1
|
Siemsen BM, Franco D, Lobo MK. Corticostriatal contributions to dysregulated motivated behaviors in stress, depression, and substance use disorders. Neurosci Res 2025; 211:37-48. [PMID: 36565858 DOI: 10.1016/j.neures.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Coordinated network activity, particularly in circuits arising from the prefrontal cortex innervating the ventral striatum, is crucial for normal processing of reward-related information which is perturbed in several psychiatric disorders characterized by dysregulated reward-related behaviors. Stress-induced depression and substance use disorders (SUDs) both share this common underlying pathology, manifested as deficits in perceived reward in depression, and increased attribution of positive valence to drug-predictive stimuli and dysfunctional cognition in SUDs. Here we review preclinical and clinical data that support dysregulation of motivated and reward-related behaviors as a core phenotype shared between these two disorders. We posit that altered processing of reward-related stimuli arises from dysregulated control of subcortical circuits by upstream regions implicated in executive control. Although multiple circuits are directly involved in reward processing, here we focus specifically on the role of corticostriatal circuit dysregulation. Moreover, we highlight the growing body of evidence indicating that such abnormalities may be due to heightened neuroimmune signaling by microglia, and that targeting the neuroimmune system may be a viable approach to treating this shared symptom.
Collapse
Affiliation(s)
| | - Daniela Franco
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Shinohara R, Furuyashiki T. Prefrontal contributions to mental resilience: Lessons from rodent studies of stress and antidepressant actions. Neurosci Res 2025; 211:16-23. [PMID: 36549388 DOI: 10.1016/j.neures.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Individual variability of stress susceptibility led to the concept of stress resilience to adapt well upon stressors. However, the neural mechanisms of stress resilience and its relevance to antidepressant actions remain elusive. In rodents, chronic stress induces dendritic atrophy and decreases dendritic spine density in the medial prefrontal cortex (mPFC), recapitulating prefrontal alterations in depressive patients, and the mPFC promotes stress resilience. Whereas dopamine neurons projecting to the nucleus accumbens potentiated by chronic stress promote stress susceptibility, dopamine neurons projecting to the mPFC activated upon acute stress contribute to dendritic growth of mPFC neurons via dopamine D1 receptors, leading to stress resilience. Rodent studies have also identified the roles of prefrontal D1 receptors as well as D1 receptor-expressing mPFC neurons projecting to multiple subcortical areas and dendritic spine formation in the mPFC for the sustained antidepressant-like effects of low-dose ketamine. Thus, understanding the cellular and neural-circuit mechanism of prefrontal D1 receptor actions paves the way for bridging the gap between stress resilience and the sustained antidepressant-like effects. The mechanistic understanding of stress resilience might be exploitable for developing antidepressants based on a naturally occurring mechanism, thus safer than low-dose ketamine.
Collapse
Affiliation(s)
- Ryota Shinohara
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| |
Collapse
|
3
|
Liao C, Dua AN, Wojtasiewicz C, Liston C, Kwan AC. Structural neural plasticity evoked by rapid-acting antidepressant interventions. Nat Rev Neurosci 2025; 26:101-114. [PMID: 39558048 DOI: 10.1038/s41583-024-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
A feature in the pathophysiology of major depressive disorder (MDD), a mood disorder, is the impairment of excitatory synapses in the prefrontal cortex. Intriguingly, different types of treatment with fairly rapid antidepressant effects (within days or a few weeks), such as ketamine, electroconvulsive therapy and non-invasive neurostimulation, seem to converge on enhancement of neural plasticity. However, the forms and mechanisms of plasticity that link antidepressant interventions to the restoration of excitatory synaptic function are still unknown. In this Review, we highlight preclinical research from the past 15 years showing that ketamine and psychedelic drugs can trigger the growth of dendritic spines in cortical pyramidal neurons. We compare the longitudinal effects of various psychoactive drugs on neuronal rewiring, and we highlight rapid onset and sustained time course as notable characteristics for putative rapid-acting antidepressant drugs. Furthermore, we consider gaps in the current understanding of drug-evoked in vivo structural plasticity. We also discuss the prospects of using synaptic remodelling to understand other antidepressant interventions, such as repetitive transcranial magnetic stimulation. Finally, we conclude that structural neural plasticity can provide unique insights into the neurobiological actions of psychoactive drugs and antidepressant interventions.
Collapse
Affiliation(s)
- Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Alisha N Dua
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Gongwer MW, Qi A, Enos AS, Rueda Mora SA, Klune CB, Shari M, Kashay AQ, Williams OH, Hacking A, Riley JP, Wilke GA, Yang Y, Lu H, Leuchter AF, DeNardo LA, Wilke SA. A cell type-specific mechanism driving the rapid antidepressant effects of transcranial magnetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635537. [PMID: 39975365 PMCID: PMC11838264 DOI: 10.1101/2025.01.29.635537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for brain disorders, but its therapeutic mechanism is unknown. We developed a novel mouse model of rTMS with superior clinical face validity and investigated the neural mechanism by which accelerated intermittent theta burst stimulation (aiTBS) - the first rapid-acting rTMS antidepressant protocol - reversed chronic stress-induced behavioral deficits. Using fiber photometry, we showed that aiTBS drives distinct patterns of neural activity in intratelencephalic (IT) and pyramidal tract (PT) projecting neurons in dorsomedial prefrontal cortex (dmPFC). However, only IT neurons exhibited persistently increased activity during both aiTBS and subsequent depression-related behaviors. Similarly, aiTBS reversed stress-related loss of dendritic spines on IT, but not PT neurons, further demonstrating cell type-specific effects of stimulation. Finally, chemogenetic inhibition of dmPFC IT neurons during rTMS blocked the antidepressant-like behavioral effects of aiTBS. Thus, we demonstrate a prefrontal mechanism linking rapid aiTBS-driven therapeutic effects to cell type-specific circuit plasticity.
Collapse
|
5
|
Wang P, Hu J, Chen C, Jiang Z, Zhang Y, Lin K, Liao L, Wang X. The immune regulatory mechanism of ketamine-induced psychiatric disorders: A new perspective on drug-induced psychiatric symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111194. [PMID: 39542202 DOI: 10.1016/j.pnpbp.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Ketamine, a psychoactive substance strictly regulated by international drug conventions, is classified as a "new type drug" due to its excitatory, hallucinogenic, or inhibitory effects. The etiology of ketamine-induced psychiatric symptoms is multifaceted, with the immune regulatory mechanism being the most prominent among several explanatory theories. In recent years, the interaction between the immune system and nervous system have garnered significant attention in neuropsychiatric disorder research. Notably, the infiltration of peripheral lymphocytes into the central nervous system has emerged as an early hallmark of certain neuropsychiatric disorders. However, a notable gap exists in the current literature, regarding the immune regulatory mechanisms, specifically the peripheral immune alterations, associated with ketamine-induced psychiatric symptoms. To address this void, this article endeavors to provide a comprehensive overview of the pathophysiological processes implicated in psychiatric disorders or symptoms, encompassing those elicited by ketamine. This analysis delves into aspects such as nerve damage, alterations within the central immune system, and the regulation of the peripheral immune system. By emphasizing the intricate crosstalk between the peripheral immune system and the central nervous system, this study sheds light on their collaborative role in the onset and progression of psychiatric diseases or symptoms. This insight offers fresh perspectives on the underlying mechanisms, diagnosis and therapeutic strategies for mental disorders stemming from drug abuse.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junmei Hu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Congliang Chen
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zihan Jiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yu Zhang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Kexin Lin
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Chen CY, Wang YF, Lei L, Zhang Y. MicroRNA-specific targets for neuronal plasticity, neurotransmitters, neurotrophic factors, and gut microbes in the pathogenesis and therapeutics of depression. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111186. [PMID: 39521033 DOI: 10.1016/j.pnpbp.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Depression is of great concern because of the huge burden, and it is impacted by various epigenetic modifications, e.g., histone modification, covalent modifications in DNA, and silencing mechanisms of non-coding protein genes, e.g., microRNAs (miRNAs). MiRNAs are a class of endogenous non-coding RNAs. Alternations in specific miRNAs have been observed both in depressive patients and experimental animals. Also, miRNAs are highly expressed in the central nervous system and can be delivered to different tissues via tissue-specific exosomes. However, the mechanism of miRNAs' involvement in the pathological process of depression is not well understood. Therefore, we summarized and discussed the role of miRNAs in depression. Conclusively, miRNAs are involved in the pathology of depression by causing structural and functional changes in synapses, mediating neuronal regeneration, differentiation, and apoptosis, regulating the gut microbes and the expression of various neurotransmitters and BDNF, and mediating inflammatory and immune responses. Moreover, miRNAs can predict the efficacy of antidepressant medications and explain the mechanism of action of antidepressant drugs and aerobic exercise to prevent and assist in treating depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
7
|
Miller CE, Zoladz PR. Evaluating the potential for psilocybin as a treatment for post-traumatic stress disorder. J Pharmacol Exp Ther 2025; 392:100026. [PMID: 39893004 DOI: 10.1124/jpet.124.002237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 01/22/2025] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition that develops following exposure to a traumatic event. Individuals with this condition experience numerous physiological and behavioral alterations, including intrusive memories, avoidance of trauma-related stimuli, heightened anxiety, hypervigilance, impaired cognition, elevated resting heart rate and blood pressure, and altered neuroendocrine function, to name a few. In most patients, currently available pharmacological and psychological treatments are insufficient to alleviate the array of symptoms associated with the disorder. Thus, novel treatment options that can more effectively target the core etiology of PTSD are desperately needed. Recent work demonstrating the psychoplastogenic effects of psychedelics has reinvigorated research to examine their therapeutic potential in psychiatric conditions. Psilocybin, a psychedelic found in the Psilocybe genus of mushrooms, has exhibited promising antidepressant and anxiolytic effects in preclinical and clinical studies. The purpose of this review is to summarize the existing research that has examined the behavioral effects of psilocybin and link it to potential efficacy in treating PTSD-related symptoms. The proposed mechanisms for psilocybin's effects are then explored, as are the benefits and drawbacks for the agent's therapeutic use. Finally, the challenges faced by investigators aiming to study psilocybin as a therapeutic aid in future studies are discussed in order to shed light on this budding area of research. SIGNIFICANCE STATEMENT: Current pharmacotherapy for post-traumatic stress disorder is insufficient. Traditional antidepressants and anxiolytics help reduce symptom severity, but nonresponse rates often reach levels greater than 50%, emphasizing the need for more effective treatment options. The goal of this review is to summarize the existing evidence for and the potential mechanisms of the antidepressant and anxiolytic effects of psilocybin, a psychedelic compound found in the Psilocybe genus of mushrooms. The observed effects are then related to psilocybin's potential use as a treatment for PTSD.
Collapse
Affiliation(s)
- Claire E Miller
- Department of Psychology and Education, The School of Health, Life Sciences, and Education, Ohio Northern University, Ada, Ohio
| | - Phillip R Zoladz
- Department of Psychology and Education, The School of Health, Life Sciences, and Education, Ohio Northern University, Ada, Ohio.
| |
Collapse
|
8
|
Yang J, Xie G, Yi L, Liang J, Shao Z, Li Q, Huang W, Sun J, Wu K, Xu J. Impact of high-frequency rTMS combined with pharmacotherapy on the left dorsolateral prefrontal cortex in treating major depressive disorder: A real-world study. J Affect Disord 2025; 368:67-72. [PMID: 39271069 DOI: 10.1016/j.jad.2024.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) combined with pharmacotherapy is a promising treatment method for depression. However, its treatment mechanism needs further research. METHODS This study recruited 38 healthy individuals (HC) and 52 patients with severe depression (MDD) and divided patients into two treatment groups: the rTMS combined antidepressant (rTMS+ADP) group and the single antidepressant (ADP) group. We used functional magnetic resonance imaging to calculate the fractional amplitude of low-frequency fluctuations (fALFF) in the left dorsolateral prefrontal cortex (DLPFC) to investigate the functional change after treatment. RESULT The fALFF in the left DLPFC was significantly lower in the MDD group than that in the HC group (p < 0.05). In addition, fALFF values of the left DLPFC negatively correlated with HAMD-24 scores (r = -0.294, p = 0.005). After treatment, both MDD groups showed a significant decrease in HAMD-24 scores, with a response rate of 88.89 % and a remission rate of 62.96 % in the rTMS+ADP group, compared to 64 % response and 56 % remission rates in the ADP group. The fALFF values in patients' left DLPFC significantly reduced in the rTMS+ADP group (p < 0.05), but not in the ADP group. LIMITATIONS Our study only focused on the treatment effect in the left DLPFC, without exploring the other brain regions or networks. CONCLUSIONS This study emphasizes the significance of the left DLPFC in MDD treatment. However, combined left DLPFC rTMS with ADP causes deviation from the normal resting brain function of the left DLPFC, indicating that future research should explore targeted treatment methods to normalize the left DLPFC.
