1
|
Zhang SL, Wang X, Cai QQ, Chen C, Zhang ZY, Xu YY, Yang MX, Jia QA, Wang Y, Wang ZM. Acarbose enhances the efficacy of immunotherapy against solid tumours by modulating the gut microbiota. Nat Metab 2024; 6:1991-2009. [PMID: 39322747 DOI: 10.1038/s42255-024-01137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
The crucial role of gut microbiota in shaping immunotherapy outcomes has prompted investigations into potential modulators. Here we show that oral administration of acarbose significantly increases the anti-tumour response to anti-PD-1 therapy in female tumour-bearing mice. Acarbose modulates the gut microbiota composition and tryptophan metabolism, thereby contributing to changes in chemokine expression and increased T cell infiltration within tumours. We identify CD8+ T cells as pivotal components determining the efficacy of the combined therapy. Further experiments reveal that acarbose promotes CD8+ T cell recruitment through the CXCL10-CXCR3 pathway. Faecal microbiota transplantation and gut microbiota depletion assays indicate that the effects of acarbose are dependent on the gut microbiota. Specifically, acarbose enhances the efficacy of anti-PD-1 therapy via the tryptophan catabolite indoleacetate, which promotes CXCL10 expression and thus facilitates CD8+ T cell recruitment, sensitizing tumours to anti-PD-1 therapy. The bacterial species Bifidobacterium infantis, which is enriched by acarbose, also improves response to anti-PD-1 therapy. Together, our study endorses the potential combination of acarbose and anti-PD-1 for cancer immunotherapy.
Collapse
Affiliation(s)
- Shi-Long Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
| | - Xin Wang
- Department of Integrative Medicine, Shanghai Geriatric Center, Minhang District, Shanghai, P.R. China
| | - Qing-Qing Cai
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Chen
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Zheng-Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Ya-Yun Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Meng-Xuan Yang
- Department of Gastrointestinal Surgery, Minhang hospital, Fudan University, Shanghai, P. R. China
| | - Qing-An Jia
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, P. R. China.
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
| | - Zhi-Ming Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, P. R. China.
| |
Collapse
|
2
|
Xue XP, Sheng Y, Ren QQ, Xu SM, Li M, Liu ZX, Lu CH. Inhibition of ATP1V6G3 prompts hepatic stellate cell senescence with reducing ECM by activating Notch1 pathway to alleviate hepatic fibrosis. Tissue Cell 2024; 91:102554. [PMID: 39316936 DOI: 10.1016/j.tice.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Liver fibrosis is characterized by an excessive reparative response to various etiological factors, with the activated hepatic stellate cells (aHSCs) leading to extracellular matrix (ECM) accumulation. Senescence is a stable growth arrest, and the senescence of aHSCs is associated with the degradation of ECM and the regression of hepatic fibrosis, making it a promising approach for managing hepatic fibrosis. The role and specific mechanisms by which V-Type Proton ATPase Subunit G 3 (ATP6V1G3) influences senescence in activated HSCs during liver fibrosis remain unclear. Our preliminary results reveal upregulation of ATP6V1G3 in both human fibrotic livers and murine liver fibrosis models. Additionally, ATP6V1G3 inhibition induced senescence in aHSCs in vitro. Moreover, suppressing Notch1 reversed the senescence caused by ATP6V1G3 inhibition in HSCs. Thus, targeting ATP6V1G3, which appears to drive HSCs senescence through the Notch1 pathway, emerges as a potential therapeutic strategy for hepatic fibrosis.
Collapse
Affiliation(s)
- Xiao-Pei Xue
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Department Gastroenterology, Rugao Hospital of traditional Chinese Medicine, Nantong 226500, China
| | - Yu Sheng
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Qi-Qi Ren
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shi-Meng Xu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Min Li
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zhao-Xiu Liu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Cui-Hua Lu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Shin SK, Oh S, Chun SK, Ahn MJ, Lee SM, Kim K, Kang H, Lee J, Shin SP, Lee J, Jung YK. Immune signature and therapeutic approach of natural killer cell in chronic liver disease and hepatocellular carcinoma. J Gastroenterol Hepatol 2024; 39:1717-1727. [PMID: 38800890 DOI: 10.1111/jgh.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024]
Abstract
Natural killer (NK) cells are one of the key members of innate immunity that predominantly reside in the liver, potentiating immune responses against viral infections or malignant tumors. It has been reported that changes in cell numbers and function of NK cells are associated with the development and progression of chronic liver diseases (CLDs) including non-alcoholic fatty liver disease, alcoholic liver disease, and chronic viral hepatitis. Also, it is known that the crosstalk between NK cells and hepatic stellate cells plays an important role in liver fibrosis and cirrhosis. In particular, the impaired functions of NK cells observed in CLDs consequently contribute to occurrence and progression of hepatocellular carcinoma (HCC). Chronic infections by hepatitis B or C viruses counteract the anti-tumor immunity of the host by producing the sheddases. Soluble major histocompatibility complex class I polypeptide-related sequence A (sMICA), released from the cell surfaces by sheddases, disrupts the interaction and affects the function of NK cells. Recently, the MICA/B-NK stimulatory receptor NK group 2 member D (NKG2D) axis has been extensively studied in HCC. HCC patients with low membrane-bound MICA or high sMICA concentration have been associated with poor prognosis. Therefore, reversing the sMICA-mediated downregulation of NKG2D has been proposed as an attractive strategy to enhance both innate and adaptive immune responses against HCC. This review aims to summarize recent studies on NK cell immune signatures and its roles in CLD and hepatocellular carcinogenesis and discusses the therapeutic approaches of MICA/B-NKG2D-based or NK cell-based immunotherapy for HCC.
Collapse
Affiliation(s)
- Seung Kak Shin
- Division of Gastroenterology and Hepatology, Department of Internal medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Sooyeon Oh
- Chaum Life Center, School of Medicine, CHA University, Seoul, South Korea
| | - Su-Kyung Chun
- Chaum Life Center, School of Medicine, CHA University, Seoul, South Korea
| | - Min-Ji Ahn
- Center for Research and Development, CHA Advanced Research Institute, Seoul, South Korea
| | - Seung-Min Lee
- Center for Research and Development, CHA Advanced Research Institute, Seoul, South Korea
| | - Kayun Kim
- School of Medicine, CHA University, Seoul, South Korea
| | - Hogyeong Kang
- School of Medicine, CHA University, Seoul, South Korea
| | - Jeongwoo Lee
- School of Medicine, CHA University, Seoul, South Korea
| | - Suk Pyo Shin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jooho Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Young Kul Jung
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, South Korea
| |
Collapse
|
4
|
Dwyer BJ, Tirnitz-Parker JEE. Patient-derived organoid models to decode liver pathophysiology. Trends Endocrinol Metab 2024:S1043-2760(24)00200-5. [PMID: 39191607 DOI: 10.1016/j.tem.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer. Improved understanding of liver microenvironments, innovative biomaterials, and advanced imaging techniques now facilitate comprehensive and unbiased data analysis, paving the way for personalised medicine. In this review, we discuss state-of-the-art patient-derived liver organoid models, recent technological advancements, and strategies to enhance their clinical impact.
Collapse
Affiliation(s)
- Benjamin J Dwyer
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| | - Janina E E Tirnitz-Parker
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| |
Collapse
|
5
|
Liu Q, Wang S, Fu J, Chen Y, Xu J, Wei W, Song H, Zhao X, Wang H. Liver regeneration after injury: Mechanisms, cellular interactions and therapeutic innovations. Clin Transl Med 2024; 14:e1812. [PMID: 39152680 PMCID: PMC11329751 DOI: 10.1002/ctm2.1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
The liver possesses a distinctive capacity for regeneration within the human body. Under normal circumstances, liver cells replicate themselves to maintain liver function. Compensatory replication of healthy hepatocytes is sufficient for the regeneration after acute liver injuries. In the late stage of chronic liver damage, a large number of hepatocytes die and hepatocyte replication is blocked. Liver regeneration has more complex mechanisms, such as the transdifferentiation between cell types or hepatic progenitor cells mediated. Dysregulation of liver regeneration causes severe chronic liver disease. Gaining a more comprehensive understanding of liver regeneration mechanisms would facilitate the advancement of efficient therapeutic approaches. This review provides an overview of the signalling pathways linked to different aspects of liver regeneration in various liver diseases. Moreover, new knowledge on cellular interactions during the regenerative process is also presented. Finally, this paper explores the potential applications of new technologies, such as nanotechnology, stem cell transplantation and organoids, in liver regeneration after injury, offering fresh perspectives on treating liver disease.
Collapse
Affiliation(s)
- Qi Liu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Senyan Wang
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Jing Fu
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Yao Chen
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Jing Xu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Wenjuan Wei
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hao Song
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Xiaofang Zhao
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hongyang Wang
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| |
Collapse
|
6
|
Mohammed AN, Kohram F, Lan YW, Li E, Kolesnichenko OA, Kalin TV, Kalinichenko VV. Transplantation of alveolar macrophages improves the efficacy of endothelial progenitor cell therapy in mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2024; 327:L114-L125. [PMID: 38772902 PMCID: PMC11380942 DOI: 10.1152/ajplung.00274.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs. Several studies reported the successful application of macrophage therapy in accelerating the regenerative capacity of damaged tissues and enhancing the therapeutic efficacy of other transplantable progenitor cells. In the present study, we explored the efficacy of combined cell therapy with EPC and resident alveolar macrophages (rAM) in hyperoxia-induced BPD mouse model. rAM and EPC were purified from neonatal mouse lungs and were used for adoptive transfer to the recipient neonatal mice exposed to hyperoxia. Adoptive transfer of rAM alone did not result in engraftment of donor rAM into the lung tissue but increased the mRNA level and protein concentration of proangiogenic CXCL12 chemokine in recipient mouse lungs. Depletion of rAM by chlodronate-liposomes decreased the retention of donor EPC after their transplantation into hyperoxia-injured lungs. Adoptive transfer of rAM in combination with EPC enhanced the therapeutic efficacy of EPC as evidenced by increased retention of EPC, increased capillary density, improved arterial oxygenation, and alveolarization in hyperoxia-injured lungs. Dual therapy with EPC and rAM has promise in human BPD.NEW & NOTEWORTHY Recent studies demonstrated that transplantation of lung-resident endothelial progenitor cells (EPC) is an effective therapy in mouse model of bronchopulmonary dysplasia (BPD). However, key factors regulating the efficacy of EPC are unknown. Herein, we demonstrate that transplantation of tissue-resident alveolar macrophages (rAM) increases CXCL12 expression in neonatal mouse lungs. rAM are required for retention of donor EPC in hyperoxia-injured lungs. Co-transplantation of rAM and EPC improves the efficacy of EPC therapy in mouse BPD model.
