1
|
Jiang D, Wang M, Wheeler AP, Croteau SE. 2025 Clinical Trials Update on Hemophilia, VWD, and Rare Inherited Bleeding Disorders. Am J Hematol 2025; 100:666-684. [PMID: 39901862 DOI: 10.1002/ajh.27602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 02/05/2025]
Abstract
Clinical trial programs for inherited bleeding disorders feature an array of innovative prophylaxis options: engineered clotting factor concentrates, FVIIIa mimetics, gene therapies, and biologics to bolster thrombin generation (rebalancing agents). Increasingly, non-hemophilia bleeding disorders and a broader demographic (females, children, and infants) are being incorporated into study populations. Ongoing clinical trials broadly address three themes: (1) indication expansion for licensed therapeutics in previously uninvestigated patient subgroups or clinical scenarios, (2) evaluation of efficacy and safety among other bleeding disorders such as von Willebrand disease, platelet function defects, and rare clotting factor deficiencies, and (3) longitudinal assessment of approved treatments particularly with regard to longer-term efficacy outcomes such as musculoskeletal health and treatment-specific safety outcomes including thrombotic risk and liver health. With these new prophylaxis modalities, providers must have a nuanced understanding of each therapy's mechanism of action, advantages, side effect profile, therapeutic limitations, and impact on hemostasis and laboratory monitoring. Treatment is no longer "one size fits all." Rather, management is tailored to individual needs and preferences. Here, we review active investigational trials and highlight promising approaches in preclinical development, expanding the innovative, complex landscape of inherited bleeding disorders therapeutics.
Collapse
Affiliation(s)
- Debbie Jiang
- Hematology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Wang
- Hemophilia and Thrombosis Center, University of Colorado, Aurora, Colorado, USA
| | - Allison P Wheeler
- Washington Center for Bleeding Disorders, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stacy E Croteau
- Boston Bleeding Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Josset L, Rezigue H, Dargaud Y. Thrombin Generation Assay to Support Hematologists in the Era of New Hemophilia Therapies. Int J Lab Hematol 2025; 47:212-220. [PMID: 39660815 PMCID: PMC11885698 DOI: 10.1111/ijlh.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Hematology laboratories have traditionally monitored hemophilia replacement therapy by measuring coagulation factors before and after infusion. However, new drugs that do not rely on the replacement of the deficient factor require new approaches to laboratory monitoring, as factor VIII (FVIII) or factor IX (FIX) assays are no longer adequate. Non-factor therapies come in many different forms, that have one thing in common: they all increase thrombin generation. Their main adverse effect is thrombosis which may occur when too much thrombin is formed. This is the perfect mirror image of anticoagulant treatment, which always diminishes the amount of thrombin formed and has bleeding as its main adverse effect. Thrombin-forming capacity is decreased in congenital bleeding disorders and increased in prothrombotic conditions, indicating it governs bleeding and thrombosis. Therefore, the thrombin generation assay (TGA) is a logical tool for monitoring non-factor therapies, offering a comprehensive assessment of hemostatic balance. TGA identifies patients with severe bleeding, helps to optimize bypassing therapy, and detects hypercoagulability, making it ideal for guiding and monitoring hemophilia treatment with non-factor therapies. It also assesses the efficacy and safety of combined therapies, including non-factor therapies with bypassing agents or FVIII/FIX concentrates. The purpose of this paper is to review the current state of knowledge regarding the use of TGA to monitor novel hemophilia therapies. It will address controversies, limitations, and knowledge gaps related to the integration of TGA into personalized medicine in routine clinical practice.
Collapse
Affiliation(s)
- Laurie Josset
- Universite Claude Bernard Lyon 1, UR4609 – Hemostase & ThromboseLyonFrance
| | - Hamdi Rezigue
- Universite Claude Bernard Lyon 1, UR4609 – Hemostase & ThromboseLyonFrance
| | - Yesim Dargaud
- Universite Claude Bernard Lyon 1, UR4609 – Hemostase & ThromboseLyonFrance
- Unite d'Hemostase Clinique, Centre de Référence de l'HémophilieHopital Cardiologique Louis Pradel, Hospices Civils de LyonLyonFrance
| |
Collapse
|
3
|
Chowdary P, Carcao M, Kenet G, Pipe SW. Haemophilia. Lancet 2025; 405:736-750. [PMID: 40023652 DOI: 10.1016/s0140-6736(24)02139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 03/04/2025]
Abstract
Haemophilia A and B are congenital X-linked bleeding disorders resulting from deficiencies in clotting factors VIII (haemophilia A) and IX (haemophilia B). Patients with severe deficiency, defined as having less than 1% of normal plasma factor activivity, often have spontaneous bleeding within the first few years of life. Those with moderate and mild deficiencies typically present with post-traumatic or post-surgical bleeding later in life. A high index of suspicion and measurement of factor activity in plasma facilitates early diagnosis. In the 21st century, therapeutic advances and comprehensive care have substantially improved both mortality and morbidity associated with these conditions. Management strategies for haemophilia include on-demand treatment for bleeding episodes and all surgeries and regular treatment (ie, prophylaxis) aimed at reducing bleeds, morbidity, and mortality, thereby enhancing quality of life. Treatment options include factor replacement therapy, non-replacement therapies that increase thrombin generation, and gene therapies that facilitate in vivo clotting factor synthesis. The therapies differ in their use for prophylaxis and on-demand treatment, the mode and frequency of administration, duration of treatment effect, degree of haemostatic protection, and side-effects. Monitoring the effectiveness of these prophylactic therapies involves assessing annual bleeding rates and joint damage. Personalised management strategies, which align treatment with individual goals (eg, playing competitive sports), initiated at diagnosis and maintained throughout the lifespan, are crucial for optimal outcomes. These strategies are facilitated by a multidisciplinary team and supported by clinician-led education for both clinicians and patients.
