitor chemotypes. This is to offer insights into not only the advancement in this field but also the challenges, opportunities, and resources for future research. In particular, cyclic boronate compounds are now capable of inhibiting all classes of β-lactamases, while the diazabicyclooctane (DBO) series of small molecules has led to not only new β-lactamase inhibitors but potentially a new class of antibiotics by directly targeting PBPs. With the cautiously optimistic successes of a number of new β-lactamase inhibitor chemotypes and many questions remaining to be answered about the structure and function of cell wall transpeptidases, non-β-lactam transpeptidase inhibitors may usher in the next exciting phase of drug discovery in this field.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.M.C.J.); (P.C.)
| |
Collapse
|
15
|
Andrés Libreros-Zúñiga G, Pavão E Pavão D, de Morais Barroso V, Cristina de Moraes Roso Mesquita N, Fehelberg Pinto Braga S, Oliva G, Salgado Ferreira R, Ishida K, Vinicius Bertacine Dias M. Integration of biophysical and biological approaches to validate fragment-like compounds targeting l,d-transpeptidases from Mycobacterium tuberculosis. Bioorg Chem 2024; 142:106960. [PMID: 37944368 DOI: 10.1016/j.bioorg.2023.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Tuberculosis is one of the major causes of death worldwide; more than a million people die every year because of this infection. The constant emergency of Mycobacterium tuberculosis resistant strains against the most used treatments also contributes to the burden caused by this disease. Consequently, the development of new alternative therapies against this disease is constantly required. In recent years, only a few molecules have reached the market as new antituberculosis agents. The mycobacterial cell wall biosynthesis is for a longstanding considered an important target for drug development. Particularly, in M. tuberculosis, the peptidoglycan cross-links are predominantly formed by nonclassical bridges between the third residues of adjacent tetrapeptides. The responsible enzymes for these reactions are ld-transpeptidases (Ldts), for which M. tuberculosis has five paralogues. Although these enzymes are distinct from the penicillin-binding proteins (PBPs), they can also be inactivated by β-lactam antibiotics, but since M. tuberculosis has a chromosomal β-lactamase, most of the antibiotics of these classes can be degraded. Thus, to identify alternative scaffolds for the development of new antimicrobials against tuberculosis, we have integrated several fragment-based drug discovery techniques. Based on that, we identified and validated a number of small molecules that could be the starting point in the synthesis of more potent inhibitors against at least two Ldts from M. tuberculosis, LdtMt2 and LdtMt3. Eight identified molecules inhibited the Ldts activity in at least 20%, and three of them have antimycobacterial activity. The cell ultrastructural analysis suggested that one of the best compounds induced severe effects on the septum and cell wall morphologies, which corroborates our target-based approach to identifying new Ldts hits.
Collapse
Affiliation(s)
- Gerardo Andrés Libreros-Zúñiga
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil; IBILCE, São Paulo State University, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054-000, Brazil; Department of Microbiology, Faculty of Health, University of Valle, Calle 4B # 36-00, 760043, Cali, Valle del Cauca, Colombia.
| | - Danilo Pavão E Pavão
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil
| | - Vinicius de Morais Barroso
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil
| | | | - Saulo Fehelberg Pinto Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais. Av. Antônio Carlos, 6627 - Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Glaucius Oliva
- Institute of Physics of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, Brazil
| | - Rafaela Salgado Ferreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais. Av. Antônio Carlos, 6627 - Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil; IBILCE, São Paulo State University, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054-000, Brazil; Department of Chemistry, University of Warwick, Coventry CV4 7AL, England.
| |
Collapse
|
16
|
Galley NF, Greetham D, Alamán-Zárate MG, Williamson MP, Evans CA, Spittal WD, Buddle JE, Freeman J, Davis GL, Dickman MJ, Wilcox MH, Lovering AL, Fagan RP, Mesnage S. Clostridioides difficile canonical L,D-transpeptidases catalyze a novel type of peptidoglycan cross-links and are not required for beta-lactam resistance. J Biol Chem 2024; 300:105529. [PMID: 38043796 PMCID: PMC10792238 DOI: 10.1016/j.jbc.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.
Collapse
Affiliation(s)
- Nicola F Galley
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Darren Greetham
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | | | - Caroline A Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - William D Spittal
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; Healthcare Associated Infections Research Group, Leeds Institute of Medical Research University of Leeds, Leeds, UK
| | | | - Jane Freeman
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; Healthcare Associated Infections Research Group, Leeds Institute of Medical Research University of Leeds, Leeds, UK
| | - Georgina L Davis
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; Healthcare Associated Infections Research Group, Leeds Institute of Medical Research University of Leeds, Leeds, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; Healthcare Associated Infections Research Group, Leeds Institute of Medical Research University of Leeds, Leeds, UK
| | | | - Robert P Fagan
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
17
|
de Munnik M, Lithgow J, Brewitz L, Christensen KE, Bates RH, Rodriguez-Miquel B, Schofield CJ. αβ,α'β'-Diepoxyketones are mechanism-based inhibitors of nucleophilic cysteine enzymes. Chem Commun (Camb) 2023; 59:12859-12862. [PMID: 37815791 PMCID: PMC10601815 DOI: 10.1039/d3cc02932h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Epoxides are an established class of electrophilic alkylating agents that react with nucleophilic protein residues. We report αβ,α'β'-diepoxyketones (DEKs) as a new type of mechanism-based inhibitors of nucleophilic cysteine enzymes. Studies with the L,D-transpeptidase LdtMt2 from Mycobacterium tuberculosis and the main protease from SARS-CoV-2 (Mpro) reveal that following epoxide ring opening by a nucleophilic cysteine, further reactions can occur, leading to irreversible alkylation.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jasper Lithgow
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Kirsten E Christensen
- Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Robert H Bates
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Calle Severo Ochoa 2, Tres Cantos, Madrid, Spain
| | - Beatriz Rodriguez-Miquel
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Calle Severo Ochoa 2, Tres Cantos, Madrid, Spain
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
18
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
19
|
Hugonneau-Beaufet I, Barnier JP, Thiriet-Rupert S, Létoffé S, Mainardi JL, Ghigo JM, Beloin C, Arthur M. Characterization of Pseudomonas aeruginosa l,d-Transpeptidases and Evaluation of Their Role in Peptidoglycan Adaptation to Biofilm Growth. Microbiol Spectr 2023; 11:e0521722. [PMID: 37255442 PMCID: PMC10434034 DOI: 10.1128/spectrum.05217-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
Peptidoglycan is an essential component of the bacterial cell envelope that sustains the turgor pressure of the cytoplasm, determines cell shape, and acts as a scaffold for the anchoring of envelope polymers such as lipoproteins. The final cross-linking step of peptidoglycan polymerization is performed by classical d,d-transpeptidases belonging to the penicillin-binding protein (PBP) family and by l,d-transpeptidases (LDTs), which are dispensable for growth in most bacterial species and whose physiological functions remain elusive. In this study, we investigated the contribution of LDTs to cell envelope synthesis in Pseudomonas aeruginosa grown in planktonic and biofilm conditions. We first assigned a function to each of the three P. aeruginosa LDTs by gene inactivation in P. aeruginosa, heterospecific gene expression in Escherichia coli, and, for one of them, direct determination of its enzymatic activity. We found that the three P. aeruginosa LDTs catalyze peptidoglycan cross-linking (LdtPae1), the anchoring of lipoprotein OprI to the peptidoglycan (LdtPae2), and the hydrolysis of the resulting peptidoglycan-OprI amide bond (LdtPae3). Construction of a phylogram revealed that LDTs performing each of these three functions in various species cannot be assigned to distinct evolutionary lineages, in contrast to what has been observed with PBPs. We showed that biofilm, but not planktonic bacteria, displayed an increase proportion of peptidoglycan cross-links formed by LdtPae1 and a greater extent of OprI anchoring to peptidoglycan, which is controlled by LdtPae2 and LdtPae3. Consistently, deletion of each of the ldt genes impaired biofilm formation and potentiated the bactericidal activity of EDTA. These results indicate that LDTs contribute to the stabilization of the bacterial cell envelope and to the adaptation of peptidoglycan metabolism to growth in biofilm. IMPORTANCE Active-site cysteine LDTs form a functionally heterologous family of enzymes that contribute to the biogenesis of the bacterial cell envelope through formation of peptidoglycan cross-links and through the dynamic anchoring of lipoproteins to peptidoglycan. Here, we report the role of three P. aeruginosa LDTs that had not been previously characterized. We show that these enzymes contribute to resistance to the bactericidal activity of EDTA and to the adaptation of cell envelope polymers to conditions that prevail in biofilms. These results indicate that LDTs should be considered putative targets in the development of drug-EDTA associations for the control of biofilm-related infections.