Collapse
Affiliation(s)
- Jun Yang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China; Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Li Yi
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China; Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Zhiyong Shao
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Qidi Li
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Wei Huang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China; Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Jinyan Sun
- School of Medicine, Foshan University, Foshan, China.
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China.
| | - Jinbing Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China; Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China.
| |
Collapse
|
9
|
Antos Z, Żukow X, Bursztynowicz L, Jakubów P. Beyond NMDA Receptors: A Narrative Review of Ketamine's Rapid and Multifaceted Mechanisms in Depression Treatment. Int J Mol Sci 2024; 25:13658. [PMID: 39769420 PMCID: PMC11728282 DOI: 10.3390/ijms252413658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/14/2025] Open
Abstract
The rising prevalence of depression, with its associated suicide risk, demands effective fast-acting treatments. Ketamine has emerged as promising, demonstrating rapid antidepressant effects. While early studies show swift mood improvements, its precise mechanisms remain unclear. This article aims to compile and synthesize the literature on ketamine's molecular actions. Ketamine primarily works by antagonizing NMDA receptors, reducing GABAergic inhibition, and increasing glutamate release. This enhanced glutamate activates AMPA receptors, triggering crucial downstream cascades, including BDNF-TrkB and mTOR pathways, promoting synaptic proliferation and regeneration. Moreover, neuroimaging studies have demonstrated alterations in brain networks involved in emotional regulation, including the Default Mode Network (DMN), Central Executive Network (CEN), and Salience Network (SN), which are frequently disrupted in depression. Despite the promising findings, the literature reveals significant inaccuracies and gaps in understanding the full scope of ketamine's therapeutic potential. For instance, ketamine engages with opioid receptors, insinuating a permissive role of the opioid system in amplifying ketamine's antidepressant effects, albeit ketamine does not operate as a direct opioid agonist. Further exploration is requisite to comprehensively ascertain its safety profile, long-term efficacy, and the impact of genetic determinants, such as BDNF polymorphisms, on treatment responsiveness.
Collapse
Affiliation(s)
| | | | | | - Piotr Jakubów
- Department of Paediatric Anaesthesiology and Intensive Therapy with Pain Division, Faculty of Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland; (Z.A.); (X.Ż.); (L.B.)
| |
Collapse
|
10
|
Fu W, Xu R, Bian P, Li X, Yang K, Wang X. Exploring the shared genetic basis of major depressive disorder and frailty. J Affect Disord 2024; 366:386-394. [PMID: 39214376 DOI: 10.1016/j.jad.2024.08.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and frailty impose substantial health and economic burdens. MDD is recognized as a significant risk factor for frailty, but the genetic associations between these conditions remain unclear. This study investigates the genetic correlation, shared pleiotropic loci, causal relationships, and comorbid genes between MDD and frailty. METHODS The genetic correlation between MDD and frailty was assessed using linkage disequilibrium score regression (LDSC) based on data from genome-wide association studies (GWAS). A detailed analysis was performed to identify shared pleiotropic loci and causal relationships through cross-phenotype association tests and Mendelian randomization. Additionally, tissue enrichment analysis was conducted using stratified LDSC, gene-based associations with both conditions were assessed using Multimarker Analysis of Genomic Annotation (MAGMA), and pathway analysis of comorbid genes was performed using the g: GOSt tool. RESULTS Our findings revealed a significant positive genetic correlation between MDD and frailty (rg = 0.65, P = 1.49E-219). We identified 57 shared risk SNPs between the two conditions, including 6 novel SNPs. Mendelian randomization analyses indicated robust causal effects of MDD on frailty and vice versa. Furthermore, we observed tissue-specific heritability enrichment in 9 brain tissues. By combining MAGMA and CPASSOC analyses, we identified 10 comorbid genes associated with both MDD and frailty, primarily involved in synapse formation, modulation, plasticity, and desaturase activity. CONCLUSION This study provides strong evidence for a shared genetic basis between MDD and frailty. The identification of comorbid genes offers new insights into the mechanisms underlying the relationship between these conditions.
Collapse
Affiliation(s)
- Wei Fu
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Peiyu Bian
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xu Li
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Kaikai Yang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
11
|
Didikoglu A, Guler ES, Turk HK, Can K, Erim AN, Payton A, Murgatroyd C, Pakpahan E, Minshull J, Robinson AC, Maharani A. Depression in older adults and its associations with sleep and synaptic density. J Affect Disord 2024; 366:379-385. [PMID: 39216641 DOI: 10.1016/j.jad.2024.08.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Depression among older adults is a global concern, contributing to disability and overall illness burden. Understanding its trajectory, associated risk factors, and implications for mortality is essential for effective intervention. Moreover, the relationship between depression, sleep disturbances, and synaptic density in the ageing brain remains complex and poorly understood. METHODS Using data from the University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age cohort, comprising 6375 participants, we conducted comprehensive assessments of depression trajectories using generalized linear mixed models and mortality risks using Cox mixed-effects models. Generalized structural equation modelling was performed to explore longitudinal associations between sleep duration and depression. Lastly, associations between post-mortem synaptic density and depression were investigated. RESULTS Our findings revealed that depression rates declined until age 80 before increasing again. Depression was associated with a 10 % increased risk of mortality in older adults. Reduced sleep was correlated with depression, and depression measured early in the study predicted future reduced sleep. Post-mortem analysis showed a global reduction in synaptic density associated with depression, particularly pronounced in the frontal lobe. LIMITATIONS Limitations include recall bias, limiting generalizability due to dominantly including White British participants and difficulty in establishing causation between synaptic density and depression. CONCLUSION Our study underscores the significance of addressing depression in older adults, not only for mental health but also for mortality risk and neurobiological health. Early detection and intervention strategies are crucial for improving outcomes in elderly populations, potentially mitigating adverse effects on sleep, synaptic density, cognitive health, and longevity.
Collapse
Affiliation(s)
- Altug Didikoglu
- Division of Neuroscience, Faculty of Science, Izmir institute of Technology, Izmir, Turkey; Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Manchester, UK.
| | - Esin Simge Guler
- Division of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey
| | - Halil Kaan Turk
- Division of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey
| | - Kubilay Can
- Division of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey
| | - Aleyna Nur Erim
- Division of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey
| | - Antony Payton
- Division of Informatics, Imaging & Data Science, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Chris Murgatroyd
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Eduwin Pakpahan
- Applied Statistics Research Group, Department of Mathematics, Physics & Electrical Engineering, Northumbria University, Newcastle upon Tyne, UK
| | - James Minshull
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Manchester, UK
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Manchester, UK
| | - Asri Maharani
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, The University of Manchester and Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| |
Collapse
|
12
|
Zhong X, Chen Y, Chen W, Liu Y, Gui S, Pu J, Wang D, He Y, Chen X, Chen X, Qiao R, Xie P. Identification of Potential Biomarkers for Major Depressive Disorder: Based on Integrated Bioinformatics and Clinical Validation. Mol Neurobiol 2024; 61:10355-10364. [PMID: 38722514 DOI: 10.1007/s12035-024-04217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 11/24/2024]
Abstract
Major depressive disorder (MDD) is a severe mental illness characterized by a lack of objective biomarkers. Mounting evidence suggests there are extensive transcriptional molecular changes in the prefrontal cortex (PFC) of individuals with MDD. However, it remains unclear whether there are specific genes that are consistently altered and possess diagnostic power. In this study, we conducted a systematic search of PFC datasets of MDD patients from the Gene Expression Omnibus database. We calculated the differential expression of genes (DEGs) and identified robust DEGs using the RRA and MetaDE methods. Furthermore, we validated the consistently altered genes and assessed their diagnostic power through enzyme-linked immunosorbent assay experiments in our clinical blood cohort. Additionally, we evaluated the diagnostic power of hub DEGs in independent public blood datasets. We obtained eight PFC datasets, comprising 158 MDD patients and 263 healthy controls, and identified a total of 1468 unique DEGs. Through integrated analysis, we identified 290 robustly altered DEGs. Among these, seven hub DEGs (SLC1A3, PON2, AQP1, EFEMP1, GJA1, CENPD, HSD11B1) were significantly down-regulated at the protein level in our clinical blood cohort. Moreover, these hub DEGs exhibited a negative correlation with the Hamilton Depression Scale score (P < 0.05). Furthermore, these hub DEGs formed a panel with promising diagnostic power in three independent public blood datasets (average AUCs of 0.85) and our clinical blood cohort (AUC of 0.92). The biomarker panel composed of these genes demonstrated promising diagnostic efficacy for MDD and serves as a useful tool for its diagnosis.
Collapse
Affiliation(s)
- Xiaogang Zhong
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Yue Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Xiang Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Renjie Qiao
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- The Jin Feng Laboratory, Chongqing, 401329, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
13
|
Cichon J, Joseph TT, Lu X, Wasilczuk AZ, Kelz MB, Mennerick SJ, Zorumski CF, Nagele P. Nitrous Oxide activates layer 5 prefrontal neurons via SK2 channel inhibition for antidepressant effect. RESEARCH SQUARE 2024:rs.3.rs-5141491. [PMID: 39606485 PMCID: PMC11601843 DOI: 10.21203/rs.3.rs-5141491/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nitrous oxide (N2O) induces rapid and durable antidepressant effects. The cellular and circuit mechanisms mediating this process are not known. Here we find that a single dose of inhaled N2O induces rapid and specific activation of layer V (L5) pyramidal neurons in the cingulate cortex of rodents exposed to chronic stress conditions. N2O-induced L5 activation rescues a stress-associated hypoactivity state, persists following exposure, and is necessary for its antidepressant-like activity. Although NMDA-receptor antagonism is believed to be a primary mechanism of action for N2O, L5 neurons activate even when NMDA-receptor function is attenuated through both pharmacological and genetic approaches. By examining different molecular and circuit targets, we identify N2O-induced inhibition of calcium-sensitive potassium (SK2) channels as a key molecular interaction responsible for driving specific L5 activity along with ensuing antidepressant-like effects. These results suggest that N2O-induced L5 activation is crucial for its fast antidepressant action and this effect involves novel and specific molecular actions in distinct cortical cell types.
