1
|
Dong Z, Jiang Y, Zhang J, Zheng C, Chen H, Tang W, Yan X, Yu L, Han L, Wang L. FERMT1 contributes to the epithelial-mesenchymal transition of chronic rhinosinusitis with nasal polyps via PI3K/Akt signaling. Int Immunopharmacol 2024; 143:113545. [PMID: 39488921 DOI: 10.1016/j.intimp.2024.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a key process of chronic rhinosinusitis with nasal polyps (CRSwNP). The molecular mechanism of EMT in CRSwNP remains unknown. In this study, we aimed to investigate the role of FERMT1 during the EMT process in CRSwNP. METHODS Western blotting, qRT-PCR, and immunohistochemistry (IHC) were performed to examine the expression of related proteins and mRNAs. The migration ability of human nasal epithelial cells (HNEpCs) was evaluated with wound scratch assay. RNA sequencing was performed to investigate the downstream genes of FERMT1. The CRSwNP mouse model was established to study the effect of FERMT1 in vivo. RESULTS We found that FERMT1 was increased in nasal polyp tissues and correlated with the symptom scores of CRSwNP patients. Knockdown of FERMT1 inhibited the EMT process and cell migration induced by TGF-β1 through the PI3K/Akt pathway, and Akt inhibitor partially blocked the EMT induced by FERMT1 overexpression. In the CRSwNP mouse model, FERMT1 knockdown reduced nasal polyp formation and reversed the EMT process. CONCLUSIONS Our data indicate that knockdown of FERMT1 inhibits migration and EMT process of HNEpCs via PI3K/Akt signaling pathway, suggesting that FERMT1 may be a novel and potential therapeutic target for CRSwNP treatment.
Collapse
Affiliation(s)
- Zihui Dong
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266100, China
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266100, China
| | - Jisheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266100, China
| | - Chunge Zheng
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266100, China
| | - Han Chen
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266100, China
| | - Wenrui Tang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266100, China
| | - Xudong Yan
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266100, China
| | - Longgang Yu
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266100, China
| | - Lin Han
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266001, China.
| | - Lin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266100, China.
| |
Collapse
|
2
|
Carrasco G, Stavrou I, Treanor-Taylor M, Beetham H, Lee M, Masalmeh R, Carreras-Soldevila A, Hardman D, Bernabeu MO, von Kriegsheim A, Inman GJ, Byron A, Brunton VG. Involvement of Kindlin-1 in cutaneous squamous cell carcinoma. Oncogenesis 2024; 13:24. [PMID: 38982038 PMCID: PMC11233684 DOI: 10.1038/s41389-024-00526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Kindler syndrome (KS) is a rare genodermatosis resulting from loss-of-function mutations in FERMT1, the gene that encodes Kindlin-1. KS patients have a high propensity to develop aggressive and metastatic cutaneous squamous cell carcinoma (cSCC). Here we show in non-KS-associated patients that elevation of FERMT1 expression is increased in actinic keratoses compared to normal skin, with a further increase in cSCC supporting a pro-tumorigenic role in this population. In contrast, we show that loss of Kindlin-1 leads to increased SCC tumor growth in vivo and in 3D spheroids, which was associated with the development of a hypoxic tumor environment and increased glycolysis. The metalloproteinase Mmp13 was upregulated in Kindlin-1-depleted tumors, and increased expression of MMP13 was responsible for driving increased invasion of the Kindlin-1-depleted SCC cells. These results provide evidence that Kindlin-1 loss in SCC can promote invasion through the upregulation of MMP13, and offer novel insights into how Kindlin-1 loss leads to the development of a hypoxic environment that is permissive for tumor growth.
Collapse
Affiliation(s)
- Giovana Carrasco
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
| | - Ifigeneia Stavrou
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | | | - Henry Beetham
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Martin Lee
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Roza Masalmeh
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Artur Carreras-Soldevila
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - David Hardman
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
- The Bayes Centre, University of Edinburgh, Edinburgh, EH8 9BT, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Gareth J Inman
- CRUK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Adam Byron
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| |
Collapse
|
3
|
Pan Z, Ke C, Zheng H, Guo X, Gao W, Huang X, Chen C, Xiong Y, Zheng S, Zheng F, Hu W. FERMT1 suppression induces anti-tumor effects and reduces stemness in glioma cancer cells. J Cancer Res Clin Oncol 2024; 150:338. [PMID: 38976072 PMCID: PMC11231014 DOI: 10.1007/s00432-024-05859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE Glioma is a leading cause of mortality worldwide, its recurrence poses a major challenge in achieving effective treatment outcomes. Cancer stem cells (CSCs) have emerged as key contributors to tumor relapse and chemotherapy resistance, making them attractive targets for glioma cancer therapy. This study investigated the potential of FERMT1 as a prognostic biomarker and its role in regulating stemness through cell cycle in glioma. METHODS Using data from TCGA-GBM, GSE4290, GSE50161 and GSE147352 for analysis of FERMT1 expression in glioma tissues. Then, the effects of FERMT1 knockdown on cell cycle, proliferation, sphere formation ability, invasion and migration were investigated. The influences of FERMT1 on expression of glycolysis-related proteins and levels of ATP, glucose, lactate and G6PDH were also explored. Furthermore, the effects of FERMT1 knockdown on cellular metabolism were evidenced. RESULTS Significant upregulation of FERMT1 in glioma tissues was observed. Silencing FERMT1 not only affected the cell cycle but also led to a notable reduction in proliferation, invasion and migration. The expression of glycolysis-associated proteins including GLUT1, GLUT3, GLUT4, and SCO2 were reduced by FERMT1 knockdown, resulted in increased ATP and glucose as well as decreased lactic acid and G6PDH levels. FERMT1 knockdown also inhibited cellular metabolism. Moreover, FERMT1 knockdown significantly reduced sphere diameter, along with inhibiting the expression of transcription factors associated with stemness in glioma cells. CONCLUSION These findings demonstrated that FERMT1 could be an ideal target for the advancement of innovative strategies against glioma treatment via modulating cellular process involved in stemness regulation and metabolism.
Collapse
Affiliation(s)
- Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Chuhan Ke
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Hanlin Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Xiumei Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Wen Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Xinyue Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Chunhui Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Shuni Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China.
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China.
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China.
| |
Collapse
|
4
|
Liao J, Chen R, Lin B, Deng R, Liang Y, Zeng J, Ma S, Qiu X. Cross-Talk between the TGF-β and Cell Adhesion Signaling Pathways in Cancer. Int J Med Sci 2024; 21:1307-1320. [PMID: 38818471 PMCID: PMC11134594 DOI: 10.7150/ijms.96274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Transforming growth factor-β (TGF-β) is strongly associated with the cell adhesion signaling pathway in cell differentiation, migration, etc. Mechanistically, TGF-β is secreted in an inactive form and localizes to the extracellular matrix (ECM) via the latent TGF-β binding protein (LTBP). However, it is the release of mature TGF-β that is essential for the activation of the TGF-β signaling pathway. This progress requires specific integrins (one of the main groups of cell adhesion molecules (CAMs)) to recognize and activate the dormant TGF-β. In addition, TGF-β regulates cell adhesion ability through modulating CAMs expression. The aberrant activation of the TGF-β signaling pathway, caused by abnormal expression of key regulatory molecules (such as Smad proteins, certain transcription factors, and non-coding RNAs), promotes tumor invasive and metastasis ability via epithelial-mesenchymal transition (EMT) during the late stages of tumorigenesis. In this paper, we summarize the crosstalk between TGF-β and cell adhesion signaling pathway in cancer and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jiahao Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Rentang Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Bihua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Runhua Deng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Yanfang Liang
- Department of Pathology, Binhaiwan Central Hospital of Dongguan, Dongguan, Guangdong, 523905, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Sha Ma
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Xianxiu Qiu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| |
Collapse
|
5
|
Krämer S, Hillebrecht AL, Wang Y, Badea MA, Barrios JI, Danescu S, Fuentes I, Kartal D, Klausegger A, Ponce de León E, Schilke R, Yordanova I, Bloch-Zupan A, Has C. Orofacial Anomalies in Kindler Epidermolysis Bullosa. JAMA Dermatol 2024; 160:544-549. [PMID: 38506824 PMCID: PMC10955352 DOI: 10.1001/jamadermatol.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024]
Abstract
Importance Kindler epidermolysis bullosa is a genetic skin-blistering disease associated with recessive inherited pathogenic variants in FERMT1, which encodes kindlin-1. Severe orofacial manifestations of Kindler epidermolysis bullosa, including early oral squamous cell carcinoma, have been reported. Objective To determine whether hypoplastic pitted amelogenesis imperfecta is a feature of Kindler epidermolysis bullosa. Design, Settings, and Participants This longitudinal, 2-center cohort study was performed from 2003 to 2023 at the Epidermolysis Bullosa Centre, University of Freiburg, Germany, and the Special Care Dentistry Clinic, University of Chile in association with DEBRA Chile. Participants included a convenience sampling of all patients with a diagnosis of Kindler epidermolysis bullosa. Main Outcomes and Measures The primary outcomes were the presence of hypoplastic pitted amelogenesis imperfecta, intraoral wounds, gingivitis and periodontal disease, gingival hyperplasia, vestibular obliteration, cheilitis, angular cheilitis, chronic lip wounds, microstomia, and oral squamous cell carcinoma. Results The cohort consisted of 36 patients (15 female [42%] and 21 male [58%]; mean age at first examination, 23 years [range, 2 weeks to 70 years]) with Kindler epidermolysis bullosa. The follow-up ranged from 1 to 24 years. The enamel structure was assessed in 11 patients, all of whom presented with enamel structure abnormalities. The severity of hypoplastic pitted amelogenesis imperfecta varied from generalized to localized pitting. Additional orofacial features observed include gingivitis and periodontal disease, which was present in 90% (27 of 30 patients) of those assessed, followed by intraoral lesions (16 of 22 patients [73%]), angular cheilitis (24 of 33 patients [73%]), cheilitis (22 of 34 patients [65%]), gingival overgrowth (17 of 26 patients [65%]), microstomia (14 of 25 patients [56%]), and vestibular obliteration (8 of 16 patients [50%]). Other features included chronic lip ulcers (2 patients) and oral squamous cell carcinoma with lethal outcome (2 patients). Conclusions and Relevance These findings suggest that hypoplastic pitted amelogenesis imperfecta is a feature of Kindler epidermolysis bullosa and underscore the extent and severity of oral manifestations in Kindler epidermolysis bullosa and the need for early and sustained dental care.