Collapse
Affiliation(s)
- Inès Hugonneau-Beaufet
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| | - Jean-Philippe Barnier
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Service de Microbiologie, Hôpital Européen Georges Pompidou, AP-HP Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Santé, UFR de Médecine, Paris, France
| | - Stanislas Thiriet-Rupert
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Sylvie Létoffé
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Jean-Luc Mainardi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Service de Microbiologie, Hôpital Européen Georges Pompidou, AP-HP Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Faculté de Santé, UFR de Médecine, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Michel Arthur
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| |
Collapse
|
20
|
de Munnik M, Lang PA, De Dios Anton F, Cacho M, Bates RH, Brem J, Rodríguez Miquel B, Schofield CJ. High-throughput screen with the l,d-transpeptidase Ldt Mt2 of Mycobacterium tuberculosis reveals novel classes of covalently reacting inhibitors. Chem Sci 2023; 14:7262-7278. [PMID: 37416715 PMCID: PMC10321483 DOI: 10.1039/d2sc06858c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
Disruption of bacterial cell wall biosynthesis in Mycobacterium tuberculosis is a promising target for treating tuberculosis. The l,d-transpeptidase LdtMt2, which is responsible for the formation of 3 → 3 cross-links in the cell wall peptidoglycan, has been identified as essential for M. tuberculosis virulence. We optimised a high-throughput assay for LdtMt2, and screened a targeted library of ∼10 000 electrophilic compounds. Potent inhibitor classes were identified, including established (e.g., β-lactams) and unexplored covalently reacting electrophilic groups (e.g., cyanamides). Protein-observed mass spectrometric studies reveal most classes to react covalently and irreversibly with the LdtMt2 catalytic cysteine (Cys354). Crystallographic analyses of seven representative inhibitors reveal induced fit involving a loop enclosing the LdtMt2 active site. Several of the identified compounds have a bactericidal effect on M. tuberculosis within macrophages, one with an MIC50 value of ∼1 μM. The results provide leads for the development of new covalently reaction inhibitors of LdtMt2 and other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Francisco De Dios Anton
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Mónica Cacho
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Robert H Bates
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Beatriz Rodríguez Miquel
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
21
|
Gaglani P, Dwivedi M, Upadhyay TK, Kaushal RS, Ahmad I, Saeed M. A pro-oxidant property of vitamin C to overcome the burden of latent Mycobacterium tuberculosis infection: A cross-talk review with Fenton reaction. Front Cell Infect Microbiol 2023; 13:1152269. [PMID: 37153159 PMCID: PMC10155705 DOI: 10.3389/fcimb.2023.1152269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/17/2023] [Indexed: 05/09/2023] Open
Abstract
Tuberculosis (TB), caused by the bacillus M. tuberculosis, is one of the deadliest infectious illnesses of our day, along with HIV and malaria.Chemotherapy, the cornerstone of TB control efforts, is jeopardized by the advent of M. tuberculosis strains resistant to many, if not all, of the existing medications.Isoniazid (INH), rifampicin (RIF), pyrazinamide, and ethambutol are used to treat drug-susceptible TB for two months, followed by four months of INH and RIF, but chemotherapy with potentially harmful side effects is sometimes needed to treat multidrug-resistant (MDR) TB for up to two years. Chemotherapy might be greatly shortened by drugs that kill M. tuberculosis more quickly while simultaneously limiting the emergence of drug resistance.Regardless of their intended target, bactericidal medicines commonly kill pathogenic bacteria (gram-negative and gram-positive) by producing hydroxyl radicals via the Fenton reaction.Researchers have concentrated on vitamins with bactericidal properties to address the rising cases globally and have discovered that these vitamins are effective when given along with first-line drugs. The presence of elevated iron content, reactive oxygen species (ROS) generation, and DNA damage all contributed to VC's sterilizing action on M. tb in vitro. Moreover, it has a pleiotropic effect on a variety of biological processes such as detoxification, protein folding - chaperons, cell wall processes, information pathways, regulatory, virulence, metabolism etc.In this review report, the authors extensively discussed the effects of VC on M. tb., such as the generation of free radicals and bactericidal mechanisms with existing treatments, and their further drug development based on ROS production.
Collapse
Affiliation(s)
- Pratikkumar Gaglani
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics and Structural Biology Laboratory, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics and Structural Biology Laboratory, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
22
|
Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Front Microbiol 2022; 13:1056608. [PMID: 36620019 PMCID: PMC9810820 DOI: 10.3389/fmicb.2022.1056608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Xu
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Baoyu Dong
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Peng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Gao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Batchelder HR, Zandi TA, Kaushik A, Naik A, Story-Roller E, Maggioncalda EC, Lamichhane G, Nuermberger EL, Townsend CA. Structure-Activity Relationship of Penem Antibiotic Side Chains Used against Mycobacteria Reveals Highly Active Compounds. ACS Infect Dis 2022; 8:1627-1636. [PMID: 35916356 PMCID: PMC10029149 DOI: 10.1021/acsinfecdis.2c00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rise of antibiotic-resistant Mycobacterium tuberculosis and non-tuberculous mycobacterial infections has placed ever-increasing importance on discovering new antibiotics to treat these diseases. Recently, a new penem, T405, was discovered to have strong antimicrobial activity against M. tuberculosis and Mycobacteroides abscessus. Here, a penem library of C2 side-chain variants was synthesized, and their antimicrobial activities were evaluated against M. tuberculosis H37Rv and M. abscessus ATCC 19977. Several new penems with antimicrobial activity stronger than the standard-of-care carbapenem antibiotics were identified with some candidates improving on the activity of the lead compound, T405. Moreover, many candidates showed little or no increase in the minimum inhibitory concentration in the presence of serum compared to the highly protein-bound T405. The penems with the strongest activity identified in this study were then biochemically characterized by reaction with the representative l,d-transpeptidase LdtMt2 and the representative penicillin-binding protein d,d-carboxypeptidase DacB2.
Collapse
Affiliation(s)
- Hunter R Batchelder
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Trevor A Zandi
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Amit Kaushik
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Akul Naik
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elizabeth Story-Roller
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Emily C Maggioncalda
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
24
|
Rimal B, Senzani S, Ealand C, Lamichhane G, Kana B, Kim SJ. Peptidoglycan compositional analysis of Mycobacterium smegmatis using high-resolution LC-MS. Sci Rep 2022; 12:11061. [PMID: 35773428 PMCID: PMC9247062 DOI: 10.1038/s41598-022-15324-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Peptidoglycan (PG) is the exoskeleton of bacterial cells and is required for their viability, growth, and cell division. Unlike most bacteria, mycobacteria possess an atypical PG characterized by a high degree of unique linkages and chemical modifications which most likely serve as important determinants of virulence and pathogenesis in mycobacterial diseases. Despite this important role, the chemical composition and molecular architecture of mycobacterial PG have yet to be fully determined. Here we determined the chemical composition of PG from Mycobacterium smegmatis using high-resolution liquid chromatography-mass spectrometry. Purified cell walls from the stationary phase were digested with mutanolysin and compositional analysis was performed on 130 muropeptide ions that were identified using an in silico PG library. The relative abundance for each muropeptide ion was measured by integrating the extracted-ion chromatogram. The percentage of crosslink per PG subunit was measured at 45%. While both 3→3 and 4→3 transpeptide cross-linkages were found in PG dimers, a high abundance of 3→3 linkages was found associated with the trimers. Approximately 43% of disaccharides in the PG of M. smegmatis showed modifications by acetylation or deacetylation. A significant number of PG trimers are found with a loss of 41.00 amu that is consistent with N-deacetylation, whereas the dimers show a gain of 42.01 amu corresponding to O-acetylation of the PG disaccharides. This suggests a possible role of PG acetylation in the regulation of cell wall homeostasis in M. smegmatis. Collectively, these data report important novel insights into the ultrastructure of mycobacterial PG.