Collapse
Affiliation(s)
- Joseph Cichon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas T. Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine
| | - Andrzej Z. Wasilczuk
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven J. Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine
| | - Peter Nagele
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Tillmon H, Soteros BM, Shen L, Cong Q, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Complement and microglia activation mediate stress-induced synapse loss in layer 2/3 of the medial prefrontal cortex in male mice. Nat Commun 2024; 15:9803. [PMID: 39532876 PMCID: PMC11557709 DOI: 10.1038/s41467-024-54007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the medial prefrontal cortex (mPFC) in male mice. Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (Apoehigh) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the Apoehigh microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
Affiliation(s)
- Haven Tillmon
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Breeanne M Soteros
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Liang Shen
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qifei Cong
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Clinical Research Center of Neurological Disease, Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mackenna Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Julianne General
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Hanna Chin
- University of Rochester, Rochester, NY, 14627, USA
| | - John Beichen Lee
- Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Flavia R Carreno
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veteran's Health Care System, San Antonio, TX, 78229, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gek Ming Sia
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
15
|
Yang C, Chen J, Tang J, Li L, Zhang Y, Li Y, Ruan C, Wang C. Study on the Mechanism of Dictyophora duplicata Polysaccharide in Reducing Depression-like Behavior in Mice. Nutrients 2024; 16:3785. [PMID: 39519618 PMCID: PMC11547661 DOI: 10.3390/nu16213785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Depression is a prevalent worldwide mental health disorder that inflicts significant harm to individuals and society. Dictyophora duplicata is an edible fungus that contains a variety of nutrients, including polysaccharides. This study aims to investigate the monosaccharide composition and molecular weight of the Dictyophora duplicata polysaccharide (DDP-B1), followed by an exploration of its antidepressant effects in chronic unpredictable mild stress (CUMS) mice. METHODS Dictyophora duplicata was purified using a DEAE-52 column and an S-400 column to obtain DDP-B1. The monosaccharide composition and molecular weight of DDP-B1 were investigated via high-performance gel permeation chromatograph. Six-week-old C57BL/6 male mice were utilized for the CUMS modeling to evaluate the antidepressant efficacy of DDP-B1. Fluoxetine served as the positive control group. The depressive-like behaviors and brain pathology of mice were evaluated. Immunofluorescence (IF) staining, metabolomics analysis, and western blot were employed to further investigate the underlying mechanisms. RESULTS DDP-B1 significantly alleviated the depression-like behavior of CUMS mice and increased the expression of SYN and PSD-95 in the mice's brains, which was further validated by western blot. Metabolomics analysis indicated a reduction in serum glutamate in CUMS mice following DDP-B1 treatment. Moreover, DDP-B1 treatment led to an increase in levels of GABAAR, BDNF, p-TrkB and p-p70S6K. CONCLUSIONS DDP-B1 regulated abnormalities in the glutamatergic system, subsequently activated the BDNF-TrkB-mTOR pathway and mitigated the pathological manifestations of CUMS mice. This study validated the potential of DDP-B1 as an antidepressant medication and established a theoretical foundation for the development of fungi with similar properties.
Collapse
Affiliation(s)
- Chenxi Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Jiaqi Chen
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Jie Tang
- Sichuan Institute of Edible Fungi, Chendu 610066, China;
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Changchun Ruan
- Jilin Province Technology Research Center of Biological Control Engineering, Jilin Province International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (C.Y.); (J.C.); (L.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
16
|
Ma X, Le Y, Hu L, Ouyang W, Li C, Ma D, Tong J. Astrocytic phagocytosis in the medial prefrontal cortex jeopardises postoperative memory consolidation in mice. Brain Pathol 2024; 34:e13253. [PMID: 38454310 PMCID: PMC11483594 DOI: 10.1111/bpa.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Memory impairment is one of the main characteristics of postoperative cognitive dysfunction. It remains elusive how postoperative pathological changes of the brain link to the memory impairment. The clinical setting of perioperation was mimicked via partial hepatectomy under sevoflurane anaesthesia together with preoperative restraint stress (Hep-Sev-stress) in mice. Memory changes were assessed with fear conditioning. The medial prefrontal cortex (mPFC)-dorsal hippocampus connectivity was evaluated with injecting neurotracer 28 days before surgery. Astrocytic activation was limited via injecting AAV-GFAP-hM4Di-eGFP into the mPFC. Astrocytic and microglial phagocytosis of synapses were visualised with co-labelling hippocampal neuronal axon terminals with PSD-95 and S100β or Iba1. Neuroinflammation and oxidative stress status were also detected. Hep-Sev-stress impaired the memory consolidation (mean [standard error], 49.91 [2.55]% vs. 35.40 [3.97]% in the contextual memory, p = 0.007; 40.72 [2.78]% vs. 27.77 [2.22]% in cued memory, p = 0.002) and the cued memory retrieval (39.00 [3.08]% vs. 24.11 [2.06]%, p = 0.001) in mice when compared with these in the naïve controls. Hep-Sev-stress damaged the connectivity from the dorsal hippocampus to mPFC but not from the mPFC to the dorsal hippocampus and increased the astrocytic but not microglial phagocytosis of hippocampal neuronal axon terminals in the mPFC. The intervention also induced neuroinflammation and oxidative stress in the dorsal hippocampus and the mPFC in a regional-dependent manner. Limiting astrocyte activation in the mPFC alleviated memory consolidation impairment induced by Hep-Sev-stress. Postoperative memory consolidation was impaired due to astrocytic phagocytosis-induced connectivity injury from the dorsal hippocampus to the medial prefrontal cortex.
Collapse
Affiliation(s)
- Xin Ma
- Department of Anesthesiology, Third Xiangya HospitalCentral South UniversityChangshaP.R. China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya HospitalCentral South UniversityChangshaP.R. China
| | - Yuan Le
- Department of Anesthesiology, Third Xiangya HospitalCentral South UniversityChangshaP.R. China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya HospitalCentral South UniversityChangshaP.R. China
| | - Lin Hu
- Department of Anesthesiology, Third Xiangya HospitalCentral South UniversityChangshaP.R. China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya HospitalCentral South UniversityChangshaP.R. China
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya HospitalCentral South UniversityChangshaP.R. China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya HospitalCentral South UniversityChangshaP.R. China
| | - Cheng Li
- Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiP.R. China
| | - Daqing Ma
- Department of Anesthesiology, Third Xiangya HospitalCentral South UniversityChangshaP.R. China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of MedicineImperial College London, Chelsea and Westminster HospitalLondonUK
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya HospitalCentral South UniversityChangshaP.R. China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya HospitalCentral South UniversityChangshaP.R. China
| |
Collapse
|
17
|
Asch RH, Abdallah CG, Carson RE, Esterlis I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology 2024; 50:153-163. [PMID: 39039139 PMCID: PMC11525584 DOI: 10.1038/s41386-024-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
The development of novel radiotracers for Positron Emission Tomography (PET) imaging agents targeting the synaptic vesicle glycoprotein 2 A (SV2A), an integral glycoprotein present in the membrane of all synaptic vesicles throughout the central nervous system, provides a method for the in vivo quantification of synaptic density. This is of particular interest in neuropsychiatric disorders given that synaptic alterations appear to underlie disease progression and symptom severity. In this review, we briefly describe the development of these SV2A tracers and the evaluation of quantification methods. Next, we discuss application of SV2A PET imaging to the study of depression, including a review of our findings demonstrating lower SV2A synaptic density in people with significant depressive symptoms and the use of a ketamine drug challenge to examine synaptogenesis in vivo. We then highlight the importance of performing translational PET imaging in animal models in conjunction with clinical imaging. We consider the ongoing challenges, possible solutions, and present preliminary findings from our lab demonstrating the translational benefit and potential of in vivo SV2A imaging in animal models of chronic stress. Finally, we discuss methodological improvements and future directions for SV2A imaging, potentially in conjunction with other neural markers.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
18
|
Eken HN, Spotts C, Panny B, Griffo A, Degutis M, Cruz N, Bell E, Do-Nguyen K, Wallace ML, Mathew SJ, Howland RH, Price RB. Improved implicit self-esteem is associated with extended antidepressant effects following a novel synergistic intervention. Mol Psychiatry 2024; 29:3431-3439. [PMID: 38755245 DOI: 10.1038/s41380-024-02564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION In a previously published randomized controlled trial, automated self-association training (ASAT), a novel digital intervention, was found to extend the rapid antidepressant effect of a single infusion of ketamine for at least 30 days. In this secondary analysis, we aimed to understand the potential role of implicit self-esteem in the combined antidepressant effect of ketamine and ASAT training, by investigating the novel synergistic treatment's effects on implicit self-associations and their relation to symptom improvement. METHODS A total of 154 adults (ages 18-60) with treatment-resistant unipolar depression and lower-than-normative explicit self-esteem were randomized in a double-blind, parallel-arm design to receive one of three treatment allocations: an active/active treatment combination consisting of one infusion of ketamine (0.5 mg/kg) followed by four days of ASAT ( ~ 30-40 min/day), or one of two control arms that lacked either the active drug or the active behavioral component. The Implicit Association Test (IAT) was used to behaviorally assess the strength of association between self-related stimuli and negative concepts. Linear regression models were used to test the relationship between group assignment, IAT scores acquired immediately post-treatment, and both acute and extended clinical outcomes (% change in Montgomery-Asberg Depression Rating Scale scores, relative to pre-treatment baseline) in the trial. RESULTS The group assigned to ketamine + ASAT intervention, compared to the other groups, had a pattern of IAT scores indicating more positive self-associations immediately after treatment relative to the control arms (F(1, 131) = 3.979; p = 0.048). In regression models, IAT scores tracked with concurrent (acute post-treatment) % change in MADRS scores across all treatment arms (p = 0.001), and mediated more extended (Day 30) depression improvements specifically for the ketamine+ASAT arm (group * IAT interaction term: β = -0.201; p = 0.049). DISCUSSION Our findings suggest that changing implicit self-worth during a post-ketamine 'plasticity window' is one key mechanism whereby the novel ketamine+ASAT treatment combination exerts its antidepressant benefit, confirming the intended treatment target at the level of implicit cognition. Future studies should seek to further enhance the reliability of the biobehavioral intervention's impact on implicit cognition, as this mechanism appears linked to the intervention's enduring clinical benefits.
Collapse
Affiliation(s)
- H Nur Eken
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
González Ibáñez F, VanderZwaag J, Deslauriers J, Tremblay MÈ. Ultrastructural features of psychological stress resilience in the brain: a microglial perspective. Open Biol 2024; 14:240079. [PMID: 39561812 PMCID: PMC11576122 DOI: 10.1098/rsob.240079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Psychological stress is the major risk factor for major depressive disorder. Sustained stress causes changes in behaviour, brain connectivity and in its cells and organelles. Resilience to stress is understood as the ability to recover from stress in a positive way or the resistance to the negative effects of psychological stress. Microglia, the resident immune cells of the brain, are known players of stress susceptibility, but less is known about their role in stress resilience and the cellular changes involved. Ultrastructural analysis has been a useful tool in the study of microglia and their function across contexts of health and disease. Despite increased access to electron microscopy, the interpretation of electron micrographs remains much less accessible. In this review, we will first present microglia and the concepts of psychological stress susceptibility and resilience. Afterwards, we will describe ultrastructural analysis, notably of microglia, as a readout to study the mechanisms underlying psychological stress resilience. Lastly, we will cover nutritional ketosis as a therapeutic intervention that was shown to be effective in promoting psychological stress resilience as well as modifying microglial function and ultrastructure.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, British Columbia, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
20
|
Rayan NA, Aow J, Lim MGL, Arcego DM, Ryan R, Nourbakhsh N, de Lima RMS, Craig K, Zhang TY, Goh YT, Sun AX, Tompkins T, Bronner S, Binda S, Diorio J, Parent C, Meaney MJ, Prabhakar S. Shared and unique transcriptomic signatures of antidepressant and probiotics action in the mammalian brain. Mol Psychiatry 2024; 29:3653-3668. [PMID: 38844534 DOI: 10.1038/s41380-024-02619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 11/08/2024]
Abstract
Understanding the shared and divergent mechanisms across antidepressant (AD) classes and probiotics is critical for improving treatment for mood disorders. Here we examine the transcriptomic effects of bupropion (NDRI), desipramine (SNRI), fluoxetine (SSRI) and a probiotic formulation (Lacidofil®) on 10 regions across the mammalian brain. These treatments massively alter gene expression (on average, 2211 differentially expressed genes (DEGs) per region-treatment combination), highlighting the biological complexity of AD and probiotic action. Intersection of DEG sets against neuropsychiatric GWAS loci, sex-specific transcriptomic portraits of major depressive disorder (MDD), and mouse models of stress and depression reveals significant similarities and differences across treatments. Interestingly, molecular responses in the infralimbic cortex, basolateral amygdala and locus coeruleus are region-specific and highly similar across treatments, whilst responses in the Raphe, medial preoptic area, cingulate cortex, prelimbic cortex and ventral dentate gyrus are predominantly treatment-specific. Mechanistically, ADs concordantly downregulate immune pathways in the amygdala and ventral dentate gyrus. In contrast, protein synthesis, metabolism and synaptic signaling pathways are axes of variability among treatments. We use spatial transcriptomics to further delineate layer-specific molecular pathways and DEGs within the prefrontal cortex. Our study reveals complex AD and probiotics action on the mammalian brain and identifies treatment-specific cellular processes and gene targets associated with mood disorders.