Collapse
Affiliation(s)
- Afzaal Nadeem Mohammed
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Fatemeh Kohram
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Ying-Wei Lan
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Enhong Li
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Olena A Kolesnichenko
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States
| | - Tanya V Kalin
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Vladimir V Kalinichenko
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, Arizona, United States
| |
Collapse
|
7
|
Cui J, Wang Y, Li S, Le Y, Deng Y, Chen J, Peng Q, Xu R, Li J. Efficacy of mesenchymal stem cells in treating tracheoesophageal fistula via the TLR4/NF-κb pathway in beagle macrophages. Heliyon 2024; 10:e32903. [PMID: 39021940 PMCID: PMC11253233 DOI: 10.1016/j.heliyon.2024.e32903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Tracheoesophageal fistula (TEF) remains a rare but significant clinical challenge, mainly due to the absence of established, effective treatment approaches. The current focus of therapeutic strategy is mainly on fistula closure. However, this approach often misses important factors, such as accelerating fistula contraction and fostering healing processes, which significantly increases the risk of disease recurrence. Methods In order to investigate if Mesenchymal Stem Cells (MSCs) can enhance fistula repair, developed a TEF model in beagles. Dynamic changes in fistula diameter were monitored by endoscopy. Concurrently, we created a model of LPS-induced macrophage to replicate the inflammatory milieu typical in TEF. In addition, the effect of MSC supernatant on inflammation mitigation was evaluated. Furthermore, we looked at the role of TLR4/NF-κB pathway plays in the healing process. Results Our research revealed that the local administration of MSCs significantly accelerated the fistula's healing process. This was demonstrated by a decline in TEF apoptosis and decrease in the production of pro-inflammatory cytokines. Furthermore, in vivo experiments demonstrated that the MSC supernatant was effective in suppressing pro-inflammatory cytokine expression and alleviating apoptosis in LPS-induced macrophages. These therapeutic effects were mainly caused by the suppression of TLR4/NF-κB pathway. Conclusion According to this study, MSCs can significantly improve TEF recovery. They achieve this via modulating apoptosis and inflammatory responses, mainly by selectively inhibiting the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jinghua Cui
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Yuchao Wang
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
- School of Medicine South China University of Technology, Guangzhou, 510006, China
| | - Shuixiu Li
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
- The Second School of Clinical Medicine, Southern Medical University. Guangzhou, Guangdong, 51006, China
| | - Yanqing Le
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Yi Deng
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
- Medical School, Kunming University of Science and Technology, Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province Kunming, Yunnan, China. 650000
| | - Jingjing Chen
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Qian Peng
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Rongde Xu
- Department of Interventional Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou Guangdong, China, 510080
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| |
Collapse
|
8
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Xu C, Fang X, Song Y, Xiang Z, Xu X, Wei X. Transcriptional Control: A Directional Sign at the Crossroads of Adult Hepatic Progenitor Cells' Fates. Int J Biol Sci 2024; 20:3544-3556. [PMID: 38993564 PMCID: PMC11234216 DOI: 10.7150/ijbs.93739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Hepatic progenitor cells (HPCs) have a bidirectional potential to differentiate into hepatocytes and bile duct epithelial cells and constitute a second barrier to liver regeneration in the adult liver. They are usually located in the Hering duct in the portal vein region where various cells, extracellular matrix, cytokines, and communication signals together constitute the niche of HPCs in homeostasis to maintain cellular plasticity. In various types of liver injury, different cellular signaling streams crosstalk with each other and point to the inducible transcription factor set, including FoxA1/2/3, YB-1, Foxl1, Sox9, HNF4α, HNF1α, and HNF1β. These transcription factors exert different functions by binding to specific target genes, and their products often interact with each other, with diverse cascades of regulation in different molecular events that are essential for homeostatic regulation, self-renewal, proliferation, and selective differentiation of HPCs. Furthermore, the tumor predisposition of adult HPCs is found to be significantly increased under transcriptional factor dysregulation in transcriptional analysis, and the altered initial commitment of the differentiation pathway of HPCs may be one of the sources of intrahepatic tumors. Related transcription factors such as HNF4α and HNF1 are expected to be future targets for tumor treatment.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Xixi Fang
- Hangzhou Normal University, Hangzhou 310006, China
| | - Yisu Song
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Xuyong Wei
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| |
Collapse
|
10
|
Dai H, Zhu C, Huai Q, Xu W, Zhu J, Zhang X, Zhang X, Sun B, Xu H, Zheng M, Li X, Wang H. Chimeric antigen receptor-modified macrophages ameliorate liver fibrosis in preclinical models. J Hepatol 2024; 80:913-927. [PMID: 38340812 DOI: 10.1016/j.jhep.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS Treatments directly targeting fibrosis remain limited. Given the unique intrinsic features of macrophages and their capacity to engraft in the liver, we genetically engineered bone marrow-derived macrophages with a chimeric antigen receptor (CAR) to direct their phagocytic activity against hepatic stellate cells (HSCs) in multiple mouse models. This study aimed to demonstrate the therapeutic efficacy of CAR macrophages (CAR-Ms) in mouse models of fibrosis and cirrhosis and to elucidate the underlying mechanisms. METHODS uPAR expression was studied in patients with fibrosis/cirrhosis and in murine models of liver fibrosis, including mice treated with carbon tetrachloride, a 5-diethoxycarbonyl-1, 4-dihydrocollidine diet, or a high-fat/cholesterol/fructose diet. The safety and efficacy of CAR-Ms were evaluated in vitro and in vivo. RESULTS Adoptive transfer of CAR-Ms resulted in a significant reduction in liver fibrosis and the restoration of function in murine models of liver fibrosis. CAR-Ms modulated the hepatic immune microenvironment to recruit and modify the activation of endogenous immune cells to drive fibrosis regression. These CAR-Ms were able to recruit and present antigens to T cells and mount specific antifibrotic T-cell responses to reduce fibroblasts and liver fibrosis in mice. CONCLUSION Collectively, our findings demonstrate the potential of using macrophages as a platform for CAR technology to provide an effective treatment option for liver fibrosis. CAR-Ms might be developed for treatment of patients with liver fibrosis. IMPACT AND IMPLICATIONS Liver fibrosis is an incurable condition that afflicts millions of people globally. Despite the clear clinical need, therapies for liver fibrosis are limited. Our findings provide the first preclinical evidence that chimeric antigen receptor (CAR)-macrophages (CAR-Ms) targeting uPAR can attenuate liver fibrosis and cirrhosis. We show that macrophages expressing this uPAR CAR exert a direct antifibrotic effect and elicit a specific T-cell response that augments the immune response against liver fibrosis. These findings demonstrate the potential of using CAR-Ms as an effective cell-based therapy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Cheng Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Qian Huai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Wentao Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jiejie Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Honghai Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China; Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Novak S, Tanigawa H, Singh V, Root SH, Schmidt TA, Hankenson KD, Kalajzic I. Endothelial to mesenchymal Notch signaling regulates skeletal repair. JCI Insight 2024; 9:e181073. [PMID: 38781018 PMCID: PMC11383173 DOI: 10.1172/jci.insight.181073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
We present a transcriptomic analysis that provides a better understanding of regulatory mechanisms within the healthy and injured periosteum. The focus of this work is on characterizing early events controlling bone healing during formation of periosteal callus on day 3 after fracture. Building on our previous findings showing that induced Notch1 signaling in osteoprogenitors leads to better healing, we compared samples in which the Notch 1 intracellular domain is overexpressed by periosteal stem/progenitor cells, with control intact and fractured periosteum. Molecular mechanisms and changes in skeletal stem/progenitor cells (SSPCs) and other cell populations within the callus, including hematopoietic lineages, were determined. Notably, Notch ligands were differentially expressed in endothelial and mesenchymal populations, with Dll4 restricted to endothelial cells, whereas Jag1 was expressed by mesenchymal populations. Targeted deletion of Dll4 in endothelial cells using Cdh5CreER resulted in negative effects on early fracture healing, while deletion in SSPCs using α-smooth muscle actin-CreER did not impact bone healing. Translating these observations into a clinically relevant model of bone healing revealed the beneficial effects of delivering Notch ligands alongside the osteogenic inducer, BMP2. These findings provide insights into the regulatory mechanisms within the healthy and injured periosteum, paving the way for novel translational approaches to bone healing.
