1
|
Goto Y. Immunomodulation by Leishmania parasites: Potential for controlling other diseases. Parasitol Int 2025; 104:102987. [PMID: 39515578 DOI: 10.1016/j.parint.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
In the mammalian hosts, Leishmania parasites survive and proliferate within phagolysosomes of macrophages. To avoid being killed by the immune cells, Leishmania parasites utilize their molecules to manipulate macrophages' functions for survival. Targets of such immunomodulatory molecules are not limited to macrophages, as Leishmania-derived molecules sometimes show influence on other immune cells such as neutrophils, dendritic cells, T cells and B cells. This review covers research on immunomodulation of host immunity by Leishmania parasites and introduces some examples of parasite-derived molecules participating in the immunomodulation. For example, Leishmania cell surface lipophosphoglycan (LPG) can modulate TLR2 signaling and PI3K/Akt axis in macrophages leading to induction of Th2 cells. Because chronic secretion of inflammatory cytokines is one of the causes of immune-mediated diseases such as atherosclerosis, Crohn's disease, and rheumatoid arthritis, LPG may be useful as a drug to suppress the inflammatory conditions. The unique characteristics of leishmanial molecules pose a promise as a source of immunomodulatory drugs for controlling diseases other than leishmaniasis.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| |
Collapse
|
2
|
Haldar R, Halder P, Koley H, Miyoshi SI, Das S. A newly developed oral infection mouse model of shigellosis for immunogenicity and protective efficacy studies of a candidate vaccine. Infect Immun 2024:e0034624. [PMID: 39692481 DOI: 10.1128/iai.00346-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
Shigella infection poses a significant public health challenge in the developing world. However, lack of a widely available mouse model that replicates human shigellosis creates a major bottleneck to better understanding of disease pathogenesis and development of newer drugs and vaccines. BALB/c mice pre-treated with streptomycin and iron (FeCl3) plus desferrioxamine intraperitoneally followed by oral infection with virulent Shigella flexneri 2a resulted in diarrhea, loss of body weight, bacterial colonization and progressive colitis characterized by disruption of epithelial lining, loss of crypt architecture with goblet cell depletion, increased polymorphonuclear infiltration into the mucosa, submucosal swelling (edema), and raised proinflammatory cytokines and chemokines in the large intestine. To evaluate the usefulness of the model for vaccine efficacy studies, mice were immunized intranasally with a recombinant protein vaccine containing Shigella invasion protein invasion plasmid antigen B (IpaB). Vaccinated mice conferred protection against Shigella, indicating that the model is suitable for testing of vaccine candidates. To protect both Shigella and Salmonella, a chimeric recombinant vaccine (rIpaB-T2544) was developed by fusing IpaB with Salmonella outer membrane protein T2544. Vaccinated mice developed antigen-specific serum IgG and IgA antibodies and a balanced Th1/Th2 response and were protected against oral challenge with Shigella (S. flexneri 2a, Shigella dysenteriae, and Shigella sonnei) using our present mouse model and Salmonella (Salmonella Typhi and Paratyphi) using an iron overload mouse model. We describe here the development of an oral Shigella infection model in wild-type mouse. This model was successfully used to demonstrate the immunogenicity and protective efficacy of a candidate protein subunit vaccine against Shigella.
Collapse
Affiliation(s)
- Risha Haldar
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Shin-Ichi Miyoshi
- Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Santasabuj Das
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
- Division of Biological Science, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
3
|
Silva RL, Lopes AH, Becerra A, Fonseca MM, Maganin A, Saraiva ALL, Cunha FQ, Alves-Filho JC, Zamboni DS, Cunha TM. Molecular mechanisms of zymosan-induced inflammasome activation in macrophages. Cell Signal 2024; 124:111418. [PMID: 39304096 DOI: 10.1016/j.cellsig.2024.111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Zymosan is a β-glucan-rich component derived from the cell walls of Saccharomyces cerevisiae extensively used in research for its potent immunomodulatory properties. It can prompt inflammatory responses such as peritonitis and arthritis, and is particularly used to study the immune response to fungal particles. Although the zymosan induced-release of the proinflammatory cytokine IL-1β by macrophages is an essential mechanism for combating fungal infection and inducing inflammation, the exact processes leading to its release remain not well understood. In this study, we uncover the intracellular mechanisms involved in zymosan induced-release of active IL-1β by peritoneal macrophages. Zymosan initiates pro-IL-1β formation through TLR2/MyD88 activation; however, Dectin-1 activation only amplify the conversion of pro-IL-1β into its active form. The conversion of inactive to active IL-1β upon zymosan stimulation depends on the NLRP3, ASC, and caspase-1 driven by the decrease in intracellular potassium ions. Notably, zymosan-induced activation of caspase-1 does not require phagocytosis. Instead, zymosan induces a rapid drop in the intracellular ATP concentration, which occurs concomitant with caspase-1 and IL-1β activation. Accordingly, disruption of glycolytic flux during zymosan stimulation promotes an additional reduction of intracellular ATP and concurrently amplifies the activation of caspase-1 and IL-1β. These results reveal that fungal recognition by macrophages results in a metabolic dysfunction, leading to a decrease of intracellular ATP associated with inflammasome activation.
Collapse
Affiliation(s)
- Rangel L Silva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil.
| | - Alexandre H Lopes
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Amanda Becerra
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Brazil
| | - Miriam M Fonseca
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Alexandre Maganin
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Andre L L Saraiva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Jose C Alves-Filho
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil
| | - Dario S Zamboni
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo (USP), Brazil.
| |
Collapse
|
4
|
de Souza JL, de Farias Guerra MV, de Mesquita TGR, Junior JDES, Sequera HDG, da Silva LS, da Silva LA, Moura FM, Menescal LSF, da Costa Torres J, Pinheiro SK, Kerr HKA, Ogusku MM, de Souza MLG, de Moura Neto JP, Sadahiro A, Ramasawmy R. Caspase-1 Variants and Plasma IL-1β in Patients with Leishmania guyanensis Cutaneous Leishmaniasis in the Amazonas. Int J Mol Sci 2024; 25:12438. [PMID: 39596502 PMCID: PMC11594320 DOI: 10.3390/ijms252212438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Leishmaniasis, a disease caused by protozoan Leishmania spp., exhibits a broad range of clinical manifestations. Host resistance or susceptibility to infections is often influenced by the genetic make-up associated with natural immunity. Caspase-1, a key component of the NLRP3 inflammasome, is critical for processing pro-IL-1β into its active form, IL-1β, while CARD8 functions as an NLRP3 inflammasome inhibitor. We conducted a case-control study comparing L. guyanensis-cutaneous leishmaniasis (Lg-CL) patients with healthy individuals (HCs) by analyzing the CASP1 genetic variants rs530537A>G, rs531542C>T, rs531604A>T and rs560880G>T. Additionally, a combined analysis of CARD8rs2043211A>T with CASP1rs530537 was performed. The genotype distribution for the four variants showed no significant differences between Lg-CL patients and HCs. However, the haplotype analysis of the four CASP1 variants identified the GTTT haplotype as associated with a 19% decreased likelihood of Lg-CL development, suggesting a protective effect against disease progression. The combined analysis of CARD8 with CASP1 variants indicated that individuals homozygous for both variants (GG/TT) exhibited a 38% reduced risk of developing Lg-CL (OR = 0.62 [95%CI:0.46-0.83]) in comparison to individuals with other genotype combinations. No correlation was found between the CASP1 variant genotypes and plasma IL-1β levels. CASP1 may act as a genetic modifier in Lg-CL.
Collapse
Affiliation(s)
- Josué Lacerda de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazonia Legal (Rede Bionorte), Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (J.L.d.S.); (L.S.d.S.)
- Faculdade de Medicina, Universidade Nilton Lins, Manaus 69058030, Amazonas, Brazil;
| | - Marcus Vinitius de Farias Guerra
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040000, Amazonas, Brazil (L.A.d.S.); (J.d.C.T.); (M.L.G.d.S.)
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - Tirza Gabrielle Ramos de Mesquita
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - José do Espírito Santo Junior
- Faculdade de Medicina, Universidade Nilton Lins, Manaus 69058030, Amazonas, Brazil;
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69060001, Amazonas, Brazil; (L.S.F.M.); (J.P.d.M.N.); (A.S.)
| | - Hector David Graterol Sequera
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - Lener Santos da Silva
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazonia Legal (Rede Bionorte), Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (J.L.d.S.); (L.S.d.S.)
- Faculdade de Medicina, Universidade Nilton Lins, Manaus 69058030, Amazonas, Brazil;
| | - Larissa Almeida da Silva
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040000, Amazonas, Brazil (L.A.d.S.); (J.d.C.T.); (M.L.G.d.S.)
| | - Filipe Menezes Moura
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - Lizandra Stephanny Fernandes Menescal
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69060001, Amazonas, Brazil; (L.S.F.M.); (J.P.d.M.N.); (A.S.)
| | - Júlia da Costa Torres
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040000, Amazonas, Brazil (L.A.d.S.); (J.d.C.T.); (M.L.G.d.S.)
| | - Suzana Kanawati Pinheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - Herllon Karllos Athaydes Kerr
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - Mauricio Morishi Ogusku
- Laboratório de Micobacteriologia, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060001, Amazonas, Brazil;
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas—REGESAM, Manaus 69055038, Amazonas, Brazil
| | - Mara Lúcia Gomes de Souza
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040000, Amazonas, Brazil (L.A.d.S.); (J.d.C.T.); (M.L.G.d.S.)
| | - Jose Pereira de Moura Neto
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69060001, Amazonas, Brazil; (L.S.F.M.); (J.P.d.M.N.); (A.S.)
| | - Aya Sadahiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69060001, Amazonas, Brazil; (L.S.F.M.); (J.P.d.M.N.); (A.S.)
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas—REGESAM, Manaus 69055038, Amazonas, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazonia Legal (Rede Bionorte), Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (J.L.d.S.); (L.S.d.S.)
- Faculdade de Medicina, Universidade Nilton Lins, Manaus 69058030, Amazonas, Brazil;
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69060001, Amazonas, Brazil; (L.S.F.M.); (J.P.d.M.N.); (A.S.)
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas—REGESAM, Manaus 69055038, Amazonas, Brazil
| |
Collapse
|
5
|
Silva EO, Cruz-Borges PF, Jensen BB, Santana RB, Pinheiro FG, Moura HSD, Porto E, Malheiro A, Costa AG, Barcellos JFM, Espir TT, Franco AMR. Immunoregulatory effects of soluble antigens of Leishmania sp. in human lymphocytes in vitro. BRAZ J BIOL 2024; 84:e284001. [PMID: 39319928 DOI: 10.1590/1519-6984.284001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/26/2024] [Indexed: 09/26/2024] Open
Abstract
The clinical manifestations of cutaneous leishmaniasis (CL) depend not only on the infecting species involved, but also on the immune response of the individual. Although not yet well understood in humans, parasite survival and persistence are related to the cytokine profile and T cell proliferation, with the Th1 profile being related to cure, and the Th2 profile to disease progression. Considering the need for studies focused on the species with the highest circulation in the state of Amazonas, this study aimed to analyze the immunoregulation stimulated by soluble antigens (SLAs) of Leishmania (L.) amazonensis and Leishmania (V.) guyanensis in human lymphocytes in vitro, in order to understand the immune response of patients with CL. Lymphoproliferation was evaluated against stimuli of SLAs from L. amazonensis (100 µg/mL), SLAs from L. guyanensis (100 µg/mL) and phytohemagglutinin (10 µg/mL) using a BrdU Cell Proliferation ELISA kit after 72 h of incubation. Quantification of the cytokines IL-1b, IL-6, IL-8, IL-10, IL-12 and TNF was performed using the BD™ cytometric bead array human Th1/Th2/Th17 cytokine kit. Our results demonstrated that soluble antigens from L. amazonensis and L. guyanensis stimulated the lymphoproliferation of PBMCs from patients primo-infected with CL. Among the cytokines dosed, the highest concentrations were of IL-6 and IL-8, thus demonstrating that the soluble antigens evaluated are capable of inducing regulatory mechanisms.