Collapse
Affiliation(s)
- Binayak Rimal
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.,Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Sibusiso Senzani
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa
| | - Christopher Ealand
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa
| | - Gyanu Lamichhane
- Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Bavesh Kana
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa.
| | - Sung Joon Kim
- Department of Chemistry, Howard University, Chemistry Building, 525 College Street, Washington, DC, 20059, USA.
| |
Collapse
|
25
|
Uncovering Beta-Lactam Susceptibility Patterns in Clinical Isolates of Mycobacterium tuberculosis through Whole-Genome Sequencing. Microbiol Spectr 2022; 10:e0067422. [PMID: 35695524 PMCID: PMC9431576 DOI: 10.1128/spectrum.00674-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increasing threat of drug resistance and a stagnated pipeline of novel therapeutics endanger the eradication of tuberculosis. Beta-lactams constitute promising additions to the current therapeutic arsenal and two carbapenems are included in group C of medicines recommended by the WHO for use in longer multidrug-resistant tuberculosis regimens. However, the determinants underlining diverse Mycobacterium tuberculosis phenotypes to beta-lactams remain largely undefined. To decipher these, we present a proof-of-concept study based on a large-scale beta-lactam susceptibility screening for 172 M. tuberculosis clinical isolates from Portugal, including 72 antimycobacterial drug-resistant strains. MICs were determined for multiple beta-lactams and strains were subjected to whole-genome sequencing to identify core-genome single-nucleotide variant-based profiles. Global and cell wall-targeted approaches were then followed to detect putative drivers of beta-lactam response. We found that drug-resistant strains were more susceptible to beta-lactams, but significant differences were not observed between distinct drug-resistance profiles. Sublineage 4.3.4.2 strains were significantly more susceptible to beta-lactams, while the contrary was observed for Beijing and 4.1.2.1 sublineages. While mutations in beta-lactamase or cell wall biosynthesis genes were uncommon, a rise in beta-lactam MICs was detected in parallel with the accumulation of mutations in peptidoglycan cross-linking or cell division genes. Finally, we exposed that putative beta-lactam resistance markers occurred in genes for which relevant roles in cell wall processes have been ascribed, such as rpfC or pknA. Genetic studies to validate the relevance of the identified mutations for beta-lactam susceptibility and further improvement of the phenotype-genotype associations are needed in the future. IMPORTANCE Associations between differential M. tuberculosis beta-lactam phenotypes and preexisting antimycobacterial drug resistance, strain sublineage, or specific mutational patterns were established. Importantly, we reveal that highly drug-resistant isolates of sublineage 4.3.4.2 have an increased susceptibility to beta-lactams compared with other strains. Thus, directing beta-lactams to treat infections by specific M. tuberculosis strains and refraining its use from others emerges as a potentially important strategy to avoid resistance development. Individual mutations in blaC or genes encoding canonical beta-lactam targets, such as peptidoglycan transpeptidases, are infrequent and do not greatly impact the MICs of potent carbapenem plus clavulanic acid combinations. An improved understanding of the global effect of cumulative mutations in relevant gene sets for peptidoglycan and cell division processes on beta-lactam susceptibility is also provided.
Collapse
|
26
|
T405, a New Penem, Exhibits In Vivo Efficacy against M. abscessus and Synergy with β-Lactams Imipenem and Cefditoren. Antimicrob Agents Chemother 2022; 66:e0053622. [PMID: 35638855 PMCID: PMC9211421 DOI: 10.1128/aac.00536-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mycobacteroides abscessus (Mab) is an emerging environmental microbe that causes chronic lung disease in patients with compromised lung function such as cystic fibrosis and bronchiectasis. It is intrinsically resistant to most antibiotics, therefore there are only few antibiotics that can be repurposed to treat Mab disease. Although current recommendations require daily intake of multiple antibiotics for more than a year, cure rate is low and often associated with significant adverse events. Here, we describe in vivo efficacy of T405, a recently discovered β-lactam antibiotic of the penem subclass, in a mouse model of pulmonary Mab infection. Imipenem, one of the standard-of-care drugs to treat Mab disease, and also a β-lactam antibiotic from a chemical class similar to T405, was included as a comparator. Probenecid was included with both T405 and imipenem to reduce the rate of their renal clearance. T405 exhibited bactericidal activity against Mab from the onset of treatment and reduced Mab lung burden at a rate similar to that exhibited by imipenem. The MIC of T405 against Mab was unaltered after 4 weeks of exposure to T405 in the lungs of mice. Using an in vitro assay, we also demonstrate that T405 in combination with imipenem, cefditoren or avibactam exhibits synergism against Mab. Additionally, we describe a scheme for synthesis and purification of T405 on an industrial scale. These attributes make T405 a promising candidate for further preclinical assessment to treat Mab disease.
Collapse
|
27
|
Belete TM. Recent Progress in the Development of Novel Mycobacterium Cell Wall Inhibitor to Combat Drug-Resistant Tuberculosis. Microbiol Insights 2022; 15:11786361221099878. [PMID: 35645569 PMCID: PMC9131376 DOI: 10.1177/11786361221099878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Despite decades of research in drug development against TB, it is still the leading cause of death due to infectious diseases. The long treatment duration, patient noncompliance coupled with the ability of the tuberculosis bacilli to resist the current drugs increases multidrug-resistant tuberculosis that exacerbates the situation. Identification of novel drug targets is important for the advancement of drug development against Mycobacterium tuberculosis. The development of an effective treatment course that could help us eradicates TB. Hence, we require drugs that could eliminate the bacteria and shorten the treatment duration. This review briefly describes the available data on the peptidoglycan component structural characterization, identification of the metabolic pathway, and the key enzymes involved in the peptidoglycan synthesis, like N-Acetylglucosamine-1-phosphate uridyltransferase, mur enzyme, alanine racemase as well as their inhibition. Besides, this paper also provides studies on mycolic acid and arabinogalactan synthesis and the transport mechanisms that show considerable promise as new targets to develop a new product with their inhibiter.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
28
|
Peng Y, Zhu X, Gao L, Wang J, Liu H, Zhu T, Zhu Y, Tang X, Hu C, Chen X, Chen H, Chen Y, Guo A. Mycobacterium tuberculosis Rv0309 Dampens the Inflammatory Response and Enhances Mycobacterial Survival. Front Immunol 2022; 13:829410. [PMID: 35281073 PMCID: PMC8907127 DOI: 10.3389/fimmu.2022.829410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
To reveal functions of novel Mycobacterium tuberculosis (M. tb) proteins responsible for modulating host innate immunity is essential to elucidation of mycobacterial pathogenesis. In this study, we aimed to identify the role of a putative protein Rv0309 encoded within RD8 of M. tb genome in inhibiting the host inflammatory response and the underlying mechanism, using in-vitro and in-vivo experiments. A recombinant M. smegmatis strain Ms_rv0309 expressing Rv0309 and a mutant Bacillus Calmette-Guérin (BCG)ΔRS01790 strain with deletion of BCG_RS01790, 100% homologue of Rv0309 in BCG, were constructed. Rv0309 was found to localize in the cell wall and be able to decrease cell wall permeability. Purified recombinant rRv0309 protein inhibited lipopolysaccharide-induced IL-6 release in RAW264.7 cells. BCG_RS01790 in BCG or Rv0309 in Ms_rv0309 strain greatly inhibited production of IL-6, IL-1β, and TNF-α in RAW264.7 cells. Similarly, BCGΔRS01790 strongly induced expression of these cytokines compared with wild-type BCG and complement strain, cBCGΔRS01790::RS01790. Further BCG_RS01790 or Rv0309 suppressed cytokine production through NF-κB p65/IκBα and MAPK ERK/JNK signaling. Importantly, BCG_RS01790 in BCG and Rv0309 in Ms_rv0309 strain enhanced mycobacterial survival in macrophages. Mice infected with BCGΔRS01790 exhibited high levels of IFN-γ, TNF-α and IL-1β, and large numbers of neutrophils and lymphocytes in the early stage, and minimal lung bacterial load and inflammatory damage in late stage of the experiment. In conclusion, the cell wall protein Rv0309 or BCG_RS01790 enhanced mycobacterial intracellular survival after infection likely through inhibition of the pro-inflammatory response and decrease of bacterial cell wall permeability, thereby contributing to mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Yongchong Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojie Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lin Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jieru Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Huazhong Agriculture University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Huazhong Agriculture University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Ahmad N, Dugad S, Chauhan V, Ahmed S, Sharma K, Kachhap S, Zaidi R, Bishai WR, Lamichhane G, Kumar P. Allosteric cooperation in ß-lactam binding to a non-classical transpeptidase. eLife 2022; 11:73055. [PMID: 35475970 PMCID: PMC9094749 DOI: 10.7554/elife.73055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
L,D-transpeptidase function predominates in atypical 3®3 transpeptide networking of peptidoglycan (PG) layer in Mycobacterium tuberculosis. Prior studies of L,D-transpeptidases have identified only the catalytic site that binds to peptide moiety of the PG substrate or ß-lactam antibiotics. This insight was leveraged to develop mechanism of its activity and inhibition by ß-lactams. Here we report identification of an allosteric site at a distance of 21 Å from the catalytic site that binds the sugar moiety of PG substrates (hereafter referred to as the S-pocket). This site also binds a second ß-lactam molecule and influences binding at the catalytic site. We provide evidence that two ß-lactam molecules bind co-operatively to this enzyme, one non-covalently at the S-pocket and one covalently at the catalytic site. This dual ß-lactam binding phenomenon is previously unknown and is an observation that may offer novel approaches for the structure-based design of new drugs against M. tuberculosis./em>.