Collapse
Affiliation(s)
- Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London, UK; Department of Haematology, Cancer Institute, University College London, London, UK.
| | - Manuel Carcao
- Department of Paediatrics, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Gili Kenet
- National Haemophilia Center and The Amalia Biron Institute of Thrombosis & Hemostasis Research, Sheba Medical Center, Tel Aviv University, Ramat Gan, Israel
| | - Steven W Pipe
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Qin ZX, Zuo L, Zeng Z, Ma R, Xie W, Zhu X, Zhou X. GalNac-siRNA conjugate delivery technology promotes the treatment of typical chronic liver diseases. Expert Opin Drug Deliv 2025:1-15. [PMID: 39939158 DOI: 10.1080/17425247.2025.2466767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION Nucleic acid-based therapeutics have become a key pillar of the 'third wave' of modern medicine, following the eras of small molecule inhibitors and antibody drugs. Their rapid progress is heavily dependent on delivery technologies, with the development of N-acetylgalactosamine (GalNAc) conjugates marking a breakthrough in targeting liver diseases. This technology has gained significant attention for its role in addressing chronic conditions like chronic hepatitis B (CHB) and nonalcoholic steatohepatitis (NASH), which are challenging to treat with conventional methods. AREAS COVERED This review explores the origins, mechanisms, and advantages of GalNAc-siRNA delivery systems, highlighting their ability to target hepatocytes via the asialoglycoprotein receptor (ASGPR). The literature reviewed covers preclinical and clinical advancements, particularly in CHB and NASH. Key developments in stabilization chemistry and conjugation technologies are examined, emphasizing their impact on enhancing therapeutic efficacy and patient compliance. EXPERT OPINION GalNAc-siRNA technology represents a transformative advancement in RNA interference (RNAi) therapies, addressing unmet needs in liver-targeted diseases. While significant progress has been made, challenges remain, including restricted targeting scope and scalability concerns. Continued innovation is expected to expand applications, improve delivery efficiency, and overcome limitations, establishing GalNAc-siRNA as a cornerstone for future nucleic acid-based treatments.
Collapse
Affiliation(s)
- Zhen-Xin Qin
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Ziran Zeng
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Rongguan Ma
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Wenyan Xie
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
5
|
He Y, Li H, Shi Q, Liu Y, Pan Q, He X. The liver-specific long noncoding RNA FAM99B inhibits ribosome biogenesis and cancer progression through cleavage of dead-box Helicase 21. Cell Death Dis 2025; 16:97. [PMID: 39952918 PMCID: PMC11829061 DOI: 10.1038/s41419-025-07401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Emerging evidence has demonstrated that long noncoding RNAs (lncRNAs) are promising targets or agents for the treatment of human cancers. Most liver-specific lncRNAs exhibit loss of expression and act as tumor suppressors in liver cancer. Modulating the expression of these liver-specific lncRNAs is a potential approach for lncRNA-based gene therapy for hepatocellular carcinoma (HCC). Here, we report that the expression of the liver-specific lncRNA FAM99B is significantly decreased in HCC tissues and that FAM99B suppresses HCC cell proliferation and metastasis both in vitro and in vivo. FAM99B promotes the nuclear export of DDX21 through XPO1, leading to further cleavage of DDX21 by caspase3/6 in the cytoplasm. FAM99B inhibits ribosome biogenesis by inhibiting ribosomal RNA (rRNA) processing and RPS29/RPL38 transcription, thereby reducing global protein synthesis through downregulation of DDX21 in HCC cells. Interestingly, the FAM99B65-146 truncation exhibits tumor-suppressive effects in vivo and in vitro. Moreover, GalNAc-conjugated FAM99B65-146 inhibits the growth and metastasis of orthotopic HCC xenografts, providing a new strategy for the treatment of HCC. This is the first report of the use of a lncRNA as an agent rather than a target in tumor treatment. Graphical illustration of the mechanism of FAM99B in HCC.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- DEAD-box RNA Helicases/metabolism
- DEAD-box RNA Helicases/genetics
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Animals
- Ribosomes/metabolism
- Cell Proliferation/genetics
- Cell Line, Tumor
- Mice
- Mice, Nude
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Exportin 1 Protein
- Karyopherins/metabolism
- Karyopherins/genetics
- Mice, Inbred BALB C
- Male
- Hep G2 Cells
- Liver/metabolism
- Liver/pathology
Collapse
Affiliation(s)