Collapse
Affiliation(s)
- E O Silva
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - P F Cruz-Borges
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - B B Jensen
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - R B Santana
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Imunologia, Manaus, AM, Brasil
| | - F G Pinheiro
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - H S D Moura
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP, Brasil
| | - E Porto
- Instituto de Educação Particular Brasileiro, Polo Pocinhos, PB, Brasil
| | - A Malheiro
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Imunologia, Manaus, AM, Brasil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, AM, Brasil
| | - A G Costa
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Imunologia, Manaus, AM, Brasil
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Biotecnologia, Manaus, AM, Brasil
| | - J F M Barcellos
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Departamento de Morfologia, Manaus, AM, Brasil
| | - T T Espir
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Manaus, AM, Brasil
| | - A M R Franco
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| |
Collapse
|
6
|
Tagliazucchi L, Pinetti D, Genovese F, Malpezzi G, Perea Martinez A, Manzano JI, García-Hernández R, Cole AR, Kwon BR, Aiello D, Brooks BW, Thoré ESJ, Bertram MG, Gamarro F, Costi MP. Deciphering Host-Parasite Interplay in Leishmania Infection through a One Health View of Proteomics Studies on Drug Resistance. ACS Infect Dis 2024; 10:3202-3221. [PMID: 39088331 PMCID: PMC11520909 DOI: 10.1021/acsinfecdis.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024]
Abstract
Recent efforts in the study of vector-borne parasitic diseases (VBPDs) have emphasized an increased consideration for preventing drug resistance and promoting the environmental safety of drugs, from the beginning of the drug discovery pipeline. The intensive use of the few available antileishmanial drugs has led to the spreading of hyper-resistant Leishmania infantum strains, resulting in a chronic burden of the disease. In the present work, we have investigated the biochemical mechanisms of resistance to antimonials, paromomycin, and miltefosine in three drug-resistant parasitic strains from human clinical isolates, using a whole-cell mass spectrometry proteomics approach. We identified 14 differentially expressed proteins that were validated with their transcripts. Next, we employed functional association networks to identify parasite-specific proteins as potential targets for novel drug discovery studies. We used SeqAPASS analysis to predict susceptibility based on the evolutionary conservation of protein drug targets across species. MATH-domain-containing protein, adenosine triphosphate (ATP)-binding cassette B2, histone H4, calpain-like cysteine peptidase, and trypanothione reductase emerged as top candidates. Overall, this work identifies new biological targets for designing drugs to prevent the development of Leishmania drug resistance, while aligning with One Health principles that emphasize the interconnected health of people, animals, and ecosystems.
Collapse
Affiliation(s)
- Lorenzo Tagliazucchi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Clinical
and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Diego Pinetti
- Centro
Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Filippo Genovese
- Centro
Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Giulia Malpezzi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Clinical
and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Ana Perea Martinez
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - José I. Manzano
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Raquel García-Hernández
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alexander R. Cole
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Ba Reum Kwon
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Daniele Aiello
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Bryan W. Brooks
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Eli S. J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36 Umeå, Sweden
- TRANSfarm-Science,
Engineering, & Technology Group, KU
Leuven, Bijzondereweg
12, 3360 Lovenjoel, Belgium
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- School
of Biological Sciences, Monash University, 25 Rainforest Walk, 3800 Melbourne, Australia
| | - Francisco Gamarro
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
7
|
Goris M, Passelli K, Peyvandi S, Díaz-Varela M, Billion O, Prat-Luri B, Demarco B, Desponds C, Termote M, Iniguez E, Dey S, Malissen B, Kamhawi S, Hurrell BP, Broz P, Tacchini-Cottier F. NLRP1-dependent activation of Gasdermin D in neutrophils controls cutaneous leishmaniasis. PLoS Pathog 2024; 20:e1012527. [PMID: 39250503 PMCID: PMC11412672 DOI: 10.1371/journal.ppat.1012527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/19/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Intracellular pathogens that replicate in host myeloid cells have devised ways to inhibit the cell's killing machinery. Pyroptosis is one of the host strategies used to reduce the pathogen replicating niche and thereby control its expansion. The intracellular Leishmania parasites can survive and use neutrophils as a silent entry niche, favoring subsequent parasite dissemination into the host. Here, we show that Leishmania mexicana induces NLRP1- and caspase-1-dependent Gasdermin D (GSDMD)-mediated pyroptosis in neutrophils, a process critical to control the parasite-induced pathology. In the absence of GSDMD, we observe an increased number of infected dermal neutrophils two days post-infection. Using adoptive neutrophil transfer in neutropenic mice, we show that pyroptosis contributes to the regulation of the neutrophil niche early after infection. The critical role of neutrophil pyroptosis and its positive influence on the regulation of the disease outcome was further demonstrated following infection of mice with neutrophil-specific deletion of GSDMD. Thus, our study establishes neutrophil pyroptosis as a critical regulator of leishmaniasis pathology.
Collapse
Affiliation(s)
- Michiel Goris
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Katiuska Passelli
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Sanam Peyvandi
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Miriam Díaz-Varela
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Oaklyne Billion
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Borja Prat-Luri
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Benjamin Demarco
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Chantal Desponds
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Manon Termote
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Eva Iniguez
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Somaditya Dey
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Post Graduate Department of Zoology, Barasat Government College, Barasat, West Bengal, India
| | - Bernard Malissen
- INSERM, CNRS, Centre D’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Benjamin P. Hurrell
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Fabienne Tacchini-Cottier
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
8
|
Avishek K, Beg MA, Vats K, Singh AK, Dey R, Singh KP, Singh RK, Gannavaram S, Ramesh V, Mulla MSA, Bhatnagar U, Singh S, Nakhasi HL, Salotra P, Selvapandiyan A. Manufacturing and preclinical toxicity of GLP grade gene deleted attenuated Leishmania donovani parasite vaccine. Sci Rep 2024; 14:14636. [PMID: 38918456 PMCID: PMC11199483 DOI: 10.1038/s41598-024-64592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Centrin1 gene deleted Leishmania donovani parasite (LdCen1-/-) was developed and extensively tested experimentally as an intracellular stage-specific attenuated and immunoprotective live parasite vaccine candidate ex vivo using human PBMCs and in vivo in animals. Here we report manufacturing and pre-clinical evaluation of current Good-Laboratory Practice (cGLP) grade LdCen1-/- parasites, as a prerequisite before proceeding with clinical trials. We screened three batches of LdCen1-/- parasites manufactured in bioreactors under cGLP conditions, for their consistency in genetic stability, attenuation, and safety. One such batch was preclinically tested using human PBMCs and animals (hamsters and dogs) for its safety and protective immunogenicity. The immunogenicity of the CGLP grade LdCen1-/- parasites was similar to one grown under laboratory conditions. The cGLP grade LdCen1-/- parasites were found to be safe and non-toxic in hamsters and dogs even at 3 times the anticipated vaccine dose. When PBMCs from healed visceral leishmaniasis (VL) cases were infected with cGLP LdCen1-/-, there was a significant increase in the stimulation of cytokines that contribute to protective responses against VL. This effect, measured by multiplex ELISA, was greater than that observed in PBMCs from healthy individuals. These results suggest that cGLP grade LdCen1-/- manufactured under cGMP complaint conditions can be suitable for future clinical trials.
Collapse
Affiliation(s)
- Kumar Avishek
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Mirza A Beg
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Kavita Vats
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Avinash Kumar Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kamaleshwar P Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Rajesh Kumar Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - V Ramesh
- Department of Dermatology and STD, ESIC Medical College, Faridabad, Haryana, 121001, India
| | | | - Upendra Bhatnagar
- Vimta Laboratories, Cherlapally, Hyderabad, Telangana, 500051, India
| | - Sanjay Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | | |
Collapse
|
9
|
Alonaizan R. Molecular regulation of NLRP3 inflammasome activation during parasitic infection. Biosci Rep 2024; 44:BSR20231918. [PMID: 38623843 PMCID: PMC11096646 DOI: 10.1042/bsr20231918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Parasitic diseases are a serious global health concern, causing many common and severe infections, including Chagas disease, leishmaniasis, and schistosomiasis. The NLRP3 inflammasome belongs to the NLR (nucleotide-binding domain leucine-rich-repeat-containing proteins) family, which are cytosolic proteins playing key roles in the detection of pathogens. NLRP3 inflammasomes are activated in immune responses to Plasmodium, Leishmania, Toxoplasma gondii, Entamoeba histolytica, Trypanosoma cruzi, and other parasites. The role of NLRP3 is not fully understood, but it is a crucial component of the innate immune response to parasitic infections and its functions as a sensor triggering the inflammatory response to the invasive parasites. However, while this response can limit the parasites' growth, it can also result in potentially catastrophic host pathology. This makes it essential to understand how NLRP3 interacts with parasites to initiate the inflammatory response. Plasmodium hemozoin, Leishmania glycoconjugate lipophosphoglycan (LPG) and E. histolytica Gal/GalNAc lectin can stimulate NLRP3 activation, while the dense granule protein 9 (GRA9) of T. gondii has been shown to suppress it. Several other parasitic products also have diverse effects on NLRP3 activation. Understanding the mechanism of NLRP3 interaction with these products will help to develop advanced therapeutic approaches to treat parasitic diseases. This review summarizes current knowledge of the NLRP3 inflammasome's action on the immune response to parasitic infections and aims to determine the mechanisms through which parasitic molecules either activate or inhibit its action.
Collapse
Affiliation(s)
- Rasha Alonaizan
- Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Wu TL, Wang BN, Yang AJ, Wang L, You YN, Zhou RQ. C-type lectin 4 of Toxocara canis activates NF-ĸB and MAPK pathways by modulating NOD1/2 and RIP2 in murine macrophages in vitro. Parasitol Res 2024; 123:189. [PMID: 38639821 DOI: 10.1007/s00436-024-08212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Toxocara canis is a parasitic zoonose that is distributed worldwide and is one of the two pathogens causing toxocariasis. After infection, it causes serious public health and safety problems, which pose significant veterinary and medical challenges. To better understand the regulatory effects of T. canis infection on the host immune cells, murine macrophages (RAW264.7) were incubated with recombinant T. canis C-type lectin 4 (rTc-CTL-4) protein in vitro. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2), receptor-interacting protein 2 (RIP2), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) on mRNA level and protein expression level in macrophages. Our results indicated that 10 μg/mL rTc-CTL-4 protein could modulate the expression of NOD1, NOD2, and RIP2 at both the transcriptional and translational levels. The protein translation levels of NF-κB, P-p65, p38, and P-p38 in macrophages were also modulated by rTc-CTL-4 protein. Macrophages were co-incubated with rTc-CTL-4 protein after siRNA silencing of NOD1, NOD2, and RIP2. The expression levels of NF-κB, P-p65, p38, and P-p38 were significantly changed compared with the negative control groups (Neg. Ctrl.). Taken together, rTc-CTL-4 protein seemed to act on NOD1/2-RIP2-NF-κB and MAPK signaling pathways in macrophages and might activate MAPK and NF-κB signaling pathways by regulating NOD1, NOD2, and RIP2. The insights from the above studies could contribute to our understanding of immune recognition and regulatory mechanisms of T. canis infection in the host animals.
Collapse
Affiliation(s)
- Tian-Le Wu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Bing-Nan Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Ai-Jia Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Lei Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yi-Ning You
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Rong-Qiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
11
|
La Rosa F, Varotto-Boccazzi I, Saresella M, Marventano I, Cattaneo GM, Hernis A, Piancone F, Otranto D, Epis S, Bandi C, Clerici M. The non-pathogenic protozoon Leishmania tarentolae interferes with the activation of NLRP3 inflammasome in human cells: new perspectives in the control of inflammation. Front Immunol 2024; 15:1298275. [PMID: 38707903 PMCID: PMC11066211 DOI: 10.3389/fimmu.2024.1298275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Background Innate immune responses against infectious agents can act as triggers of inflammatory diseases. On the other hand, various pathogens have developed mechanisms for the evasion of the immune response, based on an inhibition of innate immunity and inflammatory responses. Inflammatory diseases could thus be controlled through the administration of pathogens or pathogen-derived molecules, capable of interfering with the mechanisms at the basis of inflammation. In this framework, the NLRP3 inflammasome is an important component in innate antimicrobial responses and a major player in the inflammatory disease. Parasites of the genus Leishmania are master manipulators of innate immune mechanisms, and different species have been shown to inhibit inflammasome formation. However, the exploitation of pathogenic Leishmania species as blockers of NLRP3-based inflammatory diseases poses safety concerns. Methods To circumvent safety issues associated with pathogenic parasites, we focused on Leishmania tarentolae, a species of Leishmania that is not infectious to humans. Because NLRP3 typically develops in macrophages, in response to the detection and engulfment microorganisms, we performed our experiments on a monocyte-macrophage cell line (THP-1), either wild type or knockout for ASC, a key component of NLRP3 formation, with determination of cytokines and other markers of inflammation. Results L. tarentolae was shown to possess the capability of dampening the formation of NLRP3 inflammasome and the consequent expression of pro-inflammatory molecules, with minor differences compared to effects of pathogenic Leishmania species. Conclusion The non-pathogenic L. tarentolae appears a promising pro-biotic microbe with anti-inflammatory properties or a source of immune modulating cellular fractions or molecules, capable of interfering with the formation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center 'Romeo ed Enrica Invernizzi', University of Milan, Milan, Italy
| | | | | | | | - Ambra Hernis
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Sara Epis
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center 'Romeo ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center 'Romeo ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Valério-Bolas A, Meunier M, Palma-Marques J, Rodrigues A, Santos AM, Nunes T, Ferreira R, Armada A, Alves JC, Antunes W, Cardoso I, Mesquita-Gabriel S, Lobo L, Alexandre-Pires G, Marques L, Pereira da Fonseca I, Santos-Gomes G. Exploiting Leishmania-Primed Dendritic Cells as Potential Immunomodulators of Canine Immune Response. Cells 2024; 13:445. [PMID: 38474410 DOI: 10.3390/cells13050445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Dendritic cells (DCs) capture pathogens and process antigens, playing a crucial role in activating naïve T cells, bridging the gap between innate and acquired immunity. However, little is known about DC activation when facing Leishmania parasites. Thus, this study investigates in vitro activity of canine peripheral blood-derived DCs (moDCs) exposed to L. infantum and L. amazonensis parasites and their extracellular vesicles (EVs). L. infantum increased toll-like receptor 4 gene expression in synergy with nuclear factor κB activation and the generation of pro-inflammatory cytokines. This parasite also induced the expression of class II molecules of major histocompatibility complex (MHC) and upregulated co-stimulatory molecule CD86, which, together with the release of chemokine CXCL16, can attract and help in T lymphocyte activation. In contrast, L. amazonensis induced moDCs to generate a mix of pro- and anti-inflammatory cytokines, indicating that this parasite can establish a different immune relationship with DCs. EVs promoted moDCs to express class I MHC associated with the upregulation of co-stimulatory molecules and the release of CXCL16, suggesting that EVs can modulate moDCs to attract cytotoxic CD8+ T cells. Thus, these parasites and their EVs can shape DC activation. A detailed understanding of DC activation may open new avenues for the development of advanced leishmaniasis control strategies.
