1
|
Trabulus S, Zor MS, Alagoz S, Dincer MT, Meşe M, Yilmaz E, Tahir Turanli E, Seyahi N. Profiling of five urinary exosomal miRNAs for the differential diagnosis of patients with diabetic kidney disease and focal segmental glomerulosclerosis. PLoS One 2024; 19:e0312470. [PMID: 39471136 PMCID: PMC11521285 DOI: 10.1371/journal.pone.0312470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVE The objective of this study is to investigate the diagnostic utility of microRNAs (miRNAs) for distinguishing between urine samples from patients with Diabetic Kidney Disease (DKD) and those with Focal Segmental Glomerulosclerosis (FSGS). METHODS In this multicentric, cross-sectional investigation, we enrolled patients diagnosed with DKD, individuals with primary biopsy-proven FSGS, and healthy controls. The top 5 miRNAs (hsa-mir-21, hsa-mir-30a, hsa-mir-193a, hsa-mir-196a, hsa-mir-200a) were selected to quantify miRNAs in urine samples. Isolation of targeted miRNAs was performed from urinary exosomes, and the quantitative profile of the isolated miRNAs was measured by RT-qPCR. The ΔΔCt method was implemented to calculate the fold differences between disease and control samples. RESULTS Thirteen DKD patients, 11 FSGS patients, and 14 healthy controls were included in this study. Hsa-mir-21 and hsa-mir-30a exhibited distinct regulation in both groups, with upregulation observed in FSGS and downregulation in DKD (hsa-mir-21 in DKD (0.668 ± 0.25, p < 0.0005) and FSGS (2.267 ± 1.138, p < 0.0077); hsa-mir-30a in DKD (0.874 ± 0.254, p = 0.079) and FSGS (1.378 ± 0.312, p < 0.0006)). Hsa-mir-193a exhibited significant dysregulation in DKD (1.017 ± 0.413, p < 0.029) but not in FSGS (4.18 ± 1.528, p = 0.058). Hsa-mir-196a and hsa-mir-200a showed upregulation in patient groups (hsa-mir-196a in DKD (1.278 ± 0.527, p = 0.074) and FSGS (2.47 ± 0.911, p < 0.0003); hsa-mir-200a in DKD (1.909 ± 0.825, p = 0.082) and FSGS (1.301 ± 0.358, p < 0.008)). CONCLUSION Specific miRNAs, particularly miR-21, miR-30a, miR-196a, and miR-200a, might play a role in the pathogenesis of kidney diseases and could potentially serve as biomarkers to distinguish between FSGS and DKD patients.
Collapse
Affiliation(s)
- Sinan Trabulus
- Division of Nephrology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Seyit Zor
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Selma Alagoz
- Division of Nephrology, Bagcilar Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mevlut Tamer Dincer
- Division of Nephrology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meral Meşe
- Division of Nephrology, Kartal Lutfi Kirdar Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Erkan Yilmaz
- Tissue Typing Laboratory, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Eda Tahir Turanli
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, Istanbul, Turkey
- Program of Molecular Biology and Genetics, Institute of Natural Sciences, Acibadem University, Istanbul, Turkey
| | - Nurhan Seyahi
- Division of Nephrology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
2
|
Liu Z, Fu Y, Yan M, Zhang S, Cai J, Chen G, Dong Z. microRNAs in kidney diseases: Regulation, therapeutics, and biomarker potential. Pharmacol Ther 2024; 262:108709. [PMID: 39181246 DOI: 10.1016/j.pharmthera.2024.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in regulating gene expression by inhibiting the translation of their specific target messenger RNAs. To date, numerous studies have demonstrated changes in the expression of miRNAs in the kidneys throughout the progression of both acute kidney injury (AKI) and chronic kidney disease (CKD) in both human patients and experimental models. The role of specific microRNAs in the pathogenesis of kidney diseases has also been demonstrated. Further studies have elucidated the regulation of these microRNAs in diseased kidneys. Besides, certain miRNAs are detected in plasma and/or urine in kidney diseases and are potential diagnostic biomarkers. In this review, we provide an overview of recent developments in our understanding of how miRNAs contribute to kidney diseases. We also explore the potential of miRNAs as both biomarkers and therapeutic targets for these conditions, and highlight future research directions.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Ying Fu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Mingjuan Yan
- Changde Hospital, Xiangya School of Medicine, Central South University, China
| | - Subing Zhang
- Youxian People's Hospital, Youxian, Hunan 412300, China
| | - Juan Cai
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
| |
Collapse
|
3
|
Wang P, Yang J, Dai S, Gao P, Qi Y, Zhao X, Liu J, Wang Y, Gao Y. miRNA-193a-mediated WT1 suppression triggers podocyte injury through activation of the EZH2/β-catenin/NLRP3 pathway in children with diabetic nephropathy. Exp Cell Res 2024; 442:114238. [PMID: 39251057 DOI: 10.1016/j.yexcr.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Diabetic nephropathy (DN), an eminent etiology of renal disease in patients with diabetes, involves intricate molecular mechanisms. Recent investigations have elucidated microRNA-193a (miR-193a) as a pivotal modulator in DN, although its precise function in podocyte impairment remains obscure. The present study investigated the role of miR-193a in podocyte injury via the WT1/EZH2/β-catenin/NLRP3 pathway. This study employed a comprehensive experimental approach involving both in vitro and in vivo analyses. We utilized human podocyte cell lines and renal biopsy samples from pediatric patients with DN. The miR-193a expression levels in podocytes and glomeruli were quantified via qRT‒PCR. Western blotting and immunofluorescence were used to assess the expression of WT1, EZH2, β-catenin, and NLRP3 inflammasome components. Additionally, the study used luciferase reporter assays to confirm the interaction between miR-193a and WT1. The impact of miR-193a manipulation was observed by overexpressing WT1 and inhibiting miR-193a in podocytes, followed by analysis of downstream pathway activation and inflammatory markers. We found upregulated miR-193a in podocytes and glomeruli, which directly targeted and suppressed WT1, a crucial podocyte transcription factor. WT1 suppression, in turn, activated the EZH2/β-catenin/NLRP3 pathway, leading to inflammasome assembly and proinflammatory cytokine production. Overexpression of WT1 or inhibition of miR-193a attenuated these effects, protecting podocytes from injury. This study identified a novel mechanism by which miR-193a-mediated WT1 suppression triggers podocyte injury in DN via the EZH2/β-catenin/NLRP3 pathway. Targeting this pathway or inhibiting miR-193a may be potential therapeutic strategies for DN.
Collapse
Affiliation(s)
- Peng Wang
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Jing Yang
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Shasha Dai
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Pinli Gao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Ying Qi
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Xiaowei Zhao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Juan Liu
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Yingying Wang
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Yang Gao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China.
| |
Collapse
|
4
|
Unger Avila P, Padvitski T, Leote AC, Chen H, Saez-Rodriguez J, Kann M, Beyer A. Gene regulatory networks in disease and ageing. Nat Rev Nephrol 2024; 20:616-633. [PMID: 38867109 DOI: 10.1038/s41581-024-00849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
The precise control of gene expression is required for the maintenance of cellular homeostasis and proper cellular function, and the declining control of gene expression with age is considered a major contributor to age-associated changes in cellular physiology and disease. The coordination of gene expression can be represented through models of the molecular interactions that govern gene expression levels, so-called gene regulatory networks. Gene regulatory networks can represent interactions that occur through signal transduction, those that involve regulatory transcription factors, or statistical models of gene-gene relationships based on the premise that certain sets of genes tend to be coexpressed across a range of conditions and cell types. Advances in experimental and computational technologies have enabled the inference of these networks on an unprecedented scale and at unprecedented precision. Here, we delineate different types of gene regulatory networks and their cell-biological interpretation. We describe methods for inferring such networks from large-scale, multi-omics datasets and present applications that have aided our understanding of cellular ageing and disease mechanisms.
Collapse
Affiliation(s)
- Paula Unger Avila
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tsimafei Padvitski
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana Carolina Leote
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - He Chen
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Martin Kann
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Beyer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Hou S, Yang B, Chen Q, Xu Y, Li H. Potential biomarkers of recurrent FSGS: a review. BMC Nephrol 2024; 25:258. [PMID: 39134955 PMCID: PMC11318291 DOI: 10.1186/s12882-024-03695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS), a clinicopathological condition characterized by nephrotic-range proteinuria, has a high risk of progression to end-stage renal disease (ESRD). Meanwhile, the recurrence of FSGS after renal transplantation is one of the main causes of graft loss. The diagnosis of recurrent FSGS is mainly based on renal puncture biopsy transplants, an approach not widely consented by patients with early mild disease. Therefore, there is an urgent need to find definitive diagnostic markers that can act as a target for early diagnosis and intervention in the treatment of patients. In this review, we summarize the domestic and international studies on the pathophysiology, pathogenesis and earliest screening methods of FSGS and describe the functions and roles of specific circulating factors in the progression of early FSGS, in order to provide a new theoretical basis for early diagnosis of FSGS recurrence, as well as aid the exploration of therapeutic targets.
Collapse
Affiliation(s)
- Shuang Hou
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Bo Yang
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Qian Chen
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Yuan Xu
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China.
| | - Haiyang Li
- Hepatological surgery department, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China.
| |
Collapse
|
6
|
Ergunay T, Collino F, Bianchi G, Sedrakyan S, Perin L, Bussolati B. Extracellular vesicles in kidney development and pediatric kidney diseases. Pediatr Nephrol 2024; 39:1967-1975. [PMID: 37775581 PMCID: PMC11147923 DOI: 10.1007/s00467-023-06165-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
Extracellular vesicles (EVs) are membranous cargo particles that mediate intercellular communication. They are heterogeneous in size and mechanism of release, and found in all biological fluids. Since EV content is in relation to the originating cell type and to its physiopathological conditions, EVs are under study to understand organ physiology and pathology. In addition, EV surface cargo, or corona, can be influenced by the microenvironment, leading to the concept that EV-associated molecules can represent useful biomarkers for diseases. Recent studies also focus on the use of natural, engineered, or synthetic EVs for therapeutic purposes. This review highlights the role of EVs in kidney development, pediatric kidney diseases, including inherited disorders, and kidney transplantation. Although few studies exist, they have promising results and may guide researchers in this field. Main limitations, including the influence of age on EV analyses, are also discussed.
Collapse
Affiliation(s)
- Tunahan Ergunay
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaia Bianchi
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Sargis Sedrakyan
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laura Perin
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
- Molecular Biotechnology Center, University of Turin, via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
7
|
Wang MY, Zhang Z, Zhao S, Onodera T, Sun XN, Zhu Q, Li C, Li N, Chen S, Paredes M, Gautron L, Charron MJ, Marciano DK, Gordillo R, Drucker DJ, Scherer PE. Downregulation of the kidney glucagon receptor, essential for renal function and systemic homeostasis, contributes to chronic kidney disease. Cell Metab 2024; 36:575-597.e7. [PMID: 38237602 PMCID: PMC10932880 DOI: 10.1016/j.cmet.2023.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/10/2023] [Accepted: 12/19/2023] [Indexed: 02/12/2024]
Abstract
The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.