Collapse
Affiliation(s)
- Susanne Krämer
- Department of Dermatology, Medical Faculty and Medical Center, University of Freiburg, Freiburg, Germany
- Special Care Dentistry Unit, Facultad de Odontologia, Universidad de Chile, Santiago, Chile
| | - Anna Lena Hillebrecht
- Department of Prosthetic Dentistry, Centre for Dental Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Yao Wang
- Department of Dermatology, Medical Faculty and Medical Center, University of Freiburg, Freiburg, Germany
| | - Mihail-Alexandru Badea
- Dermatology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Targu-Mures, Targu-Mures, Romania
| | | | - Sorina Danescu
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ignacia Fuentes
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- DEBRA Chile, Santiago, Chile
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Demet Kartal
- Faculty of Medicine, Department of Dermatology and Venereology, Erciyes University, Kayseri, Turkey
| | - Alfred Klausegger
- EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Enrique Ponce de León
- Special Care Dentistry Unit, Facultad de Odontologia, Universidad de Chile, Santiago, Chile
| | - Reinhard Schilke
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Hannover, Germany
| | - Ivelina Yordanova
- Department of Dermatology and Venerology, Medical University Pleven, Pleven, Bulgaria
| | - Agnes Bloch-Zupan
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut d’études Avancées, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de Référence des Maladies Rares Orales et Dentaires, O-Rares, Filière Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS-UMR7104, Illkirch, France
| | - Cristina Has
- Department of Dermatology, Medical Faculty and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Yadav RP, Baranwal S. Kindlin-2 regulates colonic cancer stem-like cells survival and self-renewal via Wnt/β-catenin mediated pathway. Cell Signal 2024; 113:110953. [PMID: 38084837 DOI: 10.1016/j.cellsig.2023.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Cancer Stem Cells (CSCs) have emerged as a critical mediator in recurrence and resistance in cancers. Kindlin-isoform (1 and 2) binds with cytoplasmic β-tail of integrin and are essential co-activators of integrin function. Given their important function in regulating cancer hallmarks such as cell proliferation, invasion, migration, and metastasis, we hypothesize that it might play a critical role in CSC growth, survival, and self-renewal of colon cancer. MATERIALS AND METHODS Using knockdown approaches, we inhibited Kindlin-2 expression in HCT116 and HT29 colon cancer cells. Extreme limiting dilution and self-renewal assay were performed to measure the role of Kindlin in colonic CSC. Standard methods such as qRT-PCR and western blotting were carried out to understand the signaling cascade by which Kindlin regulates CSC marker expression and downstream targets. RESULTS Our data show isoform-specific upregulation of Kindlin-2 in colonic CSCs. The silencing of Kindlin-2 reduces colonosphere formation, decreases CSC size, and self-renewal marker genes such as CD-133, CXCR-4, LGR-5, and C-MYC. Kindlin-2 silencing reduces colonosphere proliferation, invasion, and migration of colonic CSCs. Mechanistically, Kindlin-2 silencing reduces the expression, and nuclear localization of β-catenin, and decreases β-catenin target genes such as C-MYC, cyclin D1, DKK-1, and Snail-1. CONCLUSION Our study delineates the isoform-specific activity of Kindlin-2 in regulating Colonic CSC. Isoform-specific targeting of Kindlin-2 may be a novel strategy to tackle this devastating disease.
Collapse
Affiliation(s)
- Ravi Prakash Yadav
- Department of Microbiology, Gastrointestinal Disease Lab, Room 522 Academic Building, Central University of Punjab, School of Basic Science, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Somesh Baranwal
- Department of Microbiology, Gastrointestinal Disease Lab, Room 522 Academic Building, Central University of Punjab, School of Basic Science, VPO Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
7
|
Winge MCG, Kellman LN, Guo K, Tang JY, Swetter SM, Aasi SZ, Sarin KY, Chang ALS, Khavari PA. Advances in cutaneous squamous cell carcinoma. Nat Rev Cancer 2023:10.1038/s41568-023-00583-5. [PMID: 37286893 DOI: 10.1038/s41568-023-00583-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/09/2023]
Abstract
Human malignancies arise predominantly in tissues of epithelial origin, where the stepwise transformation from healthy epithelium to premalignant dysplasia to invasive neoplasia involves sequential dysregulation of biological networks that govern essential functions of epithelial homeostasis. Cutaneous squamous cell carcinoma (cSCC) is a prototype epithelial malignancy, often with a high tumour mutational burden. A plethora of risk genes, dominated by UV-induced sun damage, drive disease progression in conjunction with stromal interactions and local immunomodulation, enabling continuous tumour growth. Recent studies have identified subpopulations of SCC cells that specifically interact with the tumour microenvironment. These advances, along with increased knowledge of the impact of germline genetics and somatic mutations on cSCC development, have led to a greater appreciation of the complexity of skin cancer pathogenesis and have enabled progress in neoadjuvant immunotherapy, which has improved pathological complete response rates. Although measures for the prevention and therapeutic management of cSCC are associated with clinical benefit, the prognosis remains poor for advanced disease. Elucidating how the genetic mechanisms that drive cSCC interact with the tumour microenvironment is a current focus in efforts to understand, prevent and treat cSCC.
Collapse
Affiliation(s)
- Mårten C G Winge
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Laura N Kellman
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Konnie Guo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Susan M Swetter
- Department of Dermatology, Stanford University, Redwood City, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA.
- Department of Dermatology, Stanford University, Redwood City, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
8
|
Webb ER, Dodd GL, Noskova M, Bullock E, Muir M, Frame MC, Serrels A, Brunton VG. Kindlin-1 regulates IL-6 secretion and modulates the immune environment in breast cancer models. eLife 2023; 12:e85739. [PMID: 36883731 PMCID: PMC10023156 DOI: 10.7554/elife.85739] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/08/2023] [Indexed: 03/09/2023] Open
Abstract
The adhesion protein Kindlin-1 is over-expressed in breast cancer where it is associated with metastasis-free survival; however, the mechanisms involved are poorly understood. Here, we report that Kindlin-1 promotes anti-tumor immune evasion in mouse models of breast cancer. Deletion of Kindlin-1 in Met-1 mammary tumor cells led to tumor regression following injection into immunocompetent hosts. This was associated with a reduction in tumor infiltrating Tregs. Similar changes in T cell populations were seen following depletion of Kindlin-1 in the polyomavirus middle T antigen (PyV MT)-driven mouse model of spontaneous mammary tumorigenesis. There was a significant increase in IL-6 secretion from Met-1 cells when Kindlin-1 was depleted and conditioned media from Kindlin-1-depleted cells led to a decrease in the ability of Tregs to suppress the proliferation of CD8+ T cells, which was dependent on IL-6. In addition, deletion of tumor-derived IL-6 in the Kindlin-1-depleted tumors reversed the reduction of tumor-infiltrating Tregs. Overall, these data identify a novel function for Kindlin-1 in regulation of anti-tumor immunity, and that Kindlin-1 dependent cytokine secretion can impact the tumor immune environment.
Collapse
Affiliation(s)
- Emily R Webb
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Georgia L Dodd
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Michaela Noskova
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Esme Bullock
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Alan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
9
|
Ainiwan M, Wang Q, Yesitayi G, Ma X. Identification of FERMT1 and SGCD as key marker in acute aortic dissection from the perspective of predictive, preventive, and personalized medicine. EPMA J 2022; 13:597-614. [PMID: 36505894 PMCID: PMC9727066 DOI: 10.1007/s13167-022-00302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Acute aortic dissection (AAD) is a severe aortic injury disease, which is often life-threatening at the onset. However, its early prevention remains a challenge. Therefore, in the context of predictive, preventive, and personalized medicine (PPPM), it is particularly important to identify novel and powerful biomarkers. This study aimed to identify the key markers that may contribute to the predictive early risk of AAD and analyze their role in immune infiltration. Three datasets, including a total of 23 AAD and 20 healthy control aortic samples, were retrieved from the Gene Expression Omnibus (GEO) database, and a total of 519 differentially expressed genes (DEGs) were screened in the training set. Using the least absolute shrinkage and selection operator (LASSO) regression model and the random forest (RF) algorithm, FERMT1 (AUC = 0.886) and SGCD (AUC = 0.876) were identified as key markers of AAD. A novel AAD risk prediction model was constructed using an artificial neural network (ANN), and in the validation set, the AUC = 0.920. Immune infiltration analysis indicated differential gene expression in regulatory T cells, monocytes, γδ T cells, quiescent NK cells, and mast cells in the patients with AAD and the healthy controls. Correlation and ssGSEA analysis showed that two key markers' expression in patients with AAD was correlated with many inflammatory mediators and pathways. In addition, the drug-gene interaction network identified motesanib and pyrazoloacridine as potential therapeutic agents for two key markers, which may provide personalized medical services for AAD patients. These findings highlight FERMT1 and SGCD as key biological targets for AAD and reveal the inflammation-related potential molecular mechanism of AAD, which is helpful for early risk prediction and targeted prevention of AAD. In conclusion, our study provides a new perspective for developing a PPPM method for managing AAD patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-022-00302-4.