Collapse
Affiliation(s)
- Ana Valério-Bolas
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Mafalda Meunier
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Joana Palma-Marques
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Armanda Rodrigues
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Ana Margarida Santos
- Divisão de Medicina Veterinária, Guarda Nacional Republicana, 1200-771 Lisbon, Portugal
| | - Telmo Nunes
- Microscopy Center, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Rui Ferreira
- Banco de Sangue Animal (BSA), 4100-462 Porto, Portugal
| | - Ana Armada
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - João Carlos Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana, 1200-771 Lisbon, Portugal
| | - Wilson Antunes
- Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), 1849-012 Lisbon, Portugal
| | - Inês Cardoso
- Banco de Sangue Animal (BSA), 4100-462 Porto, Portugal
| | - Sofia Mesquita-Gabriel
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Lis Lobo
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Graça Alexandre-Pires
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1200-771 Lisbon, Portugal
| | - Luís Marques
- BioSystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon-FCUL-BioISI Ce3CE, 1749-016 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1200-771 Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| |
Collapse
|
13
|
Volkmar K, Jaedtka M, Baars I, Walber B, Philipp MS, Bagola K, Müller AJ, Heine H, van Zandbergen G. Investigating pyroptosis as a mechanism of L. major cell-to-cell spread in the human BLaER1 infection model. Mol Microbiol 2024; 121:453-469. [PMID: 37612878 DOI: 10.1111/mmi.15142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023]
Abstract
Leishmania is the causative agent of the tropical neglected disease leishmaniasis and infects macrophages as its definitive host cell. In order to sustain and propagate infections, Leishmania parasites have to complete cycles of exit and re-infection. Yet, the mechanism driving the parasite spread to other cells remains unclear. Recent studies reported pro-inflammatory monocytes as replicative niche of Leishmania major and showed prolonged expression of IL-1β at the site of infection, indicating an activation of the NLRP3 inflammasome and pointing toward pyroptosis as a possible mechanism of parasite spread. To address the species-specific inflammasome activation of human cells, we characterized the BLaER1 monocytes as a model for L. major infection. We found that BLaER1 monocytes support infection and activation by Leishmania parasites to the same extent as primary human macrophages. Harnessing the possibilities of this infection model, we first showed that BLaER1 GSDMD-/- cells, which carry a deletion of the pore-forming protein gasdermin D, are more resistant to pyroptotic cell death and, concomitantly, display a strongly delayed release of intracellular parasite. Using that knockout in a co-incubation assay in comparison with wild-type BLaER1 cells, we demonstrate that impairment of the pyroptosis pathway leads to lower rates of parasite spread to new host cells, thus, implicating pyroptotic cell death as a possible exit mechanism of L. major in pro-inflammatory microenvironments.
Collapse
Affiliation(s)
- Kerren Volkmar
- Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Moritz Jaedtka
- Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Iris Baars
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Bianca Walber
- Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany
| | | | - Katrin Bagola
- Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany
| | - Andreas J Müller
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel-Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
14
|
Zhang R, Zhang Y, Yan SW, Cheng YK, Zheng WW, Long SR, Wang ZQ, Cui J. Galactomannan inhibits Trichinella spiralis invasion of intestinal epithelium cells and enhances antibody-dependent cellular cytotoxicity related killing of larvae by driving macrophage polarization. Parasite 2024; 31:6. [PMID: 38334686 PMCID: PMC10854486 DOI: 10.1051/parasite/2024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Previous studies have shown that recombinant Trichinella spiralis galectin (rTsgal) is characterized by a carbohydrate recognition domain sequence motif binding to beta-galactoside, and that rTsgal promotes larval invasion of intestinal epithelial cells. Galactomannan is an immunostimulatory polysaccharide composed of a mannan backbone with galactose residues. The aim of this study was to investigate whether galactomannan inhibits larval intrusion of intestinal epithelial cells and enhances antibody-dependent cellular cytotoxicity (ADCC), killing newborn larvae by polarizing macrophages to the M1 phenotype. The results showed that galactomannan specially binds to rTsgal, and abrogated rTsgal facilitation of larval invasion of intestinal epithelial cells. The results of qPCR, Western blotting, and flow cytometry showed that galactomannan and rTsgal activated macrophage M1 polarization, as demonstrated by high expression of iNOS (M1 marker) and M1 related genes (IL-1β, IL-6, and TNF-α), and increased CD86+ macrophages. Galactomannan and rTsgal also increased NO production. The killing ability of macrophage-mediated ADCC on larvae was also significantly enhanced in galactomannan- and rTsgal-treated macrophages. The results demonstrated that Tsgal may be considered a potential vaccine target molecule against T. spiralis invasion, and galactomannan may be a novel adjuvant therapeutic agent and potential vaccine adjuvant against T. spiralis infection.
Collapse
Affiliation(s)
- Ru Zhang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Yao Zhang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Shu Wei Yan
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Yong Kang Cheng
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Wen Wen Zheng
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Shao Rong Long
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Zhong Quan Wang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Jing Cui
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
15
|
Costa SF, Soares MF, Poleto Bragato J, dos Santos MO, Rebech GT, de Freitas JH, de Lima VMF. MicroRNA-194 regulates parasitic load and IL-1β-dependent nitric oxide production in the peripheral blood mononuclear cells of dogs with leishmaniasis. PLoS Negl Trop Dis 2024; 18:e0011789. [PMID: 38241360 PMCID: PMC10798644 DOI: 10.1371/journal.pntd.0011789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/11/2023] [Indexed: 01/21/2024] Open
Abstract
Domestic dogs are the primary urban reservoirs of Leishmania infantum, the causative agent of visceral leishmaniasis. In Canine Leishmaniasis (CanL), modulation of the host's immune response may be associated with the expression of small non-coding RNAs called microRNA (miR). miR-194 expression increases in peripheral blood mononuclear cells (PBMCs) of dogs with leishmaniasis with a positive correlation with the parasite load and in silico analysis demonstrated that the TRAF6 gene is the target of miR-194 in PBMCs from diseased dogs. Here, we isolated PBMCs from 5 healthy dogs and 28 dogs with leishmaniasis, naturally infected with L. infantum. To confirm changes in miR-194 and TRAF6 expression, basal expression of miR-194 and gene expression of TRAF6 was measured using qPCR. PBMCs from healthy dogs and dogs with leishmaniasis were transfected with miR-194 scramble, mimic, and inhibitor and cultured at 37° C, 5% CO2 for 48 hours. The expression of possible targets was measured: iNOS, NO, T-bet, GATA3, and FoxP3 were measured using flow cytometry; the production of cytokines IL-1β, IL-4, IL-6, IL-10, TNF-α, IFN-γ, and TGF-β in cell culture supernatants was measured using capture enzyme-linked immunosorbent assays (ELISA). Parasite load was measured using cytometry and qPCR. Functional assays followed by miR-194 inhibitor and IL-1β blockade and assessment of NO production were also performed. Basal miR-194 expression was increased in PBMC from dogs with Leishmaniasis and was negatively correlated with TRAF6 expression. The mimic of miR-194 promoted an increase in parasite load. There were no significant changes in T-bet, GATA3, or FoxP3 expression with miR-194 enhancement or inhibition. Inhibition of miR-194 increased IL-1β and NO in PBMCs from diseased dogs, and blockade of IL-1β following miR-194 inhibition decreased NO levels. These findings suggest that miR-194 is upregulated in PBMCs from dogs with leishmaniasis and increases parasite load, possibly decreasing NO production via IL-1β. These results increase our understanding of the mechanisms of evasion of the immune response by the parasite and the identification of possible therapeutic targets.
Collapse
Affiliation(s)
- Sidnei Ferro Costa
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Matheus Fujimura Soares
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jaqueline Poleto Bragato
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Marilene Oliveira dos Santos
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Gabriela Torres Rebech
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jéssica Henrique de Freitas
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Valéria Marçal Felix de Lima
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| |
Collapse
|
16
|
Amaral MP, Cardoso FD, de Farias IS, de Souza RQ, Matteucci KC, Torrecilhas AC, Bortoluci KR. NAIP/NLRC4 inflammasome participates in macrophage responses to Trypanosoma cruzi by a mechanism that relies on cathepsin-dependent caspase-1 cleavage. Front Immunol 2023; 14:1282856. [PMID: 38124741 PMCID: PMC10731265 DOI: 10.3389/fimmu.2023.1282856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Inflammasomes are large protein complexes that, once activated, initiate inflammatory responses by activating the caspase-1 protease. They play pivotal roles in host defense against pathogens. The well-established role of NAIP/NLRC4 inflammasome in bacterial infections involves NAIP proteins functioning as sensors for their ligands. However, recent reports have indicated the involvement of NLRC4 in non-bacterial infections and sterile inflammation, even though the role of NAIP proteins and the exact molecular mechanisms underlying inflammasome activation in these contexts remain to be elucidated. In this study, we investigated the activation of the NAIP/NLRC4 inflammasome in response to Trypanosoma cruzi, the protozoan parasite responsible for causing Chagas disease. This parasite has been previously demonstrated to activate NLRP3 inflammasomes. Here we found that NAIP and NLRC4 proteins are also required for IL-1β and Nitric Oxide (NO) release in response to T. cruzi infection, with their absence rendering macrophages permissive to parasite replication. Moreover, Nlrc4 -/- and Nlrp3 -/- macrophages presented similar impaired responses to T. cruzi, underscoring the non-redundant roles played by these inflammasomes during infection. Notably, it was the live trypomastigotes rather than soluble antigens or extracellular vesicles (EVs) secreted by them, that activated inflammasomes in a cathepsins-dependent manner. The inhibition of cathepsins effectively abrogated caspase-1 cleavage, IL-1β and NO release, mirroring the phenotype observed in Nlrc4 -/-/Nlrp3 -/- double knockout macrophages. Collectively, our findings shed light on the pivotal role of the NAIP/NLRC4 inflammasome in macrophage responses to T. cruzi infection, providing new insights into its broader functions that extend beyond bacterial infections.
Collapse
Affiliation(s)
- Marcelo Pires Amaral
- Departamento de Farmacologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Felipe Daniel Cardoso
- Departamento de Farmacologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Ingrid Sancho de Farias
- Departamento de Farmacologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Rafael Queiroz de Souza
- Departamento de Farmacologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Kely Catarine Matteucci
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz (FIOCRUZ), Faculdade de Medicina de Ribeirão Preto (FMRP), Ribeirão Preto, SP, Brazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Karina Ramalho Bortoluci
- Departamento de Farmacologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
17
|
Divenuto F, Marascio N, Quirino A, Giancotti A, Filice S, Gigliotti S, Campolo MP, Campolo M, Barreca GS, Lamberti AG, Castelli G, Bruno F, Matera G. Cellular mediators in human leishmaniasis: Critical determinants in parasite killing or disease progression. Acta Trop 2023; 248:107037. [PMID: 37805040 DOI: 10.1016/j.actatropica.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Data on cellular immunity mediators in the early phase of human leishmaniasis are still limited and controversial. In order to mimic the changes of humoral mediators during the early phase of human natural infection, some Th1, Th2, Treg, and Breg cytokines, MCP-1, and the nitric oxide (NO) from human PBMC, stimulated by Leishmania infantum, Leishmania major, Leishmania donovani and Leishmania tropica infective metacyclic promastigotes, were determined. After 4 h of L. major, L. donovani, and L. tropica challenge, TNFα, IL-1β, IL-6 levels were significantly higher than negative control cultures with saline (SF) instead of Leishmania promastigotes, unlike L. infantum-stimulated TNFα and L. major-stimulated IL-1β. We obtained higher levels of IL-4 and IL-10 cytokines after stimulation of human PBMCs by L. infantum and L. donovani, compared to those observed after the challenge of PBMCs by L. major and L. tropica. Regarding IL-35, such cytokine levels were significantly increased following infection with L. infantum and L. donovani, in contrast to L. major and L. tropica. Up to our knowledge, we are the first to study the effect of four different species of Leishmania on IL-35 levels in human cells. Our study highlights how several Leishmania species can up-regulate different groups of cytokines (Th1, Th2, Treg and Breg) and modulate NO release in a different way. This original aspect can be explained by different Leishmania cell products, such as LPG, obtained from different strains/species of live parasites. Our findings would contribute to the development of new therapeutics or vaccination strategies.