Collapse
Affiliation(s)
- Nazia Ahmad
- Department of Biochemistry, Jamia Hamdard University, Delhi, India
| | - Sanmati Dugad
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Varsha Chauhan
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Shubbir Ahmed
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, India
| | - Kunal Sharma
- Department of Biochemistry, Jamia Hamdard University, Delhi, India
| | - Sangita Kachhap
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek, Poland
| | - Rana Zaidi
- Department of Biochemistry, Jamia Hamdard University, Delhi, India
| | - William R Bishai
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Gyanu Lamichhane
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Pankaj Kumar
- Medicine, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
30
|
Gold B, Zhang J, Quezada LL, Roberts J, Ling Y, Wood M, Shinwari W, Goullieux L, Roubert C, Fraisse L, Bacqué E, Lagrange S, Filoche-Rommé B, Vieth M, Hipskind PA, Jungheim LN, Aubé J, Scarry SM, McDonald SL, Li K, Perkowski A, Nguyen Q, Dartois V, Zimmerman M, Olsen DB, Young K, Bonnett S, Joerss D, Parish T, Boshoff HI, Arora K, Barry CE, Guijarro L, Anca S, Rullas J, Rodríguez-Salguero B, Martínez-Martínez MS, Porras-De Francisco E, Cacho M, Barros-Aguirre D, Smith P, Berthel SJ, Nathan C, Bates RH. Identification of β-Lactams Active against Mycobacterium tuberculosis by a Consortium of Pharmaceutical Companies and Academic Institutions. ACS Infect Dis 2022; 8:557-573. [PMID: 35192346 PMCID: PMC8922279 DOI: 10.1021/acsinfecdis.1c00570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/28/2022]
Abstract
Rising antimicrobial resistance challenges our ability to combat bacterial infections. The problem is acute for tuberculosis (TB), the leading cause of death from infection before COVID-19. Here, we developed a framework for multiple pharmaceutical companies to share proprietary information and compounds with multiple laboratories in the academic and government sectors for a broad examination of the ability of β-lactams to kill Mycobacterium tuberculosis (Mtb). In the TB Drug Accelerator (TBDA), a consortium organized by the Bill & Melinda Gates Foundation, individual pharmaceutical companies collaborate with academic screening laboratories. We developed a higher order consortium within the TBDA in which four pharmaceutical companies (GlaxoSmithKline, Sanofi, MSD, and Lilly) collectively collaborated with screeners at Weill Cornell Medicine, the Infectious Disease Research Institute (IDRI), and the National Institute of Allergy and Infectious Diseases (NIAID), pharmacologists at Rutgers University, and medicinal chemists at the University of North Carolina to screen ∼8900 β-lactams, predominantly cephalosporins, and characterize active compounds. In a striking contrast to historical expectation, 18% of β-lactams screened were active against Mtb, many without a β-lactamase inhibitor. One potent cephaloporin was active in Mtb-infected mice. The steps outlined here can serve as a blueprint for multiparty, intra- and intersector collaboration in the development of anti-infective agents.
Collapse
Affiliation(s)
- Ben Gold
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Jun Zhang
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Landys Lopez Quezada
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Julia Roberts
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Yan Ling
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Madeleine Wood
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Wasima Shinwari
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Laurent Goullieux
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Christine Roubert
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Laurent Fraisse
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
| | - Eric Bacqué
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Sophie Lagrange
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | | | - Michal Vieth
- Lilly
Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Dr, San Diego, California 92121, United States
| | - Philip A. Hipskind
- Lilly
Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Louis N. Jungheim
- YourEncore, 20 North Meridian Street, Indianapolis, Indiana 46204, United States
| | - Jeffrey Aubé
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sarah M. Scarry
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stacey L. McDonald
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kelin Li
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Andrew Perkowski
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Quyen Nguyen
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Véronique Dartois
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - Matthew Zimmerman
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - David B. Olsen
- Merck
& Co., Inc., Infectious Diseases, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Katherine Young
- Merck
& Co., Inc., Infectious Diseases, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Shilah Bonnett
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Douglas Joerss
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Tanya Parish
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Laura Guijarro
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sara Anca
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Joaquín Rullas
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | | | | | | | - Monica Cacho
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - David Barros-Aguirre
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Paul Smith
- Independent Consultant, Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Steven J. Berthel
- Panorama Global, 2101
4th Avenue, Suite 2100, Seattle, Washington 98121, United States
| | - Carl Nathan
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Robert H. Bates
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| |
Collapse
|
31
|
Penicillin Binding Proteins and β-Lactamases of Mycobacterium tuberculosis: Reexamination of the Historical Paradigm. mSphere 2022; 7:e0003922. [PMID: 35196121 PMCID: PMC8865919 DOI: 10.1128/msphere.00039-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin binding proteins (PBPs) have been extensively studied due to their importance to the physiology of bacterial cell wall peptidoglycan and as targets of the most widely used class of antibiotics, the β-lactams. The existing paradigm asserts that PBPs catalyze the final step of peptidoglycan biosynthesis, and β-lactams inhibit their activities. According to this paradigm, a distinct enzyme class, β-lactamases, exists to inactivate β-lactams. This paradigm has been the basis for how bacterial diseases are treated with β-lactams. We tested whether this historical view accurately reflects the relationship between β-lactams and the PBPs and the β-lactamase, BlaC, of Mycobacterium tuberculosis. BlaC was the major inactivator of the cephalosporin subclass of β-lactams. However, the PBPs PonA1 and PonA2 inactivated penicillins and carbapenems more effectively than BlaC. These findings demonstrate that select M. tuberculosis PBPs are effective at inactivating several β-lactams. Lesser-known PBPs, DacB, DacB1, DacB2, and Rv2864c, a putative PBP, were comparably more resistant to inhibition by all β-lactam subclasses. Additionally, Rv1730c exhibited low affinity to most β-lactams. Based on these findings, we conclude that in M. tuberculosis, BlaC is not the only source of inactivation of β-lactams. Therefore, the historical paradigm does not accurately describe the relationship between β-lactams and M. tuberculosis. IMPORTANCE M. tuberculosis, the causative agent of tuberculosis, kills more humans than any other bacterium. β-lactams are the most widely used class of antibiotics to treat bacterial infections. Unlike in the historical model that describes the relationship between β-lactams and M. tuberculosis, we find that M. tuberculosis penicillin binding proteins are able to inactivate select β-lactams with high efficiency.