Collapse
Affiliation(s)
- Mierxiati Ainiwan
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830000 China
| | - Qi Wang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830000 China
| | - Gulinazi Yesitayi
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830000 China
| | - Xiang Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830000 China
| |
Collapse
|
10
|
A stem cell aging framework, from mechanisms to interventions. Cell Rep 2022; 41:111451. [DOI: 10.1016/j.celrep.2022.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
|
11
|
The Role of the Fibronectin Synergy Site for Skin Wound Healing. Cells 2022; 11:cells11132100. [PMID: 35805184 PMCID: PMC9265582 DOI: 10.3390/cells11132100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Skin is constantly exposed to injuries that are repaired with different outcomes, either regeneration or scarring. Scars result from fibrotic processes modulated by cellular physical forces transmitted by integrins. Fibronectin (FN) is a major component in the provisional matrix assembled to repair skin wounds. FN enables cell adhesion binding of α5β1/αIIbβ3 and αv-class integrins to an RGD-motif. An additional linkage for α5/αIIb is the synergy site located in close proximity to the RGD motif. The mutation to impair the FN synergy region (Fn1syn/syn) demonstrated that its absence permits complete development. However, only with the additional engagement to the FN synergy site do cells efficiently resist physical forces. To test how the synergy site-mediated adhesion affects the course of wound healing fibrosis, we used a mouse model of skin injury and in-vitro migration studies with keratinocytes and fibroblasts on FNsyn. The loss of FN synergy site led to normal re-epithelialization caused by two opposing migratory defects of activated keratinocytes and, in the dermis, induced reduced fibrotic responses, with lower contents of myofibroblasts and FN deposition and diminished TGF-β1-mediated cell signalling. We demonstrate that weakened α5β1-mediated traction forces on FNsyn cause reduced TGF-β1 release from its latent complex.
Collapse
|
12
|
Xiao L, Li Q, Huang Y, Fan Z, Qin W, Liu B, Yuan X. Integrative Analysis Constructs an Extracellular Matrix-Associated Gene Signature for the Prediction of Survival and Tumor Immunity in Lung Adenocarcinoma. Front Cell Dev Biol 2022; 10:835043. [PMID: 35557945 PMCID: PMC9086365 DOI: 10.3389/fcell.2022.835043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) accounts for the majority of lung cancers, and the survival of patients with advanced LUAD is poor. The extracellular matrix (ECM) is a fundamental component of the tumor microenvironment (TME) that determines the oncogenesis and antitumor immunity of solid tumors. However, the prognostic value of extracellular matrix-related genes (ERGs) in LUAD remains unexplored. Therefore, this study is aimed to explore the prognostic value of ERGs in LUAD and establish a classification system to predict the survival of patients with LUAD.Methods: LUAD samples from The Cancer Genome Atlas (TCGA) and GSE37745 were used as discovery and validation cohorts, respectively. Prognostic ERGs were identified by univariate Cox analysis and used to construct a prognostic signature by Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. The extracellular matrix-related score (ECMRS) of each patient was calculated according to the prognostic signature and used to classify patients into high- and low-risk groups. The prognostic performance of the signature was evaluated using Kaplan–Meier curves, Cox regression analyses, and ROC curves. The relationship between ECMRS and tumor immunity was determined using stepwise analyses. A nomogram based on the signature was established for the convenience of use in the clinical practice. The prognostic genes were validated in multiple databases and clinical specimens by qRT-PCR.Results: A prognostic signature based on eight ERGs (FERMT1, CTSV, CPS1, ENTPD2, SERPINB5, ITGA8, ADAMTS8, and LYPD3) was constructed. Patients with higher ECMRS had poorer survival, lower immune scores, and higher tumor purity in both the discovery and validation cohorts. The predictive power of the signature was independent of the clinicopathological parameters, and the nomogram could also predict survival precisely.Conclusions: We constructed an ECM-related gene signature which can be used to predict survival and tumor immunity in patients with LUAD. This signature can serve as a novel prognostic indicator and therapeutic target in LUAD.
Collapse
Affiliation(s)
- Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijie Fan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu, ; Xianglin Yuan,
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu, ; Xianglin Yuan,
| |
Collapse
|
13
|
Xing J, Chen M, Han Y. Multiple datasets to explore the tumor microenvironment of cutaneous squamous cell carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5905-5924. [PMID: 35603384 DOI: 10.3934/mbe.2022276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is one of the most frequent types of cutaneous cancer. The composition and heterogeneity of the tumor microenvironment significantly impact patient prognosis and the ability to practice precision therapy. However, no research has been conducted to examine the design of the tumor microenvironment and its interactions with cSCC. MATERIAL AND METHODS We retrieved the datasets GSE42677 and GSE45164 from the GEO public database, integrated them, and analyzed them using the SVA method. We then screened the core genes using the WGCNA network and LASSO regression and checked the model's stability using the ROC curve. Finally, we performed enrichment and correlation analyses on the core genes. RESULTS We identified four genes as core cSCC genes: DTYMK, CDCA8, PTTG1 and MAD2L1, and discovered that RORA, RORB and RORC were the primary regulators in the gene set. The GO semantic similarity analysis results indicated that CDCA8 and PTTG1 were the two most essential genes among the four core genes. The results of correlation analysis demonstrated that PTTG1 and HLA-DMA, CDCA8 and HLA-DQB2 were significantly correlated. CONCLUSIONS Examining the expression levels of four primary genes in cSCC aids in our understanding of the disease's pathophysiology. Additionally, the core genes were found to be highly related with immune regulatory genes, suggesting novel avenues for cSCC prevention and treatment.
Collapse
Affiliation(s)
- Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Muzi Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
14
|
Gao F, Li C, Danopoulos S, Al Alam D, Peinado N, Webster S, Borok Z, Kohbodi GA, Bellusci S, Minoo P. Hedgehog-responsive PDGFRa(+) fibroblasts maintain a unique pool of alveolar epithelial progenitor cells during alveologenesis. Cell Rep 2022; 39:110608. [PMID: 35385750 PMCID: PMC9199394 DOI: 10.1016/j.celrep.2022.110608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/06/2021] [Accepted: 03/11/2022] [Indexed: 01/08/2023] Open
Abstract
The lung alveolus is lined with alveolar type 1 (AT1) and type 2 (AT2) epithelial cells. During alveologenesis, increasing demand associated with expanding alveolar numbers is met by proliferating progenitor AT2s (pAT2). Little information exists regarding the identity of this population and their niche microenvironment. We show that during alveologenesis, Hedgehog-responsive PDGFRa(+) progenitors (also known as SCMFs) are a source of secreted trophic molecules that maintain a unique pAT2 population. SCMFs are in turn maintained by TGFβ signaling. Compound inactivation of Alk5 TβR2 in SCMFs reduced their numbers and depleted the pAT2 pool without impacting differentiation of daughter cells. In lungs of preterm infants who died with bronchopulmonary dysplasia, PDGFRa is reduced and the number of proliferative AT2s is diminished, indicating that an evolutionarily conserved mechanism governs pAT2 behavior during alveologenesis. SCMFs are a transient cell population, active only during alveologenesis, making them a unique stage-specific niche mesodermal cell type in mammalian organs.
Collapse
Affiliation(s)
- Feng Gao
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Changgong Li
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Soula Danopoulos
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Neil Peinado
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Sha Webster
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Zea Borok
- Hastings Center for Pulmonary Research, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, San Diego, CA 92093, USA
| | - GoleNaz Adeli Kohbodi
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Saverio Bellusci
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Los Angeles, CA 90033, USA; Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), 35390 Giessen, Germany
| | - Parviz Minoo
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Los Angeles, CA 90033, USA; Hastings Center for Pulmonary Research, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
15
|
Duan B, Qin Z, Gu X, Li Y. Migfilin: Cell Adhesion Effect and Comorbidities. Onco Targets Ther 2022; 15:411-422. [PMID: 35469339 PMCID: PMC9034862 DOI: 10.2147/ott.s357355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Cell adhesion manifests as cell linkages to neighboring cells and/or the extracellular matrix (ECM). Migfilin is a widely expressed adhesion protein. It comprises three LIM domains in the C-terminal region and one proline-rich sequence in the N-terminal region. Through interplay with its various binding partners, such as Kindlin-2, Filamin, vasodilator-stimulated phosphoprotein (VASP) protein and the transcription factor CSX, Migfilin facilitates the dynamic association of connecting actomyosin fibers, orchestrating cell morphogenetic movement and cell adhesion, proliferation, migration, invasion, differentiation and signal transduction. In this review, to further elucidate the functional contributions of and pathogenesis induced by Migfilin, we focused on the structure of Migfilin and the targets which it directly binds with. We also summarized the role of Migfilin and its binding partners in the progression of different diseases and malignancies. As a possible candidate for coordinating various cellular processes and because of its association with both the pathogenesis and progression of certain tumors, Migfilin likely has utility as a therapeutic target against multiple diseases in the clinic.