Collapse
Affiliation(s)
- May-Yun Wang
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Toshiharu Onodera
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xue-Nan Sun
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Li
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Na Li
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Paredes
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laurent Gautron
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Denise K Marciano
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Drucker
- Lunenfeld-TanenbaumResearchInstitute, Mt. Sinai Hospital, Toronto, ON M5G1X5, Canada; Department of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Wang G, Mi J, Bai J, He Q, Li X, Wang Z. Non-Coding RNAs in Kidney Stones. Biomolecules 2024; 14:213. [PMID: 38397450 PMCID: PMC10886984 DOI: 10.3390/biom14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Nephrolithiasis is a major public health concern associated with high morbidity and recurrence. Despite decades of research, the pathogenesis of nephrolithiasis remains incompletely understood, and effective prevention is lacking. An increasing body of evidence suggests that non-coding RNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a role in stone formation and stone-related kidney injury. MiRNAs have been studied quite extensively in nephrolithiasis, and a plethora of specific miRNAs have been implicated in the pathogenesis of nephrolithiasis, involving remarkable changes in calcium metabolism, oxalate metabolism, oxidative stress, cell-crystal adhesion, cellular autophagy, apoptosis, and macrophage (Mp) polarization and metabolism. Emerging evidence suggests a potential for miRNAs as novel diagnostic biomarkers of nephrolithiasis. LncRNAs act as competing endogenous RNAs (ceRNAs) to bind miRNAs, thereby modulating mRNA expression to participate in the regulation of physiological mechanisms in kidney stones. Small interfering RNAs (siRNAs) may provide a novel approach to kidney stone prevention and treatment by treating related metabolic conditions that cause kidney stones. Further investigation into these non-coding RNAs will generate novel insights into the mechanisms of renal stone formation and stone-related renal injury and might lead to new strategies for diagnosing and treating this disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoran Li
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; (G.W.); (J.M.); (J.B.); (Q.H.)
| | - Zhiping Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; (G.W.); (J.M.); (J.B.); (Q.H.)
| |
Collapse
|
9
|
Bogdanova EO, Kochoyan ZS, Anpilova AO, Narygina DS, Kostin NA, Sipovsky VG, Dobronravov VA. [Molecular alterations of podocytes in primary focal segmental glomerulosclerosis and IgA nephropathy. (An exploratory study)]. Arkh Patol 2024; 86:21-32. [PMID: 39434524 DOI: 10.17116/patol20248605121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
OBJECTIVE An evaluation of podocyte's molecular phenotype alterations in primary focal segmental glomerulosclerosis (pFSGS) and IgA nephropathy (IgAN). MATERIAL AND METHODS The exploratory study included 14 cases of morphologically confirmed pFSGS, 14 cases of IgAN, and 12 negative controls. The negative controls comprised samples of the unaltered renal cortex obtained during laparoscopic nephrectomy in patients with malignant neoplasms of the kidney and bladder and without proteinuria. A quantitative immunomorphological study of Wilms tumour protein (WT1) expression and mesenchymal markers of podocytes (desmin and vimentin) was conducted on all kidney samples. The co-expression of the aforementioned molecules was analysed using confocal microscopy. RESULTS Cases of pFSGS exhibited nephrotic syndrome with proteinuria of 9.3 (3.1-14) g/24 and typical glomerular alterations in light microscopy and ultrastructural analysis. In the IgAN group, proteinuria was less severe (1.2 (0.7-1.6) g/24). The estimated glomerular filtration rate in pFSGS and IgAN was similar (pFSGS: 85 (53-103) ml/min/1.72 m², IgAN: 76 (52-87) ml/min/1.72 m²; p=0.40). In both pFSGS and IgAN, there was a reduction in WT1 expression in podocytes and an increase in vimentin expression when compared to negative controls. Compared to IgAN and controls, pFSGS exhibited a lower prevalence of glomerular WT1 expression and higher expression of desmin, which was predominantly localised in WT1-negative glomerular areas in confocal microscopy. In pFSGS, decreased nuclear expression of WT1 and increased expression of desmin were observed in the parietal epithelium of the glomerular capsule. CONCLUSION Bidirectional alterations in the glomerular expression of WT1 and intermediate filament proteins are apparent in pFSGS and IgAN. These findings are suggestive for the genomic reprogramming of podocytes and the parietal epithelium of the glomerulus as part of the epithelial-mesenchymal transition, determining the structural and functional disorders of these cells, more prominent in pFSGS.
Collapse
Affiliation(s)
- E O Bogdanova
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - Z Sh Kochoyan
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - A O Anpilova
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - D S Narygina
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - N A Kostin
- St. Petersburg State University - Research Resource Center for molecular and cell technologies, Saint Petersburg, Russia
| | - V G Sipovsky
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - V A Dobronravov
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
10
|
Veloso Pereira BM, Zeng Y, Maggiore JC, Schweickart RA, Eng DG, Kaverina N, McKinzie SR, Chang A, Loretz CJ, Thieme K, Hukriede NA, Pippin JW, Wessely O, Shankland SJ. Podocyte injury at young age causes premature senescence and worsens glomerular aging. Am J Physiol Renal Physiol 2024; 326:F120-F134. [PMID: 37855038 PMCID: PMC11198990 DOI: 10.1152/ajprenal.00261.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
As life expectancy continues to rise, age-related diseases are becoming more prevalent. For example, proteinuric glomerular diseases typified by podocyte injury have worse outcomes in the elderly compared with young patients. However, the reasons are not well understood. We hypothesized that injury to nonaged podocytes induces senescence, which in turn augments their aging processes. In primary cultured human podocytes, injury induced by a cytopathic antipodocyte antibody, adriamycin, or puromycin aminonucleoside increased the senescence-related genes CDKN2A (p16INK4a/p14ARF), CDKN2D (p19INK4d), and CDKN1A (p21). Podocyte injury in human kidney organoids was accompanied by increased expression of CDKN2A, CDKN2D, and CDKN1A. In young mice, experimental focal segmental glomerulosclerosis (FSGS) induced by adriamycin and antipodocyte antibody increased the glomerular expression of p16, p21, and senescence-associated β-galactosidase (SA-β-gal). To assess the long-term effects of early podocyte injury-induced senescence, we temporally followed young mice with experimental FSGS through adulthood (12 m of age) and middle age (18 m of age). p16 and Sudan black staining were higher at middle age in mice with earlier FSGS compared with age-matched mice that did not get FSGS when young. This was accompanied by lower podocyte density, reduced canonical podocyte protein expression, and increased glomerular scarring. These results are consistent with injury-induced senescence in young podocytes, leading to increased senescence of podocytes by middle age accompanied by lower podocyte lifespan and health span.NEW & NOTEWORTHY Glomerular function is decreased by aging. However, little is known about the molecular mechanisms involved in age-related glomerular changes and which factors could contribute to a worse glomerular aging process. Here, we reported that podocyte injury in young mice and culture podocytes induced senescence, a marker of aging, and accelerates glomerular aging when compared with healthy aging mice.
Collapse
Affiliation(s)
- Beatriz Maria Veloso Pereira
- Division of Nephrology, University of Washington, Seattle, Washington, United States
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, Washington, United States
| | - Joseph C Maggiore
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Natalya Kaverina
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Sierra R McKinzie
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, Illinois, United States
| | - Carol J Loretz
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Karina Thieme
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
11
|
Bharati J, Kumar M, Kumar N, Malhotra A, Singhal PC. MicroRNA193a: An Emerging Mediator of Glomerular Diseases. Biomolecules 2023; 13:1743. [PMID: 38136614 PMCID: PMC10742064 DOI: 10.3390/biom13121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding small RNAs that regulate the protein expression of coding messenger RNAs. They are used as biomarkers to aid in diagnosing, prognosticating, and surveillance of diseases, especially solid cancers. MiR-193a was shown to be directly pathogenic in an experimental mouse model of focal segmental glomerulosclerosis (FSGS) during the last decade. Its specific binding and downregulation of Wilm's tumor-1 (WT-1), a transcription factor regulating podocyte phenotype, is documented. Also, miR-193a is a regulator switch causing the transdifferentiation of glomerular parietal epithelial cells to a podocyte phenotype in in vitro study. Interaction between miR-193a and apolipoprotein 1 (APOL1) mRNA in glomeruli (filtration units of kidneys) is potentially involved in the pathogenesis of common glomerular diseases. Since the last decade, there has been an increasing interest in the role of miR-193a in glomerular diseases, including diabetic nephropathy and membranous nephropathy, besides FSGS. Considering the lack of biomarkers to manage FSGS and diabetic nephropathy clinically, it is worthwhile to invest in evaluating miR-193a in the pathogenesis of these diseases. What causes the upregulation of miR-193a in FSGS and how the mechanism is different in different glomerular disorders still need to be elucidated. This narrative review highlights the pathogenic mechanisms of miR-193a elevation in various glomerular diseases and its potential use in clinical management.
Collapse
Affiliation(s)
- Joyita Bharati
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
- Division of Kidney Diseases and Hypertension, Zucker School of Medicine at Hofstra Northwell Health, Great Neck, NY 11021, USA
| | - Megan Kumar
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
| | - Neil Kumar
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
| | - Pravin C. Singhal
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; (J.B.); (M.K.); (N.K.)
- Division of Kidney Diseases and Hypertension, Zucker School of Medicine at Hofstra Northwell Health, Great Neck, NY 11021, USA
| |
Collapse
|
12
|
van Zonneveld AJ, Zhao Q, Rotmans JI, Bijkerk R. Circulating non-coding RNAs in chronic kidney disease and its complications. Nat Rev Nephrol 2023; 19:573-586. [PMID: 37286733 DOI: 10.1038/s41581-023-00725-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/09/2023]
Abstract
Post-transcriptional regulation by non-coding RNAs (ncRNAs) can modulate the expression of genes involved in kidney physiology and disease. A large variety of ncRNA species exist, including microRNAs, long non-coding RNAs, piwi-interacting RNAs, small nucleolar RNAs, circular RNAs and yRNAs. Despite early assumptions that some of these species may exist as by-products of cell or tissue injury, a growing body of literature suggests that these ncRNAs are functional and participate in a variety of processes. Although they function intracellularly, ncRNAs are also present in the circulation, where they are carried by extracellular vesicles, ribonucleoprotein complexes or lipoprotein complexes such as HDL. These systemic, circulating ncRNAs are derived from specific cell types and can be directly transferred to a variety of cells, including endothelial cells of the vasculature and virtually any cell type in the kidney, thereby affecting the function of the host cell and/or its response to injury. Moreover, chronic kidney disease itself, as well as injury states associated with transplantation and allograft dysfunction, is associated with a shift in the distribution of circulating ncRNAs. These findings may provide opportunities for the identification of biomarkers with which to monitor disease progression and/or the development of therapeutic interventions.
Collapse
Affiliation(s)
- Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Qiao Zhao
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands.