Collapse
Affiliation(s)
- F Divenuto
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - N Marascio
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - A Quirino
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy.
| | - A Giancotti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - S Filice
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - S Gigliotti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - M P Campolo
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - M Campolo
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - G S Barreca
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - A G Lamberti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - G Castelli
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - F Bruno
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - G Matera
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
18
|
Liu RD, Meng XY, Le Li C, Xu QY, Lin XZ, Dong BR, Ye CY, Miao TT, Si XY, Long SR, Cui J, Wang ZQ. Trichinella spiralis cathepsin L induces macrophage M1 polarization via the NF-κB pathway and enhances the ADCC killing of newborn larvae. Parasit Vectors 2023; 16:433. [PMID: 37993938 PMCID: PMC10666456 DOI: 10.1186/s13071-023-06051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND During the early stages of Trichinella spiralis infection, macrophages predominantly undergo polarization to the M1-like phenotype, causing the host's inflammatory response and resistance against T. spiralis infection. As the disease progresses, the number of M2-type macrophages gradually increases, contributing to tissue repair processes within the host. While cysteine protease overexpression is typically associated with inflammation, the specific role of T. spiralis cathepsin L (TsCatL) in mediating macrophage polarization remains unknown. The aim of this study was to assess the killing effect of macrophage polarization mediated by recombinant T. spiralis cathepsin L domains (rTsCatL2) on newborn larvae (NBL). METHODS rTsCatL2 was expressed in Escherichia coli strain BL21. Polarization of the rTsCatL2-induced RAW264.7 cells was analyzed by enzyme-linked immunosorbent assay (ELISA), quantitative PCR (qPCR), western blot, immunofluorescence and flow cytometry. The effect of JSH-23, an inhibitor of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), on rTsCatL2-induced M1 polarization investigated. Cytotoxic effects of polarized macrophages on NBL were observed using in vitro killing assays. RESULTS Following the co-incubation of rTsCatL2 with RAW264.7 murine macrophage cells, qPCR and ELISA revealed increased transcription and secretion levels of inducible nitric oxide synthase (iNOS), interleukin (IL)-6, IL-1β and tumor necrosis factor alpha (TNF-α) in macrophages. Western blot analysis showed a significant increase in iNOS protein expression, while the expression level of arginase-1 protein remained unchanged. Flow cytometry revealed a substantial increase in the number of CD86-labeled macrophages. The western blot results also indicated that rTsCatL2 increased the expression levels of phospho-NF-κB and phospho-nuclear factor-κB inhibitor alpha (IκB-α) proteins in a dose-dependent manner, while immunofluorescence revealed that rTsCatL2 induced nuclear translocation of the p65 subunit of NF-κB (NF-κB p65) protein in macrophages. The inhibitory effect of JSH-23 suppressed and abrogated the effect of rTsCatL2 in promoting M1 macrophage polarization. rTsCatL2 mediated polarization of macrophages to the M1-like phenotype and enhanced macrophage adhesion and antibody-dependent cell-mediated cytotoxicity (ADCC) killing of NBL. CONCLUSIONS The results indicated that rTsCatL2 induces macrophage M1 polarization via the NF-κB pathway and enhances the ADCC killing of NBL. This study provides a further understanding of the interaction mechanism between T. spiralis and the host.
Collapse
Affiliation(s)
- Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Yu Meng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Le Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Qiu Yi Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Zhi Lin
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Rang Dong
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chu Yan Ye
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Tian Tian Miao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Yi Si
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
19
|
Zhu J, Liu J, Yan C, Wang D, Pan W. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? Front Immunol 2023; 14:1252554. [PMID: 37868995 PMCID: PMC10587610 DOI: 10.3389/fimmu.2023.1252554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
Collapse
Affiliation(s)
- Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
20
|
Sengupta R, Roy M, Dey NS, Kaye PM, Chatterjee M. Immune dysregulation and inflammation causing hypopigmentation in post kala-azar dermal leishmaniasis: partners in crime? Trends Parasitol 2023; 39:822-836. [PMID: 37586987 DOI: 10.1016/j.pt.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Post kala-azar dermal leishmaniasis (PKDL), a heterogeneous dermal sequela of visceral leishmaniasis (VL), is challenging in terms of its etiopathogenesis. Hypopigmentation is a consistent clinical feature in PKDL, but mechanisms contributing to the loss of melanocytes remains poorly defined. Like other hypopigmentary dermatoses - for example, vitiligo, psoriasis, and leprosy - the destruction of melanocytes is likely a multifactorial phenomenon, key players being immune dysregulation and inflammation. This review focuses on immunological mechanisms responsible for the 'murder' of melanocytes, prime suspects at the lesional sites being CD8+ T cells and keratinocytes and their criminal tools being proinflammatory cytokines, for example, IFN-γ, IL-6, and TNF-α. Collectively, these may cause decreased secretion of melanocyte growth factors, loss/attenuation of cell adhesion molecules and inflammasome activation, culminating in melanocyte death.
Collapse
Affiliation(s)
- Ritika Sengupta
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B AJC Bose Road, Kolkata 700020, India
| | - Madhurima Roy
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B AJC Bose Road, Kolkata 700020, India
| | - Nidhi S Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK
| | - Mitali Chatterjee
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B AJC Bose Road, Kolkata 700020, India.
| |
Collapse
|
21
|
de Araújo HK, de Oliveira Castro S, da Silva Valejo MJA, da Costa Lima Junior MS, Neitzke-Abreu HC. LIMITATION OF PRIMERS USED IN PCR FOR THE CHARACTERIZATION OF LEISHMANIA INFANTUM. J Parasitol 2023; 109:445-449. [PMID: 37668295 DOI: 10.1645/21-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Conventional PCR provides Leishmania species characterization with even a small amount of biological material. Species-specific primers have been a widely used alternative; however, nonspecific amplifications are a reality, interfering with PCR efficiency. In endemic areas with multiple etiological agents for leishmaniasis, there is a requirement for higher specificity of primers. This study evaluates 3 pairs of primers described for the identification and characterization of Leishmania infantum. Primers RV1/RV2, LEISH1/LEISH2, and FLC2/RLC2 were used with the DNA of L. infantum, Leishmania amazonensis, and Leishmania braziliensis. An initial temperature curve was performed (52-62 C) to determine the optimal annealing temperature, followed by a dilution curve of Leishmania DNA (500 pg/μl, 50 pg/μl, 5 pg/μl, 500 fg/μl, 50 fg/μl, 5 fg/μl, and 0.5 fg/μl) to be used for analytical sensitivity. RV1/RV2 PCR amplified L. infantum and L. amazonensis at all analyzed temperatures; LEISH1/LEISH2 PCR amplified all 3 species of Leishmania, although at some temperatures L. infantum was specifically amplified, and, finally, FLC2/RLC2 PCR amplified only L. infantum at all temperatures analyzed. In terms of sensitivity, RV1/RV2 PCR detected 1 fg of L. infantum DNA and 100 pg of L. amazonensis DNA; LEISH1/LEISH2 PCR detected 1 fg of L. infantum DNA, 100 fg of L. amazonensis DNA, and 10 fg of L. braziliensis DNA; and FLC2/RLC2 PCR detected 10 fg of L. infantum DNA. Thus, PCR with FLC2/RLC2 primers is best suited for the molecular characterization of L. infantum, especially in areas where there is an incidence of more than 1 Leishmania species, such as South America.
Collapse
Affiliation(s)
- Helton Krisman de Araújo
- Faculty of Health Sciences, Universidade Federal da Grande Dourados (UFGD), 79804-070, Dourados, Mato Grosso do Sul State, Brazil
| | - Silvana de Oliveira Castro
- Faculty of Health Sciences, Universidade Federal da Grande Dourados (UFGD), 79804-070, Dourados, Mato Grosso do Sul State, Brazil
| | - Maria Joelma Alves da Silva Valejo
- Postgraduate Program in Health Sciences, Universidade Federal da Grande Dourados (UFGD), 79804-070, Dourados, Mato Grosso do Sul State, Brazil
| | | | - Herintha Coeto Neitzke-Abreu
- Faculty of Health Sciences, Universidade Federal da Grande Dourados (UFGD), 79804-070, Dourados, Mato Grosso do Sul State, Brazil
- Postgraduate Program in Health Sciences, Universidade Federal da Grande Dourados (UFGD), 79804-070, Dourados, Mato Grosso do Sul State, Brazil
| |
Collapse
|
22
|
Peixoto FC, Zanette DL, Cardoso TM, Nascimento MT, Sanches RCO, Aoki M, Scott P, Oliveira SC, Carvalho EM, Carvalho LP. Leishmania braziliensis exosomes activate human macrophages to produce proinflammatory mediators. Front Immunol 2023; 14:1256425. [PMID: 37841240 PMCID: PMC10569463 DOI: 10.3389/fimmu.2023.1256425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Exosomes, organelles measuring 30-200nm, are secreted by various cell types. Leishmania exosomes consist of many proteins, including heat shock proteins, annexins, Glycoprotein 63, proteins exerting signaling activity and those containing mRNA and miRNA. Studies have demonstrated that Leishmania donovani exosomes downregulate IFN-γ and inhibit the expression of microbicidal molecules, such as TNF and nitric oxide, thus creating a microenvironment favoring parasite proliferation. Despite lacking immunological memory, data in the literature suggest that, following initial stimulation, mononuclear phagocytes may become "trained" to respond more effectively to subsequent stimuli. Here we characterized the effects of macrophage sensitization using L. braziliensis exosomes prior to infection by the same pathogen. Human macrophages were stimulated with L. braziliensis exosomes and then infected with L. braziliensis. Higher levels of IL-1β and IL-6 were detected in cultures sensitized prior to infection compared to unstimulated infected cells. Moreover, stimulation with L. braziliensis exosomes induced macrophage production of IL-1β, IL-6, IL-10 and TNF. Inhibition of exosome secretion by L. braziliensis prior to macrophage infection reduced cytokine production and produced lower infection rates than untreated infected cells. Exosome stimulation also induced the consumption/regulation of NLRP3 inflammasome components in macrophages, while the blockade of NLRP3 resulted in lower levels of IL-6 and IL-1β. Our results suggest that L. braziliensis exosomes stimulate macrophages, leading to an exacerbated inflammatory state that may be NLRP3-dependent.
Collapse
Affiliation(s)
- Fabio C. Peixoto
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal da Bahia, UFBA, Salvador, Bahia, Brazil
| | - Dalila L. Zanette
- Laboratory for Applied Science and Technology in Health, Instituto Carlos Chagas – Oswaldo Cruz Foundation (FIOCRUZ) Paraná (ICC), Curitiba, Paraná, Brazil
| | - Thiago M. Cardoso
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Mauricio T. Nascimento
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal da Bahia, UFBA, Salvador, Bahia, Brazil
| | - Rodrigo C. O. Sanches
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Aoki
- Laboratory for Applied Science and Technology in Health, Instituto Carlos Chagas – Oswaldo Cruz Foundation (FIOCRUZ) Paraná (ICC), Curitiba, Paraná, Brazil
| | - Phillip Scott
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, United States
| | - Sérgio C. Oliveira
- Departamento de Imunologia, Instituto de Ciencias Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Edgar M. Carvalho
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal da Bahia, UFBA, Salvador, Bahia, Brazil
- Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Lucas P. Carvalho
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal da Bahia, UFBA, Salvador, Bahia, Brazil
- Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| |
Collapse
|
23
|
Honda TSB, Ku J, Anders HJ. Cell type-specific roles of NLRP3, inflammasome-dependent and -independent, in host defense, sterile necroinflammation, tissue repair, and fibrosis. Front Immunol 2023; 14:1214289. [PMID: 37564649 PMCID: PMC10411525 DOI: 10.3389/fimmu.2023.1214289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023] Open
Abstract
The NLRP3 inflammasome transforms a wide variety of infectious and non-infectious danger signals that activate pro-inflammatory caspases, which promote the secretion of IL-1β and IL-18, and pyroptosis, a pro-inflammatory form of cell necrosis. Most published evidence documents the presence and importance of the NLRP3 inflammasome in monocytes, macrophages, and neutrophils during host defense and sterile forms of inflammation. In contrast, in numerous unbiased data sets, NLRP3 inflammasome-related transcripts are absent in non-immune cells. However, an increasing number of studies report the presence and functionality of the NLRP3 inflammasome in almost every cell type. Here, we take a closer look at the reported cell type-specific expression of the NLRP3 inflammasome components, review the reported inflammasome-dependent and -independent functions, and discuss possible explanations for this discrepancy.