- Yifei He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hongquan Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanfang Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiaochu Pan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Jiménez-Yuste V. Non-factor Therapies for Hemophilia: Achievements and Perspectives. Semin Thromb Hemost 2025; 51:23-27. [PMID: 39613145 DOI: 10.1055/s-0044-1796651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Non-factor replacement therapies (NFTs) have been developed to address the limitations of conventional replacement therapies, aiming to improve hemostasis and provide enhanced protection against bleeding episodes and long-term joint damage for patients both with and without inhibitors. Factor VIII (FVIII)-mimetic agents, such as emicizumab, have transformed the management of hemophilia A with inhibitors, offering a lower treatment burden and an effective alternative for those without inhibitors as well. Rebalancing agents, including anti-tissular factor pathway inhibitor agents (concizumab and marstacimab) and serpin inhibitors like fitusiran, have shown promising efficacy for patients with hemophilia B with inhibitors and other hemophilia subtypes. Administered subcutaneously, NFTs generate stable thrombin levels and feature a long half-life, which can shift severe hemophilia toward a milder phenotype. These therapies are effective regardless of inhibitor status and hold potential for application in other bleeding disorders. Evaluating the potential thrombotic risk after implementing mitigation measures, along with the development of anti-drug antibodies (ADAs), remain critical areas for further analysis. NFTs pose additional challenges due to their complex mechanism of action and the absence of a standardized laboratory assessment method. Unresolved issues include optimal management strategies for major surgeries and tailored approaches for safe use in older populations. This review highlights the progress and future potential of NFTs in treating persons with hemophilia.
Collapse
Affiliation(s)
- Victor Jiménez-Yuste
- Department of Haematology, Hospital Universitario La Paz-IdiPaz, Autónoma University, Madrid, Spain
| |
Collapse
|
7
|
Linthorst NA, van Vlijmen BJ, Eikenboom JC. The future of siRNA-mediated approaches to treat von Willebrand disease. Expert Rev Hematol 2025; 18:109-122. [PMID: 39865861 PMCID: PMC11854048 DOI: 10.1080/17474086.2025.2459259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION The clinical management of the inherited bleeding disorder von Willebrand disease (VWD) focuses on normalizing circulating levels of von Willebrand factor (VWF) and factor VIII (FVIII) to prevent or control bleeding events. The heterogeneous nature of VWD, however, complicates effective disease management and development of universal treatment guidelines. AREAS COVERED The current treatment modalities of VWD and their limitations are described and why this prompts the development of new treatment approaches. In particular, RNA-based therapeutics have gained significant interest because of their ability to reversibly alter gene expression with long-term efficacy. In the field of VWD, small-interfering RNAs (siRNAs) have been explored through various strategies to improve disease phenotypes. These different approaches are discussed as well as their potential impact on reshaping the future therapeutic landscape. EXPERT OPINION Current treatments for VWD often require frequent intravenous administration of VWF concentrates or desmopressin, with only short-term benefits. Moreover, remaining circulating mutant VWF can cause detrimental effects. Allele-selective siRNA-based therapies could provide more reliable and long-term disease correction by specifically targeting mutant VWF. This approach could be applied to a large part of the population aligning with the growing emphasis on personalized treatment and patient-centered care in VWD management.
Collapse
Affiliation(s)
- Noa A. Linthorst
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart J.M van Vlijmen
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen C.J Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Salim EL, Kristensen K, Sjögren E. Whole-Body Physiologically Based Pharmacokinetic Modeling of GalNAc-Conjugated siRNAs. Pharmaceutics 2025; 17:69. [PMID: 39861717 PMCID: PMC11769416 DOI: 10.3390/pharmaceutics17010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: N-acetyl-galactosamine small interfering RNAs (GalNAc-siRNA) are an emerging class of drugs due to their durable knockdown of disease-related proteins. Direct conjugation of GalNAc onto the siRNA enables targeted uptake into hepatocytes via GalNAc recognition of the Asialoglycoprotein Receptor (ASGPR). With a transient plasma exposure combined with a prolonged liver half-life, GalNAc-siRNA exhibits distinct disposition characteristics. We aimed to develop a generic GalNAc-siRNAs whole-body physiologically based pharmacokinetic-pharmacodynamic (WB-PBPK-PD) model for describing the pharmacokinetic-pharmacodynamic (PK-PD) relationship and overall tissue distribution in the open-source platform Open Systems Pharmacology Suite. Methods: Model development was performed using published studies in mice leveraging the PK-Sim® standard implementation for large molecules with added implementations of ASGPR-mediated liver disposition and downstream target effects. Adequate model performance was achieved across study measurements and included studies adopting a combination of global and compound-specific parameters. Results: The analysis identified significant compound dependencies, e.g., endosomal stability, with direct consequences for the pharmacological effect. Additionally, knowledge gaps in mechanistic understanding related to extravasation and overall tissue distribution were identified during model development. The presented study provides a generic WB-PBPK-PD model for the investigation of GalNAc-siRNAs implemented in a standardized open-source platform.