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
13
|
Chen H, Zhang M, Lin J, Lu J, Zhong F, Zhong F, Gao X, Liao X. Genotype-phenotype correlation of WT1 mutation-related nephropathy in Chinese children. Front Pediatr 2023; 11:1192021. [PMID: 37576146 PMCID: PMC10416235 DOI: 10.3389/fped.2023.1192021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction This study aimed to analyze the clinical characteristics of nephropathy associated with WT1 gene mutations in Chinese children and explore the relationship between genotype and clinical phenotype. Methods Cases diagnosed at the Guangzhou Women and Children's Medical Center, were combined with those retrieved from PubMed and China National Knowledge Infrastructure (CNKI) databases from January 2015 to June 2022 and integrated into a study cohort; grouped according to gene mutation sites, clinical phenotype, and renal pathological types. The clinical characteristics between groups were compared, and the relationship between genotype and age of onset, clinical phenotype, and pathological type were retrospectively analyzed. Results The center enrolled 15 confirmed children: seven cases of non-simple nephropathy, including Denys-Drash syndrome (DDS) and Frasier syndrome (FS); eight cases of isolated steroid-resistant nephrotic syndrome (ISRNS); and 13 cases (86.7%) that progressed to end-stage renal disease (ESRD). The initial hemoglobin and bicarbonate levels of patients with clinical non-simple nephropathy were significantly lower than those with simple nephropathy, whereas the serum creatinine levels were higher than those of patients with simple nephropathy. A total of 75 cases of nephropathy associated with WT1 mutations in the study cohort met the inclusion and exclusion criteria. The most common clinical manifestations of WT1 mutations in this cohort were DDS (29/75, 38.7%) and ISRNS (37/75, 49.3%). A renal biopsy was performed in 43 patients, and the common types of renal pathology were focal segmental glomerulosclerosis (23/43, 53.5%) and DMS (13/43, 30.2%). Within the cohort, there were 12 cases (16.0%) in the exon 8 mutation group, 32 (42.6%) in the exon 9 group, 19 (25.3%) in the intron 9 group, and 12 (16.0%) in other gene site mutation groups. Common sites of WT1 mutations in Chinese children were exons 9 and intron 9. Exon 8 mutations were uniquely correlated with the age of onset within three months [5/7; 71.4%; Adjusted standardized residual (AR) = 4.2]. The renal survival time in the exon 8 mutation group was the shortest (P = 0.003). Discussion The molecular and biological characteristics of WT1 mutation-related nephropathy determine the clinical type, pathological features, and renal survival time of the disease; and there was a strong correlation between the genotype and clinical phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Liao
- Department of Nephrology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Tasar GE, Uzerk Kibar M, Dag O, Erdem Y, Ertoy Baydar D, Saglam A. Cytoplasmic WT1 in IgA nephropathy, an indicator of poor prognosis associated with mesangial/peri-mesangial C4d. Int Urol Nephrol 2023; 55:661-669. [PMID: 36036855 DOI: 10.1007/s11255-022-03357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/21/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND We aimed to investigate the immuno-histochemical expression of C4d, ADAM10 and WT1 in kidney biopsies of immunoglobulin A nephropathy (IgAN) patients and correlate the findings with clinical, laboratory and histopathologic features in the hope of defining new parameters to better understand the pathogenesis of the disease, and predict prognosis. MATERIALS AND METHODS Paraffin-embedded kidney biopsy samples of 128 IgAN patients were immuno-histochemically treated with C4d and ADAM10/WT1 dual stain. Results were evaluated according to Oxford classification parameters, epidemiologic features, laboratory findings at presentation and clinical follow-up. RESULTS We observed C4d positivity in 40.6% of our patients, 25% of which was mesangial/peri-mesangial (m/pm) staining. Only m/pmC4d positivity statistically correlated with progression to end-stage renal disease (ESRD). M/pmC4d positive patients had statistically significantly higher baseline proteinuria levels, presence of crescents and > 25% segmental sclerosis of glomeruli. There was cytoplasmic staining of WT1 in 11.2% of cases. Presence of cWT1 correlated with m/pmC4d positivity and progression to ESRD. There was no glomerular ADAM10 detected and tubular expression of this protein did not relate to amount of tubular damage or other parameters. CONCLUSION This study is the first to show that cWT1is involved in IgAN and appears as an independent variable for worse prognosis.
Collapse
Affiliation(s)
- Gozde Elif Tasar
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Muge Uzerk Kibar
- Department of Nephrology, Hacettepe University School of Medicine, Hacettepe University, Ankara, Turkey
| | - Osman Dag
- Department of Biostatistics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Yunus Erdem
- Department of Nephrology, Hacettepe University School of Medicine, Hacettepe University, Ankara, Turkey
| | - Dilek Ertoy Baydar
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Arzu Saglam
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey.
| |
Collapse
|
15
|
Sallustio F, Picerno A, Montenegro F, Cimmarusti MT, Di Leo V, Gesualdo L. The Human Virome and Its Crosslink with Glomerulonephritis and IgA Nephropathy. Int J Mol Sci 2023; 24:3897. [PMID: 36835304 PMCID: PMC9964221 DOI: 10.3390/ijms24043897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The prokaryotic, viral, fungal, and parasitic microbiome exists in a highly intricate connection with the human host. In addition to eukaryotic viruses, due to the existence of various host bacteria, phages are widely spread throughout the human body. However, it is now evident that some viral community states, as opposed to others, are indicative of health and might be linked to undesirable outcomes for the human host. Members of the virome may collaborate with the human host to retain mutualistic functions in preserving human health. Evolutionary theories contend that a particular microbe's ubiquitous existence may signify a successful partnership with the host. In this Review, we present a survey of the field's work on the human virome and highlight the role of viruses in health and disease and the relationship of the virobiota with immune system control. Moreover, we will analyze virus involvement in glomerulonephritis and in IgA nephropathy, theorizing the molecular mechanisms that may be responsible for the crosslink with these renal diseases.
Collapse
Affiliation(s)
- Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Angela Picerno
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesca Montenegro
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Maria Teresa Cimmarusti
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Vincenzo Di Leo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
16
|
Hayward S, Parmesar K, Welsh GI, Suderman M, Saleem MA. Epigenetic Mechanisms and Nephrotic Syndrome: A Systematic Review. Biomedicines 2023; 11:514. [PMID: 36831050 PMCID: PMC9953384 DOI: 10.3390/biomedicines11020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
A small subset of people with nephrotic syndrome (NS) have genetically driven disease. However, the disease mechanisms for the remaining majority are unknown. Epigenetic marks are reversible but stable regulators of gene expression with utility as biomarkers and therapeutic targets. We aimed to identify and assess all published human studies of epigenetic mechanisms in NS. PubMed (MEDLINE) and Embase were searched for original research articles examining any epigenetic mechanism in samples collected from people with steroid resistant NS, steroid sensitive NS, focal segmental glomerulosclerosis or minimal change disease. Study quality was assessed by using the Joanna Briggs Institute critical appraisal tools. Forty-nine studies met our inclusion criteria. The majority of these examined micro-RNAs (n = 35, 71%). Study quality was low, with only 23 deemed higher quality, and most of these included fewer than 100 patients and failed to validate findings in a second cohort. However, there were some promising concordant results between the studies; higher levels of serum miR-191 and miR-30c, and urinary miR-23b-3p and miR-30a-5p were observed in NS compared to controls. We have identified that the epigenome, particularly DNA methylation and histone modifications, has been understudied in NS. Large clinical studies, which utilise the latest high-throughput technologies and analytical pipelines, should focus on addressing this critical gap in the literature.
Collapse
Affiliation(s)
- Samantha Hayward
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Kevon Parmesar
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Gavin I. Welsh
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Moin A. Saleem
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| |
Collapse
|
17
|
Bharati J, Chander PN, Singhal PC. Parietal Epithelial Cell Behavior and Its Modulation by microRNA-193a. Biomolecules 2023; 13:266. [PMID: 36830635 PMCID: PMC9953542 DOI: 10.3390/biom13020266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Glomerular parietal epithelial cells (PECs) have been increasingly recognized to have crucial functions. Lineage tracking in animal models showed the expression of a podocyte phenotype by PECs during normal glomerular growth and after acute podocyte injury, suggesting a reparative role of PECs. Conversely, activated PECs are speculated to be pathogenic and comprise extracapillary proliferation in focal segmental glomerulosclerosis (FSGS) and crescentic glomerulonephritis (CrescGN). The reparative and pathogenic roles of PECs seem to represent two sides of PEC behavior directed by the local milieu and mediators. Recent studies suggest microRNA-193a (miR193a) is involved in the pathogenesis of FSGS and CrescGN. In a mouse model of primary FSGS, the induction of miR193a caused the downregulation of Wilms' tumor protein, leading to the dedifferentiation of podocytes. On the other hand, the inhibition of miR193a resulted in reduced crescent lesions in a mouse model of CrescGN. Interestingly, in vitro studies report that the downregulation of miR193a induces trans-differentiation of PECs into a podocyte phenotype. This narrative review highlights the critical role of PEC behavior in health and during disease and its modulation by miR193a.
Collapse
Affiliation(s)
- Joyita Bharati
- Institute of Molecular Medicine, Feinstein Institute for Medical Research and Department of Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY 11549, USA
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Praveen N. Chander
- New York Medical College, Touro College and University System Valhalla, Valhalla, NY 10595, USA
| | - Pravin C. Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research and Department of Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
18
|
Huang Y, Zhao X, Zhang Q, Yang X, Hou G, Peng C, Jia M, Zhou L, Yamamoto T, Zheng J. Novel therapeutic perspectives for crescentic glomerulonephritis through targeting parietal epithelial cell activation and proliferation. Expert Opin Ther Targets 2023; 27:55-69. [PMID: 36738160 DOI: 10.1080/14728222.2023.2177534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Kidney injury is clinically classified as crescentic glomerulonephritis (CrGN) when ≥50% of the glomeruli in a biopsy sample contain crescentic lesions. However, current strategies, such as systemic immunosuppressive therapy and plasmapheresis for CrGN, are partially effective, and these drugs have considerable systemic side effects. Hence, targeted therapy to prevent glomerular crescent formation and expansion remains an unmet clinical need. AREAS COVERED Hyperproliferative parietal epithelial cells (PECs) are the main constituent cells of the glomerular crescent with cell-tracing evidence. Crescents obstruct the flow of primary urine, pressure the capillaries, and degenerate the affected nephrons. We reviewed the markers of PEC activation and proliferation, potential therapeutic effects of thrombin and thrombin receptor inhibitors, and how podocytes cross-talk with PECs. These experiments may help identify potential early specific targets for the prevention and treatment of glomerular crescentic injury. EXPERT OPINION Inhibiting PEC activation and proliferation in CrGN can alleviate glomerular crescent progression, which has been supported by preclinical studies with evidence of genetic deletion. Clarifying the outcome of PEC transformation to the podocyte phenotype and suppressing thrombin, thrombin receptors, and PEC hyperproliferation in early therapeutic strategies will be the research goals in the next ten years.