Collapse
Affiliation(s)
- Baoyu Duan
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Ziyao Qin
- Department of Research and Development, Shanghai Institute of Biological Products Co., Ltd., Shanghai, People’s Republic of China
| | - Xuefeng Gu
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
- Xuefeng Gu, Department of Pharmacy, 279 Zhouzhu Road, Shanghai, 201318, People’s Republic of China, Tel +86 21 6588 3180, Email
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People’s Republic of China
- Correspondence: Yanfei Li, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Shanghai, 201318, People’s Republic of China, Tel +86 21 6588 3180 Email
| |
Collapse
|
16
|
FERMT1 contributes to the migration and invasion of nasopharyngeal carcinoma through epithelial-mesenchymal transition and cell cycle arrest. Cancer Cell Int 2022; 22:70. [PMID: 35144617 PMCID: PMC8832859 DOI: 10.1186/s12935-022-02494-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fermitin family member 1 (FERMT1) is significantly overexpressed in human cancers and associated with poor prognosis, but its contributions to tumorigenesis and nasopharyngeal carcinoma (NPC) progression remain unclear. METHODS The public GEO database was examined to investigate the role of FERMT1. Immunohistochemistry (IHC) staining of FERMT1 was performed in NPC tissues to corroborate the results. Western blotting and qRT-PCR were performed to test the expression of related proteins and mRNAs. Cell counting kit-8 assay (CCK8 assay) and colony formation assays were carried out to investigate the association of FERMT1 expression with NPC cell proliferation. The wound healing assay and Transwell assay were used to detect the migration and invasion of NPC cells. Flow cytometric analysis was conducted to detect the cell cycle transition of NPC cells. Co-immunoprecipitation (Co-IP) was employed to identify the correlation of FEMRT1 and Nod-like receptor family protein 3 (NLRP3). Xenograft tumors were generated to investigate the effect of FERMT1 on the growth of NPC cells in vivo. RESULTS Here, we found that FERMT1 was upregulated in NPC tissues and correlated with the clinicopathological characteristics of NPC patients. Moreover, knockdown of FERMT1 significantly decreased cell proliferation, migration and invasion by mediating epithelial-mesenchymal transition (EMT) and cell cycle arrest of NPC cells both in vitro and in vivo. Knockdown FERMT1 inhibited EMT through directly binding to the NLRP3 and inhibited NF-kB signaling pathway. CONCLUSION These data indicated that FERMT1 could be a good potential therapeutic target for NPC treatment.
Collapse
|
17
|
Su X, Chen J, Lin X, Chen X, Zhu Z, Wu W, Lin H, Wang J, Ye X, Zeng Y. FERMT3 mediates cigarette smoke-induced epithelial-mesenchymal transition through Wnt/β-catenin signaling. Respir Res 2021; 22:286. [PMID: 34742298 PMCID: PMC8571878 DOI: 10.1186/s12931-021-01881-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is an essential pathophysiological process in COPD and plays an important role in airway remodeling, fibrosis, and malignant transformation of COPD. Previous studies have indicated FERMT3 is downregulated and plays a tumor-suppressive role in lung cancer. However, the role of FERMT3 in COPD, including EMT, has not yet been investigated. Methods The present study aimed to explore the potential role of FERMT3 in COPD and its underlying molecular mechanisms. Three GEO datasets were utilized to analyse FERMT3 gene expression profiles in COPD. We then established EMT animal models and cell models through cigarette smoke (CS) or cigarette smoke extract (CSE) exposure to detect the expression of FERMT3 and EMT markers. RT-PCR, western blot, immunohistochemical, cell migration, and cell cycle were employed to investigate the potential regulatory effect of FERMT3 in CSE-induced EMT. Results Based on Gene Expression Omnibus (GEO) data set analysis, FERMT3 expression in bronchoalveolar lavage fluid was lower in COPD smokers than in non-smokers or smokers. Moreover, FERMT3 expression was significantly down-regulated in lung tissues of COPD GOLD 4 patients compared with the control group. Cigarette smoke exposure reduced the FERMT3 expression and induces EMT both in vivo and in vitro. The results showed that overexpression of FERMT3 could inhibit EMT induced by CSE in A549 cells. Furthermore, the CSE-induced cell migration and cell cycle progression were reversed by FERMT3 overexpression. Mechanistically, our study showed that overexpression of FERMT3 inhibited CSE-induced EMT through the Wnt/β-catenin signaling. Conclusions In summary, these data suggest FERMT3 regulates cigarette smoke-induced epithelial–mesenchymal transition through Wnt/β-catenin signaling. These findings indicated that FERMT3 was correlated with the development of COPD and may serve as a potential target for both COPD and lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01881-y.
Collapse
Affiliation(s)
- Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Junjie Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoping Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Xiaoyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhixing Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Weijing Wu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Hai Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Jianming Wang
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Xiangjia Ye
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China.
| |
Collapse
|
18
|
Platelet-Released Growth Factors Induce Genes Involved in Extracellular Matrix Formation in Human Fibroblasts. Int J Mol Sci 2021; 22:ijms221910536. [PMID: 34638874 PMCID: PMC8508971 DOI: 10.3390/ijms221910536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Platelet concentrate products are increasingly used in many medical disciplines due to their regenerative properties. As they contain a variety of chemokines, cytokines, and growth factors, they are used to support the healing of chronic or complicated wounds. To date, underlying cellular mechanisms have been insufficiently investigated. Therefore, we analyzed the influence of Platelet-Released Growth Factors (PRGF) on human dermal fibroblasts. Whole transcriptome sequencing and gene ontology (GO) enrichment analysis of PRGF-treated fibroblasts revealed an induction of several genes involved in the formation of the extracellular matrix (ECM). Real-time PCR analyses of PRGF-treated fibroblasts and skin explants confirmed the induction of ECM-related genes, in particular transforming growth factor beta-induced protein (TGFBI), fibronectin 1 (FN1), matrix metalloproteinase-9 (MMP-9), transglutaminase 2 (TGM2), fermitin family member 1 (FERMT1), collagen type I alpha 1 (COL1A1), a disintegrin and metalloproteinase 19 (ADAM19), serpin family E member 1 (SERPINE1) and lysyl oxidase-like 3 (LOXL3). The induction of these genes was time-dependent and in part influenced by the epidermal growth factor receptor (EGFR). Moreover, PRGF induced migration and proliferation of the fibroblasts. Taken together, the observed effects of PRGF on human fibroblasts may contribute to the underlying mechanisms that support the beneficial wound-healing effects of thrombocyte concentrate products.
Collapse
|
19
|
Ren A, Yin W, Miller H, Westerberg LS, Candotti F, Park CS, Lee P, Gong Q, Chen Y, Liu C. Novel Discoveries in Immune Dysregulation in Inborn Errors of Immunity. Front Immunol 2021; 12:725587. [PMID: 34512655 PMCID: PMC8429820 DOI: 10.3389/fimmu.2021.725587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually becomes clear that immune dysregulation plays an important part. In some cases, autoimmunity, hyperinflammation and lymphoproliferation are far more serious than infections. Thus, immune dysregulation has become significant in disease monitoring and treatment. In recent years, the wide application of whole-exome sequencing/whole-genome sequencing has tremendously promoted the discovery and further studies of new IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their pathogenesis and therapy. In this review, we focus on novel discovered primary immune dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1, RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and current therapeutic methods, and point out the gaps in this field.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nat Commun 2021; 12:2577. [PMID: 33972551 PMCID: PMC8110968 DOI: 10.1038/s41467-021-22881-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Inter-tissue interaction is fundamental to multicellularity. Although the basement membrane (BM) is located at tissue interfaces, its mode of action in inter-tissue interactions remains poorly understood, mainly because the molecular and structural details of the BM at distinct inter-tissue interfaces remain unclear. By combining quantitative transcriptomics and immunohistochemistry, we systematically identify the cellular origin, molecular identity and tissue distribution of extracellular matrix molecules in mouse hair follicles, and reveal that BM composition and architecture are exquisitely specialized for distinct inter-tissue interactions, including epithelial–fibroblast, epithelial–muscle and epithelial–nerve interactions. The epithelial–fibroblast interface, namely, hair germ–dermal papilla interface, makes asymmetrically organized side-specific heterogeneity in the BM, defined by the newly characterized interface, hook and mesh BMs. One component of these BMs, laminin α5, is required for hair cycle regulation and hair germ–dermal papilla anchoring. Our study highlights the significance of BM heterogeneity in distinct inter-tissue interactions. The basement membrane is located at tissue interfaces, but how it mediates distinct inter-tissue interactions is unclear. Here, the authors systematically define the spatial heterogeneity of skin basement membrane composition and show its functional importance in inter-tissue interactions.
Collapse
|
21
|
Bu W, Levitskaya Z, Tan SM, Gao YG. Emerging evidence for kindlin oligomerization and its role in regulating kindlin function. J Cell Sci 2021; 134:256567. [PMID: 33912917 DOI: 10.1242/jcs.256115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated cell-extracellular matrix (ECM) interactions play crucial roles in a broad range of physiological and pathological processes. Kindlins are important positive regulators of integrin activation. The FERM-domain-containing kindlin family comprises three members, kindlin-1, kindlin-2 and kindlin-3 (also known as FERMT1, FERMT2 and FERMT3), which share high sequence similarity (identity >50%), as well as domain organization, but exhibit diverse tissue-specific expression patterns and cellular functions. Given the significance of kindlins, analysis of their atomic structures has been an attractive field for decades. Recently, the structures of kindlin and its β-integrin-bound form have been obtained, which greatly advance our understanding of the molecular functions that involve kindlins. In particular, emerging evidence indicates that oligomerization of kindlins might affect their integrin binding and focal adhesion localization, positively or negatively. In this Review, we presented an update on the recent progress of obtaining kindlin structures, and discuss the implication for integrin activation based on kindlin oligomerization, as well as the possible regulation of this process.