Collapse
|
32
|
Inhibiting Mycobacterium abscessus Cell Wall Synthesis: Using a Novel Diazabicyclooctane β-Lactamase Inhibitor To Augment β-Lactam Action. mBio 2022; 13:e0352921. [PMID: 35073757 PMCID: PMC8787486 DOI: 10.1128/mbio.03529-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium abscessus (Mab) infections are a growing menace to the health of many patients, especially those suffering from structural lung disease and cystic fibrosis. With multidrug resistance a common feature and a growing understanding of peptidoglycan synthesis in Mab, it is advantageous to identify potent β-lactam and β-lactamase inhibitor combinations that can effectively disrupt cell wall synthesis. To improve existing therapeutic regimens to address serious Mab infections, we evaluated the ability of durlobactam (DUR), a novel diazobicyclooctane β-lactamase inhibitor to restore in vitro susceptibilities in combination with β-lactams and provide a biochemical rationale for the activity of this compound. In cell-based assays, susceptibility of Mab subsp. abscessus isolates to amoxicillin (AMOX), imipenem (IMI), and cefuroxime (CXM) was significantly enhanced with the addition of DUR. The triple drug combinations of CXM-DUR-AMOX and IMI-DUR-AMOX were most potent, with MIC ranges of ≤0.06 to 1 μg/mL and an MIC50/MIC90 of ≤0.06/0.25 μg/mL, respectively. We propose a model by which this enhancement may occur, DUR potently inhibited the β-lactamase BlaMab with a relative Michaelis constant (Ki app) of 4 × 10-3 ± 0.8 × 10-3 μM and acylation rate (k2/K) of 1 × 107 M-1 s-1. Timed mass spectrometry captured stable formation of carbamoyl-enzyme complexes between DUR and LdtMab2-4 and Mab d,d-carboxypeptidase, potentially contributing to the intrinsic activity of DUR. Molecular modeling showed unique and favorable interactions of DUR as a BlaMab inhibitor. Similarly, modeling showed how DUR might form stable Michaelis-Menten complexes with LdtMab2-4 and Mab d,d-carboxypeptidase. The ability of DUR combined with amoxicillin or cefuroxime and imipenem to inactivate multiple targets such as d,d-carboxypeptidase and LdtMab2,4 supports new therapeutic approaches using β-lactams in eradicating Mab. IMPORTANCE Durlobactam (DUR) is a potent inhibitor of BlaMab and provides protection of amoxicillin and imipenem against hydrolysis. DUR has intrinsic activity and forms stable acyl-enzyme complexes with LdtMab2 and LdtMab4. The ability of DUR to protect amoxicillin and imipenem against BlaMab and its intrinsic activity along with the dual β-lactam target redundancy can explain the rationale behind the potent activity of this combination.
Collapse
|
33
|
Modak B, Girkar S, Narayan R, Kapoor S. Mycobacterial Membranes as Actionable Targets for Lipid-Centric Therapy in Tuberculosis. J Med Chem 2022; 65:3046-3065. [PMID: 35133820 DOI: 10.1021/acs.jmedchem.1c01870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infectious diseases remain significant health concerns worldwide, and resistance is particularly common in patients with tuberculosis caused by Mycobacterium tuberculosis. The development of anti-infectives with novel modes of action may help overcome resistance. In this regard, membrane-active agents, which modulate membrane components essential for the survival of pathogens, present attractive antimicrobial agents. Key advantages of membrane-active compounds include their ability to target slow-growing or dormant bacteria and their favorable pharmacokinetics. Here, we comprehensively review recent advances in the development of membrane-active chemotypes that target mycobacterial membranes and discuss clinically relevant membrane-active antibacterial agents that have shown promise in counteracting bacterial infections. We discuss the relationship between the membrane properties and the synthetic requirements within the chemical scaffold, as well as the limitations of current membrane-active chemotypes. This review will lay the chemical groundwork for the development of membrane-active antituberculosis agents and will foster the discovery of more effective antitubercular agents.
Collapse
Affiliation(s)
- Biswabrata Modak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Siddhali Girkar
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa 403110, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa 403110, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
34
|
Mora-Ochomogo M, Lohans CT. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med Chem 2021; 12:1623-1639. [PMID: 34778765 PMCID: PMC8528271 DOI: 10.1039/d1md00200g] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022] Open
Abstract
The β-lactams are the most widely used antibacterial agents worldwide. These antibiotics, a group that includes the penicillins and cephalosporins, are covalent inhibitors that target bacterial penicillin-binding proteins and disrupt peptidoglycan synthesis. Bacteria can achieve resistance to β-lactams in several ways, including the production of serine β-lactamase enzymes. While β-lactams also covalently interact with serine β-lactamases, these enzymes are capable of deacylating this complex, treating the antibiotic as a substrate. In this tutorial-style review, we provide an overview of the β-lactam antibiotics, focusing on their covalent interactions with their target proteins and resistance mechanisms. We begin by describing the structurally diverse range of β-lactam antibiotics and β-lactamase inhibitors that are currently used as therapeutics. Then, we introduce the penicillin-binding proteins, describing their functions and structures, and highlighting their interactions with β-lactam antibiotics. We next describe the classes of serine β-lactamases, exploring some of the mechanisms by which they achieve the ability to degrade β-lactams. Finally, we introduce the l,d-transpeptidases, a group of bacterial enzymes involved in peptidoglycan synthesis which are also targeted by β-lactam antibiotics. Although resistance mechanisms are now prevalent for all antibiotics in this class, past successes in antibiotic development have at least delayed this onset of resistance. The β-lactams continue to be an essential tool for the treatment of infectious disease, and recent advances (e.g., β-lactamase inhibitor development) will continue to support their future use.
Collapse
Affiliation(s)
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
35
|
Jeon S, Kim H, Choi Y, Cho S, Seo M, Kim H. Complete Genome Sequence of the Newly Developed Lactobacillus acidophilus Strain With Improved Thermal Adaptability. Front Microbiol 2021; 12:697351. [PMID: 34630344 PMCID: PMC8498822 DOI: 10.3389/fmicb.2021.697351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/30/2021] [Indexed: 02/04/2023] Open
Abstract
Lactobacillus acidophilus (L. acidophilus) is a representative probiotic and is widely used in many industrial products for its beneficial effects on human and animal health. This bacterium is exposed to harsh environments such as high temperatures for manufacturing industrial products, but cell yield under high temperatures is relatively low. To resolve this issue, we developed a new L. acidophilus strain with improved heat resistance while retaining the existing beneficial properties through the adaptive laboratory evolution (ALE) method. The newly developed strain, L. acidophilus EG008, has improved the existing limit of thermal resistance from 65°C to 75°C. Furthermore, we performed whole-genome sequencing and comparative genome analysis of wild-type and EG008 strains to unravel the molecular mechanism of improved heat resistance. Interestingly, only two single-nucleotide polymorphisms (SNPs) were different compared to the L. acidophilus wild-type. We identified that one of these SNPs is a non-synonymous SNP capable of altering the structure of MurD protein through the 435th amino acid change from serine to threonine. We believe that these results will directly contribute to any industrial field where L. acidophilus is applied. In addition, these results make a step forward in understanding the molecular mechanisms of lactic acid bacteria evolution under extreme conditions.
Collapse
Affiliation(s)
- Soomin Jeon
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hyaekang Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Youngseok Choi
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Minseok Seo
- Department of Computer Convergence Software, Korea University, Sejong, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,eGnome, Inc., Seoul, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| |
Collapse
|
36
|
Gupta R, Al-Kharji NMSA, Alqurafi MA, Nguyen TQ, Chai W, Quan P, Malhotra R, Simcox BS, Mortimer P, Brammer Basta LA, Rohde KH, Buynak JD. Atypically Modified Carbapenem Antibiotics Display Improved Antimycobacterial Activity in the Absence of β-Lactamase Inhibitors. ACS Infect Dis 2021; 7:2425-2436. [PMID: 34191496 PMCID: PMC8369493 DOI: 10.1021/acsinfecdis.1c00185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Commercial carbapenem
antibiotics are being used to treat multidrug
resistant (MDR) and extensively drug resistant (XDR) tuberculosis.
Like other β-lactams, carbapenems are irreversible inhibitors
of serine d,d-transpeptidases involved in peptidoglycan biosynthesis.