Collapse
Affiliation(s)
| | | | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| |
Collapse
|
24
|
Baars I, Jaedtka M, Dewitz LA, Fu Y, Franz T, Mohr J, Gintschel P, Berlin H, Degen A, Freier S, Rygol S, Schraven B, Kahlfuß S, van Zandbergen G, Müller AJ. Leishmania major drives host phagocyte death and cell-to-cell transfer depending on intracellular pathogen proliferation rate. JCI Insight 2023; 8:e169020. [PMID: 37310793 PMCID: PMC10443809 DOI: 10.1172/jci.insight.169020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
The virulence of intracellular pathogens relies largely on the ability to survive and replicate within phagocytes but also on release and transfer into new host cells. Such cell-to-cell transfer could represent a target for counteracting microbial pathogenesis. However, our understanding of the underlying cellular and molecular processes remains woefully insufficient. Using intravital 2-photon microscopy of caspase-3 activation in the Leishmania major-infected (L. major-infected) live skin, we showed increased apoptosis in cells infected by the parasite. Also, transfer of the parasite to new host cells occurred directly without a detectable extracellular state and was associated with concomitant uptake of cellular material from the original host cell. These in vivo findings were fully recapitulated in infections of isolated human phagocytes. Furthermore, we observed that high pathogen proliferation increased cell death in infected cells, and long-term residency within an infected host cell was only possible for slowly proliferating parasites. Our results therefore suggest that L. major drives its own dissemination to new phagocytes by inducing host cell death in a proliferation-dependent manner.
Collapse
Affiliation(s)
- Iris Baars
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Moritz Jaedtka
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Leon-Alexander Dewitz
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yan Fu
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tobias Franz
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Juliane Mohr
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patricia Gintschel
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannes Berlin
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Angelina Degen
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sandra Freier
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Rygol
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuß
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas J. Müller
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
25
|
de Oliveira Rekowsky LL, de Oliveira DT, Cazzaniga RA, Magalhães LS, Albuquerque LF, Araujo JMS, Tenório MDL, Machado TC, Lipscomb MW, Dos Santos PL, Ribeiro de Jesus A, Bezerra-Santos M, da Silva RLL. Influence of Testosterone in Neglected Tropical Diseases: Clinical Aspects in Leprosy and In Vitro Experiments in Leishmaniasis. Trop Med Infect Dis 2023; 8:357. [PMID: 37505653 PMCID: PMC10385189 DOI: 10.3390/tropicalmed8070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Neglected tropical diseases encompass a group of chronic and debilitating infectious diseases that primarily affect marginalized populations. Among these diseases, leprosy and leishmaniasis are endemic in numerous countries and can result in severe and disfiguring manifestations. Although there have been reports indicating a higher incidence of leprosy and leishmaniasis in males, the underlying factors contributing to this observation remain unclear. Therefore, the objective of this study was to examine both clinical and experimental evidence regarding the role of testosterone in leprosy and leishmaniasis. A prospective clinical study was conducted to compare the clinical forms of leprosy and assess circulating testosterone levels. Additionally, the impact of testosterone on Leishmania amazonensis-infected macrophages was evaluated in vitro. The findings demonstrated that serum testosterone levels were higher in women with leprosy than in the control group, irrespective of the multi- or pauci-bacillary form of the disease. However, no differences in testosterone levels were observed in men when comparing leprosy patients and controls. Interestingly, increasing doses of testosterone in macrophages infected with L. amazonensis resulted in a higher proportion of infected cells, decreased CD40 expression on the cell surface, elevated expression of SOCS1, and decreased expression of IRF5. These findings provide biological evidence to support the influence of testosterone on intracellular infections, though the interpretation of clinical evidence remains limited.
Collapse
Affiliation(s)
- Laís Lima de Oliveira Rekowsky
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
- Posgraduate Program of Health Science, Federal University of Sergipe, Aracaju 49060676, Brazil
| | - Daniela Teles de Oliveira
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
| | - Rodrigo Anselmo Cazzaniga
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
| | - Lucas Sousa Magalhães
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
- Posgraduate Program of Health Science, Federal University of Sergipe, Aracaju 49060676, Brazil
| | - Lenise Franco Albuquerque
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
- Dermatology Division of Medical Hospital, Federal University of Sergipe, Aracaju 49060676, Brazil
| | - Jonnia Maria Sherlock Araujo
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
- Dermatology Division of Medical Hospital, Federal University of Sergipe, Aracaju 49060676, Brazil
| | - Martha Débora Lira Tenório
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
- Dermatology Division of Medical Hospital, Federal University of Sergipe, Aracaju 49060676, Brazil
| | - Tiziane Cotta Machado
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
| | - Michael W Lipscomb
- Department of Pharmacology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Priscila Lima Dos Santos
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
- Posgraduate Program of Health Science, Federal University of Sergipe, Aracaju 49060676, Brazil
| | - Amelia Ribeiro de Jesus
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
- Posgraduate Program of Health Science, Federal University of Sergipe, Aracaju 49060676, Brazil
- Instituto de Investigação em Imunologia (iii), Institutos Nacionais de Ciência e Tecnologia (INCT), CNPq, São Paulo 05403-900, Brazil
| | - Márcio Bezerra-Santos
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
- Posgraduate Program of Health Science, Federal University of Sergipe, Aracaju 49060676, Brazil
| | - Ricardo Luís Louzada da Silva
- Laboratory of Immunology and Molecular Biology, Federal University of Sergipe, Aracaju 49060676, Brazil
- Health Education Department, Federal University of Sergipe, Lagarto 49400000, Brazil
| |
Collapse
|
26
|
Ahlawat S, Choudhary V, Kaur R, Arora R, Sharma Formal Analyses R, Chhabra Formal Analyses P, Kumar A, Kaur M. Unraveling the genetic mechanisms governing the host response to bovine anaplasmosis. Gene 2023:147532. [PMID: 37279864 DOI: 10.1016/j.gene.2023.147532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Bovine anaplasmosis caused by Anaplasma marginale is a tick-borne disease of livestock with widespread prevalence and huge economic implications. In order to get new insights into modulation of host gene expression in response to natural infections of anaplasmosis, this study is the first attempt that compared the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) of A. marginale infected and healthy crossbred cattle. Transcriptome analysis identified shared as well as unique functional pathways in the two groups. Translation and structural constituent of ribosome were the important terms for the genes abundantly expressed in the infected as well as healthy animals. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes revealed that immunity and signal transduction related terms were enriched for the up-regulated genes in the infected animals. The over-represented pathways were cytokine-cytokine receptor interaction and signaling pathways involving chemokines, Interleukin 17 (IL17), Tumour Necrosis Factor (TNF), Nuclear Factor Kappa B (NFKB) etc. Interestingly, many genes previously associated with parasite-borne diseases such as amoebiasis, trypanosomiasis, toxoplasmosis, and leishmaniasis were profusely expressed in the dataset of the diseased animals. High expression was also evident for the genes for acute phase response proteins, anti-microbial peptides and many inflammatory cytokines. Role of cytokines in mediating communication between immune cells was the most conspicuous gene network identified through the Ingenuity Pathway Analysis. This study provides comprehensive information about the crosstalk of genes involved in host defense as well as parasite persistence in the host upon infection with A. marginale.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal.
| | - Vikas Choudhary
- District Disease Diagnostic Laboratory, Karnal, Department of Animal Husbandry and Dairying, Haryana
| | - Rashmeet Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal
| | | | | | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal
| |
Collapse
|
27
|
Sequera HDG, de Souza JL, Junior JDES, da Silva LS, Pinheiro SK, Kerr HKA, de Souza MLG, Guerra MVDF, de Mesquita TGR, Ramasawmy R. Variants of CARD8 in Leishmania guyanensis-cutaneous leishmaniasis and influence of the variants genotypes on circulating plasma cytokines IL-1β, TNFα and IL-8. PLoS Negl Trop Dis 2023; 17:e0011416. [PMID: 37276232 PMCID: PMC10270566 DOI: 10.1371/journal.pntd.0011416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/15/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein family (NLR) are intracellular pathogen recognition receptors mediating innate immunity, releasing proinflammatory cytokines IL-1β and IL-18, and promoting pyroptotic cell death, upon sensing pathogenic or endogenous danger signals. In animal models, NLRP3 inflammasome has a dual role, pathogenic or protective in Leishmania-infection, depending on the Leishmania species and mice strain. Caspase recruitment containing domain 8 (CARD8) is a negative regulator of NLRP3 inflammasome and also an inhibitor of transcription factor NFĸB, a major transcription factor of proinflammatory cytokines. We investigated whether single nucleotide variants in CARD8 may partially explain why only a proportion of individuals coming from the same area of endemicity of leishmaniasis develop cutaneous leishmaniasis caused by Leishmania guyanensis. We genotyped four single nucleotide variants of the CARD8 gene by direct nucleotide sequencing in 1741 individuals from an endemic area of leishmaniasis, constituting 850 patients with CL and 891 healthy controls. The frequencies of the genotypes of the variants rs2288877 T>C, rs73944113 C>T, and rs2043211 A>T are similar among the patients with CL and HC, while the variant rs2288876 A>G) reveals an excess of the genotype AA among the patients with CL (44%) compared to 37% in the HC group. Allele A of the variant rs2288876 A>G) is associated with susceptibility to CL (OR = 1.2 [95%CI 1.03-1.4]; P = 0.01). Haplotype analysis showed that individuals harboring the haplotype CCAA have 280% odds of developing CL caused by L. guyanensis (OR = 3.8 [95% CI 2.0-7.7]; p = 0.00004). The variants rs2288877 T>C and rs2288876 A>G correlate with the plasma level of IL-8. Spearman correlation showed a significant positive correlation between the rs2288876 A>G allele A and the level of IL-8 (ρ = 0.22; p = 0.0002). CARD8 may partially contribute to the development of CL caused by L. guyanensis.
Collapse
Affiliation(s)
| | - Josué Lacerda de Souza
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | - José do Espírito Santo Junior
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | - Lener Santos da Silva
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazonia Legal (Rede Bionorte), Universidade do Estado do Amazonas, Manaus, Brazil
| | - Suzana Kanawati Pinheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | | | | | - Marcus Vinitius de Farias Guerra
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Tirza Gabrielle Ramos de Mesquita
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazonia Legal (Rede Bionorte), Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in the State of Amazonas (REGESAM), Manaus, Brazil
| |
Collapse
|
28
|
Goto Y, Mizobuchi H. Pathological roles of macrophages in Leishmania infections. Parasitol Int 2023; 94:102738. [PMID: 36738983 DOI: 10.1016/j.parint.2023.102738] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Macrophages are the major host cells for Leishmania parasites, and determine the fate of infection by either limiting or allowing growth of the parasites, resulting in development or control of leishmaniasis, respectively. They also play important roles in causing pathological outcomes during Leishmania infection. The pathophysiology is complex and include a wide variety of molecular and cellular responses including enhancement of inflammatory responses by releasing cytokines, causing damages to surrounding cells by reactive oxygen species, or disordered phagocytosis of other cells. It is of note that disease severity in leishmaniasis sometimes does not correlate with parasite burdens, indicating that pathological roles of macrophages are not necessarily linked to their parasite-killing activities that are often defined by M1/M2 status. Here, we review the roles of macrophages in leishmaniasis with a focus on their pathological mechanisms in disease development.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Haruka Mizobuchi
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
29
|
Chen CS, Zhang YG, Wang HJ, Fan HN. Effect and mechanism of reactive oxygen species-mediated NOD-like receptor family pyrin domain-containing 3 inflammasome activation in hepatic alveolar echinococcosis. World J Gastroenterol 2023; 29:2153-2171. [PMID: 37122606 PMCID: PMC10130966 DOI: 10.3748/wjg.v29.i14.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases. However, its role in hepatic alveolar echinococcosis (HAE) remains unclear.
AIM To investigate the NLRP3 inflammasome and its mechanism of activation in HAE.
METHODS We assessed the expression of NLRP3, caspase-1, interleukin (IL)-1β, and IL-18 in the marginal zone and corresponding normal liver of 60 patients with HAE. A rat model of HAE was employed to investigate the role of the NLRP3 inflammasome in the marginal zone of HAE. Transwell experiments were conducted to investigate the effect of Echinococcus multilocularis (E. multilocularis) in stimulating Kupffer cells and hepatocytes. Furthermore, immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay were used to evaluate NLRP3, caspase-1, IL-1β, and IL-18 expression; flow cytometry was used to detect apoptosis and reactive oxygen species (ROS).
RESULTS NLRP3 inflammasome activation was significantly associated with ROS. Inhibition of ROS production decreased NLRP3-caspase-1-IL-1β pathway activation and mitigated hepatocyte damage and inflammation.
CONCLUSION E. multilocularis induces hepatocyte damage and inflammation by activating the ROS-mediated NLRP3-caspase-1-IL-1β pathway in Kupffer cells, indicating that ROS may serve as a potential target for the treatment of HAE.