Collapse
Affiliation(s)
- Emilie Langeskov Salim
- Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development, Uppsala University, SE-75124 Uppsala, Sweden;
- Department of Discovery PKPD & QSP Modelling, Novo Nordisk A/S, DK-2760 Måløv, Denmark;
| | - Kim Kristensen
- Department of Discovery PKPD & QSP Modelling, Novo Nordisk A/S, DK-2760 Måløv, Denmark;
| | - Erik Sjögren
- Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development, Uppsala University, SE-75124 Uppsala, Sweden;
| |
Collapse
|
9
|
Schöllkopf S, Rathjen S, Graglia M, Was N, Morrison E, Weingärtner A, Bethge L, Hauptmann J, Wikström Lindholm M. The beauty of symmetry: siRNA phosphorodithioate modifications reduce stereocomplexity, ease analysis, and can improve in vivo potency. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102336. [PMID: 39391764 PMCID: PMC11465064 DOI: 10.1016/j.omtn.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Phosphorothioates (PSs) can be essential in stabilizing therapeutic oligonucleotides against enzymatic degradation. However, unless synthesis is performed with stereodefined amidites, each PS introduces a chemically undefined stereocenter, resulting in 2 n unique molecules in the final product and affecting downstream analytics and purification. Replacing the second non-bridging oxygen with sulfur results in phosphorodithioate (PS2) linkages, thereby removing the stereocenter. We describe synthesis and analytical data for N-acetylgalactosamine (GalNAc)-conjugated small interfering RNAs (siRNAs) with PS2 in the GalNAc cluster and at the siRNA termini. All siRNA conjugates with PS2 internucleotide linkages were produced with good yield and showed improved analytical properties. PS2 in the GalNAc cluster had no, or only minor, effect on in vitro and in vivo activity. Except for the 5'-antisense position, PS2 modifications were well tolerated at the siRNA termini, and a single PS2 internucleotide linkage gave similar or improved stabilization and in vitro activity as the two PSs typically used for end stabilization. Surprisingly, several of the PS2-containing siRNA conjugates resulted in increased in vivo activity and duration of action compared to the same siRNA sequence stabilized with PS linkages, suggesting PS2 linkages as interesting options for siRNA strand design with a reduced number of undefined stereocenters.
Collapse
Affiliation(s)
- Sophie Schöllkopf
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Stefan Rathjen
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Micaela Graglia
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Nina Was
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Eliot Morrison
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Adrien Weingärtner
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Lucas Bethge
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Judith Hauptmann
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | | |
Collapse
|
10
|
Abbasi Dezfouli S, Michailides ME, Uludag H. Delivery Aspects for Implementing siRNA Therapeutics for Blood Diseases. Biochemistry 2024; 63:3059-3077. [PMID: 39388611 DOI: 10.1021/acs.biochem.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hematological disorders result in significant health consequences, and traditional therapies frequently entail adverse reactions without addressing the root cause. A potential solution for hematological disorders characterized by gain-of-function mutations lies in the emergence of small interfering RNA (siRNA) molecules as a therapeutic option. siRNAs are a class of RNA molecules composed of double-stranded RNAs that can degrade specific mRNAs, thereby inhibiting the synthesis of underlying disease proteins. Therapeutic interventions utilizing siRNA can be tailored to selectively target genes implicated in diverse hematological disorders, including sickle cell anemia, β-thalassemia, and malignancies such as lymphoma, myeloma, and leukemia. The development of efficient siRNA silencers necessitates meticulous contemplation of variables such as the RNA backbone, stability, and specificity. Transportation of siRNA to specific cells poses a significant hurdle, prompting investigations of diverse delivery approaches, including chemically modified forms of siRNA and nanoparticle formulations with various biocompatible carriers. This review delves into the crucial role of siRNA technology in targeting and treating hematological malignancies and disorders. It sheds light on the latest research, development, and clinical trials, detailing how various pharmaceutical approaches leverage siRNA against blood disorders, mainly concentrating on cancers. It outlines the preferred molecular targets and physiological barriers to delivery while emphasizing the growing potential of various therapeutic delivery methods. The need for further research is articulated in the context of overcoming the shortcomings of siRNA in order to enrich discussions around siRNA's role in managing blood disorders and aiding the scientific community in advancing more targeted and effective treatments.