In addition to d,d-transpeptidases, mycobacteria also utilize
nonhomologous cysteine l,d-transpeptidases (Ldts) to cross-link
the stem peptides of peptidoglycan, and carbapenems form long-lived
acyl-enzymes with Ldts. Commercial carbapenems are C2 modifications
of a common scaffold. This study describes the synthesis of a series
of atypical, C5α modifications of the carbapenem scaffold, microbiological
evaluation against Mycobacterium tuberculosis (Mtb) and the nontuberculous mycobacterial species, Mycobacterium abscessus (Mab), as well
as acylation of an important mycobacterial target Ldt, LdtMt2. In vitro evaluation of these C5α-modified
carbapenems revealed compounds with standalone (i.e., in the absence of a β-lactamase inhibitor) minimum inhibitory
concentrations (MICs) superior to meropenem-clavulanate for Mtb, and meropenem-avibactam for Mab. Time-kill
kinetics assays showed better killing (2–4 log decrease) of Mtb and Mab with lower concentrations of
compound 10a as compared to meropenem. Although susceptibility
of clinical isolates to meropenem varied by nearly 100-fold, 10a maintained excellent activity against all Mtb and Mab strains. High resolution mass spectrometry
revealed that 10a acylates LdtMt2 at a rate
comparable to meropenem, but subsequently undergoes an unprecedented
carbapenem fragmentation, leading to an acyl-enzyme with mass of Δm = +86 Da. Rationale for the divergence of the nonhydrolytic
fragmentation of the LdtMt2 acyl-enzymes is proposed. The
observed activity illustrates the potential of novel atypical carbapenems
as prospective candidates for treatment of Mtb and Mab infections.
Collapse
Affiliation(s)
- Rashmi Gupta
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | | | - Maha A. Alqurafi
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Thu Q. Nguyen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Weirui Chai
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Pojun Quan
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Riya Malhotra
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Breven S. Simcox
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Phil Mortimer
- Department of Chemistry, Mass Spectrometry Facility, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Leighanne A. Brammer Basta
- Chemistry Department, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - Kyle H. Rohde
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - John D. Buynak
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
37
|
Borah P, Deb PK, Venugopala KN, Al-Shar'i NA, Singh V, Deka S, Srivastava A, Tiwari V, Mailavaram RP. Tuberculosis: An Update on Pathophysiology, Molecular Mechanisms of Drug Resistance, Newer Anti-TB Drugs, Treatment Regimens and Host- Directed Therapies. Curr Top Med Chem 2021; 21:547-570. [PMID: 33319660 DOI: 10.2174/1568026621999201211200447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022]
Abstract
Human tuberculosis (TB) is primarily caused by Mycobacterium tuberculosis (Mtb) that inhabits inside and amidst immune cells of the host with adapted physiology to regulate interdependent cellular functions with intact pathogenic potential. The complexity of this disease is attributed to various factors such as the reactivation of latent TB form after prolonged persistence, disease progression specifically in immunocompromised patients, advent of multi- and extensivelydrug resistant (MDR and XDR) Mtb strains, adverse effects of tailor-made regimens, and drug-drug interactions among anti-TB drugs and anti-HIV therapies. Thus, there is a compelling demand for newer anti-TB drugs or regimens to overcome these obstacles. Considerable multifaceted transformations in the current TB methodologies and molecular interventions underpinning hostpathogen interactions and drug resistance mechanisms may assist to overcome the emerging drug resistance. Evidently, recent scientific and clinical advances have revolutionised the diagnosis, prevention, and treatment of all forms of the disease. This review sheds light on the current understanding of the pathogenesis of TB disease, molecular mechanisms of drug-resistance, progress on the development of novel or repurposed anti-TB drugs and regimens, host-directed therapies, with particular emphasis on underlying knowledge gaps and prospective for futuristic TB control programs.
Collapse
Affiliation(s)
- Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Pran K Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, PO Box 1, Amman 19392, Jordan
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, 7701, South Africa
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Amavya Srivastava
- Neuroscience and Pain Research Lab, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Lab, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Raghu P Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram - 534 202, West Godavari Dist., Andhra Pradesh, India
| |
Collapse
|
38
|
Mattoo R. Targeting emerging Mycobacterium avium infections: perspectives into pathways and antimicrobials for future interventions. Future Microbiol 2021; 16:753-764. [PMID: 34227394 DOI: 10.2217/fmb-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium avium is an emerging opportunistic pathogen, globally. Infections caused by M. avium are laborious to treat and could result in drug resistance. This review discusses the importance of many factors including the cell wall in M. avium pathogenesis, since this unique structure modulates the pathogen's ability to thrive in various hosts and environmental niches including conferring resistance to killing by antimicrobials. More research efforts in future are solicited to develop novel therapeutics targeting M. avium. The complete eradication of M. avium infection in immunocompromised individuals would need a deeper understanding of the source of infection, unique underlying mechanisms and its uncharacterized pathways. This could, perhaps in future, hold the key to target and treat M. avium more effectively.
Collapse
Affiliation(s)
- Rohini Mattoo
- Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
39
|
Zandi TA, Townsend CA. Competing off-loading mechanisms of meropenem from an l,d-transpeptidase reduce antibiotic effectiveness. Proc Natl Acad Sci U S A 2021; 118:e2008610118. [PMID: 34187885 PMCID: PMC8271661 DOI: 10.1073/pnas.2008610118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carbapenem family of β-lactam antibiotics displays a remarkably broad spectrum of bactericidal activity, exemplified by meropenem's phase II clinical trial success in patients with pulmonary tuberculosis, a devastating disease for which β-lactam drugs historically have been notoriously ineffective. The discovery and validation of l,d-transpeptidases (Ldts) as critical drug targets of bacterial cell-wall biosynthesis, which are only potently inhibited by the carbapenem and penem structural classes, gave an enzymological basis for the effectiveness of the first antitubercular β-lactams. Decades of study have delineated mechanisms of β-lactam inhibition of their canonical targets, the penicillin-binding proteins; however, open questions remain regarding the mechanisms of Ldt inhibition that underlie programs in drug design, particularly the optimization of kinetic behavior and potency. We have investigated critical features of mycobacterial Ldt inhibition and demonstrate here that the covalent inhibitor meropenem undergoes both reversible reaction and nonhydrolytic off-loading reactions from the cysteine transpeptidase LdtMt2 through a high-energy thioester adduct. Next-generation carbapenem optimization strategies should minimize adduct loss from unproductive mechanisms of Ldt adducts that reduce effective drug concentration.
Collapse
Affiliation(s)
- Trevor A Zandi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
40
|
Miguel-Ruano V, Hermoso JA. Teaching an old dog new tricks: repurposing β-lactams. Trends Pharmacol Sci 2021; 42:617-619. [PMID: 34215443 DOI: 10.1016/j.tips.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022]
Abstract
Recently, Martelli and colleagues reported on the structural and functional characterization of new antimycobacterials based on N-thio-β-lactams. Surprisingly, the inhibitory mechanism follows a path unexpected for β-lactams, providing an alternative route to defeat drug-resistant strains of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Vega Miguel-Ruano
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
41
|
Genome-Wide Essentiality Analysis of Mycobacterium abscessus by Saturated Transposon Mutagenesis and Deep Sequencing. mBio 2021; 12:e0104921. [PMID: 34126767 PMCID: PMC8262987 DOI: 10.1128/mbio.01049-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium abscessus is an emerging opportunistic human pathogen that naturally resists most major classes of antibiotics, making infections difficult to treat. Thus far, little is known about M. abscessus physiology, pathogenesis, and drug resistance. Genome-wide analyses have comprehensively catalogued genes with essential functions in Mycobacterium tuberculosis and Mycobacterium avium subsp. hominissuis (here, M. avium) but not in M. abscessus. By optimizing transduction conditions, we achieved full saturation of TA insertion sites with Himar1 transposon mutagenesis in the M. abscessus ATCC 19977T genome, as confirmed by deep sequencing prior to essentiality analyses of annotated genes and other genomic features. The overall densities of inserted TA sites (85.7%), unoccupied TA sites (14.3%), and nonpermissive TA sites (8.1%) were similar to results in M. tuberculosis and M. avium. Of the 4,920 annotated genes, 326 were identified as essential, 269 (83%) of which have mutual homology with essential M. tuberculosis genes, while 39 (12%) are homologous to genes that are not essential in M. tuberculosis and M. avium, and 11 (3.4%) only have homologs in M. avium. Interestingly, 7 (2.1%) essential M. abscessus genes have no homologs in either M. tuberculosis or M. avium, two of which were found in phage-like elements. Most essential genes are involved in DNA replication, RNA transcription and translation, and posttranslational events to synthesize important macromolecules. Some essential genes may be involved in M. abscessus pathogenesis and antibiotics response, including certain essential tRNAs and new short open reading frames. Our findings will help to pave the way for better understanding of M. abscessus and benefit development of novel bactericidal drugs against M. abscessus. IMPORTANCE Limited knowledge regarding Mycobacterium abscessus pathogenesis and intrinsic resistance to most classes of antibiotics is a major obstacle to developing more effective strategies to prevent and mitigate disease. Using optimized procedures for Himar1 transposon mutagenesis and deep sequencing, we performed a comprehensive analysis to identify M. abscessus genetic elements essential for in vitro growth and compare them to similar data sets for M. tuberculosis and M. avium subsp. hominissuis. Most essential M. abscessus genes have mutual homology with essential M. tuberculosis genes, providing a foundation for leveraging available knowledge from M. tuberculosis to develop more effective drugs and other interventions against M. abscessus. A small number of essential genes unique to M. abscessus deserve further attention to gain insights into what makes M. abscessus different from other mycobacteria. The essential genes and other genomic features such as short open reading frames and noncoding RNA identified here will provide useful information for future study of M. abscessus pathogenicity and new drug development.