Collapse
Affiliation(s)
- Nirmala Arul Rayan
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Jonathan Aow
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
- NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michelle Gek Liang Lim
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Danusa Mar Arcego
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Richard Ryan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Nooshin Nourbakhsh
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | | | - Kelly Craig
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Tie Yuan Zhang
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Yeek Teck Goh
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Alfred Xuyang Sun
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857, Singapore
| | - Thomas Tompkins
- Lallemand Bio-Ingredients, 1620 Rue Prefontaine, Montréal, QC, H1W 2N8, Canada
| | - Stéphane Bronner
- Lallemand Health Solutions, Rosell Institute for Microbiome and Probiotics, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Sylvie Binda
- Lallemand Health Solutions, Rosell Institute for Microbiome and Probiotics, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Josie Diorio
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Carine Parent
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Michael J Meaney
- NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada.
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, 117609, Singapore.
- Brain-Body Initiative, Institute for Cell & Molecular Biology, A*STAR, Singapore, Singapore.
| | - Shyam Prabhakar
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
21
|
Liu Y, Fu X, Zhao X, Cui R, Yang W. The role of exercise-related FNDC5/irisin in depression. Front Pharmacol 2024; 15:1461995. [PMID: 39484160 PMCID: PMC11524886 DOI: 10.3389/fphar.2024.1461995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024] Open
Abstract
The complexity of depression presents a significant challenge to traditional treatment methods, such as medication and psychotherapy. Recent studies have shown that exercise can effectively reduce depressive symptoms, offering a new alternative for treating depression. However, some depressed patients are unable to engage in regular physical activity due to age, physical limitations, and other factors. Therefore, pharmacological agents that mimic the effects of exercise become a potential treatment option. A newly discovered myokine, irisin, which is produced during exercise via cleavage of its precursor protein fibronectin type III domain-containing protein 5 (FNDC5), plays a key role in regulating energy metabolism, promoting adipose tissue browning, and improving insulin resistance. Importantly, FNDC5 can promote neural stem cell differentiation, enhance neuroplasticity, and improve mood and cognitive function. This review systematically reviews the mechanisms of action of exercise in the treatment of depression, outlines the physiology of exercise-related irisin, explores possible mechanisms of irisin's antidepressant effects. The aim of this review is to encourage future research and clinical applications of irisin in the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xing Zhao
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Nagai H. Deciphering prefrontal circuits underlying stress and depression: exploring the potential of volume electron microscopy. Microscopy (Oxf) 2024; 73:391-404. [PMID: 39045685 DOI: 10.1093/jmicro/dfae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024] Open
Abstract
Adapting to environmental changes and formulating behavioral strategies are central to the nervous system, with the prefrontal cortex being crucial. Chronic stress impacts this region, leading to disorders including major depression. This review discusses the roles for prefrontal cortex and the effects of stress, highlighting similarities and differences between human/primates and rodent brains. Notably, the rodent medial prefrontal cortex is analogous to the human subgenual anterior cingulate cortex in terms of emotional regulation, sharing similarities in cytoarchitecture and circuitry, while also performing cognitive functions similar to the human dorsolateral prefrontal cortex. It has been shown that chronic stress induces atrophic changes in the rodent mPFC, which mirrors the atrophy observed in the subgenual anterior cingulate cortex and dorsolateral prefrontal cortex of depression patients. However, the precise alterations in neural circuitry due to chronic stress are yet to be fully unraveled. The use of advanced imaging techniques, particularly volume electron microscopy, is emphasized as critical for the detailed examination of synaptic changes, providing a deeper understanding of stress and depression at the molecular, cellular and circuit levels. This approach offers invaluable insights into the alterations in neuronal circuits within the medial prefrontal cortex caused by chronic stress, significantly enriching our understanding of stress and depression pathologies.
Collapse
Affiliation(s)
- Hirotaka Nagai
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Research Building B 4F, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
23
|
Chen B, Jin K, Dong J, Cheng S, Kong L, Hu S, Chen Z, Lu J. Hypocretin-1/Hypocretin Receptor 1 Regulates Neuroplasticity and Cognitive Function through Hippocampal Lactate Homeostasis in Depressed Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405354. [PMID: 39119889 PMCID: PMC11481194 DOI: 10.1002/advs.202405354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Cognitive dysfunction is not only a common symptom of major depressive disorder, but also a more common residual symptom after antidepressant treatment and a risk factor for chronic and recurrent disease. The disruption of hypocretin regulation is known to be associated with depression, however, their exact correlation is remains to be elucidated. Hypocretin-1 levels are increased in the plasma and hypothalamus from chronic unpredictable mild stress (CUMS) model mice. Excessive hypocretin-1 conducted with hypocretin receptor 1 (HCRTR1) reduced lactate production and brain-derived neurotrophic factor (BDNF) expression by hypoxia-inducible factor-1α (HIF-1α), thus impairing adult hippocampal neuroplasticity, and cognitive impairment in CUMS model. Subsequently, it is found that HCRTR1 antagonists can reverse these changes. The direct effect of hypocretin-1 on hippocampal lactate production and cognitive behavior is further confirmed by intraventricular injection of hypocretin-1 and microPET-CT in rats. In addition, these mechanisms are further validated in astrocytes and neurons in vitro. Moreover, these phenotypes and changes in molecules of lactate transport pathway can be duplicated by specifically knockdown of HCRTR1 in hippocampal astrocytes. In summary, the results provide molecular and functional insights for involvement of hypocretin-1-HCRTR1 in altered cognitive function in depression.
Collapse
Affiliation(s)
- Bing Chen
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Kangyu Jin
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Jingyi Dong
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Shangping Cheng
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Lingzhuo Kong
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Shaohua Hu
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Key Laboratory of Precision psychiatryHangzhou310003China
| | - Zuobing Chen
- Department of Rehabilitation MedicineThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Jing Lu
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Key Laboratory of Precision psychiatryHangzhou310003China
| |
Collapse
|
24
|
Osuna E, Baumgartner J, Walther A, Emery S, Albermann M, Baumgartner N, Schmeck K, Walitza S, Strumberger M, Hersberger M, Zimmermann MB, Häberling I, Berger G, Herter-Aeberli I. Investigating thyroid function and iodine status in adolescents with and without paediatric major depressive disorder. Br J Nutr 2024; 132:725-737. [PMID: 39387198 PMCID: PMC11557290 DOI: 10.1017/s0007114524001910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 10/15/2024]
Abstract
Depression has been associated with subclinical hypothyroidism and altered hypothalamic-pituitary-thyroid axis functioning. Adequate iodine nutrition is essential for healthy thyroid functioning. We therefore determined associations of iodine and thyroid status with paediatric major depressive disorder (pMDD) among Swiss adolescents and explored whether associations are sex-specific and mediated by stress. We conducted a matched case-control study in 95 adolescents with diagnosed pMDD and 95 healthy controls. We assessed depression severity using the Children's Depression Rating Scale-Revised and stress using the perceived stress scale (PSS) and measuring hair cortisol levels. We determined iodine status by measuring urinary iodine concentrations (UIC) and thyroid status by thyroid-stimulating hormone (TSH) and free thyroxine (FT4) in serum. Median (IQR) UIC did not differ between cases (121 (87, 174) µg/l) and controls (114 (66, 183) μg/l, P = 0·3). Median TSH and FT4 were lower in cases than controls (TSH: 1·36 (0·91, 2·00) mlU/l v. 1·50 (1·18, 2·06) mlU/l, P = 0·039; FT4: 14·7 (12·9, 16·9) pmol/l v. 15·7 (14·3, 17·2) pmol/l, P = 0·004). The prevalence of hypothyroxinaemia (normal TSH; low FT4) was higher among female cases than controls (21 % v. 4%, P = 0·006). PSS scores were higher while hair cortisol was lower in cases than controls (PSS: 25 (20, 28) v. 11 (7, 15), P < 0·001; cortisol: 2·50 (1·34, 3·57) pg/mg v. 3·23 (1·79, 4·43) pg/mg, P = 0·044). After adjusting for confounders, the associations of TSH and hair cortisol with pMDD were no longer significant. Furthermore, TSH and FT4 were not associated with PSS scores and hair cortisol levels. Summarising, iodine nutrition was adequate for adolescents with and without pMDD. However, FT4 concentrations were lower in those with pMDD, and 1 in 5 female adolescents with pMDD were hypothyroxinaemic.
Collapse
Affiliation(s)
- Ester Osuna
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | | | - Andreas Walther
- Department of Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Sophie Emery
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Mona Albermann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Noemi Baumgartner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Klaus Schmeck
- Department of Clinical Research, Medical Faculty, University of Basel, Basel, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Michael Strumberger
- Research Department of Child and Adolescent Psychiatry, Psychiatric University Hospitals Basel, University of Basel, Basel, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael B. Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Isabelle Häberling
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Isabelle Herter-Aeberli
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zürich, Zürich8092, Switzerland
| |
Collapse
|
25
|
Silva RH, Pedro LC, Manosso LM, Gonçalves CL, Réus GZ. Pre- and Post-Synaptic protein in the major depressive Disorder: From neurobiology to therapeutic targets. Neuroscience 2024; 556:14-24. [PMID: 39103041 DOI: 10.1016/j.neuroscience.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Major depressive disorder (MDD) has demonstrated its negative impact on various aspects of the lives of those affected. Although several therapies have been developed over the years, it remains a challenge for mental health professionals. Thus, understanding the pathophysiology of MDD is necessary to improve existing treatment options or seek new therapeutic alternatives. Clinical and preclinical studies in animal models of depression have shown the involvement of synaptic plasticity in both the development of MDD and the response to available drugs. However, synaptic plasticity involves a cascade of events, including the action of presynaptic proteins such as synaptophysin and synapsins and postsynaptic proteins such as postsynaptic density-95 (PSD-95). Additionally, several factors can negatively impact the process of spinogenesis/neurogenesis, which are related to many outcomes, including MDD. Thus, this narrative review aims to deepen the understanding of the involvement of synaptic formations and their components in the pathophysiology and treatment of MDD.
Collapse
Affiliation(s)
- Ritele H Silva
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Lucas C Pedro
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
26
|
Fu Y, Gu Z, Cao H, Zuo C, Huang Y, Song Y, Miao J, Jiang Y, Wang F. Proteomic characterization of the medial prefrontal cortex in chronic restraint stress mice. J Proteomics 2024; 307:105278. [PMID: 39142625 DOI: 10.1016/j.jprot.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Depression is a prominent contributor to global disability. A growing body of data suggests that depression is associated with the pathophysiology of the medial prefrontal cortex (mPFC), but the underlying mechanisms remain poorly understood. Mice were subjected to chronic restraint stress (CRS) for 3 weeks to create depression models during this investigation. Protein tandem mass tag (TMT) quantification and LC-MS/MS analysis were conducted to examine proteome patterns. Afterwards, to further explore the enrichment of differential proteins and the signaling pathways involved, we annotated these differentially expressed proteins. We confirmed that CRS mice developed depression-like and anxiety-like behaviors. Among the 8081 measured proteins, a total of 15 proteins were found to be differentially expressed. These proteins exhibited functional enrichment in a variety of biological functions, and among these pathways, alterations in synaptic function and autophagy are noteworthy. In addition, we identified a differentially expressed protein called Wnt2b and found that CRS may disrupt synaptic plasticity by affecting the activation of the Wnt2b/β-catenin pathway. Our findings showed depression-like behaviors in the CRS mouse model and molecular alterations in the mPFC, which may help explain the pathogenesis of depression and identify novel antidepressant medication targets. SIGNIFICANCE: Depression is a prevalent and frequent chronic mental illness and is now a significant contributor to global disability. In this study, we used chronic restraint stress to establish a mouse model of depression, and differentially expressed proteins in the medial prefrontal cortex of depressed model mice were detected by TMT proteomics. Our study verified the presence of altered synaptic function and excessive autophagy in the mPFC of CRS-induced mice from a proteomic perspective. Furthermore, we demonstrated that CRS may disrupt synaptic plasticity by affecting the activation of the Wnt2b/β-catenin pathway, which may be a key link in the pathogenesis of depression and may provide new insights for identifying new antidepressant drug targets.