Collapse
Affiliation(s)
- Yanjie Huang
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qiushuang Zhang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengzhen Jia
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tatsuo Yamamoto
- Department of Nephrology, Fujieda Municipal General Hospital, 4-1-11 Surugadai, Fujieda, Japan
| | - Jian Zheng
- Institute of Pediatrics of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Extracellular vesicles from focal segmental glomerulosclerosis pediatric patients induce STAT3 activation and mesangial cell proliferation. PLoS One 2022; 17:e0274598. [DOI: 10.1371/journal.pone.0274598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction
Primary focal segmental glomerulosclerosis (FSGS), a major cause of end-stage kidney disease (ESKD) in adolescents and young adults, is attributable to recognized genetic mutations in a minority of cases. For the majority with idiopathic primary FSGS, the cause of the disease is unknown. We hypothesize that extracellular vesicle (EVs), that carry information between podocytes and mesangial cells, may play a key role in disease progression.
Material & methods
A total of 30 participants (20 primary nephrotic syndrome/ 10 healthy controls) were enrolled in this study. Primary nephrotic syndrome subjects were grouped based on pathologic diagnosis. The FSGS group was compared to healthy control subjects based on demographic and clinical findings. EVs were isolated from the urine of each group before being characterized by Western blotting, transmission electron microscopy, and nanoparticle tracking analysis. The effects of the EVs from each group on normal human mesangial cells and activation of certain pathways were then investigated.
Results
Based on demographic and clinical findings, mean serum creatinine was significantly higher in the FSGS group than the normal healthy control group. The mean size of the EVs in the FSGS group was significantly higher than the healthy control group. The mesangial cells that were challenged with EVs isolated from FSGS patients showed significant upregulation of STAT-3, PCNA, Ki67, and cell proliferation.
Discussion
Our data demonstrate that EVs from FSGS patients stimulate mesangial cell proliferation in association with upregulation of the phospho-STAT-3 pathway. Additional studies are planned to identify the molecular cargo within the EVs from FSGS patients that contribute to the pathogenesis of FSGS.
Collapse
|
20
|
Mahtal N, Lenoir O, Tinel C, Anglicheau D, Tharaux PL. MicroRNAs in kidney injury and disease. Nat Rev Nephrol 2022; 18:643-662. [PMID: 35974169 DOI: 10.1038/s41581-022-00608-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by degrading or repressing the translation of their target messenger RNAs. As miRNAs are critical regulators of cellular homeostasis, their dysregulation is a crucial component of cell and organ injury. A substantial body of evidence indicates that miRNAs are involved in the pathophysiology of acute kidney injury (AKI), chronic kidney disease and allograft damage. Different subsets of miRNAs are dysregulated during AKI, chronic kidney disease and allograft rejection, which could reflect differences in the physiopathology of these conditions. miRNAs that have been investigated in AKI include miR-21, which has an anti-apoptotic role, and miR-214 and miR-668, which regulate mitochondrial dynamics. Various miRNAs are downregulated in diabetic kidney disease, including the miR-30 family and miR-146a, which protect against inflammation and fibrosis. Other miRNAs such as miR-193 and miR-92a induce podocyte dedifferentiation in glomerulonephritis. In transplantation, miRNAs have been implicated in allograft rejection and injury. Further work is needed to identify and validate miRNAs as biomarkers of graft function and of kidney disease development and progression. Use of combinations of miRNAs together with other molecular markers could potentially improve diagnostic or predictive power and facilitate clinical translation. In addition, targeting specific miRNAs at different stages of disease could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nassim Mahtal
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France
| | - Olivia Lenoir
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| | - Claire Tinel
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| |
Collapse
|
21
|
Barratt J, Pawluczyk I, Selvaskandan H. Clinical application of microRNAs in glomerular diseases. Nephrol Dial Transplant 2022; 38:1375-1384. [PMID: 35906877 DOI: 10.1093/ndt/gfac230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi) occurs in all organisms and modulates most, if not all, biological pathways. It is the process by which non-coding RNAs, including microRNAs (miRs), regulate gene transcription and post-transcriptional processing of messenger RNA (mRNA). A single miR can modulate several genes within a cell, and several miRs can regulate expression of the same gene, adding tiers of complexity to regulation of gene expression. MicroRNAs and other RNAi approaches have been successfully used in vitro and in vivo to selectively manipulate gene transcription, making them pivotal agents for basic science research and candidates for targeted therapeutics. This review will focus on miRs and their potential as biomarkers and novel therapeutics for glomerular disease.
Collapse
Affiliation(s)
- Jonathan Barratt
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
| | - Izabella Pawluczyk
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
| | - Haresh Selvaskandan
- University of Leicester, Department of Cardiovascular Sciences, Leicester, UK
| |
Collapse
|
22
|
Liu F, Chen J, Luo C, Meng X. Pathogenic Role of MicroRNA Dysregulation in Podocytopathies. Front Physiol 2022; 13:948094. [PMID: 35845986 PMCID: PMC9277480 DOI: 10.3389/fphys.2022.948094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) participate in the regulation of various important biological processes by regulating the expression of various genes at the post-transcriptional level. Podocytopathies are a series of renal diseases in which direct or indirect damage of podocytes results in proteinuria or nephrotic syndrome. Despite decades of research, the exact pathogenesis of podocytopathies remains incompletely understood and effective therapies are still lacking. An increasing body of evidence has revealed a critical role of miRNAs dysregulation in the onset and progression of podocytopathies. Moreover, several lines of research aimed at improving common podocytopathies diagnostic tools and avoiding invasive kidney biopsies have also identified circulating and urine miRNAs as possible diagnostic and prognostic biomarkers for podocytopathies. The present review mainly aims to provide an updated overview of the recent achievements in research on the potential applicability of miRNAs involved in renal disorders related to podocyte dysfunction by laying particular emphasis on focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous nephropathy (MN), diabetic kidney disease (DKD) and IgA nephropathy (IgAN). Further investigation into these dysregulated miRNAs will not only generate novel insights into the mechanisms of podocytopathies, but also might yield novel strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changqing Luo
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| |
Collapse
|
23
|
Deletion of Wt1 during early gonadogenesis leads to differences of sex development in male and female adult mice. PLoS Genet 2022; 18:e1010240. [PMID: 35704566 PMCID: PMC9200307 DOI: 10.1371/journal.pgen.1010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Assessing the role of the WT1 transcription factor (WT1) during early gonad differentiation and its impact on adult sex development has been difficult due to the complete gonadal agenesis and embryonic lethality exhibited by Wt1KO mouse models. Here, we generated Wt1LoxP/GFP;Wt1Cre mice, the first Wt1KO mouse model that reaches adulthood with a dramatically reduced Wt1 expression during early gonadogenesis. Wt1LoxP/GFP;Wt1Cre mice lacked mature gonads and displayed genital tracts containing both male and female genital structures and ambiguous genitalia. We found that WT1 is necessary for the activation of both male and female sex-determining pathways, as embryonic mutant gonads failed to upregulate the expression of the genes specific for each genetic programme. The gonads of Wt1LoxP/GFP;Wt1Cre mice showed a lack of production of Sertoli and pre-granulosa cells and a reduced number of germ cells. NR5A1 and the steroidogenic genes expression was modulated differently in XY and XX Wt1LoxP/GFP;Wt1Cre gonads, explaining the mutant phenotypes. Further studies of the XX Wt1LoxP/GFP;Wt1Cre gonads revealed that deletion of WT1 at an early stage impaired the differentiation of several cell types including somatic cells and the ovarian epithelium. Through the characterisation of this Wt1KO mouse model, we show that the deletion of Wt1 during early gonadogenesis produces dramatic defects in adult sex development. The WT1 transcription factor (WT1) is a protein expressed during gonad development. WT1 mutations have been reported in several human conditions in which patients present a variable range of genital malformations varying from ambiguous external genitalia to gonadal dysgenesis. Mouse models in which Wt1 has been deleted indicate that WT1 has a critical role in early gonadogenesis. However, assessing the role of this protein in early gonad formation and its impact on adult sex development has been difficult due to the complete gonadal agenesis or embryonic lethality observed in these mouse models. Here, we describe a new genetically engineered mouse model in which Wt1 expression is deleted from an early stage in gonad formation. The analyses of these mice revealed the importance of Wt1 for early gonad differentiation and the impact of its early deletion on the formation of the adult reproductive system. Adult mutant mice lacked mature gonads, with both XX and XY mutants displaying genital tracts containing both male and female structures as well as ambiguous external genitalia. Notably, mutant gonads remained in an undifferentiated stage, indicating that WT1 is important for the differentiation of different populations of progenitor cells.
Collapse
|
24
|
Musiała A, Donizy P, Augustyniak-Bartosik H, Jakuszko K, Banasik M, Kościelska-Kasprzak K, Krajewska M, Kamińska D. Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy. J Clin Med 2022; 11:jcm11123292. [PMID: 35743361 PMCID: PMC9225193 DOI: 10.3390/jcm11123292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) involves podocyte injury. In patients with nephrotic syndrome, progression to end-stage renal disease often occurs over the course of 5 to 10 years. The diagnosis is based on a renal biopsy. It is presumed that primary FSGS is caused by an unknown plasma factor that might be responsible for the recurrence of FSGS after kidney transplantation. The nature of circulating permeability factors is not explained and particular biological molecules responsible for inducing FSGS are still unknown. Several substances have been proposed as potential circulating factors such as soluble urokinase-type plasminogen activator receptor (suPAR) and cardiolipin-like-cytokine 1 (CLC-1). Many studies have also attempted to establish which molecules are related to podocyte injury in the pathogenesis of FSGS such as plasminogen activator inhibitor type-1 (PAI-1), angiotensin II type 1 receptors (AT1R), dystroglycan(DG), microRNAs, metalloproteinases (MMPs), forkheadbox P3 (FOXP3), and poly-ADP-ribose polymerase-1 (PARP1). Some biomarkers have also been studied in the context of kidney tissue damage progression: transforming growth factor-beta (TGF-β), human neutrophil gelatinase-associated lipocalin (NGAL), malondialdehyde (MDA), and others. This paper describes molecules that could potentially be considered as circulating factors causing primary FSGS.