Collapse
Affiliation(s)
- Saba Abbasi Dezfouli
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| | | | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| |
Collapse
|
11
|
Ma S, Liu B, Du H, Yang F, Han J, Huang X, Zhang M, Ji S, Jiang M. RNAi targeting LMAN1-MCFD2 complex promotes anticoagulation in mice. J Thromb Thrombolysis 2024; 57:1349-1362. [PMID: 39222205 PMCID: PMC11645327 DOI: 10.1007/s11239-024-03034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Combined deficiency of coagulation factor V (FV) and factor VIII (FVIII) is a rare bleeding disease caused by variants in either lectin mannose binding 1 (LMAN1) or multiple coagulation factor deficiency 2 (MCFD2) gene. Reducing the level of FVIII by inhibiting the LMAN1-MCFD2 complex may become a new anticoagulant approach. We aimed to find a new therapeutic option for anticoagulation by RNA interference (RNAi) targeting LMAN1 and MCFD2. siRNA sequences with cross-homology between mice and humans were designed based on LMAN1 or MCFD2 transcripts in NCBI and were screened with the Dual-Luciferase reporter assay. The optimal siRNAs were chemically modified and conjugated with three N-acetylgalactosamine molecules (GalNAc-siRNA), promoting their targeted delivery to the liver. The expression of LMAN1 and MCFD2 in cell lines or mice was examined by RT-qPCR and western blotting. For the mice administered with siRNA, we assessed their coagulation function by measuring APTT and the activity of FVIII factor. After administration, siRNAs GalNAc-LMAN1 and GalNAc-MCFD2 demonstrated effective and persistent LMAN1 and MCFD2 inhibition. 7 days after injection of 3mg/kg GalNAc-LMAN1, the LMAN1 mRNA levels reduced to 19.97% ± 3.78%. MCFD2 mRNA levels reduced to 32.22% ± 13.14% with injection of 3mg/kg GalNAc-MCFD2. After repeated administration, APTT was prolonged and the FVIII activity was remarkably decreased. The tail bleeding test of mice showed that the amount of bleeding in the treated group did not significantly increase compared with the control group. Our study confirms that therapy with RNAi targeting LMAN1-MCFD2 complex is effective and can be considered a viable option for anticoagulation drugs. However, the benefits and potential risk of bleeding in thrombophilic mice model needs to be evaluated.
Collapse
Affiliation(s)
- Siqian Ma
- Hematology Department, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215021, China
| | - Boyan Liu
- Hematology Department, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215021, China
| | - Hong Du
- Suzhou Genephama Co., Ltd, , Suzhou, 215123, China
| | - Fei Yang
- National Clinical Medical Research Center of Blood Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
- Key Laboratory of Thrombosis and Hemostasis of National Health Commission of People's Republic of China, Suzhou, 215006, China
| | - Jingjing Han
- National Clinical Medical Research Center of Blood Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
- Key Laboratory of Thrombosis and Hemostasis of National Health Commission of People's Republic of China, Suzhou, 215006, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Minyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Shundong Ji
- National Clinical Medical Research Center of Blood Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China
- Key Laboratory of Thrombosis and Hemostasis of National Health Commission of People's Republic of China, Suzhou, 215006, China
| | - Miao Jiang
- Hematology Department, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215021, China.
- National Clinical Medical Research Center of Blood Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215007, China.
- Key Laboratory of Thrombosis and Hemostasis of National Health Commission of People's Republic of China, Suzhou, 215006, China.
| |
Collapse
|
12
|
Huang H, Liao S, Zhang D, Liang W, Xu K, Zhang Y, Lang M. A macromolecular cross-linked alginate aerogel with excellent concentrating effect for rapid hemostasis. Carbohydr Polym 2024; 338:122148. [PMID: 38763731 DOI: 10.1016/j.carbpol.2024.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.
Collapse
Affiliation(s)
- Huanxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shiyang Liao
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China
| | - Dong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wencheng Liang
- College of chemical and material engineering, Quzhou University, 78 North Jiuhua Road, Zhejiang 324000, PR China
| | - Keqing Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China.
| | - Yadong Zhang
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510515, PR China.
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
13
|
Ferraresso F, Leung J, Kastrup CJ. RNA therapeutics to control fibrinolysis: review on applications in biology and medicine. J Thromb Haemost 2024; 22:2103-2114. [PMID: 38663489 PMCID: PMC11269028 DOI: 10.1016/j.jtha.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
Regulation of fibrinolysis, the process that degrades blood clots, is pivotal in maintaining hemostasis. Dysregulation leads to thrombosis or excessive bleeding. Proteins in the fibrinolysis system include fibrinogen, coagulation factor XIII, plasminogen, tissue plasminogen activator, urokinase plasminogen activator, α2-antiplasmin, thrombin-activatable fibrinolysis inhibitor, plasminogen activator inhibitor-1, α2-macroglobulin, and others. While each of these is a potential therapeutic target for diseases, they lack effective or long-acting inhibitors. Rapid advances in RNA-based technologies are creating powerful tools to control the expression of proteins. RNA agents can be long-acting and tailored to either decrease or increase production of a specific protein. Advances in nucleic acid delivery, such as by lipid nanoparticles, have enabled the delivery of RNA to the liver, where most proteins of coagulation and fibrinolysis are produced. This review will summarize the classes of RNA that induce 1) inhibition of protein synthesis, including small interfering RNA and antisense oligonucleotides; 2) protein expression, including messenger RNA and self-amplifying RNA; and 3) gene editing for gene knockdown and precise editing. It will review specific examples of RNA therapies targeting proteins in the coagulation and fibrinolysis systems and comment on the wide range of opportunities for controlling fibrinolysis for biological applications and future therapeutics using state-of-the-art RNA therapies.