Collapse
Affiliation(s)
- Yufeng Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China.
| |
Collapse
|
27
|
Naughton SX, Yang EJ, Iqbal U, Trageser K, Charytonowicz D, Masieri S, Estill M, Wu H, Raval U, Lyu W, Wu QL, Shen L, Simon J, Sebra R, Pasinetti GM. Permethrin exposure primes neuroinflammatory stress response to drive depression-like behavior through microglial activation in a mouse model of Gulf War Illness. J Neuroinflammation 2024; 21:222. [PMID: 39272155 PMCID: PMC11396632 DOI: 10.1186/s12974-024-03215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic multisymptom disorder that affects approximately 25-32% of Gulf War veterans and is characterized by a number of symptoms such as cognitive impairment, psychiatric disturbances, chronic fatigue and gastrointestinal distress, among others. While the exact etiology of GWI is unknown, it is believed to have been caused by toxic exposures encountered during deployment in combination with other factors such as stress. In the present study we sought to evaluate the hypothesis that exposure to the toxin permethrin could prime neuroinflammatory stress response and elicit psychiatric symptoms associated with GWI. Specifically, we developed a mouse model of GWI, to evaluate the effects of chronic permethrin exposure followed by unpredictable stress. We found that subjecting mice to 14 days of chronic permethrin exposure followed by 7 days of unpredictable stress resulted in the development of depression-like behavior. This behavioral change coincided with distinct alterations in the microglia phenotype, indicating microglial activation in the hippocampus. We revealed that blocking microglial activation through Gi inhibitory DREADD receptors in microglia effectively prevented the behavioral change associated with permethrin and stress exposure. To elucidate the transcriptional networks impacted within distinct microglia populations linked to depression-like behavior in mice exposed to both permethrin and stress, we conducted a single-cell RNA sequencing analysis using 21,566 single nuclei collected from the hippocampus of mice. For bioinformatics, UniCell Deconvolve was a pre-trained, interpretable, deep learning model used to deconvolve cell type fractions and predict cell identity across spatial datasets. Our bioinformatics analysis identified significant alterations in permethrin exposure followed by stress-associated microglia population, notably pathways related to neuronal development, neuronal communication, and neuronal morphogenesis, all of which are associated with neural synaptic plasticity. Additionally, we observed permethrin exposure followed by stress-mediated changes in signal transduction, including modulation of chemical synaptic transmission, regulation of neurotransmitter receptors, and regulation of postsynaptic neurotransmitter receptor activity, a known contributor to the pathophysiology of depression in a subset of the hippocampal pyramidal neurons in CA3 subregions. Our findings tentatively suggest that permethrin may prime microglia towards a state of inflammatory activation that can be triggered by psychological stressors, resulting in depression-like behavior and alterations of neural plasticity. These findings underscore the significance of synergistic interactions between multi-causal factors associated with GWI.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Umar Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sibilla Masieri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urdhva Raval
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiting Lyu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qing-Li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Li Shen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
28
|
Alfaro-Rodríguez A, Reyes-Long S, Roldan-Valadez E, González-Torres M, Bonilla-Jaime H, Bandala C, Avila-Luna A, Bueno-Nava A, Cabrera-Ruiz E, Sanchez-Aparicio P, González Maciel A, Dotor-Llerena AL, Cortes-Altamirano JL. Association of the Serotonin and Kynurenine Pathways as Possible Therapeutic Targets to Modulate Pain in Patients with Fibromyalgia. Pharmaceuticals (Basel) 2024; 17:1205. [PMID: 39338367 PMCID: PMC11434812 DOI: 10.3390/ph17091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Fibromyalgia (FM) is a disorder characterized by widespread chronic pain, significant depression, and various neural abnormalities. Recent research suggests a reciprocal exacerbation mechanism between chronic pain and depression. In patients with FM, dysregulation of tryptophan (Trp) metabolism has been identified. Trp, an essential amino acid, serves as a precursor to serotonin (5-HT), a neuromodulator that influences mood, appetite, sleep, and pain perception through the receptors 5-HT1, 5-HT2, and 5-HT3. Additionally, Trp is involved in the kynurenine pathway, a critical route in the immune response, inflammation, and production of neuroactive substances and nicotinamide adenine dinucleotide (NAD+). The activation of this pathway by pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interferon gamma (IFN-γ), leads to the production of kynurenic acid (KYNA), which has neuroprotective properties, and quinolinic acid (QA), which is neurotoxic. These findings underscore the crucial balance between Trp metabolism, 5-HT, and kynurenine, where an imbalance can contribute to the dual burden of pain and depression in patients with FM. This review proposes a novel therapeutic approach for FM pain management, focusing on inhibiting QA synthesis while co-administering selective serotonin reuptake inhibitors to potentially increase KYNA levels, thus dampening pain perception and improving patient outcomes.
Collapse
Affiliation(s)
- Alfonso Alfaro-Rodríguez
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Samuel Reyes-Long
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Ernesto Roldan-Valadez
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
- Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Maykel González-Torres
- Conahcyt & Biotechnology Laboratory, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 03940, Mexico
| | - Herlinda Bonilla-Jaime
- Department of Reproductive Biology, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico
| | - Cindy Bandala
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alberto Avila-Luna
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Antonio Bueno-Nava
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Elizabeth Cabrera-Ruiz
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Pedro Sanchez-Aparicio
- Pharmacology Department, Facultad de Medicina Veterinaria, Universidad Autónoma del Estado de México, Toluca 50090, Mexico
| | - Angélica González Maciel
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Ana Lilia Dotor-Llerena
- Division of Clinic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - José Luis Cortes-Altamirano
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
- Department of Chiropractic, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos 55210, Mexico
| |
Collapse
|
29
|
Li L, Jiang J, Zhong S, Lin J, Yao Y, Kemp GJ, Chen Y, Gong Q. Transdiagnostic depression severity and its relationship to global and prefrontal-amygdala structural properties in people with major depression and post-traumatic stress disorder. Cereb Cortex 2024; 34:bhae381. [PMID: 39315647 PMCID: PMC11420672 DOI: 10.1093/cercor/bhae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
While some studies have used a transdiagnostic approach to relate depression to metabolic or functional brain alterations, the structural substrate of depression across clinical diagnostic categories is underexplored. In a cross-sectional study of 52 patients with major depressive disorder and 51 with post-traumatic stress disorder, drug-naïve, and spanning mild to severe depression severity, we examined transdiagnostic depressive correlates with regional gray matter volume and the topological properties of gray matter-based networks. Locally, transdiagnostic depression severity correlated positively with gray matter volume in the right middle frontal gyrus and negatively with nodal topological properties of gray matter-based networks in the right amygdala. Globally, transdiagnostic depression severity correlated positively with normalized characteristic path length, a measure implying brain integration ability. Compared with 62 healthy control participants, both major depressive disorder and post-traumatic stress disorder patients showed altered nodal properties in regions of the fronto-limbic-striatal circuit, and global topological organization in major depressive disorder in particular was characterized by decreased integration and segregation. These findings provide evidence for a gray matter-based structural substrate underpinning depression, with the prefrontal-amygdala circuit a potential predictive marker for depressive symptoms across clinical diagnostic categories.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
| | - Jing Jiang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
- The Third People’s Hospital, Yangshijie 19#, Qingyang, Chengdu, 610031, China
| | - Shitong Zhong
- West China School of Medicine, Sichuan University, Renminnanlu 16#, Wuhou, Chengdu, 640041, China
| | - Jinping Lin
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
| | - Yuhao Yao
- West China School of Medicine, Sichuan University, Renminnanlu 16#, Wuhou, Chengdu, 640041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre and Institute of Life Course and Medical Sciences, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom
| | - Ying Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Jinyuanxilu 699#, Jimei, Xiamen, 361022, China
| |
Collapse
|
30
|
Quintanilla B, Zarate CA, Pillai A. Ketamine's mechanism of action with an emphasis on neuroimmune regulation: can the complement system complement ketamine's antidepressant effects? Mol Psychiatry 2024; 29:2849-2858. [PMID: 38575806 PMCID: PMC11804209 DOI: 10.1038/s41380-024-02507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Over 300 million people worldwide suffer from major depressive disorder (MDD). Unfortunately, only 30-40% of patients with MDD achieve complete remission after conventional monoamine antidepressant therapy. In recent years, ketamine has revolutionized the treatment of MDD, with its rapid antidepressant effects manifesting within a few hours as opposed to weeks with conventional antidepressants. Many research endeavors have sought to identify ketamine's mechanism of action in mood disorders; while many studies have focused on ketamine's role in glutamatergic modulation, several studies have implicated its role in regulating neuroinflammation. The complement system is an important component of the innate immune response vital for synaptic plasticity. The complement system has been implicated in the pathophysiology of depression, and studies have shown increases in complement component 3 (C3) expression in the prefrontal cortex of suicidal individuals with depression. Given the role of the complement system in depression, ketamine and the complement system's abilities to modulate glutamatergic transmission, and our current understanding of ketamine's anti-inflammatory properties, there is reason to suspect a common link between the complement system and ketamine's mechanism of action. This review will summarize ketamine's anti- inflammatory roles in the periphery and central nervous system, with an emphasis on complement system regulation.
Collapse
Affiliation(s)
- Brandi Quintanilla
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
31
|
Guo N, Wang X, Xu M, Bai J, Yu H, Le Zhang. PI3K/AKT signaling pathway: Molecular mechanisms and therapeutic potential in depression. Pharmacol Res 2024; 206:107300. [PMID: 38992850 DOI: 10.1016/j.phrs.2024.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Depression is a serious global mental disorder. Numerous studies have found that depression may be closely related to decreased neurogenesis, neuroinflammation, neurotransmitter imbalance, and synaptic plasticity dysfunction. The pathogenesis of depression is complex and involves multiple signal transduction pathways and molecular changes. The PI3K/AKT pathway is an essential signaling pathways in neurons, which is widely expressed in emotion-related regions of the brain. Therefore, the PI3K/AKT pathway may play a moderating role in mood disorders. However, the role and mechanism of the PI3K/AKT signaling pathway in depression have not been fully described. This review systematically summarized the role of the PI3K/AKT signaling pathway in the pathogenesis of depression and discussed its potential in the treatment of depression. This will help in the treatment of depression and the development of antidepressants.
Collapse
Affiliation(s)
- Ningning Guo
- School of Mental Health, Jining Medical University, Jining, China
| | - Xin Wang
- Department of Radiation Therapy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Muran Xu
- Clinical College, Jining Medical University, Jining, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, China.
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China.
| | - Le Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
32
|
Wang K, Tan X, Ding KM, Feng XZ, Zhao YY, Zhu WL, Li GH, Li SX. Dynamic regulation of phosphorylation of NMDA receptor GluN2B subunit tyrosine residues mediates ketamine rapid antidepressant effects. Pharmacol Res 2024; 205:107236. [PMID: 38797358 DOI: 10.1016/j.phrs.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The rapid antidepressant effects of ketamine depend on the N-methyl-D-aspartate (NMDA) receptor containing 2B subunit (NR2B), whose function is influenced by its phosphorylated regulation and distribution within and outside synapses. It remains unclear if ketamine's rapid onset of antidepressant effects relies on the dynamic phosphorylated regulation of NR2B within and outside synapses. Here, we show that ketamine rapidlyalleviated depression-like behaviors and normalized abnormal expression of pTyr1472NR2B and striatal-enriched protein tyrosine phosphatase (STEP) 61 within and outside synapses in the medial prefrontal cortex (mPFC) induced by chronic unpredictable stress (CUS) and conditional knockdown of STEP 61, a key phosphatase of NR2B, within 1 hour after administration Together, our results delineate the rapid initiation of ketamine's antidepressant effects results from the restoration of NR2B phosphorylation homeostasis within and outside synapses. The dynamic regulation of phosphorylation of NR2B provides a new perspective for developing new antidepressant strategies.