Collapse
|
42
|
Aliashkevich A, Cava F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J 2021; 289:4718-4730. [PMID: 34109739 DOI: 10.1111/febs.16066] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria. Its protective role is in great part provided by its mesh-like character. Therefore, PG-cross-linking enzymes like the penicillin-binding proteins (PBPs) are among the best targets for antibiotics. However, while PBPs have been in the spotlight for more than 50 years, another class of PG-cross-linking enzymes called LD-transpeptidases (LDTs) seemed to contribute less to PG synthesis and, thus, has kept an aura of mystery. In the last years, a number of studies have associated LDTs with cell wall adaptation to stress including β-lactam antibiotics, outer membrane stability, and toxin delivery, which has shed light onto the biological meaning of these proteins. Furthermore, as some species display a great abundance of LD-cross-links in their cell wall, it has been hypothesized that LDTs could also be the main synthetic PG-transpeptidases in some bacteria. In this review, we introduce these enzymes and their role in PG biosynthesis and we highlight the most recent advances in understanding their biological role in diverse species.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| |
Collapse
|
43
|
Collateral Sensitivity to β-Lactam Drugs in Drug-Resistant Tuberculosis Is Driven by the Transcriptional Wiring of BlaI Operon Genes. mSphere 2021; 6:e0024521. [PMID: 34047652 PMCID: PMC8265638 DOI: 10.1128/msphere.00245-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of resistance to one antimicrobial can result in enhanced sensitivity to another, known as "collateral sensitivity." This underexplored phenomenon opens new therapeutic possibilities for patients infected with pathogens unresponsive to classical treatments. Intrinsic resistance to β-lactams in Mycobacterium tuberculosis (the causative agent of tuberculosis) has traditionally curtailed the use of these low-cost and easy-to-administer drugs for tuberculosis treatment. Recently, β-lactam sensitivity has been reported in strains resistant to classical tuberculosis therapy, resurging the interest in β-lactams for tuberculosis. However, a lack of understanding of the molecular underpinnings of this sensitivity has delayed exploration in the clinic. We performed gene expression and network analyses and in silico knockout simulations of genes associated with β-lactam sensitivity and genes associated with resistance to classical tuberculosis drugs to investigate regulatory interactions and identify key gene mediators. We found activation of the key inhibitor of β-lactam resistance, blaI, following classical drug treatment as well as transcriptional links between genes associated with β-lactam sensitivity and those associated with resistance to classical treatment, suggesting that regulatory links might explain collateral sensitivity to β-lactams. Our results support M. tuberculosis β-lactam sensitivity as a collateral consequence of the evolution of resistance to classical tuberculosis drugs, mediated through changes to transcriptional regulation. These findings support continued exploration of β-lactams for the treatment of patients infected with tuberculosis strains resistant to classical therapies. IMPORTANCE Tuberculosis remains a significant cause of global mortality, with strains resistant to classical drug treatment considered a major health concern by the World Health Organization. Challenging treatment regimens and difficulty accessing drugs in low-income communities have led to a high prevalence of strains resistant to multiple drugs, making the development of alternative therapies a priority. Although Mycobacterium tuberculosis is naturally resistant to β-lactam drugs, previous studies have shown sensitivity in strains resistant to classical drug treatment, but we currently lack understanding of the molecular underpinnings behind this phenomenon. We found that genes involved in β-lactam susceptibility are activated after classical drug treatment resulting from tight regulatory links with genes involved in drug resistance. Our study supports the hypothesis that β-lactam susceptibility observed in drug-resistant strains results from the underlying regulatory network of M. tuberculosis, supporting further exploration of the use of β-lactams for tuberculosis treatment.
Collapse
|
44
|
Saidjalolov S, Braud E, Edoo Z, Iannazzo L, Rusconi F, Riomet M, Sallustrau A, Taran F, Arthur M, Fonvielle M, Etheve-Quelquejeu M. Click and Release Chemistry for Activity-Based Purification of β-Lactam Targets. Chemistry 2021; 27:7687-7695. [PMID: 33792096 DOI: 10.1002/chem.202100653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 12/30/2022]
Abstract
β-Lactams, the cornerstone of antibiotherapy, inhibit multiple and partially redundant targets referred to as transpeptidases or penicillin-binding proteins. These enzymes catalyze the essential cross-linking step of the polymerization of cell wall peptidoglycan. The understanding of the mechanisms of action of β-lactams and of resistance to these drugs requires the development of reliable methods to characterize their targets. Here, we describe an activity-based purification method of β-lactam targets based on click and release chemistry. We synthesized alkyne-carbapenems with suitable properties with respect to the kinetics of acylation of a model target, the Ldtfm L,D-transpeptidase, the stability of the resulting acylenzyme, and the reactivity of the alkyne for the cycloaddition of an azido probe containing a biotin moiety for affinity purification and a bioorthogonal cleavable linker. The probe provided access to the fluorescent target in a single click and release step.
Collapse
Affiliation(s)
- Saidbakhrom Saidjalolov
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Emmanuelle Braud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Zainab Edoo
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Laura Iannazzo
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Filippo Rusconi
- PAPPSO, Université Paris-Saclay, INRAE, CNRS, AgroParisTech GQE - Le Moulon, Gif-sur-Yvette, 91190, France
| | - Margaux Riomet
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Gif-sur-Yvette, 91191, France
| | - Antoine Sallustrau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Gif-sur-Yvette, 91191, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Gif-sur-Yvette, 91191, France
| | - Michel Arthur
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Matthieu Fonvielle
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| |
Collapse
|
45
|
N-Thio-β-lactams targeting L,D-transpeptidase-2, with activity against drug-resistant strains of Mycobacterium tuberculosis. Cell Chem Biol 2021; 28:1321-1332.e5. [PMID: 33826941 DOI: 10.1016/j.chembiol.2021.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/04/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Effective treatment of tuberculosis is frequently hindered by the emerging antimicrobial resistance of Mycobacterium tuberculosis. The present study evaluates monocyclic β-lactam compounds targeting the mycobacterial cell wall remodeling. Novel N-thio-β-lactams were designed, synthesized, and characterized on the L,D-transpeptidase-2, a validated target in M. tuberculosis. The candidates were evaluated in biochemical assays identifying five compounds presenting target-specific kinetic constants equal or superior to meropenem, a carbapenem currently considered for tuberculosis therapy. Mass spectrometry in line with the crystal structures of five target-ligand complexes revealed that the N-thio-β-lactams act via an unconventional mode of adduct formation, transferring the thio-residues from the lactam ring to the active-site cysteine of LdtMt2. The resulting stable adducts lead to a long-term inactivation of the target protein. Finally, the candidates were evaluated in vitro against a drug-susceptible and multidrug-resistant clinical isolates of M. tuberculosis, confirming the antimycobacterial effect of these novel compounds.