Collapse
Affiliation(s)
- Sanja Novak
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Hitoshi Tanigawa
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Vijender Singh
- Institute for Systems Genomics, Computational Biology Core, UConn, Storrs, Connecticut, USA
| | - Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
12
|
Ashmore-Harris C, Antonopoulou E, Finney SM, Vieira MR, Hennessy MG, Muench A, Lu WY, Gadd VL, El Haj AJ, Forbes SJ, Waters SL. Exploiting in silico modelling to enhance translation of liver cell therapies from bench to bedside. NPJ Regen Med 2024; 9:19. [PMID: 38724586 PMCID: PMC11081951 DOI: 10.1038/s41536-024-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Cell therapies are emerging as promising treatments for a range of liver diseases but translational bottlenecks still remain including: securing and assessing the safe and effective delivery of cells to the disease site; ensuring successful cell engraftment and function; and preventing immunogenic responses. Here we highlight three therapies, each utilising a different cell type, at different stages in their clinical translation journey: transplantation of multipotent mesenchymal stromal/signalling cells, hepatocytes and macrophages. To overcome bottlenecks impeding clinical progression, we advocate for wider use of mechanistic in silico modelling approaches. We discuss how in silico approaches, alongside complementary experimental approaches, can enhance our understanding of the mechanisms underlying successful cell delivery and engraftment. Furthermore, such combined theoretical-experimental approaches can be exploited to develop novel therapies, address safety and efficacy challenges, bridge the gap between in vitro and in vivo model systems, and compensate for the inherent differences between animal model systems and humans. We also highlight how in silico model development can result in fewer and more targeted in vivo experiments, thereby reducing preclinical costs and experimental animal numbers and potentially accelerating translation to the clinic. The development of biologically-accurate in silico models that capture the mechanisms underpinning the behaviour of these complex systems must be reinforced by quantitative methods to assess cell survival post-transplant, and we argue that non-invasive in vivo imaging strategies should be routinely integrated into transplant studies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | - Simon M Finney
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Melissa R Vieira
- Healthcare Technologies Institute (HTI), Institute of Translational Medicine, University of Birmingham, Birmingham, B15 2TH, UK
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TH, UK
| | - Matthew G Hennessy
- Department of Engineering Mathematics, University of Bristol, BS8 1TW, Bristol, UK
| | - Andreas Muench
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute (HTI), Institute of Translational Medicine, University of Birmingham, Birmingham, B15 2TH, UK
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TH, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
13
|
Park JE, Kim DH. Advanced Immunomodulatory Biomaterials for Therapeutic Applications. Adv Healthc Mater 2024:e2304496. [PMID: 38716543 DOI: 10.1002/adhm.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted biological defense system modulating complex immune responses against pathogens and foreign materials plays a critical role in tissue homeostasis and disease progression. Recently developed biomaterials that can specifically regulate immune responses, nanoparticles, graphene, and functional hydrogels have contributed to the advancement of tissue engineering as well as disease treatment. The interaction between innate and adaptive immunity, collectively determining immune responses, can be regulated by mechanobiological recognition and adaptation of immune cells to the extracellular microenvironment. Therefore, applying immunomodulation to tissue regeneration and cancer therapy involves manipulating the properties of biomaterials by tailoring their composition in the context of the immune system. This review provides a comprehensive overview of how the physicochemical attributes of biomaterials determine immune responses, focusing on the physical properties that influence innate and adaptive immunity. This review also underscores the critical aspect of biomaterial-based immune engineering for the development of novel therapeutics and emphasizes the importance of understanding the biomaterials-mediated immunological mechanisms and their role in modulating the immune system.
Collapse
Affiliation(s)
- Ji-Eun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, 02841, Republic of Korea
- Biomedical Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
14
|
Lee S, Ren L, Paranjpe A, Zhou P, Potter A, Huppert SS, Shin S. Rbpj deletion in hepatic progenitor cells attenuates endothelial responses in a mouse model of cholestatic liver disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589277. [PMID: 38659780 PMCID: PMC11042221 DOI: 10.1101/2024.04.13.589277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background and Aims Since the role of hepatic progenitor cells (HPCs) constituting ductular reactions in pathogenesis remains ambiguous, we aimed to establish the in vivo cause-and-effect relationship between HPCs and angiogenesis, a process associated with chronic liver disease progression. We previously demonstrated that peritumoral ductules are associated with angiogenesis in liver tumors and forkhead box L1 (Foxl1)- expressing murine HPCs secrete angiogenic factors in vitro. Therefore, we hypothesized that HPCs are capable of remodeling the vascular microenvironment and this function of HPCs is dependent on recombination signal binding protein for immunoglobulin kappa J region (RBPJ), a key effector of the Notch signaling pathway. Approach and Results We generated HPC-specific Rbpj conditional knockout mice using Foxl1-Cre and treated them with the 3,5-diethoxycarbonyl-1,4-dihydrocollidine-supplemented diet to induce cholestatic liver disease. Knockout mice displayed significant reduction of HPC proliferation and ductular reactions as well as attenuated vascular and fibrotic areas compared to control mice. Assessment of vascular endothelial growth factor A-positive areas in vivo and the effects of Rbpj shRNAs in vitro indicated that Rbpj knockout in HPCs reduces the total number of angiogenic factor-expressing cells rather than affecting angiogenic factor expression within HPCs. Single-nucleus RNA sequencing analysis indicated that conditional Rbpj knockout in HPCs induces transcriptional changes in endothelial cells and alters expression of genes involved in various functions of the endothelium. Conclusion Our findings indicate that HPCs regulate endothelial responses to cholestatic liver disease and Rbpj deletion in HPCs attenuates these responses, identifying novel targets for modulating angiogenesis during disease progression.
Collapse
|
15
|
Zhang X, Lu X, Shi J, Li Y, Li Y, Tao R, Huang L, Tang Y, Zhu X, Li M, Gao Y, Feng H, Yu Z. Bufalin suppresses hepatocellular carcinogenesis by targeting M2 macrophage-governed Wnt1/β-catenin signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155395. [PMID: 38340578 DOI: 10.1016/j.phymed.2024.155395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/28/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The interplay of tumor-associated macrophages (TAMs) and tumor cells plays a key role in the development of hepatocellular carcinoma (HCC) and provides an important target for HCC therapy. The communication between them is still on the investigation. Bufalin, the active component derived from the traditional Chinese medicine (TCM) Chansu, has been evidenced to possess anti-HCC activity by directly suppressing tumor cells, while its immunomodulatory effect on the tumor microenvironment (TME) is unclear. PURPOSE To explore the mechanism of M2 TAM-governed tumor cell proliferation and the inhibitory effect of bufalin on HCC growth by targeting M2 macrophages. METHODS Morphology and marker proteins were detected to evaluate macrophage polarization via microscopy and flow cytometry. Cellular proliferation and malignant transformation of HCC cells cultured with macrophage conditioned medium (CM) or bufalin-primed M2-CM, were assessed by cell viability, colony formation and soft agar assays. Regulations of gene transcription and protein expression and release were determined by RT-qPCR, immunoblotting, immunoprecipitation, ELISA and immunofluorescence. Tumorigenicity upon bufalin treatment was verified in orthotopic and diethylnitrosamine-induced HCC mouse model. RESULTS In this study, we first verified that M2 macrophages secreted Wnt1, which acted as a mediator to trigger β-catenin activation in HCC cells, leading to cellular proliferation. Bufalin suppressed HCC cell proliferation and malignant transformation by inhibiting Wnt1 release in M2 macrophages, and dose-dependently inhibited HCC progression in mice. Mechanistically, bufalin specially targeted to block Wnt1 transcription, thus inactivating β-catenin signaling cascade in HCC cells and leading to tumor regression in HCC mouse model. CONCLUSION These results clearly reveal a novel potential of bufalin to suppress HCC through immunomodulation, and shed light on a new M2 macrophage-based modality of HCC immunotherapy, which additively enhances direct tumor-inhibitory efficacy of bufalin.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaona Lu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia Shi
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuyao Li
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Li
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ru Tao
- Department of Nursing, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingying Huang
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Tang
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojun Zhu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Man Li
- Laboratoy of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yueqiu Gao
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
16
|
Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression-An Overview. Cells 2024; 13:579. [PMID: 38607018 PMCID: PMC11011399 DOI: 10.3390/cells13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.
Collapse
Affiliation(s)
- Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mallikarjuna Siraganahalli Eshwaraiah
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| | - Jaquelene Kennedy
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| |
Collapse
|
17
|
Wang F, Li S, Kong L, Feng K, Zuo R, Zhang H, Yu Y, Zhang K, Cao Y, Chai Y, Kang Q, Xu J. Tensile Stress-Activated and Exosome-Transferred YAP/TAZ-Notch Circuit Specifies Type H Endothelial Cell for Segmental Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309133. [PMID: 38225729 DOI: 10.1002/advs.202309133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/03/2024] [Indexed: 01/17/2024]
Abstract
The Ilizarov technique has been continuously innovated to utilize tensile stress (TS) for inducing a bone development-like regenerative process, aiming to achieve skeletal elongation and reconstruction. However, it remains uncertain whether this distraction osteogenesis (DO) process induced by TS involves the pivotal coupling of angiogenesis and osteogenesis mediated by type H endothelial cells (THECs). In this study, it is demonstrated that the Ilizarov technique induces the formation of a metaphysis-like architecture composed of THECs, leading to segmental bone regeneration during the DO process. Mechanistically, cell-matrix interactions-mediated activation of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcriptionally upregulates the expression of Notch1 and Delta-like ligand 4, which act as direct positive regulators of THECs phenotype, in bone marrow endothelial cells (BMECs) upon TS stimulation. Simultaneously, the Notch intracellular domain enhances YAP/TAZ activity by transcriptionally upregulating YAP expression and stabilizing TAZ protein, thus establishing the YAP/TAZ-Notch circuit. Additionally, TS-stimulated BMECs secrete exosomes enriched with vital molecules in this positive feedback pathway, which can be utilized to promote segmental bone defect healing, mimicking the therapeutic effects of Ilizarov technique. The findings advance the understanding of TS-induced segmental bone regeneration and establish the foundation for innovative biological therapeutic strategies aimed at activating THECs.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shanyu Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lingchi Kong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kai Feng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Rongtai Zuo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hanzhe Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yifan Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kunqi Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuting Cao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yimin Chai
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jia Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
18
|
Zhao J, Ghallab A, Hassan R, Dooley S, Hengstler JG, Drasdo D. A liver digital twin for in silico testing of cellular and inter-cellular mechanisms in regeneration after drug-induced damage. iScience 2024; 27:108077. [PMID: 38371522 PMCID: PMC10869925 DOI: 10.1016/j.isci.2023.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/22/2023] [Accepted: 09/25/2023] [Indexed: 02/20/2024] Open
Abstract
This communication presents a mathematical mechanism-based model of the regenerating liver after drug-induced pericentral lobule damage resolving tissue microarchitecture. The consequence of alternative hypotheses about the interplay of different cell types on regeneration was simulated. Regeneration dynamics has been quantified by the size of the damage-induced dead cell area, the hepatocyte density and the spatial-temporal profile of the different cell types. We use deviations of observed trajectories from the simulated system to identify branching points, at which the systems behavior cannot be explained by the underlying set of hypotheses anymore. Our procedure reflects a successful strategy for generating a fully digital liver twin that, among others, permits to test perturbations from the molecular up to the tissue scale. The model simulations are complementing current knowledge on liver regeneration by identifying gaps in mechanistic relationships and guiding the system toward the most informative (lacking) parameters that can be experimentally addressed.