Collapse
Affiliation(s)
- Ke Wang
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Pharmacology, Peking University Health Science Center, Beijing 100191, China
| | - Xuan Tan
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Kai-Mo Ding
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Xue-Zhu Feng
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Yu-Yu Zhao
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Li Zhu
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Guo-Hai Li
- Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
33
|
Rezaei S, Prévot TD, Vieira E, Sibille E. LPS-induced inflammation reduces GABAergic interneuron markers and brain-derived neurotrophic factor in mouse prefrontal cortex and hippocampus. Brain Behav Immun Health 2024; 38:100761. [PMID: 38586282 PMCID: PMC10992730 DOI: 10.1016/j.bbih.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/20/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
Inflammation, reduced gamma-aminobutyric acidergic (GABAergic) function and altered neuroplasticity are co-occurring pathophysiologies in major depressive disorder (MDD). However, the link between these biological changes remains unclear. We hypothesized that inflammation induces deficits in GABAergic interneuron markers and that this effect is mediated by brain-derived neurotrophic factor (BDNF). We report here that systemic inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) (0.125, 0.25, 0.5, 1, 2 mg/kg) in the first cohort of C57BL/6 mice (n = 72; 10-11 weeks; 50% female) resulted in increased interleukin 1-beta and interleukin-6 in prefrontal cortex (PFC) and hippocampus (HPC), as measured using enzyme-linked immunosorbent assay (ELISA). Quantitative real-time polymerase reaction (qPCR) was used to explore the effect of LPS on the expression of GABAergic interneuron markers. In the PFC of the second cohort (n = 39; 10-11 weeks; 50% female), 2 mg/kg of LPS decreased the expression of somatostatin (Sst) (p = 0.0014), parvalbumin (Pv) (p = 0.0257), cortistatin (Cort) (p = 0.0003), neuropeptide Y (Npy) (p = 0.0033) and cholecystokinin (Cck) (p = 0.0041), and did not affect corticotropin-releasing hormone (Crh) and vasoactive intestinal peptide (Vip) expression. In the HPC, 2 mg/kg of LPS decreased the expression of Sst (p = 0.0543), Cort (p = 0.0011), Npy (p = 0.0001), and Cck (p < 0.0001), and did not affect Crh, Pv, and Vip expression. LPS decreased the expression of Bdnf in the PFC (p < 0.0001) and HPC (p = 0.0003), which significantly correlated with affected markers (Sst, Pv, Cort, Cck, and Npy). Collectively, these results suggest that inflammation may causally contribute to cortical cell microcircuit GABAergic deficits observed in MDD.
Collapse
Affiliation(s)
- Sara Rezaei
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute at CAMH, Toronto, M5T 1R8, Canada
| | - Thomas D. Prévot
- Campbell Family Mental Health Research Institute at CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute at CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| | - Etienne Sibille
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute at CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| |
Collapse
|
34
|
Yao X, Yang C, Jia X, Yu Z, Wang C, Zhao J, Chen Y, Xie B, Zhuang H, Sun C, Li Q, Kang X, Xiao Y, Liu L. High-fat diet consumption promotes adolescent neurobehavioral abnormalities and hippocampal structural alterations via microglial overactivation accompanied by an elevated serum free fatty acid concentration. Brain Behav Immun 2024; 119:236-250. [PMID: 38604269 DOI: 10.1016/j.bbi.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
Mounting evidence suggests that high-fat diet (HFD) consumption increases the risk for depression, but the neurophysiological mechanisms involved remain to be elucidated. Here, we demonstrated that HFD feeding of C57BL/6J mice during the adolescent period (from 4 to 8 weeks of age) resulted in increased depression- and anxiety-like behaviors concurrent with changes in neuronal and myelin structure in the hippocampus. Additionally, we showed that hippocampal microglia in HFD-fed mice assumed a hyperactive state concomitant with increased PSD95-positive and myelin basic protein (MBP)-positive inclusions, implicating microglia in hippocampal structural alterations induced by HFD consumption. Along with increased levels of serum free fatty acids (FFAs), abnormal deposition of lipid droplets and increased levels of HIF-1α protein (a transcription factor that has been reported to facilitate cellular lipid accumulation) within hippocampal microglia were observed in HFD-fed mice. The use of minocycline, a pharmacological suppressor of microglial overactivation, effectively attenuated neurobehavioral abnormalities and hippocampal structural alterations but barely altered lipid droplet accumulation in the hippocampal microglia of HFD-fed mice. Coadministration of triacsin C abolished the increases in lipid droplet formation, phagocytic activity, and ROS levels in primary microglia treated with serum from HFD-fed mice. In conclusion, our studies demonstrate that the adverse influence of early-life HFD consumption on behavior and hippocampal structure is attributed at least in part to microglial overactivation that is accompanied by an elevated serum FFA concentration and microglial aberrations represent a potential preventive and therapeutic target for HFD-related emotional disorders.
Collapse
Affiliation(s)
- Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xirui Jia
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Zhehao Yu
- Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yuxi Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Bingjie Xie
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Congli Sun
- Medical College, Southeast University, Nanjing 210009, China
| | - Qian Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiaomin Kang
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
35
|
Zhu HM, Wang B, Wang T, Shao J, Chen HR, Zhang C, Xu LH, Li JJ, Wang M, Xu DX, Meng XH. Prenatal exposure to fenvalerate causes depressive-like behavior in adulthood by inhibiting brain-derived 5-HT synthesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124137. [PMID: 38740245 DOI: 10.1016/j.envpol.2024.124137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The developmental toxicity of fenvalerate, a representative pyrethroid insecticide, is well documented. The present study aimed to explore whether prenatal exposure to fenvalerate causes depression-like behavior in adulthood. Pregnant mice were orally administrated with either corn oil or fenvalerate (2 or 20 mg/kg) during pregnancy. Depressive-like behaviors were assessed by tail suspension test (TST), forced swim test (FST) and sucrose preference test (SPT). Immobility times in TST and FST were increased in offspring whose mothers were exposed to fenvalerate throughout pregnancy. By contrast, sugar preference index, as determined by SPT, was decreased in fenvalerate-exposed offspring. Prefrontal PSD95, a postsynaptic membrane marker, was downregulated in fenvalerate-exposed adulthood offspring. Fenvalerate-induced reduction of prefrontal PSD95 began at GD18 fetal period. Accordingly, prefrontal 5-HT, a neurotransmitter for synaptogenesis, was also reduced in fenvalerate-exposed GD18 fetuses. Tryptophan hydroxylase 2 (TPH2), a key enzyme for 5-HT synthesis, was downregulated in the midbrain of fenvalerate-exposed GD18 fetuses. Additional experiment showed that GRP78 and p-eIF2α, two endoplasmic reticulum stress-related proteins, were increased in the midbrain of fenvalerate-exposed fetal mice. The present results suggest that prenatal exposure to fenvalerate causes depressive-like behavior in adulthood, partially by inhibiting brain-derived 5-HT synthesis.
Collapse
Affiliation(s)
- Hui-Min Zhu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Bo Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jing Shao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui-Ru Chen
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chi Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li-Hua Xu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jing-Jing Li
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Min Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiu-Hong Meng
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
36
|
Kweon J, Vigne M, Fukuda AM, Ren B, Carpenter LL, Brown JC. NMDA and GABA Receptor-Mediated Plasticity Induced by 10-Hz Repetitive Transcranial Magnetic Stimulation. RESEARCH SQUARE 2024:rs.3.rs-4630964. [PMID: 38978559 PMCID: PMC11230474 DOI: 10.21203/rs.3.rs-4630964/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Although 10-Hz repetitive transcranial magnetic stimulation (rTMS) is an FDA-approved treatment for depression, we have yet to fully understand the mechanism through which rTMS induces therapeutic and durable changes in the brain. Two competing theories have emerged suggesting that 10-Hz rTMS induces N-methyl-D-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP), or alternatively, removal of inhibitory gamma-aminobutyric acid receptors (GABARs). We examined these two proposed mechanisms of action in the human motor cortex in a double-blind, randomized, four-arm crossover study in healthy subjects. We tested motor-evoked potentials (MEPs) before and after 10-Hz rTMS in the presence of four drugs separated by 1-week each: placebo, NMDAR partial agonist d-cycloserine (DCS 100mg), DCS 100mg + NMDAR partial antagonist dextromethorphan (DMO 150mg; designed to "knock down" DCS-mediated facilitation), and GABAR agonist lorazepam (LZP 2.5mg). NMDAR agonism by DCS enhanced rTMS-induced cortical excitability more than placebo. This enhancement was blocked by combining DCS with NMDAR antagonist, DMO. If GABARs are removed by rTMS, GABAR agonism via LZP should lack its inhibitory effect yielding higher post/pre MEPs. However, MEPs were reduced after rTMS indicating stability of GABAR numbers. These data suggest that 10-Hz rTMS facilitation in the healthy motor cortex may enact change in the brain through NMDAR-mediated LTP-like mechanisms rather than through GABAergic reduction.
Collapse
Affiliation(s)
- Jamie Kweon
- Brain Stimulation Mechanisms Laboratory, Neurotherapeutics, Division of Depression and Anxiety, McLean Hospital
| | - Megan Vigne
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Butler Hospital
| | - Andrew M Fukuda
- Brain Stimulation Mechanisms Laboratory, Neurotherapeutics, Division of Depression and Anxiety, McLean Hospital
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School
| | - Linda L Carpenter
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Butler Hospital
| | - Joshua C Brown
- Brain Stimulation Mechanisms Laboratory, Neurotherapeutics, Division of Depression and Anxiety, McLean Hospital
| |
Collapse
|
37
|
Huang X, Zhu Z, Du M, Wu C, Fu J, Zhang J, Tan W, Wu B, Liu L, Liao ZB. FMOD Alleviates Depression-Like Behaviors by Targeting the PI3K/AKT/mTOR Signaling After Traumatic Brain Injury. Neuromolecular Med 2024; 26:24. [PMID: 38864941 PMCID: PMC11169026 DOI: 10.1007/s12017-024-08793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
Depression frequently occurs following traumatic brain injury (TBI). However, the role of Fibromodulin (FMOD) in TBI-related depression is not yet clear. Previous studies have suggested FMOD as a potential key factor in TBI, yet its association with depression post-TBI and underlying mechanisms are not well understood. Serum levels of FMOD were measured in patients with traumatic brain injury using qPCR. The severity of depression was assessed using the self-depression scale (SDS). Neurological function, depressive state, and cognitive function in mice were assessed using the modified Neurological Severity Score (mNSS), forced swimming test (FST), tail suspension test (TST), Sucrose Preference Test (SPT), and morris water maze (MWM). The morphological features of mouse hippocampal synapses and neuronal dendritic spines were revealed through immunofluorescence, transmission electron microscopy, and Golgi-Cox staining. The protein expression levels of FMOD, MAP2, SYP, and PSD95, as well as the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway, were detected through Western blotting. FMOD levels were decreased in TBI patients' serum. Overexpression of FMOD preserved neuronal function and alleviated depression-like behaviour, increased synaptic protein expression, and induced ultrastructural changes in hippocampal neurons. The increased phosphorylation of PI3K, AKT, and mTOR suggested the involvement of the PI3K/AKT/mTOR signaling pathway in FMOD's protective effects. FMOD exhibits potential as a therapeutic target for depression related to TBI, with its protective effects potentially mediated through the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xuekang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Ziyu Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Mengran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Chenrui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Jiayuanyuan Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Weilin Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Biying Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Lian Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Z B Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
38
|
Shimizu S, Koyama Y, Ishino Y, Takeda T, Shimada S, Tohyama M, Miyata S. Kamishoyosan Normalizes Dendritic Spine Morphology in the Medial Prefrontal Cortex by Regulating microRNA-18 and Glucocorticoid Receptor Expressions in Postmenopausal Chronic Stress-Exposed Mice. Cureus 2024; 16:e63526. [PMID: 39081418 PMCID: PMC11288638 DOI: 10.7759/cureus.63526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVE Kamishoyosan (KSS), a traditional Japanese Kampo medicine, is widely used to treat neuropsychiatric symptoms in perimenopausal and postmenopausal women. We aimed to elucidate the functional mechanisms underlying KSS-mediated reduction of stress response behaviors and neuropsychological symptoms in perimenopausal and postmenopausal women. METHODS Female mice were bilaterally ovariectomized (OVX) at the age of 12 weeks and exposed to chronic water immersion and restraint stress for three weeks. Among them, mice in the OVX+stress+KSS group were fed chow containing KSS from one week before exposure to chronic stress until the end of the experiment. Firstly, we performed a marble burying test and measured serum corticosterone levels to assess irritability and stress conditions. Next, we examined whether KSS affects microRNA-18 (miR-18) and glucocorticoid receptor (GR) protein expression, as well as the basal dendritic spine morphology of pyramidal neurons in the medial prefrontal cortex (mPFC) of postmenopausal chronic stress-exposed mice. Analyzed data were expressed as mean ± standard deviation. Tukey's post hoc test, followed by analysis of variance (ANOVA), was used for among-group comparisons. RESULTS KSS administration normalized chronic stress-induced unstable emotion-like behavior and upregulated plasma corticosterone levels. Furthermore, KSS ameliorated GR protein expression by downregulating miR-18 expression in the mPFC and recovered the immature morphological changes in spine formation of pyramidal neurons in the mPFC of OVX mice following chronic stress exposure. CONCLUSIONS KSS administration in postmenopausal chronic stress-exposed mice exerted anti-stress effects and improved the basal dendritic spine morphology of pyramidal neurons by regulating miR-18 and glucocorticoid receptor expression in the mPFC.