Collapse
Affiliation(s)
- Francesca Ferraresso
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jerry Leung
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian J Kastrup
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada; Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
14
|
Li Q, Dong M, Chen P. Advances in structural-guided modifications of siRNA. Bioorg Med Chem 2024; 110:117825. [PMID: 38954918 DOI: 10.1016/j.bmc.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
To date, the US Food and Drug Administration (FDA) has approved six small interfering RNA (siRNA) drugs: patisiran, givosiran, lumasiran, inclisiran, vutrisiran, and nedosiran, serving as compelling evidence of the promising potential of RNA interference (RNAi) therapeutics. The successful implementation of siRNA therapeutics is improved through a combination of various chemical modifications and diverse delivery approaches. The utilization of chemically modified siRNA at specific sites on either the sense strand (SS) or antisense strand (AS) has the potential to enhance resistance to ribozyme degradation, improve stability and specificity, and prolong the efficacy of drugs. Herein, we provide comprehensive analyses concerning the correlation between chemical modifications and structure-guided siRNA design. Various modifications, such as 2'-modifications, 2',4'-dual modifications, non-canonical sugar modifications, and phosphonate mimics, are crucial for the activity of siRNA. We also emphasize the essential strategies for enhancing overhang stability, improving RISC loading efficacy and strand selection, reducing off-target effects, and discussing the future of targeted delivery.
Collapse
Affiliation(s)
- Qiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China; Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China.
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Pu Chen
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
15
|
Regling K, Sidonio RF. Factor VIII stimulants and other novel therapies for the treatment of von Willebrand disease: what's new on the horizon? Expert Opin Pharmacother 2024; 25:1427-1438. [PMID: 39155445 DOI: 10.1080/14656566.2024.2391526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Von Willebrand disease (VWD) is the most common inherited bleeding disorder, affecting about 0.6% to 1.3% of the population, and is characterized primarily by mucocutaneous bleeding secondary to defective platelet adhesion and aggregation. Current therapeutic options for those with severe disease are limited and require frequent intravenous infusions. AREAS COVERED This review discusses the current and recently completed clinical trials involving pathways to FVIII augmentation for the treatment of VWD. Clinical trials registered on clinicaltrials.gov and published data via PubMed searches through June 2024 were included. EXPERT OPINION Available treatment options to those with VWD are limited in part due to limited clinical trials, the complexity of VWD types, and the pharmacokinetics of current treatment options. The development of therapeutic options that reduce treatment burden is necessary to improve quality of life and reduce bleeding complications and in recent years there has been an increased interest from industry to apply novel therapeutics for VWD. The FVIII mimetic, emicizumab, has demonstrated early success in patients with severe VWD and is a promising treatment option for those who require prophylaxis. Furthermore, products like efanesoctocog alfa (Altuviiio®) and BT200 have achieved enhanced VWF/FVIII half-life extension could expand the current treatment landscape while concurrently minimizing treatment burden.
Collapse
Affiliation(s)
- Katherine Regling
- Pediatric Hematology Oncology, Children's Hospital of Michigan, Detroit, MI, USA
- Department of Pediatrics, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Robert F Sidonio
- Pediatric Hematology Oncology, Emory University and Aflac Cancer and Blood Disorders, Atlanta, GA, USA
| |
Collapse
|
16
|
Verhenne S, McCluskey G, Maynadié H, Adam F, Casari C, Panicot-Dubois L, Crescence L, Dubois C, Denis CV, Lenting PJ, Christophe OD. Fitusiran reduces bleeding in factor X-deficient mice. Blood 2024; 144:227-236. [PMID: 38620079 DOI: 10.1182/blood.2023023404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
ABSTRACT Factor X (FX) deficiency is a rare bleeding disorder manifesting a bleeding tendency caused by low FX activity levels. We aim to explore the use of fitusiran (an investigational small interfering RNA that silences antithrombin expression) to increase thrombin generation and the in vivo hemostatic potential under conditions of FX deficiency. We therefore developed a novel model of inducible FX deficiency, generating mice expressing <1% FX activity and antigen (f10low mice). Compared with control f10WT mice, f10low mice had sixfold and fourfold prolonged clotting times in prothrombin time and activated partial prothrombin time assays, respectively (P < .001). Thrombin generation was severely reduced, irrespective of whether tissue factor or factor XIa was used as an initiator. In vivo analysis revealed near-absent thrombus formation in a laser-induced vessel injury model. Furthermore, in 2 distinct bleeding models, f10low mice displayed an increased bleeding tendency compared with f10WT mice. In the tail-clip assay, blood loss was increased from 12 ± 16 μL to 590 ± 335 μL (P < .0001). In the saphenous vein puncture (SVP) model, the number of clots generated was reduced from 19 ± 5 clots every 30 minutes for f10WT mice to 2 ± 2 clots every 30 minutes (P < .0001) for f10low mice. In both models, bleeding was corrected upon infusion of purified FX. Treatment of f10low mice with fitusiran (2 × 10 mg/kg at 1 week interval) resulted in 17 ± 6% residual antithrombin activity and increased thrombin generation (fourfold and twofold to threefold increase in endogenous thrombin potential and thrombin peak, respectively). In the SVP model, the number of clots was increased to 8 ± 6 clots every 30 minutes (P = .0029). Altogether, we demonstrate that reduction in antithrombin levels is associated with improved hemostatic activity under conditions of FX deficiency.