Collapse
Affiliation(s)
- Wenting Bu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China518055
| | - Zarina Levitskaya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore639798
| |
Collapse
|
22
|
Harada S, Mabuchi Y, Kohyama J, Shimojo D, Suzuki S, Kawamura Y, Araki D, Suyama T, Kajikawa M, Akazawa C, Okano H, Matsuzaki Y. FZD5 regulates cellular senescence in human mesenchymal stem/stromal cells. Stem Cells 2020; 39:318-330. [PMID: 33338299 PMCID: PMC7986096 DOI: 10.1002/stem.3317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Human mesenchymal stem/stromal cells (hMSCs) have garnered enormous interest as a potential resource for cell‐based therapies. However, the molecular mechanisms regulating senescence in hMSCs remain unclear. To elucidate these mechanisms, we performed gene expression profiling to compare clonal immature MSCs exhibiting multipotency with less potent MSCs. We found that the transcription factor Frizzled 5 (FZD5) is expressed specifically in immature hMSCs. The FZD5 cell surface antigen was also highly expressed in the primary MSC fraction (LNGFR+THY‐1+) and cultured MSCs. Treatment of cells with the FZD5 ligand WNT5A promoted their proliferation. Upon FZD5 knockdown, hMSCs exhibited markedly attenuated proliferation and differentiation ability. The observed increase in the levels of senescence markers suggested that FZD5 knockdown promotes cellular senescence by regulating the noncanonical Wnt pathway. Conversely, FZD5 overexpression delayed cell cycle arrest during the continued culture of hMSCs. These results indicated that the intrinsic activation of FZD5 plays an essential role in negatively regulating senescence in hMSCs and suggested that controlling FZD5 signaling offers the potential to regulate hMSC quality and improve the efficacy of cell‐replacement therapies using hMSCs.
Collapse
Affiliation(s)
- Seiko Harada
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Shimojo
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Sadafumi Suzuki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Kawamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Daisuke Araki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Suyama
- Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | | | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Intractable Disease Research Centre, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
23
|
Zou Z, Long X, Zhao Q, Zheng Y, Song M, Ma S, Jing Y, Wang S, He Y, Esteban CR, Yu N, Huang J, Chan P, Chen T, Izpisua Belmonte JC, Zhang W, Qu J, Liu GH. A Single-Cell Transcriptomic Atlas of Human Skin Aging. Dev Cell 2020; 56:383-397.e8. [PMID: 33238152 DOI: 10.1016/j.devcel.2020.11.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/26/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Skin undergoes constant self-renewal, and its functional decline is a visible consequence of aging. Understanding human skin aging requires in-depth knowledge of the molecular and functional properties of various skin cell types. We performed single-cell RNA sequencing of human eyelid skin from healthy individuals across different ages and identified eleven canonical cell types, as well as six subpopulations of basal cells. Further analysis revealed progressive accumulation of photoaging-related changes and increased chronic inflammation with age. Transcriptional factors involved in the developmental process underwent early-onset decline during aging. Furthermore, inhibition of key transcription factors HES1 in fibroblasts and KLF6 in keratinocytes not only compromised cell proliferation, but also increased inflammation and cellular senescence during aging. Lastly, we found that genetic activation of HES1 or pharmacological treatment with quercetin alleviated cellular senescence of dermal fibroblasts. These findings provide a single-cell molecular framework of human skin aging, providing a rich resource for developing therapeutic strategies against aging-related skin disorders.
Collapse
Affiliation(s)
- Zhiran Zou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Qian Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yandong Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaobin Jing
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifang He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Nanze Yu
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Jiuzuo Huang
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Piu Chan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Ting Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Síndrome de Kindler, manejo multidisciplinario. ACTAS DERMO-SIFILIOGRAFICAS 2020; 111:775-780. [DOI: 10.1016/j.ad.2019.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/20/2019] [Indexed: 11/17/2022] Open
|
25
|
Torres-Iberico R, Condori-Fernández Y, Apagüeño-Ruiz C, Andia-Ticona M, Pomar-Morante R. Kindler Syndrome: A Multidisciplinary Management Approach. ACTAS DERMO-SIFILIOGRAFICAS 2020. [DOI: 10.1016/j.adengl.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
Abstract
Epidermolysis bullosa (EB) is an inherited, heterogeneous group of rare genetic dermatoses characterized by mucocutaneous fragility and blister formation, inducible by often minimal trauma. A broad phenotypic spectrum has been described, with potentially severe extracutaneous manifestations, morbidity and mortality. Over 30 subtypes are recognized, grouped into four major categories, based predominantly on the plane of cleavage within the skin and reflecting the underlying molecular abnormality: EB simplex, junctional EB, dystrophic EB and Kindler EB. The study of EB has led to seminal advances in our understanding of cutaneous biology. To date, pathogenetic mutations in 16 distinct genes have been implicated in EB, encoding proteins influencing cellular integrity and adhesion. Precise diagnosis is reliant on correlating clinical, electron microscopic and immunohistological features with mutational analyses. In the absence of curative treatment, multidisciplinary care is targeted towards minimizing the risk of blister formation, wound care, symptom relief and specific complications, the most feared of which - and also the leading cause of mortality - is squamous cell carcinoma. Preclinical advances in cell-based, protein replacement and gene therapies are paving the way for clinical successes with gene correction, raising hopes amongst patients and clinicians worldwide.
Collapse
|
27
|
Fan H, Zhang S, Zhang Y, Liang W, Cao B. FERMT1 promotes gastric cancer progression by activating the NF-κB pathway and predicts poor prognosis. Cancer Biol Ther 2020; 21:815-825. [PMID: 32723205 PMCID: PMC7515530 DOI: 10.1080/15384047.2020.1792218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have reported that FERMT1, a newly discovered adhesion protein, contributes to an aggressive phenotype in several solid malignancies. However, the function and regulatory mechanism of FERMT1 in gastric cancer remain unknown. We found that FERMT1 was overexpressed in gastric cancer tissues compared with normal tissues. Clinical data analysis indicated that the expression of FERMT1 correlated with the overall survival of gastric cancer patients. Patients with higher FERMT1 expression had lower survival rates than patients with lower FERMT1 expression. We established stable cell lines with FERMT1 knockdown and overexpression. In vitro and in vivo experiments indicated that knockdown of FERMT1 inhibited the proliferation, invasion, metastasis, and epithelial-mesenchymal transition of gastric cancer cells. Mechanistically, FERMT1 was found to activate NF-κB signaling by promoting the degradation of IκBα, thereby promoting gastric cancer. These results provide new evidence of the oncogenic effects of FERMT1 in gastric cancer and suggest that FERMT1 might be a promising target for gastric cancer treatment.
Collapse
Affiliation(s)
- Hua Fan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Yan'an University , Yan'an, Shaanxi, China
| | - Shengjun Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Yan'an University , Yan'an, Shaanxi, China
| | - Yu Zhang
- Department of Medicine, Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Wu Liang
- Basic College of Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | - Bo Cao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Yan'an University , Yan'an, Shaanxi, China
| |
Collapse
|
28
|
Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, Guo MG, George BM, Mollbrink A, Bergenstråhle J, Larsson L, Bai Y, Zhu B, Bhaduri A, Meyers JM, Rovira-Clavé X, Hollmig ST, Aasi SZ, Nolan GP, Lundeberg J, Khavari PA. Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma. Cell 2020; 182:497-514.e22. [PMID: 32579974 PMCID: PMC7391009 DOI: 10.1016/j.cell.2020.05.039] [Citation(s) in RCA: 429] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.
Collapse
Affiliation(s)
- Andrew L Ji
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam J Rubin
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kim Thrane
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Sizun Jiang
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David L Reynolds
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Benson M George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annelie Mollbrink
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Joseph Bergenstråhle
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Yunhao Bai
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bokai Zhu
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94122, USA
| | - Jordan M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xavier Rovira-Clavé
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - S Tyler Hollmig
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sumaira Z Aasi
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joakim Lundeberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Department of Gene Technology, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
29
|
Wang W, Kansakar U, Markovic V, Sossey-Alaoui K. Role of Kindlin-2 in cancer progression and metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:901. [PMID: 32793745 DOI: 10.21037/atm.2020.03.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer metastasis is a complex and multistep process whereby cancer cells escape the confines of the primary site to establish a new residency at distant sites. This multistep process is also known as the invasion-metastasis cascade. The biological and molecular mechanisms that control the invasion-metastasis cascade, which ultimately leads to the spread of cancer cells into distant sites, remain poorly understood. Kindlin-2 (K2) belongs to the 4.1-ezrin-ridixin-moesin (FERM) domain family of proteins, which interact with the cytoplasmic tails of β-integrin subunits, leading to the activation of extensive biological functions. These biological functions include cell migration, differentiation, cancer initiation, development, and invasion. In this review, we will discuss the various molecular signaling pathways that are regulated by K2 during the invasion-metastasis cascade of cancer tumors. These signaling pathways include TGFβ, Wnt/β-Catenin, Hedgehog, p53 and senescence, and cancer stem cell (CSC) maintenance. We will also discuss the molecular signaling pathways that regulate K2 function both at the transcriptional and the posttranslational levels. Finally, we will consider molecular mechanisms to specifically target K2 as novel therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Wei Wang
- Case Western Reserve University, Cleveland, OH, USA.,Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| | - Urna Kansakar
- Case Western Reserve University, Cleveland, OH, USA.,Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| | - Vesna Markovic
- Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| | - Khalid Sossey-Alaoui
- Case Western Reserve University, Cleveland, OH, USA.,Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| |
Collapse
|
30
|
Ginsenoside Rg1 Improves Differentiation by Inhibiting Senescence of Human Bone Marrow Mesenchymal Stem Cell via GSK-3 β and β-Catenin. Stem Cells Int 2020; 2020:2365814. [PMID: 32565825 PMCID: PMC7271209 DOI: 10.1155/2020/2365814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives To demonstrate the effect of Ginsenoside Rg1 on the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Subsequently, a rational mechanism for the detection of Rg1 which affects mesenchymal stem cell differentiation was explored. Methods Flow cytometry is used for cell identification. The differentiation ability of hBM-MSCs was studied by differentiation culture. SA-β-gal staining is used to detect cell senescence levels. Western blot and immunofluorescence were used to determine protein expression levels. RT-qPCR is used to detect mRNA expression levels. Results Rg1 regulates the differentiation of hBM-MSCs. Differentiation culture analysis showed that Rg1 promoted cells to osteogenesis and chondrogenesis. Western blot results showed that Rg1 regulated the overactivation of the β-catenin signaling pathway and significantly adjusted the phosphorylation of GSK-3β. GSK-3β inhibitor (Licl) significantly increased Rg1-induced phosphorylation of GSK-3β, which in turn reduced Rg1-induced differentiation of hBM-MSCs. Conclusion Ginsenoside Rg1 can reduce the excessive activation of the Wnt pathway in senescent cells by inhibiting the phosphorylation of GSK-3β and regulate the mesenchymal stem cell differentiation ability.