Collapse
Affiliation(s)
- Shoko Shimizu
- Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka-Sayama, JPN
| | - Yoshihisa Koyama
- Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Suita, JPN
| | - Yugo Ishino
- Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka-Sayama, JPN
| | - Takashi Takeda
- Women Medicine, Research Institute of Traditional Asian Medicine, Kindai University, Osaka-Sayama, JPN
| | - Shoichi Shimada
- Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Suita, JPN
| | - Masaya Tohyama
- Operations, Osaka Prefectural Hospital Organization, Osaka, JPN
| | - Shingo Miyata
- Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka-Sayama, JPN
| |
Collapse
|
39
|
Li Y, Luo Y, Zhu P, Liang X, Li J, Dou X, Liu L, Qin L, Zhou M, Deng Y, Jiang L, Wang S, Yang W, Tang J, Tang Y. Running exercise improves astrocyte loss, morphological complexity and astrocyte-contacted synapses in the hippocampus of CUS-induced depression model mice. Pharmacol Biochem Behav 2024; 239:173750. [PMID: 38494007 DOI: 10.1016/j.pbb.2024.173750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Although the antidepressant effects of running exercise have been widely reported, further research is still needed to determine the structural bases for these effects. Astrocyte processes physically contact many synapses and directly regulate the numbers of synapses, but it remains unclear whether running exercise can modulate astrocyte morphological complexity and astrocyte-contacted synapses in the hippocampus of the mice with depressive-like behavior. Male C57BL/6 J mice underwent four weeks of running exercise after four weeks of chronic unpredictable stress (CUS). The sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were used to assess anhedonia in mice. Western blotting was used to measure the expression of astrocyte- and synapse-related proteins. Immunofluorescence and 3D reconstruction were used to quantify the density and morphology of astrocytes, and astrocyte-contacted synapses in each hippocampal subregion. Four weeks of running exercise alleviated depressive-like symptoms in mice. The expression of astrocyte- and synapse-related proteins in the hippocampus; astrocyte process lengths, process numbers, and dendritic arborization; and the number of astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions were significantly decreased in the mice with depressive-like behavior, and running exercise successfully reserved these changes. Running exercise improved the decreases in astrocyte morphological complexity and astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions of the mice with depressive-like behavior, suggesting that the physical interactions between astrocytes and synapses can be increased by running exercise, which might be an important structural basis for the antidepressant effects of running exercise.
Collapse
Affiliation(s)
- Yue Li
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Peilin Zhu
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Li
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoyun Dou
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Liu
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lu Qin
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Mei Zhou
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuhui Deng
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Shun Wang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenyu Yang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
40
|
Mitra S, Sameer Kumar GS, Samanta A, Schmidt MV, Thakur SS. Hypothalamic protein profiling from mice subjected to social defeat stress. Mol Brain 2024; 17:30. [PMID: 38802853 PMCID: PMC11131206 DOI: 10.1186/s13041-024-01096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
The Hypothalmic-Pituitary-Adrenal axis also known as the HPA axis is central to stress response. It also acts as the relay center between the body and the brain. We analysed hypothalamic proteome from mice subjected to chronic social defeat paradigm using iTRAQ based quantitative proteomics to identify changes associated with stress response. We identified greater than 2000 proteins after processing our samples analysed through Q-Exactive (Thermo) and Orbitrap Velos (Thermo) at 5% FDR. Analysis of data procured from the runs showed that the proteins whose levels were affected belonged primarily to mitochondrial and metabolic processes, translation, complement pathway among others. We also found increased levels of fibrinogen, myelin basic protein (MBP) and neurofilaments (NEFL, NEFM, NEFH) in the hypothalamus from socially defeated mice. Interestingly, research indicates that these proteins are upregulated in blood and CSF of subjects exposed to trauma and stress. Since hypothalamus secreted proteins can be found in blood and CSF, their utility as biomarkers in depression holds an impressive probability and should be validated in clinical samples.
Collapse
Affiliation(s)
- Shiladitya Mitra
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, Munich, 80804, Germany.
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India.
| | | | - Anumita Samanta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India
- Donders Institute for Brain Cognition and Behavior, Radboud University, Postbs 9010, Nijmegen, 6500GL, Netherlands
| | - Mathias V Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, Munich, 80804, Germany
| | - Suman S Thakur
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India
| |
Collapse
|
41
|
Guo F, Fan J, Liu JM, Kong PL, Ren J, Mo JW, Lu CL, Zhong QL, Chen LY, Jiang HT, Zhang C, Wen YL, Gu TT, Li SJ, Fang YY, Pan BX, Gao TM, Cao X. Astrocytic ALKBH5 in stress response contributes to depressive-like behaviors in mice. Nat Commun 2024; 15:4347. [PMID: 38773146 PMCID: PMC11109195 DOI: 10.1038/s41467-024-48730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- Mice
- Humans
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/pathology
- Male
- Mice, Knockout
- Female
- Disease Models, Animal
- Mice, Inbred C57BL
- Neurons/metabolism
- Stress, Psychological/metabolism
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Excitatory Amino Acid Transporter 2/metabolism
- Excitatory Amino Acid Transporter 2/genetics
- Behavior, Animal
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/pathology
- Depression/metabolism
- Depression/genetics
- Adult
- Synaptic Transmission
- Middle Aged
Collapse
Affiliation(s)
- Fang Guo
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Fan
- Department of Anesthesia, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jin-Ming Liu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng-Li Kong
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jia-Wen Mo
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cheng-Lin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiu-Ling Zhong
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang-Yu Chen
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao-Tian Jiang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Canyuan Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - You-Lu Wen
- Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, Guangdong, P. R. China
| | - Ting-Ting Gu
- Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, Guangdong, P. R. China
| | - Shu-Ji Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying-Ying Fang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bing-Xing Pan
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Department of Oncology, Nanfang Hospital, Southern Medical University Guangzhou, Guangdong, P. R. China.
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
42
|
Miquel-Rio L, Sarriés-Serrano U, Sancho-Alonso M, Florensa-Zanuy E, Paz V, Ruiz-Bronchal E, Manashirov S, Campa L, Pilar-Cuéllar F, Bortolozzi A. ER stress in mouse serotonin neurons triggers a depressive phenotype alleviated by ketamine targeting eIF2α signaling. iScience 2024; 27:109787. [PMID: 38711453 PMCID: PMC11070602 DOI: 10.1016/j.isci.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Depression is a devastating mood disorder that causes significant disability worldwide. Current knowledge of its pathophysiology remains modest and clear biological markers are lacking. Emerging evidence from human and animal models reveals persistent alterations in endoplasmic reticulum (ER) homeostasis, suggesting that ER stress-related signaling pathways may be targets for prevention and treatment. However, the neurobiological basis linking the pathways involved in depression-related ER stress remains unknown. Here, we report that an induced model of ER stress in mouse serotonin (5-HT) neurons is associated with reduced Egr1-dependent 5-HT cellular activity and 5-HT neurotransmission, resulting in neuroplasticity deficits in forebrain regions and a depressive-like phenotype. Ketamine administration engages downstream eIF2α signaling to trigger rapid neuroplasticity events that rescue the depressive-like effects. Collectively, these data identify ER stress in 5-HT neurons as a cellular pathway involved in the pathophysiology of depression and show that eIF2α is critical in eliciting ketamine's fast antidepressant effects.
Collapse
Affiliation(s)
- Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- University of Barcelona (UB), 08036 Barcelona, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Eva Florensa-Zanuy
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Molecular and Cellular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Esther Ruiz-Bronchal
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sharon Manashirov
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- miCure Therapeutics LTD., Tel-Aviv 6423902, Israel
| | - Leticia Campa
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Fuencisla Pilar-Cuéllar
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Molecular and Cellular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
43
|
Bhatti DL, Jin J, Cheng J, McCabe K, Lee KW, Berdasco C, Jeong YY, Sinha SC, Kim Y. Ahnak in the prefrontal cortex mediates behavioral correlates of stress resilience and rapid antidepressant action in mice. Front Mol Neurosci 2024; 17:1350716. [PMID: 38828281 PMCID: PMC11140847 DOI: 10.3389/fnmol.2024.1350716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
The prefrontal cortex (PFC) is a key neural node mediating behavioral responses to stress and the actions of ketamine, a fast-acting antidepressant. The molecular mechanisms underlying these processes, however, are not fully understood. Our recent study revealed a pivotal role of hippocampal Ahnak as a regulator of cellular and behavioral adaptations to chronic stress. However, despite its significant expression in the PFC, the contribution of cortical Ahnak to behavioral responses to stress and antidepressants remains unknown. Here, using a mouse model for chronic social stress, we find that Ahnak expression in the PFC is significantly increased in stress-resilient mice and positively correlated with social interaction after stress exposure. Conditional deletion of Ahnak in the PFC or forebrain glutamatergic neurons facilitates stress susceptibility, suggesting that Ahnak is required for behavioral resilience. Further supporting this notion, Ahnak expression in the PFC is increased after the administration of ketamine or its metabolite (2R, 6R)-hydroxynorketamine (HNK). Moreover, Ahnak deletion in forebrain glutamatergic neurons blocks the restorative behavioral effects of ketamine or HNK in stress-susceptible mice. This forebrain excitatory neuron-specific Ahnak deletion reduces the frequency of mini excitatory postsynaptic currents in layer II/III pyramidal neurons, suggesting that Ahnak may induce its behavioral effects via modulation of glutamatergic transmission in the PFC. Altogether, these data suggest that Ahnak in glutamatergic PFC neurons may be critical for behavioral resilience and antidepressant actions of ketamine or HNK in chronic social stress-exposed mice.