Collapse
Affiliation(s)
- Cai-Song Chen
- Research Center for High Altitude Medicine of Qinghai University, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Yao-Gang Zhang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Jiu Wang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Ning Fan
- Department of Hepatobiliary and Pancreatic Surgery, Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| |
Collapse
|
30
|
El-Wakil ES, Khodear GAM, Ahmed HES, Ibrahim GIK, Hegab F, Abdo SM. Therapeutic efficacy of albendazole and berberine loaded on bovine serum albumin nanoparticles on intestinal and muscular phases of experimental trichinellosis. Acta Trop 2023; 241:106896. [PMID: 36921748 DOI: 10.1016/j.actatropica.2023.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
There has been no treatment for trichinellosis until now. Therefore, this work targeted to investigating the efficacy of albendazole and berberine alone and loaded on bovine serum albumin (BSA) nanoparticles against intestinal and muscular phases of trichinellosis in mice. Mice were divided into nine different groups: negative control, positive control, blank nanoparticle, albendazole, berberine, a combination of albendazole and berberine, albendazole-loaded nanoparticle, berberine-loaded nanoparticle and combination of albendazole and berberine-loaded nanoparticle. Subsequently, they were sacrificed 6 and 35 days after infection. Treatment efficacies were parasitologically, histopathologically and, immunohistochemically assessed. Parasitological counting for the adult worms and encysted larvae with histopathological assessment using H&E for intestinal and muscular sections and picrosirius red stain for muscular sections were used. Also, immunohistochemical expression of the intestinal nod-like receptor-pyrin domain containing 3 (NLRP3) was investigated. The group treated with nano_combined drugs showed a statistically significant reduction in adult and encysted larval count (p<0.005), a remarkable improvement of intestinal and muscular inflammation, and a reduction in the capsular thickness of the larvae. Also, this group showed the highest reduction of NLRP3 expression. This work revealed that berberine might be a promising anti-trichinellosis drug with a synergistic effect when combined with albendazole through modulation of the immune response, inflammation, and larva capsule formation. Furthermore, delivering both drugs in a nanoparticle form improves their therapeutic response.
Collapse
Affiliation(s)
- Eman S El-Wakil
- Department of Parasitology, Theodor Bilharz Research Institute, Kornaish El-Nile St., 12411, Giza, Egypt
| | - Gehan A M Khodear
- Medical technology center, Medical Research Institute, Alexandria University, Egypt
| | | | | | - Fatma Hegab
- Department of Pathology, Theodor Bilharz Research Institute, Kornaish El-Nile St., 12411, Giza, Egypt
| | - Sarah M Abdo
- Department of Medical Parasitology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, 35516, Egypt.
| |
Collapse
|
31
|
Zhao P, Li J, Li X, Dong J, Wang X, Zhang N, Li S, Sun M, Zhang X, Wang Z, Liang M, Li Y, Cao L, Gong P. The NLRP3 inflammasome recognizes alpha-2 and alpha-7.3 giardins and decreases the pathogenicity of Giardia duodenalis in mice. Parasit Vectors 2023; 16:85. [PMID: 36869360 PMCID: PMC9983531 DOI: 10.1186/s13071-023-05688-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/01/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Giardia duodenalis is a parasitic organism that can cause giardiasis, an intestinal infection, particularly prevalent in young children, with clinical symptoms of diarrhea. We previously reported that extracellular G. duodenalis triggers intracellular nucleotide-binding oligomerization-like receptor 3 (NLRP3) inflammasome activation and regulates the host inflammatory response by secreting extracellular vesicles (EVs). However, the exact pathogen-associated molecular patterns in G. duodenalis EVs (GEVs) involved in this process and the role of the NLRP3 inflammasome in giardiasis remain to be elucidated. METHODS Recombinant eukaryotic expression plasmids of pcDNA3.1(+)-alpha-2 and alpha-7.3 giardins in GEVs were constructed, transfected into primary mouse peritoneal macrophages and screened by measuring the expression levels of the inflammasome target molecule caspase-1 p20. The preliminary identification of G. duodenalis alpha-2 and alpha-7.3 giardins was further verified by measuring the protein expression levels of key molecules of the NLRP3 inflammasome (NLRP3, pro-interleukin-1 beta [IL-1β], pro-caspase-1, and caspase-1 p20), the secretion levels of IL-1β, the level of apoptosis speck-like protein (ASC) oligomerization and the immunofluorescence localization of NLRP3 and ASC. The roles of the NLRP3 inflammasome in G. duodenalis pathogenicity were then evaluated using mice in which NLRP3 activation was blocked (NLRP3-blocked mice), and body weight, parasite burden in the duodenum and histopathological changes in the duodenum were monitored. In addition, we explored whether alpha-2 and alpha-7.3 giardins triggered IL-1β secretion in vivo through the NLRP3 inflammasome and determined the roles of these molecules in G. duodenalis pathogenicity in mice. RESULTS Alpha-2 and alpha-7.3 giardins triggered NLRP3 inflammasome activation in vitro. This led to caspase-1 p20 activation, upregulation of the protein expression levels of NLRP3, pro-IL-1β and pro-caspase-1, significant enhancement of IL-1β secretion, ASC speck formation in the cytoplasm and also induction of ASC oligomerization. Deletion of the NLRP3 inflammasome aggravated G. duodenalis pathogenicity in mice. Compared to wild-type mice gavaged with cysts, mice gavaged with cysts in NLRP3-blocked mice displayed increased trophozoite loads and severe duodenal villus damage, characterized by necrotic crypts with atrophy and branching. In vivo assays revealed that alpha-2 and alpha-7.3 giardins could induce IL-1β secretion through the NLRP3 inflammasome and that immunization with alpha-2 and alpha-7.3 giardins decreased G. duodenalis pathogenicity in mice. CONCLUSIONS Overall, the results of the present study revealed that alpha-2 and alpha-7.3 giardins trigger host NLRP3 inflammasome activation and decrease G. duodenalis infection ability in mice, which are promising targets for the prevention of giardiasis.
Collapse
Affiliation(s)
- Panpan Zhao
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Jianhua Li
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Xin Li
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Jingquan Dong
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu Province, People's Republic of China
| | - Xiaocen Wang
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Nan Zhang
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Shan Li
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Min Sun
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Xichen Zhang
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Zhibang Wang
- College of Life Science, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Min Liang
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Ying Li
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Lili Cao
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China. .,Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, 130062, Jilin Province, People's Republic of China.
| | - Pengtao Gong
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China.
| |
Collapse
|
32
|
Ribeiro IMM, de Sousa VC, Melo ECS, Carvalho RDCVD, Santos MDSD, Neto JADON, Melo DSD, Teixeira LSDA, Citó AMDGL, Moura AKS, Arcanjo DDR, Carvalho FADA, Alves MMDM, Mendonça ILD. Antileishmania and immunomodulatory potential of cashew nut shell liquid and cardanol. Toxicol In Vitro 2023; 87:105524. [PMID: 36435415 DOI: 10.1016/j.tiv.2022.105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Conventional treatments for leishmaniasis have caused serious adverse effects, poor tolerance, development of resistant strains. Natural products have been investigated as potential therapeutic alternatives. The cashew nut shell liquid (CNSL) is a natural source of phenolic compounds with several biological activities, where cardanol (CN) is considered one of the most important and promising compounds. This study aimed to evaluate antileishmanial, cytotoxic and immunomodulatory activities of CNSL and CN. Both showed antileishmanial potential, with IC50 for CNSL and CN against Leishmania infantum: 148.12 and 56.74 μg/mL; against Leishmania braziliensis: 85.71 and 64.28 μg/mL; against Leishmania major: 153.56 and 122.31 μg/mL, respectively. The mean cytotoxic concentrations (CC50) of CNSL and CN were 37.51 and 31.44 μg/mL, respectively. CNSL and CN significantly reduced the percentage of infected macrophages, with a selectivity index (SI) >20 for CN. CNSL and cardanol caused an increase in phagocytic capacity and lysosomal volume. Survival rates of Zophobas morio larvae at doses of 3; 30 and 300 mg/kg were: 85%, 75% and 60% in contact with CNSL and 85%, 60% and 40% in contact with CN, respectively. There was a significant difference between the survival curves of larvae when treated with CN, demonstrating a significant acute toxicity for this substance. Additional investigations are needed to evaluate these substances in the in vivo experimental infection model.
Collapse
Affiliation(s)
- Iuliana Marjory Martins Ribeiro
- Programa de Pós-Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Valéria Carlos de Sousa
- Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | | | | | | | - Danielly Silva de Melo
- Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | | | | | - Daniel Dias Rufino Arcanjo
- Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina, Piauí, Brazil.
| | | | - Michel Muálem de Moraes Alves
- Programa de Pós-Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Departamento de Morfofisiologia Veterinária, Universidade Federal do Piauí, Teresina, Piauí, Brazil.
| | - Ivete Lopes de Mendonça
- Programa de Pós-Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Departamento de Clínica e Cirurgia Veterinária, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
33
|
de Sá KSG, Amaral LA, Rodrigues TS, Ishimoto AY, de Andrade WAC, de Almeida L, Freitas-Castro F, Batah SS, Oliveira SC, Pastorello MT, Fabro AT, Zamboni DS. Gasdermin-D activation promotes NLRP3 activation and host resistance to Leishmania infection. Nat Commun 2023; 14:1049. [PMID: 36828815 PMCID: PMC9958042 DOI: 10.1038/s41467-023-36626-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Intracellular parasites from the Leishmania genus cause Leishmaniasis, a disease affecting millions of people worldwide. NLRP3 inflammasome is key for disease outcome, but the molecular mechanisms upstream of the inflammasome activation are still unclear. Here, we demonstrate that despite the absence of pyroptosis, Gasdermin-D (GSDMD) is active at the early stages of Leishmania infection in macrophages, allowing transient cell permeabilization, potassium efflux, and NLRP3 inflammasome activation. Further, GSDMD is processed into a non-canonical 25 kDa fragment. Gsdmd-/- macrophages and mice exhibit less NLRP3 inflammasome activation and are highly susceptible to infection by several Leishmania species, confirming the role of GSDMD for inflammasome-mediated host resistance. Active NLRP3 inflammasome and GSDMD are present in skin biopsies of patients, demonstrating activation of this pathway in human leishmaniasis. Altogether, our findings reveal that Leishmania subverts the normal functions of GSDMD, an important molecule to promote inflammasome activation and immunity in Leishmaniasis.
Collapse
Affiliation(s)
- Keyla S G de Sá
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luana A Amaral
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Tamara S Rodrigues
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Adriene Y Ishimoto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Warrison A C de Andrade
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Leticia de Almeida
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Felipe Freitas-Castro
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sabrina S Batah
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Mônica T Pastorello
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alexandre T Fabro
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
- Serviço de Patologia do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
34
|
Diupotex M, Zamora-Chimal J, Cervantes-Sarabia RB, Salaiza-Suazo N, Becker I. Alpha-galactosylceramide as adjuvant induces protective cell-mediated immunity against Leishmania mexicana infection in vaccinated BALB/c mice. Cell Immunol 2023; 386:104692. [PMID: 36870122 DOI: 10.1016/j.cellimm.2023.104692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Adjuvants represent a promising strategy to improve vaccine effectiveness against infectious diseases such as leishmaniasis. Vaccination with the invariant natural killer T cell ligand α-galactosylceramide (αGalCer) has been used successfully as adjuvant, generating a Th1-biased immunomodulation. This glycolipid enhances experimental vaccination platforms against intracellular parasites including Plasmodium yoelii and Mycobacterium tuberculosis. In the present study, we assessed the protective immunity induced by a single-dose intraperitoneal injection of αGalCer (2 μg) co-administrated with a lysate antigen of amastigotes (100 μg) against Leishmania mexicana infection in BALB/c mice. The prophylactic vaccination led to 5.0-fold reduction of parasite load at the infection site, compared to non-vaccinated mice. A predominant pro-inflammatory response was observed in challenged vaccinated mice, represented by a 1.9 and 2.8-fold-increase of IL-1β and IFN-γ producing cells, respectively, in the lesions, and by 23.7-fold-increase of IFN-γ production in supernatants of restimulated splenocytes, all compared to control groups. The co-administration of αGalCer also stimulated the maturation of splenic dendritic cells and modulated a Th1-skewed immune response, with high amounts of IFN-γ production in serum. Furthermore, peritoneal cells of αGalCer-immunized mice exhibited an elevated expression of Ly6G and MHCII. These findings indicate that αGalCer improves protection against cutaneous leishmaniasis, supporting evidence for its potential use as adjuvant in Leishmania-vaccines.