Collapse
|
46
|
Story-Roller E, Galanis C, Lamichhane G. β-Lactam Combinations That Exhibit Synergy against Mycobacteroides abscessus Clinical Isolates. Antimicrob Agents Chemother 2021; 65:e02545-20. [PMID: 33361310 PMCID: PMC8097488 DOI: 10.1128/aac.02545-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/19/2020] [Indexed: 01/01/2023] Open
Abstract
Mycobacteroides abscessus (Mab) is an opportunistic environmental pathogen that can cause chronic pulmonary disease in the setting of structural lung conditions such as bronchiectasis, chronic obstructive pulmonary disease, and cystic fibrosis. These infections are often incurable and associated with rapid lung function decline. Mab is naturally resistant to most of the antibiotics available today, and current treatment guidelines require at least 1 year of daily multidrug therapy, which is often ineffective and is associated with significant toxicities. β-Lactams are the most widely used class of antibiotics and have a demonstrated record of safety and tolerability. Here, using a panel of recent clinical isolates of Mab, we evaluated the in vitro activities of dual-β-lactam combinations to identify new treatments with the potential to treat infections arising from a wide range of Mab strains. The Mab clinical isolates were heterogeneous, as reflected by the diversity of their genomes and differences in their susceptibilities to various drugs. Cefoxitin and imipenem are currently the only two β-lactams included in the guidelines for treating Mab disease, yet they are not used concurrently in clinical practice. However, this dual-β-lactam combination exhibited synergy against 100% of the isolates examined (n = 21). Equally surprising is the finding that the combination of two carbapenems, doripenem and imipenem, exhibited synergy against the majority of Mab isolates. In the setting of multidrug-resistant Mab disease with few therapeutic options, these combinations may offer viable immediate treatment options with efficacy against the broad spectrum of Mab strains infecting patients today.
Collapse
Affiliation(s)
- Elizabeth Story-Roller
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christos Galanis
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Ntombela T, Seupersad A, Maseko S, Ibeji CU, Tolufashe G, Maphumulo SI, Naicker T, Baijnath S, Maguire GEM, Govender T, Lamichhane G, Honarparvar B, Kruger HG. Mechanistic insight on the inhibition of D, D-carboxypeptidase from Mycobacterium tuberculosis by β-lactam antibiotics: an ONIOM acylation study. J Biomol Struct Dyn 2021; 40:7645-7655. [PMID: 33719919 DOI: 10.1080/07391102.2021.1899052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mycobacterium tuberculosis cell wall is intricate and impermeable to many agents. A D, D-carboxypeptidase (DacB1) is one of the enzymes involved in the biosynthesis of cell wall peptidoglycan and catalyzes the terminal D-alanine cleavage from pentapeptide precursors. Catalytic activity and mechanism by which DacB1 functions is poorly understood. Herein, we investigated the acylation mechanism of DacB1 by β-lactams using a 6-membered ring transition state model that involves a catalytic water molecule in the reaction pathway. The full transition states (TS) optimization plus frequency were achieved using the ONIOM (B3LYP/6-31 + G(d): AMBER) method. Subsequently, the activation free energies were computed via single-point calculations on fully optimized structures using B3LYP/6-311++(d,p): AMBER and M06-2X/6-311++(d,p): AMBER with an electronic embedding scheme. The 6-membered ring transition state is an effective model to examine the inactivation of DacB1 via acylation by β-lactams antibiotics (imipenem, meropenem, and faropenem) in the presence of the catalytic water. The ΔG# values obtained suggest that the nucleophilic attack on the carbonyl carbon is the rate-limiting step with 13.62, 19.60 and 30.29 kcal mol-1 for Imi-DacB1, Mero-DacB1 and Faro-DacB1, respectively. The electrostatic potential (ESP) and natural bond orbital (NBO) analysis provided significant electronic details of the electron-rich region and charge delocalization, respectively, based on the concerted 6-membered ring transition state. The stabilization energies of charge transfer within the catalytic reaction pathway concurred with the obtained activation free energies. The outcomes of this study provide important molecular insight into the inactivation of D, D-carboxypeptidase by β-lactams.
Collapse
Affiliation(s)
- Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anya Seupersad
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sibusiso Maseko
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Collins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gideon Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Siyabonga Innocent Maphumulo
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Thavendran Govender
- Faculty of Science and Agriculture, Department of Chemistry, University of Zululand, Richards Bay, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
48
|
Sturkenboom MGG, Märtson AG, Svensson EM, Sloan DJ, Dooley KE, van den Elsen SHJ, Denti P, Peloquin CA, Aarnoutse RE, Alffenaar JWC. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet 2021; 60:685-710. [PMID: 33674941 PMCID: PMC7935699 DOI: 10.1007/s40262-021-00997-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derek J Sloan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simone H J van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy, Hospital Group Twente, Almelo, Hengelo, the Netherlands
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. .,Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
49
|
Chauhan A, Kumar M, Kumar A, Kanchan K. Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs. Life Sci 2021; 274:119301. [PMID: 33675895 DOI: 10.1016/j.lfs.2021.119301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
Tuberculosis is one of the deadliest infectious diseases existing in the world since ancient times and still possesses serious threat across the globe. Each year the number of cases increases due to high drug resistance shown by Mycobacterium tuberculosis (Mtb). Available antimycobacterial drugs have been classified as First line, Second line and Third line antibiotics depending on the time of their discoveries and their effectiveness in the treatment. These antibiotics have a broad range of targets ranging from cell wall to metabolic processes and their non-judicious and uncontrolled usage in the treatment for years has created a significant problem called multi-drug resistant (MDR) tuberculosis. In this review, we have summarized the mechanism of action of all the classified antibiotics currently in use along with the resistance mechanisms acquired by Mtb. We have focused on the new drug candidates/repurposed drugs, and drug in combinations, which are in clinical trials for either treating the MDR tuberculosis more effectively or involved in reducing the time required for the chemotherapy of drug sensitive TB. This information is not discussed very adequately on a single platform. Additionally, we have discussed the recent technologies that are being used to discover novel resistance mechanisms acquired by Mtb and for exploring novel drugs. The story of intrinsic resistance mechanisms and evolution in Mtb is far from complete. Therefore, we have also discussed intrinsic resistance mechanisms of Mtb and their evolution with time, emphasizing the hope for the development of novel antimycobacterial drugs for effective therapy of tuberculosis.
Collapse
Affiliation(s)
- Aditi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India
| | - Manoj Kumar
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Awanish Kumar
- Department of Bio Technology, National Institute of Technology, Raipur, India
| | - Kajal Kanchan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
50
|
Levine SR, Beatty KE. Investigating β-Lactam Drug Targets in Mycobacterium tuberculosis Using Chemical Probes. ACS Infect Dis 2021; 7:461-470. [PMID: 33470787 DOI: 10.1021/acsinfecdis.0c00809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb), infects 10 million people a year. An estimated 25% of humans harbor latent TB infections, an asymptomatic form of the disease. In both active and latent infections, Mtb relies on cell wall peptidoglycan for viability. In the current work, we synthesized fluorescent analogues of β-lactam antibiotics to study two classes of enzymes that maintain Mtb's peptidoglycan: penicillin-binding proteins (PBPs) and l,d-transpeptidases (LDTs). This set of activity-based probes included analogues of three classes of β-lactams: a monobactam (aztreonam-Cy5), a cephalosporin (cephalexin-Cy5), and a carbapenem (meropenem-Cy5). We used these probes to profile enzyme activity in protein gel-resolved lysates of Mtb. All three out-performed the commercial reagent Bocillin-FL, a penam. Meropenem-Cy5 was used to identify β-lactam targets by mass spectrometry, including PBPs, LDTs, and the β-lactamase BlaC. New probes were also used to compare PBP and LDT activity in two metabolic states: dormancy and active replication. We provide the first direct evidence that Mtb dynamically regulates the enzymes responsible for maintaining peptidoglycan in dormancy. Lastly, we profiled drug susceptibility in lysates and found that meropenem inhibits PBPs, LDTs, and BlaC.
Collapse
Affiliation(s)
- Samantha R. Levine
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92617, United States
| | - Kimberly E. Beatty
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92617, United States
| |
Collapse
|