Collapse
Affiliation(s)
- Jieling Zhao
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Group SIMBIOTX, INRIA Saclay, 91120 Palaiseau, France
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jan Georg Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Dirk Drasdo
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Group SIMBIOTX, INRIA Saclay, 91120 Palaiseau, France
| |
Collapse
|
19
|
Lee S, Memon A, Chae SC, Shin D, Choi TY. Epcam regulates intrahepatic bile duct reconstruction in zebrafish, providing a potential model for primary cholangitis model. Biochem Biophys Res Commun 2024; 696:149512. [PMID: 38224664 DOI: 10.1016/j.bbrc.2024.149512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Epithelial cell adhesion molecules (EpCAMs) have been identified as surface markers of proliferating ductal cells, which are referred to as liver progenitor cells (LPCs), during liver regeneration and correspond to malignancies. These cells can differentiate into hepatocytes and biliary epithelial cells (BECs) in vitro. EpCAM-positive LPCs are involved in liver regeneration following severe liver injury; however, the in vivo function of EpCAMs in the regenerating liver remains unclear. In the present study, we used a zebrafish model of LPC-driven liver regeneration to elucidate the function of EpCAMs in the regenerating liver in vivo. Proliferating ductal cells were observed after severe hepatocyte loss in the zebrafish model. Analyses of the liver size as well as hepatocyte and BEC markers revealed successful conversion of LPCs to hepatocytes and BECs in epcam mutants. Notably, epcam mutants exhibited severe defects in intrahepatic duct maturation and bile acid secretion in regenerating hepatocytes, suggesting that epcam plays a critical role in intrahepatic duct reconstruction during LPC-driven liver regeneration. Our findings provide insights into human diseases involving non-parenchymal cells, such as primary biliary cholangitis, by highlighting the regulatory effect of epcam on intrahepatic duct reconstruction.
Collapse
Affiliation(s)
- Siyeo Lee
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea; Department of Biomedical Science, Graduate School Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Azra Memon
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tae-Young Choi
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea; Department of Biomedical Science, Graduate School Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
20
|
Li L, He Y, Liu K, Liu L, Shan S, Liu H, Ren J, Sun S, Wang M, Jia J, Wang P. GITRL impairs hepatocyte repopulation by liver progenitor cells to aggravate inflammation and fibrosis by GITR +CD8 + T lymphocytes in CDE Mice. Cell Death Dis 2024; 15:114. [PMID: 38321001 PMCID: PMC10847460 DOI: 10.1038/s41419-024-06506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
As an alternative pathway for liver regeneration, liver progenitor cells and their derived ductular reaction cells increase during the progression of many chronic liver diseases. However, the mechanism underlying their hepatocyte repopulation after liver injury remains unknown. Here, we conducted progenitor cell lineage tracing in mice and found that fewer than 2% of hepatocytes were derived from liver progenitor cells after 9 weeks of injury with a choline-deficient diet supplemented with ethionine (CDE), and this percentage increased approximately three-fold after 3 weeks of recovery. We also found that the proportion of liver progenitor cells double positive for the ligand of glucocorticoid-induced tumour necrosis factor receptor (GITRL, also called Tnfsf18) and SRY-related HMG box transcription 9 (Sox9) among nonparenchymal cells increased time-dependently upon CDE injury and reduced after recovery. When GITRL was conditionally knocked out from hepatic progenitor cells, its expression in nonparenchymal cells was downregulated by approximately fifty percent, and hepatocyte repopulation increased by approximately three folds. Simultaneously, conditional knockout of GITRL reduced the proportion of liver-infiltrating CD8+ T lymphocytes and glucocorticoid-induced tumour necrosis factor receptor (GITR)-positive CD8+ T lymphocytes. Mechanistically, GITRL stimulated cell proliferation but suppressed the differentiation of liver progenitor organoids into hepatocytes, and CD8+ T cells further reduced their hepatocyte differentiation by downregulating the Wnt/β-catenin pathway. Therefore, GITRL expressed by liver progenitor cells impairs hepatocyte differentiation, thus hindering progenitor cell-mediated liver regeneration.
Collapse
Affiliation(s)
- Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Yu He
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Kai Liu
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Lin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Shan Shan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Helin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Jiangbo Ren
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Shujie Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Min Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China.
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
- Beijing Key Laboratory on Translational Medicine on Cirrhosis, Beijing, 100050, China.
| |
Collapse
|
21
|
Cui E, Lv L, Wang B, Li L, Lu H, Hua F, Chen W, Chen N, Yang L, Pan R. Umbilical cord MSC-derived exosomes improve alveolar macrophage function and reduce LPS-induced acute lung injury. J Cell Biochem 2024; 125:e30519. [PMID: 38224137 DOI: 10.1002/jcb.30519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Acute lung injury (ALI) is a severe condition that can progress to acute respiratory distress syndrome (ARDS), with a high mortality rate. Currently, no specific and compelling drug treatment plan exists. Mesenchymal stem cells (MSCs) have shown promising results in preclinical and clinical studies as a potential treatment for ALI and other lung-related conditions due to their immunomodulatory properties and ability to regenerate various cell types. The present study focuses on analyzing the role of umbilical cord MSC (UC-MSC))-derived exosomes in reducing lipopolysaccharide-induced ALI and investigating the mechanism involved. The study demonstrates that UC-MSC-derived exosomes effectively improved the metabolic function of alveolar macrophages and promoted their shift to an anti-inflammatory phenotype, leading to a reduction in ALI. The findings also suggest that creating three-dimensional microspheres from the MSCs first can enhance the effectiveness of the exosomes. Further research is needed to fully understand the mechanism of action and optimize the therapeutic potential of MSCs and their secretome in ALI and other lung-related conditions.
Collapse
Affiliation(s)
- Enhai Cui
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Lu Lv
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Bin Wang
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Liqin Li
- TCM Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Huzhou, Zhejiang, China
| | - Huadong Lu
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Feng Hua
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Wenyan Chen
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Na Chen
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Liwei Yang
- Department of Obstetrics, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Zhang C, Sun C, Zhao Y, Ye B, Yu G. Signaling pathways of liver regeneration: Biological mechanisms and implications. iScience 2024; 27:108683. [PMID: 38155779 PMCID: PMC10753089 DOI: 10.1016/j.isci.2023.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
The liver possesses a unique regenerative ability to restore its original mass, in this regard, partial hepatectomy (PHx) and partial liver transplantation (PLTx) can be executed smoothly and safely, which has important implications for the treatment of liver disease. Liver regeneration (LR) can be the very complicated procedure that involves multiple cytokines and transcription factors that interact with each other to activate different signaling pathways. Activation of these pathways can drive the LR process, which can be divided into three stages, namely, the initiation, progression, and termination stages. Therefore, it is important to investigate the pathways involved in LR to elucidate the mechanism of LR. This study reviews the latest research on the key signaling pathways in the different stages of LR.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Caifang Sun
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - GuoYing Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
23
|
Idrissi YA, Rajabi MR, Beumer JH, Monga SP, Saeed A. Exploring the Impact of the β-Catenin Mutations in Hepatocellular Carcinoma: An In-Depth Review. Cancer Control 2024; 31:10732748241293680. [PMID: 39428608 DOI: 10.1177/10732748241293680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, represents a major global health issue with significant clinical, economic, and psychological impacts. Its incidence continues to rise, driven by risk factors such as hepatitis B and C infections, nonalcoholic steatohepatitis, and various environmental influences. The Wnt/β-Catenin signaling pathway, frequently dysregulated in HCC, emerges as a promising therapeutic target. Critical genetic alterations, particularly in the CTNNB1 gene, involve mutations at key phosphorylation sites on β-catenin's N-terminal domain (S33, S37, T41, and S45) and in armadillo repeat domains (K335I and N387 K). These mutations impede β-catenin degradation, enhancing its oncogenic potential. In addition to genetic alterations, molecular and epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNAs, further influence β-catenin signaling and tumor progression. However, β-catenin activation alone is insufficient for hepatocarcinogenesis; additional genetic "hits" are required for tumor initiation. Mutations or alterations in genes such as Ras, c-Met, NRF2, and LKB1, when combined with β-catenin activation, significantly contribute to HCC development and progression. Understanding these cooperative mutations provides crucial insights into the disease and reveals potential therapeutic strategies. The complex interplay between genetic variations and the tumor microenvironment, coupled with novel therapeutic approaches targeting the Wnt/β-Catenin pathway, offers promise for improved treatment of HCC. Despite advances, translating preclinical findings into clinical practice remains a challenge. Future research should focus on elucidating how specific β-catenin mutations and additional genetic alterations contribute to HCC pathogenesis, leveraging genetically clengineered mouse models to explore distinct signaling impacts, and identifying downstream targets. Relevant clinical trials will be essential for advancing personalized therapies and enhancing patient outcomes. This review provides a comprehensive analysis of β-Catenin signaling in HCC, highlighting its role in pathogenesis, diagnosis, and therapeutic targeting, and identifies key research directions to improve understanding and clinical outcomes.
Collapse
Affiliation(s)
- Yassine Alami Idrissi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mohammad Reza Rajabi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jan H Beumer
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA
| | - Satdarshan P Monga
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Anwaar Saeed
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Nejak-Bowen K, Monga SP. Wnt-β-catenin in hepatobiliary homeostasis, injury, and repair. Hepatology 2023; 78:1907-1921. [PMID: 37246413 PMCID: PMC10687322 DOI: 10.1097/hep.0000000000000495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
Wnt-β-catenin signaling has emerged as an important regulatory pathway in the liver, playing key roles in zonation and mediating contextual hepatobiliary repair after injuries. In this review, we will address the major advances in understanding the role of Wnt signaling in hepatic zonation, regeneration, and cholestasis-induced injury. We will also touch on some important unanswered questions and discuss the relevance of modulating the pathway to provide therapies for complex liver pathologies that remain a continued unmet clinical need.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
25
|
Liu C, Liu X, He Z, Zhang J, Tan X, Yang W, Zhang Y, Yu T, Liao S, Dai L, Xu Z, Li F, Huang Y, Zhao J. Proenkephalin-A secreted by renal proximal tubules functions as a brake in kidney regeneration. Nat Commun 2023; 14:7167. [PMID: 37935684 PMCID: PMC10630464 DOI: 10.1038/s41467-023-42929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Organ regeneration necessitates precise coordination of accelerators and brakes to restore organ function. However, the mechanisms underlying this intricate molecular crosstalk remain elusive. In this study, the level of proenkephalin-A (PENK-A), expressed by renal proximal tubular epithelial cells, decreases significantly with the loss of renal proximal tubules and increased at the termination phase of zebrafish kidney regeneration. Notably, this change contrasts with the role of hydrogen peroxide (H2O2), which acts as an accelerator in kidney regeneration. Through experiments with penka mutants and pharmaceutical treatments, we demonstrate that PENK-A inhibits H2O2 production in a dose-dependent manner, suggesting its involvement in regulating the rate and termination of regeneration. Furthermore, H2O2 influences the expression of tcf21, a vital factor in the formation of renal progenitor cell aggregates, by remodeling H3K4me3 in renal cells. Overall, our findings highlight the regulatory role of PENK-A as a brake in kidney regeneration.