Collapse
Affiliation(s)
- Aleksandra Musiała
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
- Correspondence: ; Tel.: +48-6-0172-8231
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Division of Clinical Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Hanna Augustyniak-Bartosik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Jakuszko
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Kościelska-Kasprzak
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Dorota Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| |
Collapse
|
25
|
Bezdicka M, Kaufman F, Krizova I, Dostalkova A, Rumlova M, Seeman T, Vondrak K, Fencl F, Zieg J, Soucek O. Alteration in DNA-binding affinity of Wilms tumor 1 protein due to WT1 genetic variants associated with steroid - resistant nephrotic syndrome in children. Sci Rep 2022; 12:8704. [PMID: 35610319 PMCID: PMC9130146 DOI: 10.1038/s41598-022-12760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Approximately one third of children with steroid-resistant nephrotic syndrome (SRNS) carry pathogenic variants in one of the many associated genes. The WT1 gene coding for the WT1 transcription factor is among the most frequently affected genes. Cases from the Czech national SRNS database were sequenced for exons 8 and 9 of the WT1 gene. Eight distinct exonic WT1 variants in nine children were found. Three children presented with isolated SRNS, while the other six manifested with additional features. To analyze the impact of WT1 genetic variants, wild type and mutant WT1 proteins were prepared and the DNA-binding affinity of these proteins to the target EGR1 sequence was measured by microscale thermophoresis. Three WT1 mutants showed significantly decreased DNA-binding affinity (p.Arg439Pro, p.His450Arg and p.Arg463Ter), another three mutants showed significantly increased binding affinity (p.Gln447Pro, p.Asp469Asn and p.His474Arg), and the two remaining mutants (p.Cys433Tyr and p.Arg467Trp) showed no change of DNA-binding affinity. The protein products of WT1 pathogenic variants had variable DNA-binding affinity, and no clear correlation with the clinical symptoms of the patients. Further research is needed to clarify the mechanisms of action of the distinct WT1 mutants; this could potentially lead to individualized treatment of a so far unfavourable disease.
Collapse
Affiliation(s)
- Martin Bezdicka
- Vera Vavrova Lab/VIAL, Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic.
| | - Filip Kaufman
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Ivana Krizova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Alzbeta Dostalkova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Rumlova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomas Seeman
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Karel Vondrak
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Filip Fencl
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Zieg
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Ondrej Soucek
- Vera Vavrova Lab/VIAL, Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic
| |
Collapse
|
26
|
Zhu X, Tang L, Mao J, Hameed Y, Zhang J, Li N, Wu D, Huang Y, Li C. Decoding the Mechanism behind the Pathogenesis of the Focal Segmental Glomerulosclerosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1941038. [PMID: 35693262 PMCID: PMC9175094 DOI: 10.1155/2022/1941038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a chronic glomerular disease associated with podocyte injury which is named after the pathologic features of the kidney. The aim of this study is to decode the key changes in gene expression and regulatory network involved in the formation of FSGS. Integrated network analysis included Gene Expression Omnibus (GEO) datasets to identify differentially expressed genes (DEGs) between FSGS patients and healthy donors. Bioinformatics analysis was used to identify the roles of the DEGs and included the development of protein-protein interaction (PPI) networks, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the key modules were assured. The expression levels of DEGs were validated using the additional dataset. Eventually, transcription factors and ceRNA networks were established to illuminate the regulatory relationships in the formation of FSGS. 1130 DEGs including 475 upregulated genes and 655 downregulated genes with functional enrichment analysis were determined. Further analysis uncovered that the validated hub genes were defined as candidate genes, including Complement C3a Receptor 1 (C3AR1), C-C Motif Chemokine Receptor 1(CCR1), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), Melatonin Receptor 1A (MTNR1A), and Purinergic Receptor P2Y13 (P2RY13). More importantly, we identified transcription factors and mRNA-miRNA-lncRNA regulatory networks associated with the candidate genes. The candidate genes and regulatory networks discovered in this study can help to comprehend the molecular mechanism of FSGS and supply potential targets for the diagnosis and therapy of FSGS.
Collapse
Affiliation(s)
- Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Liping Tang
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100091, China
| | - Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jingyu Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Ning Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Danny Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Yongmei Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin 14195, Germany
| |
Collapse
|
27
|
Evaluating Established Roles, Future Perspectives and Methodological Heterogeneity for Wilms’ Tumor 1 (WT1) Antigen Detection in Adult Renal Cell Carcinoma, Using a Novel N-Terminus Targeted Antibody (Clone WT49). Biomedicines 2022; 10:biomedicines10040912. [PMID: 35453662 PMCID: PMC9026801 DOI: 10.3390/biomedicines10040912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is arguably the deadliest form of genitourinary malignancy and is nowadays viewed as a heterogeneous series of cancers, with the same origin but fundamentally different metabolisms and clinical behaviors. Immunohistochemistry (IHC) is increasingly necessary for RCC subtyping and definitive diagnosis. WT1 is a complex gene involved in carcinogenesis. To address reporting heterogeneity and WT1 IHC standardization, we used a recent N-terminus targeted monoclonal antibody (clone WT49) to evaluate WT1 protein expression in 56 adult RCC (aRCC) cases. This is the largest WT1 IHC investigation focusing exclusively on aRCCs and the first report on clone WT49 staining in aRCCs. We found seven (12.5%) positive cases, all clear cell RCCs, showing exclusively nuclear staining for WT1. We did not disregard cytoplasmic staining in any of the negative cases. Extratumoral fibroblasts, connecting tubules and intratumoral endothelial cells showed the same exclusively nuclear WT1 staining pattern. We reviewed WT1 expression patterns in aRCCs and the possible explanatory underlying metabolomics. For now, WT1 protein expression in aRCCs is insufficiently investigated, with significant discrepancies in the little data reported. Emerging WT1-targeted RCC immunotherapy will require adequate case selection and sustained efforts to standardize the quantification of tumor-associated antigens for aRCC and its many subtypes.
Collapse
|
28
|
Tackling the effects of extracellular vesicles in fibrosis. Eur J Cell Biol 2022; 101:151221. [PMID: 35405464 DOI: 10.1016/j.ejcb.2022.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis is a physiological process of tissue repair that turns into pathological when becomes chronic, damaging the functional structure of the tissue. In this review we outline the current status of extracellular vesicles as modulators of the fibrotic process at different levels. In adipose tissue, extracellular vesicles mediate the intercellular communication not only between adipocytes, but also between adipocytes and other cells of the stromal vascular fraction. Thus, they could be altering essential processes for the functionality of adipose tissue, such as adipocyte hypertrophy/hyperplasia, tissue plasticity, adipogenesis and/or inflammation, and ultimately trigger fibrosis. This process is particularly important in obesity, and may eventually, influence the development of obesity-associated alterations. In this regard, obesity is now recognized as an independent risk factor for the development of chronic kidney disease, although the role of extracellular vesicles in this connection has not been explored so far. Nonetheless, the role of extracellular vesicles in the onset and progression of renal fibrosis has been highlighted due to the critical role of fibrosis as a common feature of kidney diseases. In fact, the content of extracellular vesicles disturbs cellular signaling cascades involved in fibrosis in virtually all types of renal cells. What is certain is that the study of extracellular vesicles is complex, as their isolation and manipulation is still difficult to reproduce, which complicates the overview of their physiopathological effects. Nevertheless, new strategies have been developed to exploit the potential of extracellular vesicles and their cargo, both as biomarkers and as therapeutic tools to prevent the progression of fibrosis towards an irreversible event.
Collapse
|
29
|
A New Role of Acute Phase Proteins: Local Production Is an Ancient, General Stress-Response System of Mammalian Cells. Int J Mol Sci 2022; 23:ijms23062972. [PMID: 35328392 PMCID: PMC8954921 DOI: 10.3390/ijms23062972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
The prevailing general view of acute-phase proteins (APPs) is that they are produced by the liver in response to the stress of the body as part of a systemic acute-phase response. We demonstrated a coordinated, local production of these proteins upon cell stress by the stressed cells. The local, stress-induced APP production has been demonstrated in different tissues (kidney, breast cancer) and with different stressors (hypoxia, fibrosis and electromagnetic heat). Thus, this local acute-phase response (APR) seems to be a universal mechanism. APP production is an ancient defense mechanism observed in nematodes and fruit flies as well. Local APP production at the tissue level is also supported by sporadic literature data for single proteins; however, the complex, coordinated, local appearance of this stress response has been first demonstrated only recently. Although a number of literature data are available for the local production of single acute-phase proteins, their interpretation as a local, coordinated stress response is new. A better understanding of the role of APPs in cellular stress response may also be of diagnostic/prognostic and therapeutic significance.
Collapse
|
30
|
Wang C, Liu J, Zhang X, Chen Q, Bai X, Hong X, Zhou L, Liu Y. Role of miRNA-671-5p in Mediating Wnt/β-Catenin-Triggered Podocyte Injury. Front Pharmacol 2022; 12:784489. [PMID: 35111054 PMCID: PMC8801877 DOI: 10.3389/fphar.2021.784489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Podocyte injury and proteinuria are the most common features of glomerular disease, which is the leading cause of end-stage renal failure. Hyperactivated Wnt/β-catenin signaling is closely associated with podocyte injury, but the underlying mechanisms are incompletely understood. Here we show that miRNA-671-5p (miR-671-5p) plays a crucial role in mediating β-catenin-triggered podocyte injury by targeting Wilms tumor 1 (WT1). Microarray-based expression profiling revealed that miR-671-5p was the most upregulated miRNA in podocytes after β-catenin activation. MiR-671-5p was colocalized with β-catenin in the glomeruli of proteinuric CKD in vivo. Bioinformatics analyses and luciferase reporter assays confirmed that miR-671-5p targeted WT1 mRNA. Overexpression of miR-671-5p mimics inhibited WT1 and impaired podocyte integrity, whereas miR-671-5p antagomir preserved the expression of WT1 and other podocyte-specific proteins under basal conditions or after β-catenin activation. In mouse remnant kidney model, overexpression of miR-671-5p aggravated podocyte injury, worsened kidney dysfunction and exacerbated renal fibrosis after 5/6 nephrectomy. In contrast, miR-671-5p antagomir alleviated podocyte injury and attenuated proteinuria and renal fibrotic lesions after glomerular injury in vivo. These studies underscore a pivotal role of miR-671-5p in mediating WT1 depletion and podocyte injury induced by β-catenin. Targeting miR-671-5p may serve as a new approach to prevent podocyte injury and proteinuria in proteinuric CKD.
Collapse
Affiliation(s)
- Chunhong Wang
- Division of Nephrology, National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiafeng Liu
- Division of Nephrology, National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyao Zhang
- Division of Nephrology, National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiyan Chen
- Division of Nephrology, National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyan Bai
- Division of Nephrology, National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- Division of Nephrology, National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Division of Nephrology, National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
31
|
miR-30a-5p promotes glomerular podocyte apoptosis via DNMT1-mediated hypermethylation under hyperhomocysteinemia. Acta Biochim Biophys Sin (Shanghai) 2021; 54:126-136. [PMID: 35130620 PMCID: PMC9909319 DOI: 10.3724/abbs.2021005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Abnormal elevation of homocysteine (Hcy) level is closely related to the development and progression of chronic kidney disease (CKD), with the molecular mechanisms that are not fully elucidated. Given the demonstration that miR-30a-5p is specifically expressed in glomerular podocytes, in the present study we aimed to investigate the role and potential underlying mechanism of miR-30a-5p in glomerular podocyte apoptosis induced by Hcy. We found that elevated Hcy downregulates miR-30a-5p expression in the mice and Hcy-treated podocytes, and miR-30a-5p directly targets the 3'-untranslated region (3'-UTR) of the forkhead box A1 (FOXA1) and overexpression of miR-30a-5p inhibits FOXA1 expression. By nMS-PCR and MassARRAY quantitative methylation analysis, we showed the increased DNA methylation level of miR-30a-5p promoter both and . Meanwhile, dual-luciferase reporter assay showed that the region between --1400 and --921 bp of miR-30a-5p promoter is a possible regulatory element for its transcription. Mechanistic studies indicated that DNA methyltransferase enzyme 1 (DNMT1) is the key regulator of miR-30a-5p, which in turn enhances miR-30a-5p promoter methylation level and thereby inhibits its expression. Taken together, our results revealed that epigenetic modification of miR-30a-5p is involved in glomerular podocyte injury induced by Hcy, providing a diagnostic marker candidate and novel therapeutic target in CKD induced by Hcy.