Collapse
Affiliation(s)
- Mariana Diupotex
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.P. 04510 Ciudad de México, México
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.P. 04510 Ciudad de México, México
| | - Rocely Buenaventura Cervantes-Sarabia
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.P. 04510 Ciudad de México, México
| | - Norma Salaiza-Suazo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.P. 04510 Ciudad de México, México
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.P. 04510 Ciudad de México, México.
| |
Collapse
|
35
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Lymph Node Fibroblastic Reticular Cells Attenuate Immune Responses Through Induction of Tolerogenic Macrophages at Early Stage of Transplantation. Transplantation 2023; 107:140-155. [PMID: 35876378 DOI: 10.1097/tp.0000000000004245] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fibroblastic reticular cells (FRCs) are a type of stromal cells located in the T zone in secondary lymphoid organs. Previous studies showed that FRCs possess the potential to promote myeloid differentiation. We aim to investigate whether FRCs in lymph nodes (LNs) could induce tolerogenic macrophage generation and further influence T-cell immunity at an early stage of allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS LNs were assayed to confirm the existence of proliferating macrophages after allo-HSCT. Ex vivo-expanded FRCs and bone marrow cells were cocultured to verify the generation of macrophages. Real-time quantitative PCR and ELISA assays were performed to observe the cytokines expressed by FRC. Transcriptome sequencing was performed to compare the difference between FRC-induced macrophages (FMs) and conventional macrophages. Mixed lymphocyte reaction and the utilization of FMs in acute graft-versus-host disease (aGVHD) mice were used to test the inhibitory function of FMs in T-cell immunity in vitro and in vivo. RESULTS We found a large number of proliferating macrophages near FRCs in LNs with tolerogenic phenotype under allo-HSCT conditions. Neutralizing anti-macrophage colony-stimulating factor receptor antibody abolished FMs generation in vitro. Phenotypic analysis and transcriptome sequencing suggested FMs possessed immunoinhibitory function. Mixed lymphocyte reaction proved that FMs could inhibit T-cell activation and differentiation toward Th1/Tc1 cells. Injection of FMs in aGVHD mice effectively attenuated aGVHD severity and mortality. CONCLUSIONS This study has revealed a novel mechanism of immune regulation through the generation of FRC-induced tolerogenic macrophages in LNs at an early stage of allo-HSCT.
Collapse
|
37
|
Saller BS, Neuwirt E, Groß O. Methods to Activate the NLRP3 Inflammasome. Methods Mol Biol 2023; 2696:169-197. [PMID: 37578723 DOI: 10.1007/978-1-0716-3350-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The inflammasome-nucleating cytoplasmic sensor protein NLRP3 (NACHT-, LRR, and PYD domains-containing protein 3, also known as NOD-like receptor pyrin domain-containing 3, NALP3, or cryopyrin) is triggered by a broad spectrum of sterile endogenous danger signals and environmental irritants. Upon activation, NLRP3 engages the adapter protein ASC that in turn recruits the third inflammasome component, the protease caspase-1. Subsequent caspase-1 activation leads to its auto-processing and maturation of the leaderless IL-1 family cytokines IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D (GSDMD). GSDMD plasma membrane pores, formed by its N-terminus, facilitate IL-1 release and, typically, subsequent cell lysis (pyroptosis). This protocol explains standard methods, which are routinely used in our laboratory to study NLRP3 inflammasome biology in vitro. It includes experimental approaches using primary murine bone marrow-derived macrophages (BMDMs) and bone marrow-derived dendritic cells (BMDCs), human peripheral blood mononuclear cells (PBMCs), as well as inflammasome-competent cell lines (HoxB8 and THP-1 cells). The protocol covers the use of a broad spectrum of established NLRP3 activators and outlines the use of common inhibitors blocking NLRP3 itself or its upstream triggering events. We also provide guidelines for experimental set-up and crucial experimental controls to investigate NLRP3 inflammasome signaling or study new activators and inhibitors.
Collapse
Affiliation(s)
- Benedikt S Saller
- Faculty of Medicine, Institute of Neuropathology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Emilia Neuwirt
- Faculty of Medicine, Institute of Neuropathology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Faculty of Medicine, Institute of Neuropathology, Medical Center - University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
38
|
De Simone G, di Masi A, Ascenzi P. Strategies of Pathogens to Escape from NO-Based Host Defense. Antioxidants (Basel) 2022; 11:2176. [PMID: 36358549 PMCID: PMC9686644 DOI: 10.3390/antiox11112176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/22/2024] Open
Abstract
Nitric oxide (NO) is an essential signaling molecule present in most living organisms including bacteria, fungi, plants, and animals. NO participates in a wide range of biological processes including vasomotor tone, neurotransmission, and immune response. However, NO is highly reactive and can give rise to reactive nitrogen and oxygen species that, in turn, can modify a broad range of biomolecules. Much evidence supports the critical role of NO in the virulence and replication of viruses, bacteria, protozoan, metazoan, and fungi, thus representing a general mechanism of host defense. However, pathogens have developed different mechanisms to elude the host NO and to protect themselves against oxidative and nitrosative stress. Here, the strategies evolved by viruses, bacteria, protozoan, metazoan, and fungi to escape from the NO-based host defense are overviewed.
Collapse
Affiliation(s)
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Via della Vasca Navale 79, 00146 Roma, Italy
| |
Collapse
|
39
|
Oliveira IH, Kjeldsen F, Melo-Braga MN, Verano-Braga T, de Andrade HM. Assessing the effects of Leishmania (Leishmania) infantum and L. (L.) amazonensis infections in macrophages using a quantitative proteome approach. Exp Parasitol 2022; 243:108413. [DOI: 10.1016/j.exppara.2022.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
40
|
A novel cysteine protease inhibitor in Baylisascaris schroederi migratory larvae regulates inflammasome activation through the TLR4-ROS-NLRP3 pathway. Parasit Vectors 2022; 15:334. [PMID: 36151570 PMCID: PMC9508711 DOI: 10.1186/s13071-022-05466-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Background Giant pandas (Ailuropoda melanoleuca) are the obligate host of the parasitic roundworm Baylisascaris schroederi. The infection of giant pandas with B. schroederi is very common. At present, little is known about the mechanism of immune interaction between B. schroederi and the host. As an important component of innate immunity, the NOD-like receptor 3 (NLRP3) inflammasome plays an important role in host immune response and the occurrence and development of infectious diseases. Methods We analyzed the regulation of NLRP3 inflammasome activation in monocyte-derived macrophages (MDMs) by the recombinant B. schroederi migratory larvae cysteine protease inhibitor rBsCPI-1, knowing from a previous study that the CPI-1 is highly expressed in B. schroederi migratory larvae. We first determined the effects of rBsCPI-1 and excretory–secretory products of B. schroederi migratory larvae on cell proliferation using the CCK-8 and LDH release assays. We then analyzed NLRP3 inflammasome activation, pyroptosis and pro-inflammatory cytokine release by quantitative-PCR, western blotting and enzyme-linked immunosorbent assay. The signaling pathway of rBsCPI-1 to activate NLRP3 inflammasomes was analyzed in activation and inhibition experiments. Finally, the effects of rBsCPI-1 on inflammasome activation in mice immunized with rBsCPI-1 were analyzed. Results The activation and inhibition experiments revealed that rBsCPI-1 induced inflammasome activation through the TLR4–ROS–NLRP3 signaling pathway, with reactive oxygen species (ROS) not only functioning as an activator of the NLRP3 inflammasome, but also an activation product of the NLRP3 inflammasome. rBsCPI-1 promoted the activation and assembly of the NLRP3 inflammasome, which further converted the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 into mature active forms. At the same time, caspase-1 cleaved gasdermin D to trigger cell pyroptosis. The results of animal immunization experiments further confirmed that rBsCPI-1 could induce the activation of the NLRP3 inflammasome. Conclusions rBsCPI-1 activates the inflammasome through the TLR4–ROS–NLRP3 signaling pathway and further induces the pyroptosis of MDMs and release of pro-inflammatory factors IL-1β and IL-18, thus promoting the occurrence and development of the inflammatory response in the host. Graphical abstract ![]()
Collapse
|
41
|
de Melo FM, Kawasaki K, Sellani TA, Bonifácio BS, Mortara RA, Toma HE, de Melo FM, Rodrigues EG. Quantum-Dot-Based Iron Oxide Nanoparticles Activate the NLRP3 Inflammasome in Murine Bone Marrow-Derived Dendritic Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3145. [PMID: 36144933 PMCID: PMC9502261 DOI: 10.3390/nano12183145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Inflammasomes are cytosolic complexes composed of a Nod-like receptor, NLR, the adaptor protein, ASC, and a proteolytic enzyme, caspase-1. Inflammasome activation leads to caspase-1 activation and promotes functional maturation of IL-1β and IL-18, two prototypical inflammatory cytokines. Besides, inflammasome activation leads to pyroptosis, an inflammatory type of cell death. Inflammasomes are vital for the host to cope with foreign pathogens or tissue damage. Herein, we show that quantum-dot-based iron oxide nanoparticles, MNP@QD, trigger NLRP3 inflammasome activation and subsequent release of proinflammatory interleukin IL-1β by murine bone marrow-derived dendritic cells (BMDCs). This activation is more pronounced if these cells endocytose the nanoparticles before receiving inflammatory stimulation. MNP@QD was characterized by using imaging techniques like transmission electron microscopy, fluorescence microscopy, and atomic force microscopy, as well as physical and spectroscopical techniques such as fluorescence spectroscopy and powder diffraction. These findings may open the possibility of using the composite MNP@QD as both an imaging and a therapeutic tool.
Collapse
Affiliation(s)
- Fernando Menegatti de Melo
- Department of Chemistry, Institute of Chemistry, University of São Paulo (USP), Av. Lineu Prestes 748, Butantã, São Paulo 05508-000, SP, Brazil
- Metal-Chek do Brasil Indústria e Comércio, Research & Development Department, Rua das Indústrias, 135, Bragança Paulista 12926-674, SP, Brazil
| | - Karine Kawasaki
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| | - Tarciso Almeida Sellani
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| | - Bruno Souza Bonifácio
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| | - Renato Arruda Mortara
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| | - Henrique Eisi Toma
- Department of Chemistry, Institute of Chemistry, University of São Paulo (USP), Av. Lineu Prestes 748, Butantã, São Paulo 05508-000, SP, Brazil
| | - Filipe Menegatti de Melo
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| | - Elaine Guadelupe Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| |
Collapse
|
42
|
Abstract
Cytokines play crucial roles in commencing and coordinating the organized recruitment and activation of immune cells during infection. These molecular regulators play an important part in deciding the fate of disease outcomes in leishmaniasis, a parasitic disease of tropical and subtropical countries. T helper 1 (Th1) cell-mediated inflammatory cytokines usually play a host-protective role, while T helper 2 (Th2) cell activation produces an anti-inflammatory milieu necessary for parasite survival. It is noteworthy that in such a multifaceted disease, the role played by any particular cytokine cannot be generalized as either beneficial or detrimental. For example, a "host-favorable" cytokine in one form of the disease has been found to be "pathogen friendly" in another form of leishmaniasis. On the other hand, the complex signaling network regulating the production of cytokines is further complicated by the nature of the host as well as the presence of other cytokines in the milieu. The present review focuses on the differential roles played by cytokines and the intricate signaling network responsible for the regulation of such cytokines during infection by different species of Leishmania. While many more studies are required in the future to better understand the role of these molecules in both animal models and patient samples, current studies indicate that these molecules are potential candidates to be targeted for therapy against this deadly disease.
Collapse
|
43
|
Valentim-Silva JR, de Barros NB, Macedo SRA, Ferreira ADS, Silva RS, Dill LSM, Zanchi FB, do Nascimento JR, do Nascimento FRF, Lourenzoni MR, Soares AM, Calderon LDA, Nicolete R. Antileishmanial activity, cytotoxicity and cellular response of amphotericin B in combination with crotamine derived from Crotalus durissus terrificus venom using in vitro and in silico approaches. Toxicon 2022; 217:96-106. [PMID: 35977615 DOI: 10.1016/j.toxicon.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE To investigate the in vitro activity, synergism, cytotoxicity and cellular immunological response, as well as the molecular affinity between amphotericin B (AmB) and crotamine (CTA), derived from Crotalus durissus terrificus venom against Leishmania amazonensis. METHODS This study performed the inhibition of promastigotes and amastigotes' growth under different concentrations of the drug and pharmacological combinations (AmB + CTA) based on the Berimbaum method (synergism study). The lactate dehydrogenase (LDH) quantification method was used to determine the cytotoxicity of the drug and combinations employing four cell lines (J774, HepG2, VERO, and C2C12). Following, the levels of Tumour Necrose Factor-alpha (TNF-α) and Interleukin-12 (IL-12) cytokines, using enzyme-linked immunosorbent assay (ELISA) and nitrites, as an indirect measure of Nitric Oxide (NO), using the Griess reaction were assessed in the supernatants of infected macrophages. In silico approach (molecular docking and dynamics) and binding affinity (surface plasmon resonance) between the drug and toxin were also investigated. RESULTS CTA enhanced AmB effect against promastigote and amastigote forms of L. amazonensis, decreased the drug toxicity in different cell lines and induced the production of important Th1-like cytokines and NO by infected macrophages. The pharmacological combination also displayed consistent molecular interactions with low energy of coupling and a concentration-dependent profile. CONCLUSION Our data suggest that this pharmacological approach is a promising alternative treatment against L. amazonensis infection due to the improved activity (synergistic effect) achieved against the parasites' forms and to the decreased cytotoxic effect.