Collapse
|
31
|
Platelet-Released Growth Factors and Platelet-Rich Fibrin Induce Expression of Factors Involved in Extracellular Matrix Organization in Human Keratinocytes. Int J Mol Sci 2020; 21:ijms21124404. [PMID: 32575800 PMCID: PMC7378768 DOI: 10.3390/ijms21124404] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Platelet-released growth factor (PRGF) is a thrombocyte concentrate lysate which, like its clinically equivalent variations (e.g., Vivostat PRF® (platelet-rich fibrin)), is known to support the healing of chronic and hard-to-heal wounds. However, studies on the effect of PRGF on keratinocytes remain scarce. This study aims to identify genes in keratinocytes that are significantly influenced by PRGF. Therefore, we performed a whole transcriptome and gene ontology (GO) enrichment analysis of PRGF-stimulated human primary keratinocytes. This revealed an increased expression of genes involved in extracellular matrix (ECM) organization. Real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) analysis confirmed the PRGF-mediated induction of selected ECM-related factors such as transforming growth factor beta-induced protein, fibronectin 1, matrix metalloproteinase-9, transglutaminase 2, fermitin family member 1, collagen type I alpha 1 and collagen type XXII alpha 1. PRGF-induced expression of the above factors was influenced by blockade of the epidermal growth factor receptor (EGFR), a receptor playing a crucial role in wound healing. A differential induction of the investigated factors was also detected in skin explants exposed to PRGF and in experimentally generated in vivo wounds treated with Vivostat PRF®. Together, our study indicates that the induction of ECM-related factors may contribute to the beneficial wound-healing effects of PRGF-based formulations.
Collapse
|
32
|
Xiao P, Zhong T, Liu Z, Ding Y, Guan W, He X, Pu Y, Jiang L, Ma Y, Zhao Q. Integrated Analysis of Methylome and Transcriptome Changes Reveals the Underlying Regulatory Signatures Driving Curly Wool Transformation in Chinese Zhongwei Goats. Front Genet 2020; 10:1263. [PMID: 31969898 PMCID: PMC6960231 DOI: 10.3389/fgene.2019.01263] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022] Open
Abstract
The Zhongwei goat is kept primarily for its beautiful white, curly pelt that appears when the kid is approximately 1 month old; however, this representative phenotype often changes to a less curly phenotype during postnatal development in a process that may be mediated by multiple molecular signals. DNA methylation plays important roles in mammalian cellular processes and is essential for the initiation of hair follicle (HF) development. Here, we sought to investigate the effects of genome-wide DNA methylation by combining expression profiles of the underlying curly fleece dynamics. Genome-wide DNA methylation maps and transcriptomes of skin tissues collected from 45- to 108-day-old goats were used for whole-genome bisulfite sequencing (WGBS) and RNA sequencing, respectively. Between the two developmental stages, 1,250 of 3,379 differentially methylated regions (DMRs) were annotated in differentially methylated genes (DMGs), and these regions were mainly related to intercellular communication and the cytoskeleton. Integrated analysis of the methylome and transcriptome data led to the identification of 14 overlapping genes that encode crucial factors for wool fiber development through epigenetic mechanisms. Furthermore, a functional study using human hair inner root sheath cells (HHIRSCs) revealed that, one of the overlapping genes, platelet-derived growth factor C (PDGFC) had a significant effect on the messenger RNA expression of several key HF-related genes that promote cell migration and proliferation. Our study presents an unprecedented analysis that was used to explore the enigma of fleece morphological changes by combining methylome maps and transcriptional expression, and these data revealed stage-specific epigenetic changes that potentially affect fiber development. Furthermore, our functional study highlights a possible role for the overlapping gene PDGFC in HF cell growth, which may be a predictable biomarker for fur goat selection.
Collapse
Affiliation(s)
- Ping Xiao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhanfa Liu
- The Ningxia Hui Autonomous Region Breeding Ground of Zhongwei Goat, Department of Agriculture and Rural Areas of Ningxia Hui Autonomous Region, Wuzhong, China
| | - Yangyang Ding
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weijun Guan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong He
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yabin Pu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Jiang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuehui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianjun Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Wang X, Zeng Y, Zhou M, Zhang X, Xu A, Lin J, Wu Z, Xie C, Luo J, Ding S, Zhan Z, Long H, Song Y. SKA1 promotes malignant phenotype and progression of glioma via multiple signaling pathways. Cancer Cell Int 2019; 19:324. [PMID: 31827398 PMCID: PMC6889600 DOI: 10.1186/s12935-019-1047-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Spindle and kinetochore associated protein 1 (SKA1) is a protein involved in chromosome congression and mitosis. It has been found to be upregulated and oncogenic in several human cancers. Herein, we investigated the precise role of SKA1 in the progression and malignant phenotype of human glioma. Methods Bioinformatic analysis was carried out based on the RNA-seq data and corresponding clinical data from GEO, TCGA and CGGA databases. Western blot was performed to analyze the expression of SKA1 in clinical samples and signaling pathway proteins in glioma cells, respectively. CCK8 assay, colony forming assay and EdU assay were performed to assess the cell viability. Cell migration and invasion assays were also performed. Moreover, xenograft model was established and the expression of SKA1 was assessed in the xenograft by immunohistochemistry. Results SKA1 expression is positively correlated with glioma grade and could be a promising biomarker for GBM. Moreover, overexpression of SKA1 may lead to poor prognosis in glioma. Downregulation of SKA1 attenuated cell viability, migration, and invasion in U251, U87, LN229 and T98 cells. Furthermore, GSEA analysis demonstrated that SKA1 was involved in the cell cycle, EMT pathway as well as Wnt/β-catenin signaling pathway, which were then confirmed with Western blot analysis. Conclusion SKA1 promotes malignant phenotype and progression of glioma via multiple pathways, including cell cycle, EMT, Wnt/β-catenin signaling pathway. Therefore, SKA1 could be a promising therapeutic target for the treatment of human gliomas.
Collapse
Affiliation(s)
- Xizhao Wang
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China.,2Department of Neurosurgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, 362000 Fujian People's Republic of China
| | - Yu Zeng
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China.,3Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072 People's Republic of China
| | - Mingfeng Zhou
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Xian Zhang
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Anqi Xu
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Jie Lin
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Zhiyong Wu
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Cheng Xie
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Jie Luo
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Shengfeng Ding
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Zhengming Zhan
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Hao Long
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Ye Song
- 1Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| |
Collapse
|
34
|
Epidermolysis Bullosa-Associated Squamous Cell Carcinoma: From Pathogenesis to Therapeutic Perspectives. Int J Mol Sci 2019; 20:ijms20225707. [PMID: 31739489 PMCID: PMC6888002 DOI: 10.3390/ijms20225707] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of inherited skin disorders determined by mutations in genes encoding for structural components of the cutaneous basement membrane zone. Disease hallmarks are skin fragility and unremitting blistering. The most disabling EB (sub)types show defective wound healing, fibrosis and inflammation at lesional skin. These features expose patients to serious disease complications, including the development of cutaneous squamous cell carcinomas (SCCs). Almost all subjects affected with the severe recessive dystrophic EB (RDEB) subtype suffer from early and extremely aggressive SCCs (RDEB-SCC), which represent the first cause of death in these patients. The genetic determinants of RDEB-SCC do not exhaustively explain its unique behavior as compared to low-risk, ultraviolet-induced SCCs in the general population. On the other hand, a growing body of evidence points to the key role of tumor microenvironment in initiation, progression and spreading of RDEB-SCC, as well as of other, less-investigated, EB-related SCCs (EB-SCCs). Here, we discuss the recent advances in understanding the complex series of molecular events (i.e., fibrotic, inflammatory, and immune processes) contributing to SCC development in EB patients, cross-compare tumor features in the different EB subtypes and report the most promising therapeutic approaches to counteract or delay EB-SCCs.
Collapse
|
35
|
Kopecki Z, Has C, Yang G, Bruckner-Tuderman L, Cowin A. Flightless I, a contributing factor to skin blistering in Kindler syndrome patients? J Cutan Pathol 2019; 47:186-189. [PMID: 31614010 DOI: 10.1111/cup.13597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Cristina Has
- Department of Dermatology, University Medical Centre of Freiburg, Freiburg, Germany
| | - Gink Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | | | - Allison Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Guerrero-Aspizua S, Conti CJ, Escamez MJ, Castiglia D, Zambruno G, Youssefian L, Vahidnezhad H, Requena L, Itin P, Tadini G, Yordanova I, Martin L, Uitto J, Has C, Del Rio M. Assessment of the risk and characterization of non-melanoma skin cancer in Kindler syndrome: study of a series of 91 patients. Orphanet J Rare Dis 2019; 14:183. [PMID: 31340837 PMCID: PMC6657209 DOI: 10.1186/s13023-019-1158-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Kindler Syndrome (KS) is a rare genodermatosis characterized by skin fragility, skin atrophy, premature aging and poikiloderma. It is caused by mutations in the FERMT1 gene, which encodes kindlin-1, a protein involved in integrin signalling and the formation of focal adhesions. Several reports have shown the presence of non-melanoma skin cancers in KS patients but a systematic study evaluating the risk of these tumors at different ages and their potential outcome has not yet been published. We have here addressed this condition in a retrospective study of 91 adult KS patients, characterizing frequency, metastatic potential and body distribution of squamous cell carcinoma (SCC) in these patients. SCC developed in 13 of the 91 patients. RESULTS The youngest case arose in a 29-year-old patient; however, the cumulative risk of SCC increased to 66.7% in patients over 60 years of age. The highly aggressive nature of SCCs in KS was confirmed showing that 53.8% of the patients bearing SCCs develop metastatic disease. Our data also showed there are no specific mutations that correlate directly with the development of SCC; however, the mutational distribution along the gene appears to be different in patients bearing SCC from SCC-free patients. The body distribution of the tumor appearance was also unique and different from other bullous diseases, being concentrated in the hands and around the oral cavity, which are areas of high inflammation in this disease. CONCLUSIONS This study characterizes SCCs in the largest series of KS patients reported so far, showing the high frequency and aggressiveness of these tumors. It also describes their particular body distribution and their relationship with mutations in the FERMT-1 gene. These data reinforce the need for close monitoring of premalignant or malignant lesions in KS patients.