Collapse
|
32
|
Wang L, Wang J, Wang Z, Zhou J, Zhang Y. Higher Urine Exosomal miR-193a Is Associated With a Higher Probability of Primary Focal Segmental Glomerulosclerosis and an Increased Risk of Poor Prognosis Among Children With Nephrotic Syndrome. Front Cell Dev Biol 2021; 9:727370. [PMID: 34708038 PMCID: PMC8542839 DOI: 10.3389/fcell.2021.727370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background: In children, focal segmental glomerulosclerosis (FSGS) is one of the most common primary glomerular diseases leading to end-stage renal disease. Exosomes facilitate communication between cells by transporting proteins and microRNAs. We aimed to investigate the utility of urine exosomal miR-193a for diagnosis and prognosis estimation among patients with primary FSGS, and preliminarily explore the regulation mechanism of exosome secretion from podocytes. Methods: Specimens of urine were obtained from patients with primary FSGS, minimal change nephropathy (MCN) and IgA nephropathy (IgAN), followed by exosome isolation. We quantified urine exosomal miR-193a based on quantitative reverse transcription-polymerase chain reaction, and evaluated its applicability using area-under-receiver-operating-characteristics curves (AUROCs). The semiquantitative glomerulosclerosis index (GSI) was used to evaluate the degree of glomerulosclerosis according to the method of Raij et al. We further used FAM-labeled miR-193a-5p to examine exosome shuttling using confocal microscopy for visualization, and explored the regulation mechanism of exosomes release from podocytes using Fluo-3AM dye. Results: Urine exosomal miR-193a levels were significantly higher in patients with primary FSGS than those with MCN and IgAN. The AUROCs for discriminating between primary FSGS and MCN or IgAN were 0.85 and 0.821, respectively. Urine exosomal miR-193a levels positively correlated with GSI in patients with primary FSGS. We further found that kidney tissues from these patients had increased CD63 expression involving podocytes in non-sclerotic tufts. Exosomes from cultured podocytes could transport miR-193a-5p to recipient cells, potentially through a calcium-dependent release mechanism. Conclusion: Urine exosomal miR-193a might be harnessed as a non-invasive marker for diagnosis and outcome assessment among patients with primary FSGS. Exosomes were potential vehicles for miRNAs shuttling between podocytes, and released from podocytes in a calcium-dependent manner.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neonatology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhimin Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Gajjala PR, Kasam RK, Soundararajan D, Sinner D, Huang SK, Jegga AG, Madala SK. Dysregulated overexpression of Sox9 induces fibroblast activation in pulmonary fibrosis. JCI Insight 2021; 6:e152503. [PMID: 34520400 PMCID: PMC8564901 DOI: 10.1172/jci.insight.152503] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease associated with unremitting fibroblast activation including fibroblast-to-myofibroblast transformation (FMT), migration, resistance to apoptotic clearance, and excessive deposition of extracellular matrix (ECM) proteins in the distal lung parenchyma. Aberrant activation of lung-developmental pathways is associated with severe fibrotic lung disease; however, the mechanisms through which these pathways activate fibroblasts in IPF remain unclear. Sry-box transcription factor 9 (Sox9) is a member of the high-mobility group box family of DNA-binding transcription factors that are selectively expressed by epithelial cell progenitors to modulate branching morphogenesis during lung development. We demonstrate that Sox9 is upregulated via MAPK/PI3K-dependent signaling and by the transcription factor Wilms' tumor 1 in distal lung-resident fibroblasts in IPF. Mechanistically, using fibroblast activation assays, we demonstrate that Sox9 functions as a positive regulator of FMT, migration, survival, and ECM production. Importantly, our in vivo studies demonstrate that fibroblast-specific deletion of Sox9 is sufficient to attenuate collagen deposition and improve lung function during TGF-α-induced pulmonary fibrosis. Using a mouse model of bleomycin-induced pulmonary fibrosis, we show that myofibroblast-specific Sox9 overexpression augments fibroblast activation and pulmonary fibrosis. Thus, Sox9 functions as a profibrotic transcription factor in activating fibroblasts, illustrating the potential utility of targeting Sox9 in IPF treatment.
Collapse
Affiliation(s)
- Prathibha R Gajjala
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and
| | - Rajesh K Kasam
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and
| | - Divyalakshmi Soundararajan
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and
| | - Debora Sinner
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Divisions of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anil G Jegga
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Satish K Madala
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and
| |
Collapse
|
34
|
Ni L, Yuan C, Wu X. The recruitment mechanisms and potential therapeutic targets of podocytes from parietal epithelial cells. J Transl Med 2021; 19:441. [PMID: 34674704 PMCID: PMC8529729 DOI: 10.1186/s12967-021-03101-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 01/02/2023] Open
Abstract
Podocytes are differentiated postmitotic cells which cannot be replaced after podocyte injury. The mechanism of podocyte repopulation after injury has aroused wide concern. Parietal epithelial cells (PECs) are heterogeneous and only a specific subpopulation of PECs has the capacity to replace podocytes. Major progress has been achieved in recent years regarding the role and function of a subset of PECs which could transdifferentiate toward podocytes. Additionally, several factors, such as Notch, Wnt/ß-catenin, Wilms’ tumor-1, miR-193a and growth arrest-specific protein 1, have been shown to be involved in these processes. Finally, PECs serve as a potential therapeutic target in the conditions of podocyte loss. In this review, we discuss the latest observations and concepts about the recruitment of podocytes from PECs in glomerular diseases as well as newly identified mechanisms and the most recent treatments for this process.
Collapse
Affiliation(s)
- Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Cheng Yuan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
35
|
Yildirim D, Bender O, Karagoz ZF, Helvacioglu F, Bilgic MA, Akcay A, Ruzgaresen NB. Role of autophagy and evaluation the effects of microRNAs 214, 132, 34c and prorenin receptor in a rat model of focal segmental glomerulosclerosis. Life Sci 2021; 280:119671. [PMID: 34087284 DOI: 10.1016/j.lfs.2021.119671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
AIMS Focal segmental glomerulosclerosis (FSGS) is the common cause of chronic renal disease worldwide. Although there are many etiologic factors which have common theme of podocyte injury conclusive etiology is not clearly understood. In this study, we aimed to explore the role of autophagy in the pathogenesis of podocyte injury, which is the key point in disease progression, and the roles of intrarenal microRNAs and the prorenin receptor (PRR) in the 5/6 nephrectomy and adriamycin nephropathy models of FSGS. MAIN METHODS For experimental FSGS model, 5/6 nephrectomy and adriamycin nephropathy models were created and characterized in adult Sprague Dawley rats. Microarray analysis was performed on FSGS and control groups that was confirmed by q-RT-PCR. Beclin1, LC3B, PRR, ATG7 and ATG5 expression were evaluated by western blotting and immunohistochemistry. Also, Beclin1 and PRR expression were measured by ELISA. Glomerular podocyte isolation was performed and autophagic activity was evaluated in podocytes before and after transfection with miRNA mimic and antagonists. KEY FINDINGS Glomerular expression of Beclin1, LC3B, PRR, ATG7 and ATG5 were significantly lower in the 5/6 nephrectomy than adriamycin nephropathy group and in both groups lower when compared to control groups. Western blot results were consistent with immunohistochemical data. Electron microscopy revealed signs of impaired autophagy in FSGS. Autophagic activity decreased significantly after miR-214, miR-132 and miR-34c mimics and increased after transfection with antagonists. SIGNIFICANCE These results showed that the role of autophagic activity and decreased expression of PRR in FSGS pathogenesis and miR-34c, miR-132 and miR-214 could be a potential treatment strategy by regulating autophagy.
Collapse
Affiliation(s)
- Derya Yildirim
- Department of Internal Medicine, Ankara Education and Research Hospital, Ankara, Turkey.
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Zehra Firat Karagoz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Fatma Helvacioglu
- Department of Histology and Embryology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | | | - Ali Akcay
- Department of Nephrology, Koru Hospital, Ankara, Turkey
| | | |
Collapse
|
36
|
Feng Y, Yan B, Cheng H, Wu J, Chen Q, Duan Y, Zhang P, Zheng D, Lin G, Zhuo Y. Knockdown circ_0040414 inhibits inflammation, apoptosis and promotes the proliferation of cardiomyocytes via miR-186-5p/PTEN/AKT axis in chronic heart failure. Cell Biol Int 2021; 45:2304-2315. [PMID: 34369049 DOI: 10.1002/cbin.11678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that circ_0040414 is highly expressed in the blood of patients with heart failure (HF), which suggests that circ_0040414 is associated with heart failure (HF). However, the functional involvement of circ_0040414 in HF and its potential mechanism remains unclear. Consistent with previous studies, our study showed that the expression of circ_0040414 in the peripheral blood of patients with chronic heart failure (CHF) was significantly higher than that of healthy control, which indicated that circ_0040414 could be used as a diagnostic biomarker in patients with CHF. In cardiomyocytes, circ_0040414 increased the level of proapoptotic proteins Bax, cleaved-caspase 3 and reduced the expression of antiapoptotic protein Bcl-2. It also promoted inflammatory factors IL-6, TNF-α, and IL-β, but inhibited cell proliferation. In terms of mechanism, circ_0040414 upregulated the expression of phosphatase and tensin homolog (PTEN) through sponging miR-186-5p to inhibit AKT signaling activity. Our study uncovered a novel role and the mechanism of circ_0040414 in controlling CHF, enriched the molecular regulatory network in CHF, and may provide a possible strategy for the treatment of CHF.