Collapse
Affiliation(s)
- Chi Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China.
| | - Xiaoliang Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Zhongwei He
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Jiangping Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Xiaoqin Tan
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Wenmin Yang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Yunfeng Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Ting Yu
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Shuyi Liao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Lu Dai
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Zhi Xu
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Furong Li
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Yinghui Huang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China.
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China.
| |
Collapse
|
26
|
Su D, Li Y, Zhang W, Gao H, Cheng Y, Hou Y, Li J, Ye Y, Lai Z, Li Z, Huang H, Li J, Li J, Cheng M, Nian C, Wu N, Zhou Z, Xing Y, Zhao Y, Liu H, Tang J, Chen Q, Hong L, Li W, Peng Z, Zhao B, Johnson RL, Liu P, Hong W, Chen L, Zhou D. SPTAN1/NUMB axis senses cell density to restrain cell growth and oncogenesis through Hippo signaling. J Clin Invest 2023; 133:e168888. [PMID: 37843276 PMCID: PMC10575737 DOI: 10.1172/jci168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
The loss of contact inhibition is a key step during carcinogenesis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density-dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin α chain, nonerythrocytic 1 (SPTAN1), a plasma membrane-stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity-regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20-like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling.
Collapse
Affiliation(s)
- Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yuxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Weiji Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yao Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yi Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhangjian Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhe Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Haitao Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jinhuan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Mengyu Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Na Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhien Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yunzhi Xing
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yu Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - He Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiayu Tang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Wengang Li
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhihai Peng
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Randy L. Johnson
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Pingguo Liu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Department of Hepatobiliary Surgery, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| |
Collapse
|
27
|
Li ZM, Kong CY, Mao YQ, Chen HL, Zhang SL, Huang JT, Yao JQ, Cai PR, Xie N, Han B, Wang LS. Host ALDH2 deficiency aggravates nonalcoholic steatohepatitis through gut-liver axis. Pharmacol Res 2023; 196:106902. [PMID: 37657657 DOI: 10.1016/j.phrs.2023.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is the major cause of liver dysfunction. Animal and population studies have shown that mitochondrial aldehyde dehydrogenase (ALDH2) is implicated in fatty liver disease. However, the role of ALDH2 in NASH and the underlying mechanisms remains unclear. To address this issue, ALDH2 knockout (ALDH2-/-) mice and wild-type littermate mice were fed a methionine-and choline-deficient (MCD) diet to induce a NASH model. Fecal, serum, and liver samples were collected and analyzed to investigate the impact of the gut microbiota and bile acids on this process. We found that MCD-fed ALDH2-/- mice exhibited increased serum pro-inflammation cytokines, hepatic inflammation and fat accumulation than their wild-type littermates. MCD-fed ALDH2-/- mice exhibited worsened MCD-induced intestinal inflammation and barrier damage, and gut microbiota disorder. Furthermore, mice receiving microbiota from MCD-fed ALDH2-/- mice had increased severity of NASH compared to those receiving microbiota from MCD-fed wild-type mice. Notably, the intestinal Lactobacillus was significantly reduced in MCD-fed ALDH2-/- mice, and gavage with Lactobacillus cocktail significantly improved MCD-induced NASH. Finally, we found that ALDH2-/- mice had reduced levels of bile salt hydrolase and specific bile acids, especially lithocholic acid (LCA), accompanied by downregulated expression of the intestinal FXR-FGF15 pathway. Supplementation of LCA in ALDH2-/- mice upregulated intestinal FXR-FGF15 pathway and alleviated NASH. In summary, ALDH2 plays a critical role in the development of NASH through modulation of gut microbiota and bile acid. The findings suggest that supplementing with Lactobacillus or LCA could be a promising therapeutic approach for treating NASH exacerbated by ALDH2 deficiency.
Collapse
Affiliation(s)
- Zhan-Ming Li
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Chao-Yue Kong
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Yu-Qin Mao
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Hui-Ling Chen
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Shi-Long Zhang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Jia-Ting Huang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Jin-Qing Yao
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Pei-Ran Cai
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Nuo Xie
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Bing Han
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Li-Shun Wang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| |
Collapse
|
28
|
Hrncir HR, Hantelys F, Gracz AD. Panic at the Bile Duct: How Intrahepatic Cholangiocytes Respond to Stress and Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1440-1454. [PMID: 36870530 PMCID: PMC10548281 DOI: 10.1016/j.ajpath.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
In the liver, biliary epithelial cells (BECs) line intrahepatic bile ducts (IHBDs) and are primarily responsible for modifying and transporting hepatocyte-produced bile to the digestive tract. BECs comprise only 3% to 5% of the liver by cell number but are critical for maintaining choleresis through homeostasis and disease. To this end, BECs drive an extensive morphologic remodeling of the IHBD network termed ductular reaction (DR) in response to direct injury or injury to the hepatic parenchyma. BECs are also the target of a broad and heterogenous class of diseases termed cholangiopathies, which can present with phenotypes ranging from defective IHBD development in pediatric patients to progressive periductal fibrosis and cancer. DR is observed in many cholangiopathies, highlighting overlapping similarities between cell- and tissue-level responses by BECs across a spectrum of injury and disease. The following core set of cell biological BEC responses to stress and injury may moderate, initiate, or exacerbate liver pathophysiology in a context-dependent manner: cell death, proliferation, transdifferentiation, senescence, and acquisition of neuroendocrine phenotype. By reviewing how IHBDs respond to stress, this review seeks to highlight fundamental processes with potentially adaptive or maladaptive consequences. A deeper understanding of how these common responses contribute to DR and cholangiopathies may identify novel therapeutic targets in liver disease.
Collapse
Affiliation(s)
- Hannah R Hrncir
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia
| | - Fransky Hantelys
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Adam D Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia.
| |
Collapse
|
29
|
Song Y, Lu Z, Shu W, Xiang Z, Wang Z, Wei X, Xu X. Arouse potential stemness: Intrinsic and acquired stem cell therapeutic strategies for advanced liver diseases. CELL INSIGHT 2023; 2:100115. [PMID: 37719773 PMCID: PMC10502372 DOI: 10.1016/j.cellin.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Liver diseases are a major health issue, and prolonged liver injury always progresses. Advanced liver disorders impair liver regeneration. Millions of patients die yearly worldwide, even with the available treatments of liver transplantation and artificial liver support system. With its abundant cell resources and significant differentiative potential, stem cell therapy is a viable treatment for various disorders and offers hope to patients waiting for orthotopic liver transplantation. Considering such plight, stem cell therapeutic strategies deliver hope to the patients. Moreover, we conclude intrinsic and acquired perspectives based on stem cell sources. The properties and therapeutic uses of these stem cells' specific types or sources were then reviewed. Owing to the recent investigations of the above cells, a safe and effective therapy will emerge for advanced liver diseases soon.
Collapse
Affiliation(s)
- Yisu Song
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhengyang Lu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Wenzhi Shu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University Shanghai, 200040, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
30
|
Martinez Lyons A, Boulter L. NOTCH signalling - a core regulator of bile duct disease? Dis Model Mech 2023; 16:dmm050231. [PMID: 37605966 PMCID: PMC10461466 DOI: 10.1242/dmm.050231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
The Notch signalling pathway is an evolutionarily conserved mechanism of cell-cell communication that mediates cellular proliferation, fate determination and maintenance of stem/progenitor cell populations across tissues. Although it was originally identified as a critical regulator of embryonic liver development, NOTCH signalling activation has been associated with the pathogenesis of a number of paediatric and adult liver diseases. It remains unclear, however, what role NOTCH actually plays in these pathophysiological processes and whether NOTCH activity represents the reactivation of a conserved developmental programme that is essential for adult tissue repair. In this Review, we explore the concepts that NOTCH signalling reactivation in the biliary epithelium is a reiterative and essential response to bile duct damage and that, in disease contexts in which biliary epithelial cells need to be regenerated, NOTCH signalling supports ductular regrowth. Furthermore, we evaluate the recent literature on NOTCH signalling as a critical factor in progenitor-mediated hepatocyte regeneration, which indicates that the mitogenic role for NOTCH signalling in biliary epithelial cell proliferation has also been co-opted to support other forms of epithelial regeneration in the adult liver.
Collapse
Affiliation(s)
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
- CRUK Scottish Centre, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
| |
Collapse
|
31
|
Cardinale V, Lanthier N, Baptista PM, Carpino G, Carnevale G, Orlando G, Angelico R, Manzia TM, Schuppan D, Pinzani M, Alvaro D, Ciccocioppo R, Uygun BE. Cell transplantation-based regenerative medicine in liver diseases. Stem Cell Reports 2023; 18:1555-1572. [PMID: 37557073 PMCID: PMC10444572 DOI: 10.1016/j.stemcr.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023] Open
Abstract
This review aims to evaluate the current preclinical state of liver bioengineering, the clinical context for liver cell therapies, the cell sources, the delivery routes, and the results of clinical trials for end-stage liver disease. Different clinical settings, such as inborn errors of metabolism, acute liver failure, chronic liver disease, liver cirrhosis, and acute-on-chronic liver failure, as well as multiple cellular sources were analyzed; namely, hepatocytes, hepatic progenitor cells, biliary tree stem/progenitor cells, mesenchymal stromal cells, and macrophages. The highly heterogeneous clinical scenario of liver disease and the availability of multiple cellular sources endowed with different biological properties make this a multidisciplinary translational research challenge. Data on each individual liver disease and more accurate endpoints are urgently needed, together with a characterization of the regenerative pathways leading to potential therapeutic benefit. Here, we critically review these topics and identify related research needs and perspectives in preclinical and clinical settings.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Nicolas Lanthier
- Service d'Hépato-gastroentérologie, Cliniques Universitaires Saint-Luc, Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain; Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry, and Morphological Sciences with Interest in Transplant, Oncology, and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Orlando
- Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Roberta Angelico
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tommaso Maria Manzia
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Detlef Schuppan
- Institute of Translational Immunology, Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK
| | - Domenico Alvaro
- Department of Translation and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy.