Collapse
Affiliation(s)
- Sara Guerrero-Aspizua
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, Madrid, Spain.,Epithelial Biomedicine Division, CIEMAT, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, Madrid, Spain
| | - Claudio J Conti
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, Madrid, Spain. .,Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, Madrid, Spain.
| | - Maria Jose Escamez
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, Madrid, Spain.,Epithelial Biomedicine Division, CIEMAT, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, Madrid, Spain
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genetic and Rare Diseases Research Area, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Leila Youssefian
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Biotechnology Research Center, Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Luis Requena
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, Madrid, Spain
| | - Peter Itin
- Department of Dermatology, University Hospital Basel, Basel, Switzerland
| | - Gianluca Tadini
- Pediatric Dermatology, Department of Physiopathology and Transplantation, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico di Milano, University of Milan, Milan, Italy
| | - Ivelina Yordanova
- Department of Dermatology and Venerology, Medical University Pleven, Pleven, Bulgaria
| | - Ludovic Martin
- Department of Dermatology, Angers University Hospital, Angers, France
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Marcela Del Rio
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, Madrid, Spain.,Epithelial Biomedicine Division, CIEMAT, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, Madrid, Spain
| |
Collapse
|
37
|
Rognoni E, Walko G. The Roles of YAP/TAZ and the Hippo Pathway in Healthy and Diseased Skin. Cells 2019; 8:cells8050411. [PMID: 31058846 PMCID: PMC6562585 DOI: 10.3390/cells8050411] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Skin is the largest organ of the human body. Its architecture and physiological functions depend on diverse populations of epidermal cells and dermal fibroblasts. Reciprocal communication between the epidermis and dermis plays a key role in skin development, homeostasis and repair. While several stem cell populations have been identified in the epidermis with distinct locations and functions, there is additional heterogeneity within the mesenchymal cells of the dermis. Here, we discuss the current knowledge of how the Hippo pathway and its downstream effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) contribute to the maintenance, activation and coordination of the epidermal and dermal cell populations during development, homeostasis, wound healing and cancer.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gernot Walko
- Department of Biology and Biochemistry & Centre for Therapeutic Innovation, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
38
|
Belokhvostova D, Berzanskyte I, Cujba AM, Jowett G, Marshall L, Prueller J, Watt FM. Homeostasis, regeneration and tumour formation in the mammalian epidermis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 62:571-582. [PMID: 29938768 DOI: 10.1387/ijdb.170341fw] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The epidermis is the outer covering of the skin and provides a protective interface between the body and the environment. It is well established that the epidermis is maintained by stem cells that self-renew and generate differentiated cells. In this review, we discuss how recent technological advances, including single cell transcriptomics and in vivo imaging, have provided new insights into the nature and plasticity of the stem cell compartment and the differing roles of stem cells in homeostasis, wound repair and cancer.
Collapse
Affiliation(s)
- Daria Belokhvostova
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Cooper J, Giancotti FG. Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell 2019; 35:347-367. [PMID: 30889378 PMCID: PMC6684107 DOI: 10.1016/j.ccell.2019.01.007] [Citation(s) in RCA: 523] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/10/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
Integrins mediate cell adhesion and transmit mechanical and chemical signals to the cell interior. Various mechanisms deregulate integrin signaling in cancer, empowering tumor cells with the ability to proliferate without restraint, to invade through tissue boundaries, and to survive in foreign microenvironments. Recent studies have revealed that integrin signaling drives multiple stem cell functions, including tumor initiation, epithelial plasticity, metastatic reactivation, and resistance to oncogene- and immune-targeted therapies. Here, we discuss the mechanisms leading to the deregulation of integrin signaling in cancer and its various consequences. We place emphasis on novel functions, determinants of context dependency, and mechanism-based therapeutic opportunities.
Collapse
Affiliation(s)
- Jonathan Cooper
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Filippo G Giancotti
- Department of Cancer Biology and David H. Koch Center for Applied Research of Genitourinary Cancers, UT MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
40
|
Cohen J, Raviv S, Adir O, Padmanabhan K, Soffer A, Luxenburg C. The Wave complex controls epidermal morphogenesis and proliferation by suppressing Wnt-Sox9 signaling. J Cell Biol 2019; 218:1390-1406. [PMID: 30867227 PMCID: PMC6446834 DOI: 10.1083/jcb.201807216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 02/08/2023] Open
Abstract
The Wave complex promotes Arp2/3-mediated actin polymerization. Cohen et al. show that Wave complex activity regulates epidermal shape and growth. Without Wave complex activity, F-actin content is down-regulated and ectopic activity of the Wnt/β-catenin–SOX9 pathway is triggered. This activity induces epidermal hyperproliferation and disrupts tissue architecture. Development of the skin epidermis requires tight spatiotemporal control over the activity of several signaling pathways; however, the mechanisms that orchestrate these events remain poorly understood. Here, we identify a key role for the Wave complex proteins ABI1 and Wave2 in regulating signals that control epidermal shape and growth. In utero RNAi-mediated silencing of Abi1 or Wasf2 induced cellular hyperproliferation and defects in architecture of the interfollicular epidermis (IFE) and delayed hair follicle growth. Unexpectedly, SOX9, a hair follicle growth regulator, was aberrantly expressed throughout the IFE of the mutant embryos, and its forced overexpression mimicked the Wave complex loss-of-function phenotype. Moreover, Wnt signaling, which regulates SOX9+ cell specification, was up-regulated in Wave complex loss-of-function IFE. Importantly, we show that the Wave complex regulates filamentous actin content and that a decrease in actin levels is sufficient to elevate Wnt/β-catenin signaling. Our results identify a novel role for Wave complex– and actin-regulated signaling via Wnt and SOX9 in skin development.
Collapse
Affiliation(s)
- Jonathan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Raviv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arad Soffer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Qiu W, Chuong CM, Lei M. Regulation of melanocyte stem cells in the pigmentation of skin and its appendages: Biological patterning and therapeutic potentials. Exp Dermatol 2019; 28:395-405. [PMID: 30537004 DOI: 10.1111/exd.13856] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Skin evolves essential appendages and indispensable types of cells that synergistically insulate the body from environmental insults. Residing in the specific regions in the skin such as epidermis, dermis and hair follicle, melanocytes perform an array of vital functions including defending the ultraviolet radiation and diversifying animal appearance. As one of the adult stem cells, melanocyte stem cells in the hair follicle bulge niche can proliferate, differentiate and keep quiescence to control and coordinate tissue homeostasis, repair and regeneration. In synchrony with hair follicle stem cells, melanocyte stem cells in the hair follicles undergo cyclic activation, degeneration and resting phases, to pigment the hairs and to preserve the stem cells. Disorder of melanocytes results in severe skin problems such as canities, vitiligo and even melanoma. Here, we compare and summarize recent discoveries about melanocyte in the skin, particularly in the hair follicle. A better understanding of the physiological and pathological regulation of melanocyte and melanocyte stem cell behaviours will help to guide the clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Weiming Qiu
- Department of Dermatology, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California.,Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Mingxing Lei
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
42
|
Distinct expression profiles and functions of Kindlins in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:281. [PMID: 30477537 PMCID: PMC6260766 DOI: 10.1186/s13046-018-0955-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Background Kindlin-1, − 2, and − 3 are the three members of the Kindlin family. They are best known as regulators of integrin functions, contributing to fundamental biological processes such as cell survival, adhesion and migration. Their deregulation leads to diverse pathologies including a broad range of cancers in which both, tumor-promoting and tumor-inhibiting functions have been described. Methods To better characterize Kindlins implication in breast cancer, in vitro experiments were performed in a series of cancer cell lines. We first assessed their expression profiles and subcellular distributions. Then, their involvement in breast cancer cell morphology, migration and invasion was verified by examining phenotypic changes induced by the depletion of either isoforms using RNA interference. An expression study was performed in a series of breast cancer patient derived xenografts (n = 58) to define the epithelial and stromal contribution of each Kindlin. Finally, we analyzed the expression levels of the three Kindlins in a large series of human breast tumors, at the RNA (n = 438) and protein (n = 129) levels and we evaluated their correlation with the clinical outcome. Results We determined that Kindlin-1 and Kindlin-2, but not Kindlin-3, were expressed in breast tumor cells. We uncovered the compensatory roles of Kindlin-1 and -2 in focal adhesion dynamics and cell motility. Remarkably, Kindlin-2 had a predominant effect on cell spreading and Kindlin-1 on cell invasion. In line with these experimental observations, Kindlin-1 overexpression was associated with a worse patients’ outcome. Notably, Kindlin-3, expressed by tumor infiltrating leukocytes, also correlated with a poor prognosis of breast cancer patients. Conclusion This study demonstrates that each one of the Kindlin family members has a different expression profile emphasizing their redundant and complementary roles in breast tumor cells. We highlight the specific link between Kindlin-1 and breast cancer progression. In addition, Kindlin-3 overexpression in the tumor microenvironment is associated with more aggressive breast tumors. These results suggest that Kindlins play distinctive roles in breast cancer. Kindlins may be useful in identifying breast cancer patients with a worst prognosis and may offer new avenues for therapeutic intervention against cancer progression. Electronic supplementary material The online version of this article (10.1186/s13046-018-0955-4) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Effects of quercetin on human oral keratinocytes during re-epithelialization: An in vitro study. Arch Oral Biol 2018; 95:187-194. [DOI: 10.1016/j.archoralbio.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023]
|
44
|
Basu S, Cheriyamundath S, Ben-Ze'ev A. Cell-cell adhesion: linking Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Res 2018; 7. [PMID: 30271576 PMCID: PMC6144947 DOI: 10.12688/f1000research.15782.1] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
Changes in cell adhesion and motility are considered key elements in determining the development of invasive and metastatic tumors. Co-opting the epithelial-to-mesenchymal transition (EMT) process, which is known to occur during embryonic development, and the associated changes in cell adhesion properties in cancer cells are considered major routes for tumor progression. More recent
in vivo studies in tumor tissues and circulating tumor cell clusters suggest a stepwise EMT process rather than an “all-or-none” transition during tumor progression. In this commentary, we addressed the molecular mechanisms underlying the changes in cell adhesion and motility and adhesion-mediated signaling and their relationships to the partial EMT states and the acquisition of stemness traits by cancer cells.