Collapse
Affiliation(s)
- Yanling Feng
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Biao Yan
- Department of Cardiovascular, Ningbo Yinzhou No.2 Hospital, Ningbo, Zhejiang, China
| | - Hongji Cheng
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Jinlei Wu
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Qinxiu Chen
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Yuexing Duan
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Peng Zhang
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Dong Zheng
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Guixiong Lin
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| | - Yufeng Zhuo
- Department of Cardiology, Panyu District He Xian Memorial Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Deleersnijder D, Van Craenenbroeck AH, Sprangers B. Deconvolution of Focal Segmental Glomerulosclerosis Pathophysiology Using Transcriptomics Techniques. GLOMERULAR DISEASES 2021; 1:265-276. [PMID: 36751384 PMCID: PMC9677714 DOI: 10.1159/000518404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
Background Focal segmental glomerulosclerosis is a histopathological pattern of renal injury and comprises a heterogeneous group of clinical conditions with different pathophysiology, clinical course, prognosis, and treatment. Nevertheless, subtype differentiation in clinical practice often remains challenging, and we currently lack reliable diagnostic, prognostic, and therapeutic biomarkers. The advent of new transcriptomics techniques in kidney research poses great potential in the identification of gene expression biomarkers that can be applied in clinical practice. Summary Transcriptomics techniques have been completely revolutionized in the last 2 decades, with the evolution from low-throughput reverse-transcription polymerase chain reaction and in situ hybridization techniques to microarrays and next-generation sequencing techniques, including RNA-sequencing and single-cell transcriptomics. The integration of human gene expression profiles with functional in vitro and in vivo experiments provides a deeper mechanistic insight into the candidate genes, which enable the development of novel-targeted therapies. The correlation of gene expression profiles with clinical outcomes of large patient cohorts allows for the development of clinically applicable biomarkers that can aid in diagnosis and predict prognosis and therapy response. Finally, the integration of transcriptomics with other "omics" modalities creates a holistic view on disease pathophysiology. Key Messages New transcriptomics techniques allow high-throughput gene expression profiling of patients with focal segmental glomerulosclerosis (FSGS). The integration with clinical outcomes and fundamental mechanistic studies enables the discovery of new clinically useful biomarkers that will finally improve the clinical outcome of patients with FSGS.
Collapse
Affiliation(s)
- Dries Deleersnijder
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Leuven, Belgium,Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium,Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Leuven, Belgium,Division of Nephrology, University Hospitals Leuven, Leuven, Belgium,*Ben Sprangers,
| |
Collapse
|
38
|
Sung CC, Chen MH, Lin YC, Lin YC, Lin YJ, Yang SS, Lin SH. Urinary Extracellular Vesicles for Renal Tubular Transporters Expression in Patients With Gitelman Syndrome. Front Med (Lausanne) 2021; 8:679171. [PMID: 34179047 PMCID: PMC8219937 DOI: 10.3389/fmed.2021.679171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 11/27/2022] Open
Abstract
Background: The utility of urinary extracellular vesicles (uEVs) to faithfully represent the changes of renal tubular protein expression remains unclear. We aimed to evaluate renal tubular sodium (Na+) or potassium (K+) associated transporters expression from uEVs and kidney tissues in patients with Gitelman syndrome (GS) caused by inactivating mutations in SLC12A3. Methods: uEVs were isolated by ultracentrifugation from 10 genetically-confirmed GS patients. Membrane transporters including Na+-hydrogen exchanger 3 (NHE3), Na+/K+/2Cl− cotransporter (NKCC2), NaCl cotransporter (NCC), phosphorylated NCC (p-NCC), epithelial Na+ channel β (ENaCβ), pendrin, renal outer medullary K1 channel (ROMK), and large-conductance, voltage-activated and Ca2+-sensitive K+ channel (Maxi-K) were examined by immunoblotting of uEVs and immunofluorescence of biopsied kidney tissues. Healthy and disease (bulimic patients) controls were also enrolled. Results: Characterization of uEVs was confirmed by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. Compared with healthy controls, uEVs from GS patients showed NCC and p-NCC abundance were markedly attenuated but NHE3, ENaCβ, and pendrin abundance significantly increased. ROMK and Maxi-K abundance were also significantly accentuated. Immunofluorescence of the representative kidney tissues from GS patients also demonstrated the similar findings to uEVs. uEVs from bulimic patients showed an increased abundance of NCC and p-NCC as well as NHE3, NKCC2, ENaCβ, pendrin, ROMK and Maxi-K, akin to that in immunofluorescence of their kidney tissues. Conclusion: uEVs could be a non-invasive tool to diagnose and evaluate renal tubular transporter adaptation in patients with GS and may be applied to other renal tubular diseases.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Min-Hsiu Chen
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Chang Lin
- Division of Cardiovascular Surgery, Department of Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yu-Chun Lin
- Deparment of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Jia Lin
- Deparment of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
39
|
Yang J, Zhang D, Motojima M, Kume T, Hou Q, Pan Y, Duan A, Zhang M, Jiang S, Hou J, Shi J, Qin Z, Liu Z. Super-Enhancer-Associated Transcription Factors Maintain Transcriptional Regulation in Mature Podocytes. J Am Soc Nephrol 2021; 32:1323-1337. [PMID: 33771836 PMCID: PMC8259645 DOI: 10.1681/asn.2020081177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/30/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Transcriptional programs control cell fate, and identifying their components is critical for understanding diseases caused by cell lesion, such as podocytopathy. Although many transcription factors (TFs) are necessary for cell-state maintenance in glomeruli, their roles in transcriptional regulation are not well understood. METHODS The distribution of H3K27ac histones in human glomerulus cells was analyzed to identify superenhancer-associated TFs, and ChIP-seq and transcriptomics were performed to elucidate the regulatory roles of the TFs. Transgenic animal models of disease were further investigated to confirm the roles of specific TFs in podocyte maintenance. RESULTS Superenhancer distribution revealed a group of potential TFs in core regulatory circuits in human glomerulus cells, including FOXC1/2, WT1, and LMX1B. Integration of transcriptome and cistrome data of FOXC1/2 in mice resolved transcriptional regulation in podocyte maintenance. FOXC1/2 regulated differentiation-associated transcription in mature podocytes. In both humans and animal models, mature podocyte injury was accompanied by deregulation of FOXC1/2 expression, and FOXC1/2 overexpression could protect podocytes in zebrafish. CONCLUSIONS FOXC1/2 maintain podocyte differentiation through transcriptional stabilization. The genome-wide chromatin resources support further investigation of TFs' regulatory roles in glomeruli transcription programs.
Collapse
Affiliation(s)
- Jingping Yang
- Medical School of Nanjing University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Difei Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Japan
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Qing Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Pan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Aiping Duan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinhua Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Zhihong Liu
- Medical School of Nanjing University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
40
|
Wang F, Cai J, Wang J, He M, Mao J, Zhu K, Zhao M, Guan Z, Li L, Jin H, Shu Q. A novel WT1 gene mutation in a chinese girl with denys-drash syndrome. J Clin Lab Anal 2021; 35:e23769. [PMID: 33942367 PMCID: PMC8128316 DOI: 10.1002/jcla.23769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/03/2021] [Accepted: 03/13/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Denys-Drash syndrome (DDS) is defined by the triad of Wilms tumor, nephrotic syndrome, and/or ambiguous genitalia. Genetic testing may help identify new gene mutation sites and play an important role in clinical decision-making. METHODS We present a patient with an XY karyotype and female appearance, nephropathy, and Wilms tumor in the right kidney. Genomic DNA was extracted from peripheral blood cells according to standard protocols. "Next-generation" sequencing (NGS) was performed to identify novel variants. The variant was analyzed with Mutation Taster, and its function was explored by a cell growth inhibition assay. RESULTS We found the first case of Denys-Drash syndrome with the uncommon missense mutation (c.1420C>T, p.His474 Tyr) in the WT1 gene. In silico analysis, the variant was predicted "disease-causing" by Mutation Taster. The mutated variant showed a weaker effect in inhibiting tumor cells than wild-type WT1. CONCLUSIONS The uncommon missense mutation (c.1420C>T, p.His474 Tyr) in the WT1 gene may be a crucial marker in DDS.
Collapse
Affiliation(s)
- Faliang Wang
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiabin Cai
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhu Wang
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Min He
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Junqing Mao
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Zhao
- Department of Pathology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhonghai Guan
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Linjie Li
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Iranzad R, Motavalli R, Ghassabi A, Pourakbari R, Etemadi J, Yousefi M. Roles of microRNAs in renal disorders related to primary podocyte dysfunction. Life Sci 2021; 277:119463. [PMID: 33862110 DOI: 10.1016/j.lfs.2021.119463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/19/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022]
Abstract
Through the regulation of gene expression, microRNAs (miRNAs) are capable of modulating vital biological processes, such as proliferation, differentiation, and apoptosis. Several mechanisms control the function of miRNAs, including translational inhibition and targeted miRNA degradation. Through utilizing high-throughput screening methods, such as small RNA sequencing and microarray, alterations in miRNA expression of kidneys have recently been observed both in rodent models and humans throughout the development of chronic kidney disease (CKD) and acute kidney injury (AKI). The levels of miRNAs in urine supernatant, sediment, and exosomal fraction could predict novel biomarker candidates in different diseases of kidneys, including IgA nephropathy, lupus nephritis, and diabetic nephropathy. The therapeutic potential of administrating anti-miRNAs and miRNAs has also been reported recently. The present study is aimed at reviewing the state-of-the-art research with regards to miRNAs involved in renal disorders related to primary podocyte dysfunction by laying particular emphasis on Focal Segmental Glomerulosclerosis (FSGS), Minimal Change Disease (MCD) and Membranous Nephropathy (MN).
Collapse
Affiliation(s)
- Rahim Iranzad
- Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ghassabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Pourakbari
- Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Etemadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Gu X, Zhang S, Zhang T. Abnormal Crosstalk between Endothelial Cells and Podocytes Mediates Tyrosine Kinase Inhibitor (TKI)-Induced Nephrotoxicity. Cells 2021; 10:cells10040869. [PMID: 33921219 PMCID: PMC8070074 DOI: 10.3390/cells10040869] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor A (VEGFA) and its receptor VEGFR2 are the main targets of antiangiogenic therapies, and proteinuria is one of the common adverse events associated with the inhibition of the VEGFA/VEGFR2 pathway. The proteinuric kidney damage induced by VEGFR2 tyrosine kinase inhibitors (TKIs) is characterized by podocyte foot process effacement. TKI therapy promotes the formation of abnormal endothelial‒podocyte crosstalk, which plays a key role in TKI-induced podocyte injury and proteinuric nephropathy. This review article summarizes the underlying mechanism by which the abnormal endothelial‒podocyte crosstalk mediates podocyte injury and discusses the possible molecules and signal pathways involved in abnormal endothelial‒podocyte crosstalk. What is more, we highlight the molecules involved in podocyte injury and determine the essential roles of Rac1 and Cdc42; this provides evidence for exploring the abnormal endothelial‒podocyte crosstalk in TKI-induced nephrotoxicity.
Collapse
Affiliation(s)
| | | | - Ti Zhang
- Correspondence: ; Tel.: +86-21-6417-5590
| |
Collapse
|
43
|
Dhandapani MC, Venkatesan V, Pricilla C. MicroRNAs in childhood nephrotic syndrome. J Cell Physiol 2021; 236:7186-7210. [PMID: 33819345 DOI: 10.1002/jcp.30374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022]
Abstract
The discovery of microRNAs (miRNAs) has opened up new avenues of research to understand the molecular basis of a number of diseases. Because of their conservative feature in evolution and important role in the physiological function, microRNAs could be treated as predictors for disease classification and clinical process based on the specific expression. The identification of novel miRNAs and their target genes can be considered as potential targets for novel drugs. Furthermore, currently, the circulatory and urinary exosomal miRNAs are gaining increasing attention as their expression profiles are often associated with specific diseases, and they exhibit great potential as noninvasive or minimally invasive biomarkers for the diagnosis of various diseases. The remarkable stability of these extracellular miRNAs circulating in the blood or excreted in the urine underscored their key importance as biomarkers of certain diseases. There is voluminous literature concerning the role of microRNAs in other diseases, such as cardiovascular diseases, diabetic nephropathy, and so forth. However, little is known about their diagnostic ability for the pediatric nephrotic syndrome (NS). The present review article highlights the recent advances in the role of miRNAs in the pathogenesis and molecular basis of NS with an aim to bring new insights into further research applications for the development of new therapeutic agents for NS.