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Chen F, Schönberger K, Tchorz JS. Distinct hepatocyte identities in liver homeostasis and regeneration. JHEP Rep 2023; 5:100779. [PMID: 37456678 PMCID: PMC10339260 DOI: 10.1016/j.jhepr.2023.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023] Open
Abstract
The process of metabolic liver zonation is spontaneously established by assigning distributed tasks to hepatocytes along the porto-central blood flow. Hepatocytes fulfil critical metabolic functions, while also maintaining hepatocyte mass by replication when needed. Recent technological advances have enabled us to fine-tune our understanding of hepatocyte identity during homeostasis and regeneration. Subsets of hepatocytes have been identified to be more regenerative and some have even been proposed to function like stem cells, challenging the long-standing view that all hepatocytes are similarly capable of regeneration. The latest data show that hepatocyte renewal during homeostasis and regeneration after liver injury is not limited to rare hepatocytes; however, hepatocytes are not exactly the same. Herein, we review the known differences that give individual hepatocytes distinct identities, recent findings demonstrating how these distinct identities correspond to differences in hepatocyte regenerative capacity, and how the plasticity of hepatocyte identity allows for division of labour among hepatocytes. We further discuss how these distinct hepatocyte identities may play a role during liver disease.
Collapse
Affiliation(s)
- Feng Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | | | - Jan S. Tchorz
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
33
|
Zhang YY, Li J, Li F, Xue S, Xu QY, Zhang YQ, Feng L. Palmitic acid combined with γ-interferon inhibits gastric cancer progression by modulating tumor-associated macrophages' polarization via the TLR4 pathway. J Cancer Res Clin Oncol 2023; 149:7053-7067. [PMID: 36862159 DOI: 10.1007/s00432-023-04655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) constitute the main infiltrating immune cells in the solid tumor microenvironment. Amounting studies have analyzed the antitumor effect on immune response induced by Toll-like receptor (TLR) agonists, such as lipopolysaccharide (LPS), γ-interferon (γ-IFN), and palmitic Acid (PA). However, their combined treatment for gastric cancer (GC) has not been illuminated. METHODS We investigated the relevance of macrophage polarization and the effect of PA and γ-IFN in GC in vitro and in vivo. M1 and M2 macrophage-associated markers were measured by real-time quantitative PCR and flow cytometry, and the activation level of the TLR4 signaling pathways was evaluated by western blot analysis. The effect of PA and γ-IFN on the proliferation, migration, and invasion of GC cells (GCCs) was evaluated by Cell-Counting Kit-8, transwell assays, and wound-healing assays. In vivo animal models were used to verify the effect of PA and γ-IFN on tumor progression, and the M1 and M2 macrophage markers, CD8 + T lymphocytes, regulatory T cells (Treg) cells, and the myeloid-derived suppressor cells (MDSCs) in tumor tissues were analyzed by flow cytometry and immunohistochemical (IHC). RESULTS The results showed that this combination strategy enhanced M1-like macrophages and diminished M2-like macrophages through the TLR4 signaling pathway in vitro. In addition, the combination strategy impairs the proliferative and migratory activity of GCC in vitro and in vivo. While, the antitumor effect was abolished using the TAK-424 (a specific TLR-4 signaling pathway inhibitor) in vitro. CONCLUSIONS The combined treatment of PA and γ-IFN inhibited GC progression by modulating macrophages polarization via the TLR4 pathway.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Jian Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Shuai Xue
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Qing-Yu Xu
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Ya-Qiong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China.
| |
Collapse
|
34
|
Zhang J, Lyu Z, Li B, You Z, Cui N, Li Y, Li Y, Huang B, Chen R, Chen Y, Peng Y, Fang J, Wang Q, Miao Q, Tang R, Gershwin ME, Lian M, Xiao X, Ma X. P4HA2 induces hepatic ductular reaction and biliary fibrosis in chronic cholestatic liver diseases. Hepatology 2023; 78:10-25. [PMID: 36799463 DOI: 10.1097/hep.0000000000000317] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/06/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUNDS Prolyl-4-hydroxylases (P4Hs) are key enzymes in collagen synthesis. The P4HA subunit (P4HA1, P4HA2, and P4HA3) contains a substrate binding and catalyzation domain. We postulated that P4HA2 would play a key role in the cholangiocyte pathology of cholestatic liver diseases. METHODS We studied humans with primary biliary cholangitis (PBC) and Primary sclerosing cholangitis (PSC), P4HA2 -/- mice injured by DDC, and P4HA2 -/- /MDR2 -/- double knockout mice. A parallel study was performed in patients with PBC, PSC, and controls using immunohistochemistry and immunofluorescence. In the murine model, the level of ductular reaction and biliary fibrosis were monitored by histology, qPCR, immunohistochemistry, and Western blotting. Expression of Yes1 Associated Transcriptional Regulator (YAP) phosphorylation was measured in isolated mouse cholangiocytes. The mechanism of P4HA2 was explored in RBE and 293T cell lines by using qPCR, Western blot, immunofluorescence, and co-immunoprecipitation. RESULTS The hepatic expression level of P4HA2 was highly elevated in patients with PBC or PSC. Ductular reactive cholangiocytes predominantly expressed P4HA2. Cholestatic patients with more severe liver injury correlated with levels of P4HA2 in the liver. In P4HA2 -/- mice, there was a significantly reduced level of ductular reaction and fibrosis compared with controls in the DDC-induced chronic cholestasis. Decreased liver fibrosis and ductular reaction were observed in P4HA2 -/- /MDR2 -/- mice compared with MDR2 -/- mice. Cholangiocytes isolated from P4HA2 -/- /MDR2 -/- mice displayed a higher level of YAP phosphorylation, resulting in cholangiocytes proliferation inhibition. In vitro studies showed that P4HA2 promotes RBE cell proliferation by inducing SAV1 degradation, eventually resulting in the activation of YAP. CONCLUSIONS P4HA2 promotes hepatic ductular reaction and biliary fibrosis by regulating the SAV1-mediated Hippo signaling pathway. P4HA2 is a potential therapeutic target for PBC and PSC.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Zhuwan Lyu
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - You Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Yanshen Peng
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
| | - Min Lian
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| |
Collapse
|
35
|
He YH, Pan JX, Xu LM, Gu T, Chen YW. Ductular reaction in non-alcoholic fatty liver disease: When Macbeth is perverted. World J Hepatol 2023; 15:725-740. [PMID: 37397935 PMCID: PMC10308290 DOI: 10.4254/wjh.v15.i6.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 06/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction)-associated fatty liver disease is the leading cause of chronic liver diseases defined as a disease spectrum comprising hepatic steatosis, non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepatic carcinoma. NASH, characterized by hepatocyte injury, steatosis, inflammation, and fibrosis, is associated with NAFLD prognosis. Ductular reaction (DR) is a common compensatory reaction associated with liver injury, which involves the hepatic progenitor cells (HPCs), hepatic stellate cells, myofibroblasts, inflammatory cells (such as macrophages), and their secreted substances. Recently, several studies have shown that the extent of DR parallels the stage of NASH and fibrosis. This review summarizes previous research on the correlation between DR and NASH, the potential interplay mechanism driving HPC differentiation, and NASH progression.
Collapse
Affiliation(s)
- Yang-Huan He
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jia-Xing Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lei-Ming Xu
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, China
| | - Ting Gu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yuan-Wen Chen
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
36
|
Qi J, Dai Y, Sun X, Liu C. Mechanism of liver regeneration: 20-year bibliometric analyses. Front Pharmacol 2023; 14:1190559. [PMID: 37383706 PMCID: PMC10293616 DOI: 10.3389/fphar.2023.1190559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Objectives: The study aims to explore the most influential countries, institutions, journals, authors, "research hotspots," and trends in the study of the mechanism of liver regeneration (MoLR) in the last 20 years using bibliometric analyses. Methods: The literature associated with the MoLR was retrieved from the Web of Science Core Collection on 11 October 2022. CiteSpace 6.1.R6 (64-bit) and VOSviewer 1.6.18 were used for bibliometric analyses. Results: A total of 18,956 authors from 2,900 institutions in 71 countries/regions published 3,563 studies in different academic journals on the MoLR. The United States was the most influential country. The University of Pittsburgh was the institution from which most articles on the MoLR were published. Cunshuan Xu published the most articles on the MoLR, and George K. Michalopoulos was the most frequently co-cited author. Hepatology was the journal in which most articles on the MoLR were published and the most frequently co-cited journal in this field. The research hotspots for the MoLR were origin and subsets of hepatocytes during LR; new factors and pathways in LR regulation; cell therapy for LR; interactions between liver cells in LR; mechanism of the proliferation of residual hepatocytes and trans-differentiation between cells; and prognosis of LR. The emerging topic was the mechanism of regeneration of a severely injured liver. Conclusion: Our bibliometric analyses provide (i) a comprehensive overview of the MoLR; (ii) important clues and ideas for scholars in this field.