Collapse
Affiliation(s)
- Sebastien Verhenne
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Geneviève McCluskey
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Hortense Maynadié
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
- Centre de Référence de l'Hémophilie et des Maladies Hémorragiques Constitutionnelles rares, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Frédéric Adam
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Caterina Casari
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Laurence Panicot-Dubois
- Aix Marseille Université, Center for Cardiovascular and Nutrition Research, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement 1260, INSERM U1263, Marseille, France
| | - Lydie Crescence
- Aix Marseille Université, Center for Cardiovascular and Nutrition Research, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement 1260, INSERM U1263, Marseille, France
| | - Christophe Dubois
- Aix Marseille Université, Center for Cardiovascular and Nutrition Research, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement 1260, INSERM U1263, Marseille, France
| | - Cécile V Denis
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| |
Collapse
|
17
|
Chandran R, Tohit ERM, Stanslas J, Salim N, Mahmood TMT, Rajagopal M. Shifting Paradigms and Arising Concerns in Severe Hemophilia A Treatment. Semin Thromb Hemost 2024; 50:695-713. [PMID: 38224699 DOI: 10.1055/s-0043-1778103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The management of hemophilia A has undergone a remarkable revolution, in line with technological advancement. In the recent past, the primary concern associated with Factor VIII (FVIII) concentrates was the risk of infections, which is now almost resolved by advanced blood screening and viral inactivation methods. Improving patients' compliance with prophylaxis has become a key focus, as it can lead to improved health outcomes and reduced health care costs in the long term. Recent bioengineering research is directed toward prolonging the recombinant FVIII (rFVIII) coagulant activity and synthesising higher FVIII yields. As an outcome, B-domain deleted, polyethylene glycolated, single-chain, Fc-fused rFVIII, and rFVIIIFc-von Willebrand Factor-XTEN are available for patients. Moreover, emicizumab, a bispecific antibody, is commercially available, whereas fitusiran and tissue factor pathway inhibitor are in clinical trial stages as alternative strategies for patients with inhibitors. With these advancements, noninfectious complications, such as inhibitor development, allergic reactions, and thrombosis, are emerging concerns requiring careful management. In addition, the recent approval of gene therapy is a major milestone toward a permanent cure for hemophilia A. The vast array of treatment options at our disposal today empowers patients and providers alike, to tailor therapeutic regimens to the unique needs of each individual. Despite significant progress in modern treatment options, these highly effective therapies are markedly more expensive than conventional replacement therapy, limiting their access for patients in developing countries.
Collapse
Affiliation(s)
- Rubhan Chandran
- Department of Pathology, Haematology Unit, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Biology, UCSI University, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| | - Eusni R Mohd Tohit
- Department of Pathology, Haematology Unit, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Johnson Stanslas
- Department of Medicine, Pharmacotherapeutics Unit, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norazlinaliza Salim
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tuan M T Mahmood
- Faculty of Pharmacy, The National University of Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Biology, UCSI University, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Doshi BS, Sidonio RF. RNAing toward a new therapy for hemophilia. Blood 2024; 143:2219-2221. [PMID: 38814651 DOI: 10.1182/blood.2024024295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Affiliation(s)
- Bhavya S Doshi
- Children's Hospital of Philadelphia
- University of Pennsylvania
| | | |
Collapse
|
19
|
Kenet G, Nolan B, Zulfikar B, Antmen B, Kampmann P, Matsushita T, You CW, Vilchevska K, Bagot CN, Sharif A, Peyvandi F, Young G, Negrier C, Chi J, Kittner B, Sussebach C, Shammas F, Mei B, Andersson S, Kavakli K. Fitusiran prophylaxis in people with hemophilia A or B who switched from prior BPA/CFC prophylaxis: the ATLAS-PPX trial. Blood 2024; 143:2256-2269. [PMID: 38452197 PMCID: PMC11181353 DOI: 10.1182/blood.2023021864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