Collapse
Affiliation(s)
- Mohanapriya C Dhandapani
- Department of Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Charmine Pricilla
- Department of Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
44
|
Karmila AB, Yap YC, Appadurai M, Oh L, Fazarina M, Abd Ghani F, Ariffin H. Focal Segmental Membranoproliferative Glomerulonephritis: A Histological Variant of Denys-Drash Syndrome. Fetal Pediatr Pathol 2021; 40:113-120. [PMID: 31707902 DOI: 10.1080/15513815.2019.1686788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Denys-Drash Syndrome (DDS) consists of a triad of pseudohermaphroditism, Wilms'tumor and nephropathy. This condition may manifest as a complete triad or in an incomplete form; with either one or a combination of the above features. The characteristic glomerular abnormality in DDS is diffuse mesangial sclerosis (DMS).Case report: We report two cases of DDS with focal membranoproliferative glomerulonephritis (MPGN). Both of our cases were males with ambiguous genitalia. They had a similar heterozygous germline mutation in exon 9 of WT1, c.1180C>T, p.R394W; a known mutation hotspot for DDS. Case 1 had nephropathy at the age of 4 years and Case 2 at 2.5 years with different rates of progression to end-stage renal failure. Conclusion: Our findings, in combination with other reports, illustrate the clinicopathological heterogeneity of DDS. There are no universal recommendations for optimal management of patients with DDS due to the inability to accurately predict affected individuals' progress.
Collapse
Affiliation(s)
- A B Karmila
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| | - Y C Yap
- Paediatric Renal Unit, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - M Appadurai
- Paediatric Renal Unit, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - L Oh
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| | - M Fazarina
- Department of Laboratory Diagnostic Services, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - F Abd Ghani
- Faculty of Medicine and Health Sciences, Department of Pathology, Universiti Putra Malaysia, Selangor, Malaysia
| | - H Ariffin
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Potential role of extracellular vesicles in the pathophysiology of glomerular diseases. Clin Sci (Lond) 2021; 134:2741-2754. [PMID: 33111949 DOI: 10.1042/cs20200766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles released by most cells and are found in diverse biological fluids. The release of EVs provides a new mechanism for intercellular communication, allowing cells to transfer their functional cargoes to target cells. Glomerular diseases account for a large proportion of end-stage renal disease (ESRD) worldwide. In recent years, an increasing number of research groups have focused their effort on identifying the functional role of EVs in renal diseases. However, the involvement of EVs in the pathophysiology of glomerular diseases has not been comprehensively described and discussed. In this review, we first briefly introduce the characteristics of EVs. Then, we describe the involvement of EVs in the mechanisms underlying glomerular diseases, including immunological and fibrotic processes. We also discuss what functions EVs derived from different kidney cells have in glomerular diseases and how EVs exert their effects through different signaling pathways. Furthermore, we summarize recent advances in the knowledge of EV involvement in the pathogenesis of various glomerular diseases. Finally, we propose future research directions for identifying better management strategies for glomerular diseases.
Collapse
|
46
|
Talyan S, Filipów S, Ignarski M, Smieszek M, Chen H, Kühne L, Butt L, Göbel H, Hoyer-Allo KJR, Koehler FC, Altmüller J, Brinkkötter P, Schermer B, Benzing T, Kann M, Müller RU, Dieterich C. CALINCA-A Novel Pipeline for the Identification of lncRNAs in Podocyte Disease. Cells 2021; 10:692. [PMID: 33804736 PMCID: PMC8003990 DOI: 10.3390/cells10030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Diseases of the renal filtration unit-the glomerulus-are the most common cause of chronic kidney disease. Podocytes are the pivotal cell type for the function of this filter and focal-segmental glomerulosclerosis (FSGS) is a classic example of a podocytopathy leading to proteinuria and glomerular scarring. Currently, no targeted treatment of FSGS is available. This lack of therapeutic strategies is explained by a limited understanding of the defects in podocyte cell biology leading to FSGS. To date, most studies in the field have focused on protein-coding genes and their gene products. However, more than 80% of all transcripts produced by mammalian cells are actually non-coding. Here, long non-coding RNAs (lncRNAs) are a relatively novel class of transcripts and have not been systematically studied in FSGS to date. The appropriate tools to facilitate lncRNA research for the renal scientific community are urgently required due to a row of challenges compared to classical analysis pipelines optimized for coding RNA expression analysis. Here, we present the bioinformatic pipeline CALINCA as a solution for this problem. CALINCA automatically analyzes datasets from murine FSGS models and quantifies both annotated and de novo assembled lncRNAs. In addition, the tool provides in-depth information on podocyte specificity of these lncRNAs, as well as evolutionary conservation and expression in human datasets making this pipeline a crucial basis to lncRNA studies in FSGS.
Collapse
Affiliation(s)
- Sweta Talyan
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany;
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany;
| | - Samantha Filipów
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Magdalena Smieszek
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany;
| | - He Chen
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Lucas Kühne
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany;
| | - K. Johanna R. Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Felix C. Koehler
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany;
| | - Paul Brinkkötter
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany; (S.F.); (M.I.); (H.C.); (L.K.); (L.B.); (K.J.R.H.-A.); (F.C.K.); (P.B.); (B.S.); (T.B.); (M.K.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Christoph Dieterich
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany;
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany;
| |
Collapse
|
47
|
Text Mining Gene Selection to Understand Pathological Phenotype Using Biological Big Data. Bioinformatics 2021. [DOI: 10.36255/exonpublications.bioinformatics.2021.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
48
|
Hong Y, Wang J, Zhang L, Sun W, Xu X, Zhang K. Plasma miR-193a-3p can be a potential biomarker for the diagnosis of diabetic nephropathy. Ann Clin Biochem 2021; 58:141-148. [PMID: 33302703 DOI: 10.1177/0004563220983851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Diabetic nephropathy is one of the most common microvascular complications in patients with diabetes. MicroRNA (miRNA, miR) is closely related to the formation, development and pathophysiology of diabetic nephropathy. We aimed to investigate whether miR-193a-3p could be used as a potential biomarker for the diagnosis of diabetic nephropathy. METHODS Plasma samples were collected from all the participants. TaqMan Low Density Array analysis was employed to obtain the miRNA profiles of plasma samples, and qRT-PCR was used to confirm the result. Receiver operating characteristic curves were employed to evaluate the specificity and sensitivity of miR-193a-3p for predicting diabetic nephropathy. RESULTS The expression of miR-193a-3p and miR-320c was elevated and miR-27a-3p was decreased in diabetic nephropathy patients compared to patients with type 2 diabetes and healthy controls. We found that, in diabetic nephropathy patients, the elevated miR-193a-3p expression had a negative correlation with the level of evaluate glomerular filtration rate, while a positive correlation with the level of proteinuria. We further demonstrated that miR-193a-3p could be employed to distinguish patients with diabetic nephropathy. The Kaplan-Meier analysis showed that the high expression of miR-193a-3p significantly shortened the dialysis-free survival of diabetic nephropathy patients. CONCLUSION In conclusion, miR-193a-3p is involved in diabetic nephropathy pathogenesis and may serve as a potentially novel diagnostic biomarker for diabetic nephropathy.
Collapse
Affiliation(s)
- Yan Hong
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Jidong Wang
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Lai Zhang
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Wenjuan Sun
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Xuefang Xu
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Kaiyue Zhang
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| |
Collapse
|
49
|
Cui L, Yu M, Cui X. MiR-30c-5p/ROCK2 axis regulates cell proliferation, apoptosis and EMT via the PI3K/AKT signaling pathway in HG-induced HK-2 cells. Open Life Sci 2020; 15:959-970. [PMID: 33817282 PMCID: PMC7874585 DOI: 10.1515/biol-2020-0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. Increasing evidence suggests that microRNA-30c-5p (miR-30c-5p) participates in the pathogenesis of DN, but the mechanism has not been clearly understood. Therefore, this study aimed to investigate the biological role of miR-30c-5p in human DN progression in vitro. Compared with the controls, DN tissues and high glucose-induced HK-2 cells had significantly reduced miR-30c-5p levels, while ROCK2 expression was prominently elevated. Additionally, the miR-30c-5p mimic distinctly facilitated cell proliferation and blocked cell apoptosis and epithelial–mesenchymal transition (EMT). However, ROCK2 was a target gene of miR-30c-5p, and the effects of miR-30c-5p mimic on cell proliferation, apoptosis and EMT were reversed by ROCK2 upregulation in vitro. Furthermore, the pathogenesis of DN was regulated by the miR-30c-5p/ROCK2 axis via the PI3K/AKT pathway. MiR-30c-5p regulating cell proliferation, apoptosis and EMT through targeting ROCK2 via the PI3K/AKT pathway provides the novel potential target for clinical treatment of DN.
Collapse
Affiliation(s)
- Lianshun Cui
- Department of Kidney Disease of Internal, Weihai Central Hospital, No. 3, Mishandong Road West, Wendeng District, 264400, Weihai, China
| | - Meiyan Yu
- Department of Kidney Disease of Internal, Weihai Central Hospital, No. 3, Mishandong Road West, Wendeng District, 264400, Weihai, China
| | - Xinglei Cui
- Department of Kidney Disease of Internal, Weihai Central Hospital, No. 3, Mishandong Road West, Wendeng District, 264400, Weihai, China
| |
Collapse
|
50
|
MicroRNAs as Biomarkers for Nephrotic Syndrome. Int J Mol Sci 2020; 22:ijms22010088. [PMID: 33374848 PMCID: PMC7795691 DOI: 10.3390/ijms22010088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Nephrotic syndrome represents the clinical situation characterized by presence of massive proteinuria and low serum protein caused by a variety of diseases, including minimal change nephrotic syndrome (MCNS), focal segmental glomerulosclerosis (FSGS) and membranous glomerulonephropathy. Differentiating between diagnoses requires invasive renal biopsies in general. Even with the biopsy, we encounter difficulties to differentiate MCNS and FSGS in some cases. There is no other better option currently available for the diagnosis other than renal biopsy. MicroRNAs (miRNAs) are no-coding RNAs of approximately 20 nucleotides in length, which regulate target genes in the post-transcriptional processes and have essential roles in many diseases. MiRNAs in serum and urine have been shown as non-invasive biomarkers in multiple diseases, including renal diseases. In this article, we summarize the current knowledge of miRNAs as the promising biomarkers for nephrotic syndrome.
Collapse
|