Collapse
Affiliation(s)
- Jingshu Qi
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunkai Dai
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| |
Collapse
|
37
|
Liu W, Gao L, Hou X, Feng S, Yan H, Pan H, Zhang S, Yang X, Jiang J, Ye F, Zhao Q, Wei L, Han Z. TWEAK Signaling-Induced ID1 Expression Drives Malignant Transformation of Hepatic Progenitor Cells During Hepatocarcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300350. [PMID: 37085918 PMCID: PMC10288241 DOI: 10.1002/advs.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The malignant transformation of hepatic progenitor cells (HPCs) in the inflammatory microenvironment is the root cause of hepatocarcinogenesis. However, the potential molecular mechanisms are still elusive. The HPCs subgroup is identified by single-cell RNA (scRNA) sequencing and the phenotype of HPCs is investigated in the primary HCC model. Bulk RNA sequencing (RNA-seq) and proteomic analyses are also performed on HPC-derived organoids. It is found that tumors are formed from HPCs in peritumor tissue at the 16th week in a HCC model. Furthermore, it is confirmed that the macrophage-derived TWEAK/Fn14 promoted the expression of inhibitor of differentiation-1 (ID1) in HPCs via NF-κB signaling and a high level of ID1 induced aberrant differentiation of HPCs. Mechanistically, ID1 suppressed differentiation and promoted proliferation in HPCs through the inhibition of HNF4α and Rap1GAP transcriptions. Finally, scRNA sequencing of HCC patients and investigation of clinical specimens also verified that the expression of ID1 is correlated with aberrant differentiation of HPCs into cancer stem cells, patients with high levels of ID1 in HPCs showed a poorer prognosis. This study provides important intervention targets and a theoretical basis for the clinical diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Wenting Liu
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Lu Gao
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Xiaojuan Hou
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Shiyao Feng
- Department of UrologySecond Affiliated HospitalAnhui Medical UniversityHefei230601P. R. China
| | - Haixin Yan
- Department of UrologySecond Affiliated HospitalAnhui Medical UniversityHefei230601P. R. China
| | - Hongyu Pan
- Department of Hepatic SurgeryThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
| | - Shichao Zhang
- Department of Hepatic SurgeryThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
| | - Xue Yang
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Fei Ye
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438P. R. China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer of Ministry of EducationEastern Hepatobiliary Surgery Hospital/National Center for Liver CancerNaval Medical UniversityShanghai200438P. R. China
| |
Collapse
|
38
|
Quarta S, Cappon A, Turato C, Ruvoletto M, Cannito S, Villano G, Biasiolo A, Maggi M, Protopapa F, Bertazza L, Fasolato S, Parola M, Pontisso P. SerpinB3 Upregulates Low-Density Lipoprotein Receptor-Related Protein (LRP) Family Members, Leading to Wnt Signaling Activation and Increased Cell Survival and Invasiveness. BIOLOGY 2023; 12:771. [PMID: 37372056 DOI: 10.3390/biology12060771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Abnormal activation of the Wnt-β-catenin signaling cascade is involved in tumor growth and dissemination. SerpinB3 has been shown to induce β-catenin, and both molecules are overexpressed in tumors, particularly in those with poor prognoses. The aim of this study was to evaluate the ability of SerpinB3 to modulate the Wnt pathway in liver cancer and in monocytic cells, the main type of inflammatory cells in the tumor microenvironment. The Wnt cascade, Wnt co-receptors, and low-density lipoprotein receptor-related protein (LRP) members were analyzed in different cell lines and human monocytes in the presence or absence of SerpinB3. The Wnt-β-catenin axis was also evaluated in liver tumors induced in mice with different extents of SeprinB3 expression. In monocytic cells, SerpinB3 induced a significant upregulation of Wnt-1/7, nuclear β-catenin, and c-Myc, which are associated with increased cell lifespan and proliferation. In liver tumors in mice, the expression of β-catenin was significantly correlated with the presence of SerpinB3. In hepatoma cells, Wnt co-receptors LRP-5/6 and LRP-1, implicated in cell survival and invasiveness, were upregulated by SerpinB3. The LRP pan-inhibitor RAP not only induced a decrease in LRP expression, but also a dose-dependent reduction in SerpinB3-induced invasiveness. In conclusion, SerpinB3 determines the activation of the Wnt canonical pathway and cell invasiveness through the upregulation of LRP family members.
Collapse
Affiliation(s)
- Santina Quarta
- Department of Medicine, University of Padova, 35128 Padua, Italy
| | - Andrea Cappon
- Department of Medicine, University of Padova, 35128 Padua, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | | | - Stefania Cannito
- Department of Clinical and Biological Sciences, University of Torino, 10124 Turin, Italy
| | - Gianmarco Villano
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35128 Padua, Italy
| | | | - Maristella Maggi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Francesca Protopapa
- Department of Clinical and Biological Sciences, University of Torino, 10124 Turin, Italy
| | - Loris Bertazza
- Department of Medicine, University of Padova, 35128 Padua, Italy
| | - Silvano Fasolato
- Department of Medicine, University of Padova, 35128 Padua, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, University of Torino, 10124 Turin, Italy
| | | |
Collapse
|
39
|
Tanimizu N, Ichinohe N, Mitaka T. β-adrenergic receptor agonist promotes ductular expansion during 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced chronic liver injury. Sci Rep 2023; 13:7084. [PMID: 37127664 PMCID: PMC10151327 DOI: 10.1038/s41598-023-33882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/20/2023] [Indexed: 05/03/2023] Open
Abstract
Intrahepatic nerves are involved in the regulation of metabolic reactions and hepatocyte-based regeneration after surgical resection, although their contribution to chronic liver injury remains unknown. Given that intrahepatic nerves are abundant in the periportal tissue, they may be correlated also with cholangiocyte-based regeneration. Here we demonstrate that isoproterenol (ISO), a β-adrenergic receptor agonist, promoted ductular expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in vivo. Immunofluorescence analysis shows that nerve fibers positive for tyrosine hydroxylase form synaptophysin-positive nerve endings on epithelial cell adhesion molecule-positive (EpCAM+) cholangiocytes as well as on Thy1+ periportal mesenchymal cells (PMCs) that surround bile ducts, suggesting that the intrahepatic biliary tissue are targeted by sympathetic nerves. In vitro analyses indicate that ISO directly increases cAMP levels in cholangiocytes and PMCs. Mechanistically, ISO expands the lumen of cholangiocyte organoids, resulting in promotion of cholangiocyte proliferation, whereas it increases expression of fibroblast growth factor 7, a growth factor for cholangiocytes, in PMCs. Taken together, the results indicate that intrahepatic sympathetic nerves regulate remodeling of bile ducts during DDC-injury by the activation of β-adrenergic receptors on cholangiocytes and PMCs.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo, 060-8556, Japan.
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan.
| | - Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
40
|
Zhou Q, Li B, Li J. DLL4-Notch signalling in acute-on-chronic liver failure: State of the art and perspectives. Life Sci 2023; 317:121438. [PMID: 36709913 DOI: 10.1016/j.lfs.2023.121438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome characterized by acute decompensation of chronic liver disease associated with multiple-organ failures and high short-term mortality. Acute insults to patients with chronic liver disease can lead to ACLF, among which, hepatitis B virus-related ACLF is the most common type of liver failure in the Asia-Pacific region. Currently, immune-metabolism disorders and systemic inflammation are proposed to be the main mechanisms of ACLF. The resulting cholestasis and intrahepatic microcirculatory dysfunction accelerate the development of ACLF. Treatments targeting immune regulation, metabolic balance, microcirculation maintenance and bile duct repair can alleviate inflammation and restore the tissue structure. An increasing number of studies have demonstrated that delta-like ligand 4 (DLL4), one of the Notch signalling ligands, plays a vital role in immune regulation, metabolism, angiogenesis, and biliary regeneration, which participate in liver pathological and physiological processes. The detailed mechanism of the DLL4-Notch signalling pathway in ACLF has rarely been investigated. Here, we review the evidence showing that DLL4-Notch signalling is involved in ACLF and analyse the potential role of DLL4 in the treatment of ACLF.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Bingqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Precision Medicine Center of Taizhou Central Hospital, Taizhou University Medical School, Taizhou, China.
| |
Collapse
|
41
|
Yan ZJ, Chen L, Wang HY. To be or not to be: The double-edged sword roles of liver progenitor cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188870. [PMID: 36842766 DOI: 10.1016/j.bbcan.2023.188870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/28/2023]
Abstract
Given the liver's remarkable and unique regenerative capacity, researchers have long focused on liver progenitor cells (LPCs) and liver cancer stem cells (LCSCs). LPCs can differentiate into both hepatocytes and cholangiocytes. However, the mechanism underlying cell conversion and its distinct contribution to liver homeostasis and tumorigenesis remain unclear. In this review, we discuss the complicated conversions involving LPCs and LCSCs. As the critical intermediate state in malignant transformation, LPCs play double-edged sword roles. LPCs are not only involved in hepatic wound-healing responses by supplementing liver cells and bile duct cells in the damaged liver but may transform into LCSCs under dysregulation of key signaling pathways, resulting in refractory malignant liver tumors. Because LPC lineages are temporally and spatially dynamic, we discuss crucial LPC subgroups and summarize regulatory factors correlating with the trajectories of LPCs and LCSCs in the liver tumor microenvironment. This review elaborates on the double-edged sword roles of LPCs to help understand the liver's regenerative potential and tumor heterogeneity. Understanding the sources and transformations of LPCs is essential in determining how to exploit their regenerative capacity in the future.
Collapse
Affiliation(s)
- Zi-Jun Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| |
Collapse
|
42
|
Bellanti F, Mangieri D, di Bello G, Lo Buglio A, Pannone G, Pedicillo MC, Fersini A, Dobrakowski M, Kasperczyk A, Kasperczyk S, Vendemiale G. Redox-Dependent Modulation of Human Liver Progenitor Cell Line Fate. Int J Mol Sci 2023; 24:ijms24031934. [PMID: 36768260 PMCID: PMC9916526 DOI: 10.3390/ijms24031934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Redox homeostasis is determinant in the modulation of quiescence/self-renewal/differentiation of stem cell lines. The aim of this study consisted of defining the impact of redox modifications on cell fate in a human hepatic progenitor line. To achieve this, the HepaRG cell line, which shows oval ductular bipotent characteristics, was used. The impact of redox status on the balance between self-renewal and differentiation of HepaRG cells was investigated using different methodological approaches. A bioinformatic analysis initially proved that the trans-differentiation of HepaRG toward bipotent progenitors is associated with changes in redox metabolism. We then exposed confluent HepaRG (intermediate differentiation phase) to oxidized (H2O2) or reduced (N-acetylcysteine) extracellular environments, observing that oxidation promotes the acquisition of a mature HepaRG phenotype, while a reduced culture medium stimulates de-differentiation. These results were finally confirmed through pharmacological modulation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2), a principal modulator of the antioxidant response, in confluent HepaRG. NRF2 inhibition led to intracellular pro-oxidative status and HepaRG differentiation, while its activation was associated with low levels of reactive species and de-differentiation. In conclusion, this study shows that both intra- and extracellular redox balance are crucial in the determination of HepaRG fate. The impact of redox status in the differentiation potential of HepaRG cells is significant on the utilization of this cell line in pre-clinical studies.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Correspondence: ; Tel.: +39-0881-733-840
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giorgia di Bello
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Aurelio Lo Buglio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | | | - Alberto Fersini
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
43
|
Oderberg IM, Goessling W. Biliary epithelial cells are facultative liver stem cells during liver regeneration in adult zebrafish. JCI Insight 2023; 8:163929. [PMID: 36625346 PMCID: PMC9870093 DOI: 10.1172/jci.insight.163929] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
The liver is a highly regenerative organ, yet the presence of a dedicated stem cell population remains controversial. Here, we interrogate a severe hepatocyte injury model in adult zebrafish to define that regeneration involves a stem cell population. After near-total hepatocyte ablation, single-cell transcriptomic and high-resolution imaging analyses throughout the entire regenerative timeline reveal that biliary epithelial cells undergo transcriptional and morphological changes to become hepatocytes. As a population, biliary epithelial cells give rise to both hepatocytes and biliary epithelial cells. Biliary epithelial cells proliferate and dedifferentiate to express hepatoblast transcription factors prior to hepatocyte differentiation. This process is characterized by increased MAPK, PI3K, and mTOR signaling, and chemical inhibition of these pathways impairs biliary epithelial cell proliferation and fate conversion. We conclude that, upon severe hepatocyte ablation in the adult liver, biliary epithelial cells act as facultative liver stem cells in an EGFR-PI3K-mTOR-dependent manner.