Collapse
Affiliation(s)
- Sayon Basu
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sanith Cheriyamundath
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avri Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
45
|
Rognoni E, Watt FM. Skin Cell Heterogeneity in Development, Wound Healing, and Cancer. Trends Cell Biol 2018; 28:709-722. [PMID: 29807713 PMCID: PMC6098245 DOI: 10.1016/j.tcb.2018.05.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
Skin architecture and function depend on diverse populations of epidermal cells and dermal fibroblasts. Reciprocal communication between the epidermis and dermis plays a key role in skin development, homeostasis and repair. While several stem cell populations have been identified in the epidermis with distinct locations and functions, it is now recognised that there is additional heterogeneity within the mesenchymal cells of the dermis. Here, we discuss recent insights into how these distinct cell populations are maintained and coordinated during development, homeostasis, and wound healing. We highlight the importance of the local environment, or niche, in cellular plasticity. We also discuss new mechanisms that have been identified as influencing wound repair and cancer progression.
Collapse
Affiliation(s)
- Emanuel Rognoni
- King's College London, Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Fiona M Watt
- King's College London, Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
46
|
Kindlin-1 Regulates Astrocyte Activation and Pain Sensitivity in Rats With Neuropathic Pain. Reg Anesth Pain Med 2018; 43:547-553. [PMID: 29677029 DOI: 10.1097/aap.0000000000000780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Astrocyte activation has been implicated in the pathogenesis of neuropathic pain, but the involvement of kindlin-1 in astrocyte activation and neuropathic pain has not yet been illustrated. Using a chronic constriction injury (CCI) rat model of neuropathic pain, we investigated the expression levels of kindlin-1 during neuropathic pain and the influences of kindlin-1 on regulating pain sensitivity. METHODS Neuropathic pain was induced in rats by CCI of the sciatic nerve. Rats were randomly assigned to 4 groups: sham operation, CCI, CCI + kindlin-1 short hairpin RNA (shRNA), and CCI + kindlin-1 groups. Animals in the CCI + kindling-1 shRNA and CCI + kindlin-1 groups were given kindlin-1 shRNA or kindlin-1 virus infection to reduce or overexpress kindlin-1, respectively. Kindlin-1 expression was persistently increased in rats 10 days after CCI. A large proportion of glial fibrillary acidic protein (GFAP)-positive astrocytes expressed kindlin-1 in spinal cord tissues of rats after CCI. RESULTS Compared with the sham operation group, CCI animals exhibited increased GFAP expression and GFAP-positive astrocytes in the spinal cord. Down-regulation of kindlin-1 reduced the up-regulation of GFAP in the spinal cord, whereas overexpression of kindlin-1 promoted elevation of GFAP levels. Kindlin-1 silencing elevated the mechanical and thermal pain thresholds of CCI rats (P < 0.05). However, overexpression of kindlin-1 aggravated CCI-induced pain sensitivity. CONCLUSIONS Kindlin-1 may regulate pain sensitivity by affecting activated astrocytes in the spinal cord. Inhibition of kindlin-1 may provide a novel paradigm for the management of neuropathic pain.
Collapse
|
47
|
Koivisto L, Bi J, Häkkinen L, Larjava H. Integrin αvβ6: Structure, function and role in health and disease. Int J Biochem Cell Biol 2018; 99:186-196. [PMID: 29678785 DOI: 10.1016/j.biocel.2018.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
Integrins are cell surface receptors that traditionally mediate cell-to-extracellular matrix and cell-to-cell adhesion. They can, however, also bind a large repertoire of other molecules. Integrin αvβ6 is exclusively expressed in epithelial cells where it can, for example, serve as a fibronectin receptor. However, its hallmark function is to activate transforming growth factor-β1 (TGF-β1) to modulate innate immune surveillance in lungs and skin and along the gastrointestinal tract, and to maintain epithelial stem cell quiescence. The loss of αvβ6 integrin function in mice and humans leads to an altered immune response in lungs and skin, amelogenesis imperfecta, periodontal disease and, in some cases, alopecia. Elevated αvβ6 integrin expression and aberrant TGF-β1 activation and function are associated with organ fibrosis and cancer. Therefore, αvβ6 integrin serves as an attractive target for cancer imaging and for fibrosis and cancer therapy.
Collapse
Affiliation(s)
- Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
48
|
Sun XF, Sun XH, Cheng SF, Wang JJ, Feng YN, Zhao Y, Yin S, Hou ZM, Shen W, Zhang XF. Interaction of the transforming growth factor-β and Notch signaling pathways in the regulation of granulosa cell proliferation. Reprod Fertil Dev 2018; 28:1873-1881. [PMID: 26036783 DOI: 10.1071/rd14398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/06/2015] [Indexed: 12/20/2022] Open
Abstract
The Notch and transforming growth factor (TGF)-β signalling pathways play an important role in granulosa cell proliferation. However, the mechanisms underlying the cross-talk between these two signalling pathways are unknown. Herein we demonstrated a functional synergism between Notch and TGF-β signalling in the regulation of preantral granulosa cell (PAGC) proliferation. Activation of TGF-β signalling increased hairy/enhancer-of-split related with YRPW motif 2 gene (Hey2) expression (one of the target genes of the Notch pathway) in PAGCs, and suppression of TGF-β signalling by Smad3 knockdown reduced Hey2 expression. Inhibition of the proliferation of PAGCs by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester (DAPT), an inhibitor of Notch signalling, was rescued by both the addition of ActA and overexpression of Smad3, indicating an interaction between the TGF-β and Notch signalling pathways. Co-immunoprecipitation (CoIP) and chromatin immunoprecipitation (ChIP) assays were performed to identify the point of interaction between the two signalling pathways. CoIP showed direct protein-protein interaction between Smad3 and Notch2 intracellular domain (NICD2), whereas ChIP showed that Smad3 could be recruited to the promoter regions of Notch target genes as a transcription factor. Therefore, the findings of the present study support the idea that nuclear Smad3 protein can integrate with NICD2 to form a complex that acts as a transcription factor to bind specific DNA motifs in Notch target genes, such as Hey1 and Hey2, and thus participates in the transcriptional regulation of Notch target genes, as well as regulation of the proliferation of PAGCs.
Collapse
Affiliation(s)
- Xiao-Feng Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Xing-Hong Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Shun-Feng Cheng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Jun-Jie Wang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Yan-Ni Feng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Yong Zhao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Shen Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Zhu-Mei Hou
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
49
|
Chermnykh E, Kalabusheva E, Vorotelyak E. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. Int J Mol Sci 2018; 19:ijms19041003. [PMID: 29584689 PMCID: PMC5979429 DOI: 10.3390/ijms19041003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.
Collapse
Affiliation(s)
- Elina Chermnykh
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
50
|
Sarvi S, Patel H, Li J, Dodd GL, Creedon H, Muir M, Ward J, Dawson JC, Lee M, Culley J, Salter DM, Sims AH, Byron A, Brunton VG. Kindlin-1 Promotes Pulmonary Breast Cancer Metastasis. Cancer Res 2018; 78:1484-1496. [PMID: 29330144 PMCID: PMC5857359 DOI: 10.1158/0008-5472.can-17-1518] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
Abstract
In breast cancer, increased expression of the cytoskeletal adaptor protein Kindlin-1 has been linked to increased risks of lung metastasis, but the functional basis is unknown. Here, we show that in a mouse model of polyomavirus middle T antigen-induced mammary tumorigenesis, loss of Kindlin-1 reduced early pulmonary arrest and later development of lung metastasis. This phenotype relied on the ability of Kindlin-1 to bind and activate β integrin heterodimers. Kindlin-1 loss reduced α4 integrin-mediated adhesion of mammary tumor cells to the adhesion molecule VCAM-1 on endothelial cells. Treating mice with an anti-VCAM-1 blocking antibody prevented early pulmonary arrest. Kindlin-1 loss also resulted in reduced secretion of several factors linked to metastatic spread, including the lung metastasis regulator tenascin-C, showing that Kindlin-1 regulated metastatic dissemination by an additional mechanism in the tumor microenvironment. Overall, our results show that Kindlin-1 contributes functionally to early pulmonary metastasis of breast cancer.Significance: These findings provide a mechanistic proof in mice that Kindin-1, an integrin-binding adaptor protein, is a critical mediator of early lung metastasis of breast cancer. Cancer Res; 78(6); 1484-96. ©2018 AACR.
Collapse
Affiliation(s)
- Sana Sarvi
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Hitesh Patel
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Jun Li
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Georgia L Dodd
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen Creedon
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Jocelyn Ward
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Lee
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Jayne Culley
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald M Salter
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H Sims
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|