Collapse
Affiliation(s)
- Dionnet L. Bhatti
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Junghee Jin
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Jia Cheng
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Kathryn McCabe
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Ko-Woon Lee
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Yu Young Jeong
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Subhash C. Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- Weill Cornell Medicine Helen & Robert Appel Alzheimer’s Disease Research Institute, New York, NY, United States
| | - Yong Kim
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
44
|
Liu C, Zhao Y, Zhao WJ. Positive Effect of 6-Gingerol on Functional Plasticity of Microglia in a rat Model of LPS-induced Depression. J Neuroimmune Pharmacol 2024; 19:20. [PMID: 38758335 DOI: 10.1007/s11481-024-10123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Neuroinflammation has emerged as a crucial factor in the development of depression. Despite the well-known anti-inflammatory properties of 6-gingerol, its potential impact on depression remains poorly understood. This study aimed to investigate the antidepressant effects of 6-gingerol by suppressing microglial activation. In vivo experiments were conducted to evaluate the effect of 6-gingerol on lipopolysaccharide (LPS)-induced behavioral changes and neuroinflammation in rat models. In vitro studies were performed to examine the neuroprotective properties of 6-gingerol against LPS-induced microglial activation. Furthermore, a co-culture system of microglia and neurons was established to assess the influence of 6-gingerol on the expression of synaptic-related proteins, namely synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), which are influenced by microglial activation. In the in vivo experiments, administration of 6-gingerol effectively alleviated LPS-induced depressive behavior in rats. Moreover, it markedly suppressed the activation of rat prefrontal cortex (PFC) microglia induced by LPS and the activation of the NF-κB/NLRP3 inflammatory pathway, while also reducing the levels of inflammatory cytokines IL-1β and IL-18. In the in vitro experiments, 6-gingerol mitigated nuclear translocation of NF-κB p65, NLRP3 activation, and maturation of IL-1β and IL-18, all of which were induced by LPS. Furthermore, in the co-culture system of microglia and neurons, 6-gingerol effectively restored the decreased expression of SYP and PSD95. The findings of this study demonstrate the neuroprotective effects of 6-gingerol in the context of LPS-induced depression-like behavior. These effects are attributed to the inhibition of microglial hyperactivation through the suppression of the NF-κB/NLRP3 inflammatory pathway.
Collapse
Affiliation(s)
- Chong Liu
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Dadao, Binhu District, Wuxi, Jiangsu, 214122, P.R. China
| | - Yan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wei-Jiang Zhao
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Dadao, Binhu District, Wuxi, Jiangsu, 214122, P.R. China.
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| |
Collapse
|
45
|
Choi K, Lee J, Kim G, Lim Y, Kang HJ. Recovery of synaptic loss and depressive-like behavior induced by GATA1 through blocking of the neuroinflammatory response. Front Cell Neurosci 2024; 18:1369951. [PMID: 38784708 PMCID: PMC11112091 DOI: 10.3389/fncel.2024.1369951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
GATA1, a member of the GATA transcription factor family, is a critical factor in hematopoietic system development. In a previous study, we demonstrated the increased expression of GATA1 in the dorsolateral prefrontal cortex (dlPFC) of patients suffering from depression and described its role as a transcriptional repressor of synapse-related genes. In this study, we investigated how GATA1 globally altered gene expression using multi-omics approaches. Through the combined analyses of ChIPseq, mRNAseq, and small RNAseq, we profiled genes that are potentially affected by GATA1 in cultured cortical neurons, and Gene Ontology (GO) analysis revealed that GATA1 might be associated with immune-related functions. We hypothesized that GATA1 induces immune activation, which has detrimental effects including synapse loss and depressive-like behavior. To test this hypothesis, we first performed a microglial morphometric analysis of a brain having overexpression of GATA1 because microglia are the resident immune cells of the central nervous system. Fractal analysis showed that the ramification and process length of microglia decreased in brains having GATA1 overexpression compared to the control, suggesting that GATA1 overexpression increases the activation of microglia. Through flow cytometry and immunohistochemical analysis, we found that activated microglia showed pro-inflammatory phenotypes characterized by the expression of CD86 and CD68. Finally, we demonstrated that the effects of GATA1 overexpression including synapse loss and depressive-like behavior could be blocked by inhibiting microglial activation using minocycline. These results will elucidate the regulatory mechanisms of GATA1 that affect pathophysiological conditions such as depression and provide a potential target for the treatment of depression.
Collapse
Affiliation(s)
| | | | | | | | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Zhao M, Ren Z, Zhao A, Tang Y, Kuang J, Li M, Chen T, Wang S, Wang J, Zhang H, Wang J, Zhang T, Zeng J, Liu X, Xie G, Liu P, Sun N, Bao T, Nie T, Lin J, Liu P, Zheng Y, Zheng X, Liu T, Jia W. Gut bacteria-driven homovanillic acid alleviates depression by modulating synaptic integrity. Cell Metab 2024; 36:1000-1012.e6. [PMID: 38582087 DOI: 10.1016/j.cmet.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.
Collapse
Affiliation(s)
- Mingliang Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhenxing Ren
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yajun Tang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junliang Kuang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengci Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jieyi Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huiheng Zhang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Jiahui Zeng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Guoxiang Xie
- Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Tianhao Bao
- The Affiliated Mental Health Center of Kunming Medical University, Kunming 650224, China
| | - Tongtong Nie
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jingchao Lin
- Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Ping Liu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuanyi Zheng
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
47
|
Ferrari S, Mulè S, Parini F, Galla R, Ruga S, Rosso G, Brovero A, Molinari C, Uberti F. The influence of the gut-brain axis on anxiety and depression: A review of the literature on the use of probiotics. J Tradit Complement Med 2024; 14:237-255. [PMID: 38707924 PMCID: PMC11069002 DOI: 10.1016/j.jtcme.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
This review aims to argue how using probiotics can improve anxiety and depressive behaviour without adverse effects, also exploring the impact of postbiotics on it. Specifically, probiotics have drawn more attention as effective alternative treatments, considering the rising cost of antidepressant and anti-anxiety drugs and the high risk of side effects. Depression and anxiety disorders are among the most common mental illnesses in the world's population, characterised by low mood, poor general interest, and cognitive or motor dysfunction. Thus, this study analysed published literature on anxiety, depression, and probiotic supplementation from PubMed and Scopus, focusing on the last twenty years. This study focused on the effect of probiotics on mental health as they have drawn more attention because of their extensive clinical applications and positive impact on various diseases. Numerous studies have demonstrated how the gut microbiota might be critical for mood regulation and how probiotics can affect host health by regulating the gut-brain axis. By comparing the different works analysed, it was possible to identify a strategy by which they are selected and employed and, at the same time, to assess how the effect of probiotics can be optimised using postbiotics, an innovation to improve mental well-being in humans.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Francesca Parini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Sara Ruga
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Giorgia Rosso
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Arianna Brovero
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Claudio Molinari
- Department for Sustainable Development and Ecological Transition, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| |
Collapse
|
48
|
Zhang Y, Lai S, Zhang J, Wang Y, Zhao H, He J, Huang D, Chen G, Qi Z, Chen P, Yan S, Huang X, Lu X, Zhong S, Jia Y. The effectiveness of vortioxetine on neurobiochemical metabolites and cognitive of major depressive disorders patients: A 8-week follow-up study. J Affect Disord 2024; 351:799-807. [PMID: 38311073 DOI: 10.1016/j.jad.2024.01.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVE Vortioxetine has been shown to improve cognitive performance in people with depression. This study will look at the changes in neurobiochemical metabolites that occur when vortioxetine improves cognitive performance in MDD patients, with the goal of determining the neuroimaging mechanism through which vortioxetine improves cognitive function. METHODS 30 depressed patients and 30 demographically matched healthy controls (HC) underwent MCCB cognitive assessment and 1H-MRS. After 8 weeks of vortioxetine medication, MCCB and 1H-MRS tests were retested in the MDD group. Before and after therapy, changes in cognitive performance, NAA/Cr, and Cho/Cr were examined in the MDD group. RESULTS Compared with the HC group, the MDD group had significant reduced in verbal learning, social cognition, and total cognition (all p < 0.05). And the MDD group had lower NAA/Cr in Right thalamus and Left PFC; the Cho/Cr in Right thalamus was lower than HC; the Cho/Cr in Left ACC had significantly increase (all p < 0.05). The MDD group showed significant improvements in the areas of verbal learning, attention/alertness, and total cognitive function before and after Vortioxetine treatment (all p < 0.05). The NAA/Cr ratio of the right PFC before and after treatment (t = 2.338, p = 0.026) showed significant changes. CONCLUSIONS Vortioxetine can enhance not just the depression symptoms of MDD patients in the initial period, but also their verbal learning, social cognition, and general cognitive capacities after 8 weeks of treatment. Furthermore, vortioxetine has been shown to enhance cognitive function in MDD patients by altering NAA/Cr and Cho/Cr levels in the frontal-thalamic-ACC.
Collapse
Affiliation(s)
- Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jianzhao Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dong Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuya Yan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaosi Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
49
|
Pollock JA. Telling the Stories of Neuroscientific Discovery to Schoolchildren and the Public Can Make an Impact. eNeuro 2024; 11:ENEURO.0078-24.2024. [PMID: 38594072 PMCID: PMC11005080 DOI: 10.1523/eneuro.0078-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Affiliation(s)
- John A Pollock
- Department of Biological Sciences, School of Science & Engineering, Duquesne University, Pittsburgh, Pennsylvania 15282
| |
Collapse
|
50
|
Wen G, Zhan X, Xu X, Xia X, Jiang S, Ren X, Ren W, Lou H, Lu L, Hermenean A, Yao J, Gao L, Li B, Lu Y, Wu X. Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model. Mol Neurobiol 2024; 61:2049-2062. [PMID: 37840071 DOI: 10.1007/s12035-023-03669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Ketamine as a glutamate receptor antagonist has a rapid, potent, and long-lasting antidepressant effect, but its specific mechanism is still not fully understood. Depression is associated with elevated levels of glutamate and astrocyte loss in the brain; the exploration of the relationships between ketamine's antidepressant effect and astrocytes has drawn great attention. Astrocytes and aquaporin 4 (AQP4) are essential components of the glymphatic system, which is a brain-wide perivascular pathway to help transport nutrients to the parenchyma and remove metabolic wastes. In this study, we investigated pyroptosis-associated protein Nlrp3/Caspase-1/Gsdmd-N expression in the hippocampus of mice and the toxic effect of high levels of glutamate on primary astrocytes. On this basis, the protective mechanism of ketamine is explored. A single administration of ketamine (10 mg/kg) remarkably relieved anxious and depressive behaviors in the sucrose preference test, elevated plus maze test, and forced swim test. Meanwhile, ketamine reduced the level of hippocampus Nlrp3 and the expression of its downstream molecules in chronic unpredictable mild stress (CUMS) mice model by western blot and reduced the colocalization of Gfap and Gsdmd by nearly 25% via immunofluorescent staining. Ketamine also increased the Gfap-positive cells and AQP4 expression in the hippocampus of the CUMS mice. More important, ketamine increased the distribution of the fluorescent tracer of CUMS mice. Treatment with 128 mM glutamate in cortical and hippocampus astrocytes increased the level of Nlrp3, and Gsdmd-N, and ketamine alleviated high glutamate-induced pyroptosis-associated proteins. In summary, these results suggest that high glutamate-induced astrocyte pyroptosis through the Nlrp3/Caspase-1/Gsdmd-N pathway which was inhibited by ketamine and ketamine can improve the damaged glymphatic function of the CUMS mice. The present study indicates that inhibiting astrocyte pyroptosis and promoting the glymphatic circulation function are a new mechanism of ketamine's antidepressant effect, and astrocyte pyroptosis may be a new target for other antidepressant medicines.
Collapse
Affiliation(s)
- Gehua Wen
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Xiaoni Zhan
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Xiaoming Xu
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Xi Xia
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Shukun Jiang
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Xinghua Ren
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Weishu Ren
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Haoyang Lou
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Lei Lu
- Department of pediatrics Neonatology, University of Chicago, Chicago, IL 60615, U.S., Chicago, USA, IL
| | - Anca Hermenean
- Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Jun Yao
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Lina Gao
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Baoman Li
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Center of Forensic Investigation, Shenyang, China.
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, Affiliated Shengjing Hospital of China Medical University, Shenyang, China, Shenyang, Liaoning, China.
| | - Xu Wu
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Center of Forensic Investigation, Shenyang, China.
| |
Collapse
|