Collapse
Affiliation(s)
- Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Gromowski T, Lukacs-Kornek V, Cisowski J. Current view of liver cancer cell-of-origin and proposed mechanisms precluding its proper determination. Cancer Cell Int 2023; 23:3. [PMID: 36609378 PMCID: PMC9824961 DOI: 10.1186/s12935-022-02843-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma and intrahepatic cholangiocarcinoma are devastating primary liver cancers with increasing prevalence in many parts of the world. Despite intense investigation, many aspects of their biology are still largely obscure. For example, numerous studies have tackled the question of the cell-of-origin of primary liver cancers using different experimental approaches; they have not, however, provided a clear and undisputed answer. Here, we will review the evidence from animal models supporting the role of all major types of liver epithelial cells: hepatocytes, cholangiocytes, and their common progenitor as liver cancer cell-of-origin. Moreover, we will also propose mechanisms that promote liver cancer cell plasticity (dedifferentiation, transdifferentiation, and epithelial-to-mesenchymal transition) which may contribute to misinterpretation of the results and which make the issue of liver cancer cell-of-origin particularly complex.
Collapse
Affiliation(s)
- Tomasz Gromowski
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Veronika Lukacs-Kornek
- grid.10388.320000 0001 2240 3300Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Jaroslaw Cisowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
45
|
Pibiri M, Simbula G. Role of the Hippo pathway in liver regeneration and repair: recent advances. Inflamm Regen 2022; 42:59. [PMID: 36471376 PMCID: PMC9720992 DOI: 10.1186/s41232-022-00235-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Although the signaling pathways involved in normal liver regeneration have been well characterized, less has been done for livers affected by chronic tissue damage. These "abnormal livers" have an impaired regenerative response that leads to liver repair and fibrosis. The tumor suppressor Hippo pathway plays a key role in liver regeneration and repair. On this basis, this review discusses recent studies focusing on the involvement of the Hippo signaling pathway during "normal healthy liver regeneration" (i.e., in a normal liver after 2/3 partial hepatectomy) and "abnormal liver regeneration" (i.e., in a liver damaged by chronic disease). This could be an important question to address with respect to new therapies aimed at improving impaired liver regenerative responses. The studies reported here have shown that activation of the Hippo coactivators YAP/TAZ during normal liver regeneration promotes the formation of a new bile duct network through direct BEC proliferation or/and hepatocyte dedifferentiation to HPCs which can trans-differentiate to BECs. Moreover, YAP/TAZ signaling interaction with other signaling pathways mediates the recruitment and activation of Kupffer cells, which release mitogenic cytokines for parenchymal and/or non-parenchymal cells and engage in phagocytosis of cellular debris. In addition, YAP-mediated activation of stellate cells (HSCs) promotes liver regeneration through the synthesis of extracellular matrix. However, in chronically diseased livers, where the predetermined threshold for proper liver regeneration is exceeded, YAP/TAZ activation results in a reparative process characterized by liver fibrosis. In this condition, YAP/TAZ activation in parenchymal and non-parenchymal cells results in (i) differentiation of quiescent HSCs into myofibroblastic HSCs; (ii) recruitment of macrophages releasing inflammatory cytokines; (iii) polarization of macrophages toward the M2 phenotype. Since accumulation of damaged hepatocytes in chronic liver injury represent a significant risk factor for the development of hepatocarcinoma, this review also discussed the involvement of the Hippo pathway in the clearance of damaged cells.
Collapse
Affiliation(s)
- Monica Pibiri
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, Blocco A. 09042 Monserrato, Cagliari, Italy
| | - Gabriella Simbula
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, Blocco A. 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
46
|
Transcription networks in liver development and acute liver failure. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
47
|
Rong X, Kou Y, Zhang Y, Yang P, Tang R, Liu H, Li M. ED-71 Prevents Glucocorticoid-Induced Osteoporosis by Regulating Osteoblast Differentiation via Notch and Wnt/β-Catenin Pathways. Drug Des Devel Ther 2022; 16:3929-3946. [PMID: 36411860 PMCID: PMC9675334 DOI: 10.2147/dddt.s377001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/03/2022] [Indexed: 08/27/2023] Open
Abstract
PURPOSE Long-term glucocorticoid- usage can lead to glucocorticoid-induced osteoporosis (GIOP). The study focused on the preventative effects of a novel active vitamin D3 analog, eldecalcitol (ED-71), against GIOP and explored the underlying molecular mechanisms. METHODS Intraperitoneal injection of methylprednisolone (MPED) or dexamethasone (DEX) induced the GIOP model within C57BL/6 mice in vivo. Simultaneously, ED-71 was orally supplemented. Bone histological alterations, microstructure parameters, novel bone formation rates, and osteogenic factor changes were evaluated by hematoxylin-eosin (HE) staining, micro-computed tomography, calcein/tetracycline labeling, and immunohistochemical (IHC) staining. The osteogenic differentiation level and mineralization in pre-osteoblast MC3T3-E1 cells were evaluated in vitro using alkaline phosphatase (ALP) staining, alizarin red (AR) staining, quantitative polymerase chain reaction (qPCR), Western blotting, and immunofluorescence staining. RESULTS ED-71 partially prevented bone mass reduction and microstructure parameter alterations among GIOP-induced mice. Moreover, ED-71 also promoted new bone formation and osteoblast activity while inhibiting osteoclasts. In vitro, ED-71 promoted osteogenic differentiation and mineralization in DEX-treated MC3T3-E1 cells and boosted the levels of osteogenic-related factors. Additionally, GSK3-β and β-catenin expression levels were elevated after ED-71 was added to cells and were accompanied by reduced Notch expression. The Wnt signaling inhibitor XAV939 and Notch overexpression reversed the ED-71 promotional effects toward osteogenic differentiation and mineralization. CONCLUSION ED-71 prevented GIOP by enhancing osteogenic differentiation through Notch and Wnt/GSK-3β/β-catenin signaling. The results provide a novel translational direction for the clinical application of ED-71 against GIOP.
Collapse
Affiliation(s)
- Xing Rong
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Yuan Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Rong Tang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
48
|
Peng J, Li F, Wang J, Wang C, Jiang Y, Liu B, He J, Yuan K, Pan C, Lin M, Zhou B, Chen L, Gao D, Zhao Y. Identification of a rare Gli1 + progenitor cell population contributing to liver regeneration during chronic injury. Cell Discov 2022; 8:118. [PMID: 36316325 PMCID: PMC9622734 DOI: 10.1038/s41421-022-00474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
In adults, hepatocytes are mainly replenished from the existing progenitor pools of hepatocytes and cholangiocytes during chronic liver injury. However, it is unclear whether other cell types in addition to classical hepatocytes and cholangiocytes contribute to hepatocyte regeneration after chronic liver injuries. Here, we identified a new biphenotypic cell population that contributes to hepatocyte regeneration during chronic liver injuries. We found that a cell population expressed Gli1 and EpCAM (EpCAM+Gli1+), which was further characterized with both epithelial and mesenchymal identities by single-cell RNA sequencing. Genetic lineage tracing using dual recombinases revealed that Gli1+ nonhepatocyte cell population could generate hepatocytes after chronic liver injury. EpCAM+Gli1+ cells exhibited a greater capacity for organoid formation with functional hepatocytes in vitro and liver regeneration upon transplantation in vivo. Collectively, these findings demonstrate that EpCAM+Gli1+ cells can serve as a new source of liver progenitor cells and contribute to liver repair and regeneration.
Collapse
Affiliation(s)
- Jiayin Peng
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fei Li
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jia Wang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Chaoxiong Wang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yiao Jiang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Biao Liu
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Juan He
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yuan
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chenyu Pan
- grid.24516.340000000123704535Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Moubin Lin
- grid.24516.340000000123704535Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Zhou
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Dong Gao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.410726.60000 0004 1797 8419Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang China
| |
Collapse
|
49
|
Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 2022; 77:1136-1160. [PMID: 35750137 DOI: 10.1016/j.jhep.2022.06.012] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).
Collapse
|
50
|
Yu Y, Yue Z, Xu M, Zhang M, Shen X, Ma Z, Li J, Xie X. Macrophages play a key role in tissue repair and regeneration. PeerJ 2022; 10:e14053. [PMID: 36196399 PMCID: PMC9527023 DOI: 10.7717/peerj.14053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023] Open
Abstract
Tissue regeneration after body injury has always been a complex problem to resolve for mammals. In adult mammals, the repair process after tissue injury is often accompanied by continuous and extensive fibrosis, which leads to scars. This process has been shown to severely hinder regeneration. Macrophages, as widely distributed innate immune cells, not only play an important role in various pathological processes, but also participate in the repair process before tissue regeneration and coordinate the regeneration process after repair. This review will discuss the various forms and indispensability of macrophages involved in repair and regeneration, and how macrophages play a role in the repair and regeneration of different tissues.
Collapse
Affiliation(s)
- Yajie Yu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zhongyu Yue
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Mengli Xu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Meiling Zhang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xue Shen
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zihan Ma
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Juan Li
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xin Xie
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|