Collapse
Affiliation(s)
- João R Valentim-Silva
- Post-Doctoral Fellow in Health Sciences, Federal University of Acre (UFAC), Rio Branco, AC, Brazil; Physical Education Department of Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil; Oswaldo Cruz Foundation (Fiocruz Rondônia), Porto Velho, RO, Brazil
| | | | | | | | - Rodrigo S Silva
- Center of Study of Biomolecules Applied in Medicine (CEBio), Oswaldo Cruz Foundation (Fiocruz Rondônia) and Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Leandro S M Dill
- Center of Study of Biomolecules Applied in Medicine (CEBio), Oswaldo Cruz Foundation (Fiocruz Rondônia) and Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Fernando B Zanchi
- Center of Study of Biomolecules Applied in Medicine (CEBio), Oswaldo Cruz Foundation (Fiocruz Rondônia) and Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Johnny R do Nascimento
- Immunophysiology Laboratory, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | - Flávia R F do Nascimento
- Immunophysiology Laboratory, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão (UFMA), São Luís, MA, Brazil
| | | | - Andreimar M Soares
- Center of Study of Biomolecules Applied in Medicine (CEBio), Oswaldo Cruz Foundation (Fiocruz Rondônia) and Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil; eCentro Universitário São Lucas (UniSL), Porto Velho, RO, Brazil
| | - Leonardo de A Calderon
- Center of Study of Biomolecules Applied in Medicine (CEBio), Oswaldo Cruz Foundation (Fiocruz Rondônia) and Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Roberto Nicolete
- Oswaldo Cruz Foundation (Fiocruz Rondônia), Porto Velho, RO, Brazil; Oswaldo Cruz Foundation (Fiocruz Ceará), Eusébio, CE, Brazil.
| |
Collapse
|
44
|
Dong C, Chen W, Zou L, Liu B, Deng K, Guo D, Wang P, Chen H, Wang H, Wang J. The Assessment on Synergistic Activity of Ebselen and Silver Ion Against Yersinia pseudotuberculosis. Front Microbiol 2022; 13:963901. [PMID: 35958130 PMCID: PMC9363147 DOI: 10.3389/fmicb.2022.963901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne zoonotic bacterium that is pathogenic to guinea pigs, rabbits, and mice. It also causes pseudotuberculosis in humans. However, it still lacked the scientific basis for control. Here, we found out that Ebselen (EbSe) exhibited synergistic antibacterial activity with silver nitrate (Ag+) against Y. pseudotuberculosis YpIII strain with high efficacy in vitro using UV-visible light absorption spectrum, 5,5’-dithiobis-(2-nitrobenzoic acid), laser scanning confocal microscope, flow cytometry, transmission electron microscopy and Western blotting assays. The depletion of total glutathione (GSH) amount and inhibition of thioredoxin reductase (TrxR) activity in thiol-dependent redox system revealed the destructiveness of EbSe-Ag+-caused intracellular oxidative stress. Furthermore, a YpIII-caused mice gastroenteritis model was constructed. EbSe-Ag+ significantly reduced bacterial loads with low toxicity. It also down-regulated the expression levels of interferon (IL)-1β and tumor necrosis factor-α, up-regulated the expression level of IL-10 on-site. All the in vivo results demonstrated the antibacterial activity and immune-modulatory property of EbSe-Ag+. Collectively, these results provided academic fundament for further analysis and development of EbSe-Ag+ as the antibacterial agents for pseudotuberculosis control.
Collapse
Affiliation(s)
- Chuanjiang Dong
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Wei Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, China
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, China
| | - Lili Zou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, China
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, China
- *Correspondence: Lili Zou,
| | - Binbin Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, China
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, China
| | - Kaihong Deng
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, China
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, China
| | - Dingrui Guo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, China
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, China
| | - Peng Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Hao Chen
- Affiliated Second People’s Hospital of China Three Gorges University, Yichang, China
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Helen Wang,
| | - Jun Wang
- The People’s Hospital of China Three Gorges University, Yichang, China
- Jun Wang,
| |
Collapse
|
45
|
Dirkx L, Hendrickx S, Merlot M, Bulté D, Starick M, Elst J, Bafica A, Ebo DG, Maes L, Van Weyenbergh J, Caljon G. Long-term hematopoietic stem cells as a parasite niche during treatment failure in visceral leishmaniasis. Commun Biol 2022; 5:626. [PMID: 35752645 PMCID: PMC9233693 DOI: 10.1038/s42003-022-03591-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/14/2022] [Indexed: 01/20/2023] Open
Abstract
Given the discontinuation of various first-line drugs for visceral leishmaniasis (VL), large-scale in vivo drug screening, establishment of a relapse model in rodents, immunophenotyping, and transcriptomics were combined to study persistent infections and therapeutic failure. Double bioluminescent/fluorescent Leishmania infantum and L. donovani reporter lines enabled the identification of long-term hematopoietic stem cells (LT-HSC) as a niche in the bone marrow with remarkably high parasite burdens, a feature confirmed for human hematopoietic stem cells (hHSPC). LT-HSC are more tolerant to antileishmanial drug action and serve as source of relapse. A unique transcriptional ’StemLeish’ signature in these cells was defined by upregulated TNF/NF-κB and RGS1/TGF-β/SMAD/SKIL signaling, and a downregulated oxidative burst. Cross-species analyses demonstrated significant overlap with human VL and HIV co-infected blood transcriptomes. In summary, the identification of LT-HSC as a drug- and oxidative stress-resistant niche, undergoing a conserved transcriptional reprogramming underlying Leishmania persistence and treatment failure, may open therapeutic avenues for leishmaniasis. Long-term hematopoietic stem cells may act as protective niches for the Leishmania parasite, potentially contributing to treatment failure in cases of visceral leishmaniasis.
Collapse
Affiliation(s)
- Laura Dirkx
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Margot Merlot
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marick Starick
- Clinical and Epidemiological Virology, Department of Microbiology, Immunology, and Transplantation, Rega Institute of Medical Research, KU Leuven, Leuven, Belgium.,Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology Federal University of Santa Catarina, Florianopolis, Brazil
| | - Jessy Elst
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - André Bafica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology Federal University of Santa Catarina, Florianopolis, Brazil
| | - Didier G Ebo
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Weyenbergh
- Clinical and Epidemiological Virology, Department of Microbiology, Immunology, and Transplantation, Rega Institute of Medical Research, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
46
|
Wang S, Moreau F, Chadee K. Gasdermins in Innate Host Defense Against Entamoeba histolytica and Other Protozoan Parasites. Front Immunol 2022; 13:900553. [PMID: 35795683 PMCID: PMC9251357 DOI: 10.3389/fimmu.2022.900553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gasdermins (GSDMs) are a group of proteins that are cleaved by inflammatory caspases to induce pore formation in the plasma membrane to cause membrane permeabilization and lytic cell death or pyroptosis. All GSDMs share a conserved structure, containing a cytotoxic N-terminal (NT) pore-forming domain and a C-terminal (CT) repressor domain. Entamoeba histolytica (Eh) in contact with macrophages, triggers outside-in signaling to activate inflammatory caspase-4/1 via the noncanonical and canonical pathway to promote cleavage of gasdermin D (GSDMD). Cleavage of GSDMD removes the auto-inhibition that masks the active pore-forming NT domain in the full-length protein by interactions with GSDM-CT. The cleaved NT-GSDMD monomers then oligomerize to form pores in the plasma membrane to facilitate the release of IL-1β and IL-18 with a measured amount of pyroptosis. Pyroptosis is an effective way to counteract intracellular parasites, which exploit replicative niche to avoid killing. To date, most GSDMs have been verified to perform pore-forming activity and GSDMD-induced pyroptosis is rapidly emerging as a mechanism of anti-microbial host defence. Here, we review our comprehensive and current knowledge on the expression, activation, biological functions, and regulation of GSDMD cleavage with emphases on physiological scenario and related dysfunctions of each GSDM member as executioner of cell death, cytokine secretion and inflammation against Eh and other protozoan parasitic infections.
Collapse
Affiliation(s)
| | | | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
47
|
de Queiroz AC, Barbosa G, de Oliveira VRT, de Mattos Alves H, Alves MA, Carregaro V, Santana da Silva J, Barreiro EJ, Alexandre-Moreira MS, Lima LM. Pre-clinical evaluation of LASSBio-1491: From in vitro pharmacokinetic study to in vivo leishmanicidal activity. PLoS One 2022; 17:e0269447. [PMID: 35666748 PMCID: PMC9170106 DOI: 10.1371/journal.pone.0269447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/21/2022] [Indexed: 11/19/2022] Open
Abstract
Leishmaniasis is a public health issue. It is among the top five parasitic illnesses worldwide and is one of the most neglected diseases. The current treatment disease includes limitations of toxicity, variable efficacy, high costs and inconvenient doses and treatment schedules. LASSBio-1736 was described as antileishmanial drug-candidate to cutaneous leishmaniasis, displaying plasma stability and with no preliminary signals of hepatic or renal toxicity. In this paper, we described the in vitro pharmacokinetic study of LASSBio-1491 (a less lipophilic isostere of LASSBio-1736) and it is in vitro and in vivo leishmanicidal activities. Our results demonstrated that LASSBio-1491 has high permeability, satisfactory aqueous solubility, long plasma and microsomal half-lives and low in vitro systemic clearance, suggesting a pharmacokinetic profile suitable for its use in a single daily dose. The antileishmanial effect of LASSBio-1491 was confirmed in vitro and in vivo. It exhibited no cytotoxic effect to mammalian cells and displayed good in –vivo effect against BALB/c mice infected with Leishmania major LV39 substrain, being 3 times more efficient than glucantime.
Collapse
Affiliation(s)
- Aline Cavalcanti de Queiroz
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Pharmacology and Immunity (LaFI), Sector of Physiology and Pharmacology, ICBS, UFAL, Maceió, Alagoas, Brazil
- Laboratory of Microbiology, Immunology and Parasitology, Center for Medical Sciences, Campus Arapiraca, Federal University of Alagoas, Arapiraca, Alagoas, Brazil
| | - Gisele Barbosa
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victória Regina Thomaz de Oliveira
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hélio de Mattos Alves
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina Amaral Alves
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eliezer Jesus Barreiro
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magna Suzana Alexandre-Moreira
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Pharmacology and Immunity (LaFI), Sector of Physiology and Pharmacology, ICBS, UFAL, Maceió, Alagoas, Brazil
- * E-mail: (LML); (MSAM)
| | - Lidia Moreira Lima
- National Institute of Science and Technology for Drugs and Medicines (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), Laboratory for the Evaluation and Synthesis of Bioactive Substances (LASSBio, http://www.lassbio.icb.ufrj.br), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (LML); (MSAM)
| |
Collapse
|
48
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
49
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
50
|
Carvalho AM, Viana SM, Andrade BB, Oliveira F, Valenzuela JG, Carvalho EM, de Oliveira CI. Immune response to LinB13, a Lutzomyia intermedia salivary protein correlates with disease severity in tegumentary leishmaniasis. Clin Infect Dis 2022; 75:1754-1762. [PMID: 35385578 DOI: 10.1093/cid/ciac258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We have previously shown that seropositivity to rLinB-13, a salivary protein from Lutzomyia intermedia, predicted sand fly exposure and was associated with increased risk of developing cutaneous leishmaniasis (CL). METHODS Herein, we investigated the cellular immune response to saliva from Lu. intermedia, using rLinB-13 as a surrogate antigen in naturally exposed individuals presenting positive serology to LinB-13. We also investigated the response to rLinB-13 in leishmaniasis patients, displaying active ulcers and positive PCR for L. braziliensis. RESULTS Peripheral blood mononuclear cells (PBMCs) stimulated in vitro with rLinB-13 secreted elevated levels of IL-10, IL-4, IL-1β, IL-1α, IL-6 and chemokines (CCL3, CCL4, CCL5 and CXCL5). CL, and disseminated leishmaniasis (DL) patients displayed a significantly higher IgG response to rLinB-13, compared to healthy subjects and anti-rLinB-13 IgG was positively correlated with the number of lesions in DL patients. Positive serology to rLinB-13 was also associated with chemotherapy failure. PBMCs from DL patients stimulated with rLINB-13 secreted significantly higher levels IL-10 and IL-1β compared to CL individuals. CONCLUSIONS In this study, we observed an association between humoral and cellular immune response to the sand fly salivary protein rLinB-13 and disease severity in tegumentary leishmaniasis. This study brings evidence that immunity to rLinB-13 influences disease outcome in L. braziliensis infection and results indicate that positive serology to rLinB-13 IgG can be employed as marker of DL, an emerging and severe form of disease caused by L. braziliensis.
Collapse
Affiliation(s)
- Augusto M Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | | | | | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Edgar M Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil.,Immunology Service of the University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| |
Collapse
|