ABSTRACT Fitusiran, a subcutaneous investigational small interfering RNA therapeutic, targets antithrombin to rebalance hemostasis in people with hemophilia A or B (PwHA/B), irrespective of inhibitor status. This phase 3, open-label study evaluated the efficacy and safety of fitusiran prophylaxis in males aged ≥12 years with hemophilia A or B, with or without inhibitors, who received prior bypassing agent (BPA)/clotting factor concentrate (CFC) prophylaxis. Participants continued their prior BPA/CFC prophylaxis for 6 months before switching to once-monthly 80 mg fitusiran prophylaxis for 7 months (onset and efficacy periods). Primary end point was annualized bleeding rate (ABR) in the BPA/CFC prophylaxis and fitusiran efficacy period. Secondary end points included spontaneous ABR (AsBR) and joint ABR (AjBR). Safety and tolerability were assessed. Of 80 enrolled participants, 65 (inhibitor, n = 19; noninhibitor, n = 46) were eligible for ABR analyses. Observed median ABRs were 6.5 (interquartile range [IQR], 2.2-19.6)/4.4 (IQR, 2.2-8.7) with BPA/CFC prophylaxis vs 0.0 (IQR, 0.0-0.0)/0.0 (IQR, 0.0-2.7) in the corresponding fitusiran efficacy period. Estimated mean ABRs were substantially reduced with fitusiran by 79.7% (P = .0021) and 46.4% (P = .0598) vs BPA/CFC prophylaxis, respectively. Forty-one participants (63.1%) experienced 0 treated bleeds with fitusiran vs 11 (16.9%) with BPAs/CFCs. Median AsBR and AjBR were both 2.2 with BPA/CFC prophylaxis and 0.0 in the fitusiran efficacy period. Two participants (3.0%) experienced suspected or confirmed thromboembolic events with fitusiran. Once-monthly fitusiran prophylaxis significantly reduced bleeding events vs BPA/CFC prophylaxis in PwHA/B, with or without inhibitors, and reported adverse events were generally consistent with previously identified risks of fitusiran. This trial was registered at www.ClinicalTrials.gov as #NCT03549871.
Collapse
Affiliation(s)
- Gili Kenet
- The National Hemophilia Centre, Amalia Biron Thrombosis Research Institute, Sheba Medical Centre, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Beatrice Nolan
- Department of Hematology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Bulent Zulfikar
- Division of Pediatric Hematology-Oncology, Istanbul University Oncology Institute, Istanbul, Turkey
| | - Bulent Antmen
- Department of Pediatric Hematology/Oncology and Bone Marrow Transplantation Unit, Faculty of Medicine, Acibadem University, Adana Hospital, Adana, Turkey
| | - Peter Kampmann
- Department of Hematology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Tadashi Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Chur-Woo You
- Department of Pediatrics, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, South Korea
| | - Kateryna Vilchevska
- Department of Hematology, Ohmatdyt National Children’s Specialized Hospital, Kyiv, Ukraine
| | - Catherine N. Bagot
- Department of Haematology, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | | | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Guy Young
- Hemostasis and Thrombosis Center, Cancer and Blood Diseases Institute, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Claude Negrier
- UR4609 Hemostasis and Thrombosis, Claude Bernard University Lyon 1, Lyon, France
| | | | | | | | | | | | | | - Kaan Kavakli
- Department of Haematology, Ege University Faculty of Medicine, Children's Hospital, Izmir, Turkey
| |
Collapse
|
20
|
Peyvandi F, Seidizadeh O, Mohsenian S, Garagiola I. Exploring nonreplacement therapies' impact on hemophilia and other rare bleeding disorders. Res Pract Thromb Haemost 2024; 8:102434. [PMID: 38873363 PMCID: PMC11169453 DOI: 10.1016/j.rpth.2024.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
The management of hemophilia, von Willebrand disease (VWD), and rare coagulation disorders traditionally relied on replacement therapies, such as factor concentrates, to address clotting factor deficiencies. However, in recent years, the emergence of nonreplacement therapies has shown promise as an adjunctive approach, especially in hemophilia, and also for patients with VWD and rare bleeding disorders. This review article offers an overview of nonreplacement therapies, such as FVIII-mimicking agents and drugs aimed at rebalancing hemostasis by inhibiting natural anticoagulants, particularly in the management of hemophilia. The utilization of nonreplacement therapies in VWD and rare bleeding disorders has recently attracted attention, as evidenced by presentations at the International Society on Thrombosis and Haemostasis 2023 Congress. Nonreplacement therapies provide alternative methods for preventing bleeding episodes and enhancing patients' quality of life, as many of them are administered subcutaneously and allow longer infusion intervals, resulting in improved quality of life and comfort for patients.
Collapse
Affiliation(s)
- Flora Peyvandi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Omid Seidizadeh
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Samin Mohsenian
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Isabella Garagiola
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
| |
Collapse
|
21
|
Huang HYR, Badar S, Said M, Shah S, Bharadwaj HR, Ramamoorthy K, Alrawashdeh MM, Haroon F, Basit J, Saeed S, Aji N, Tse G, Roy P, Bardhan M. The advent of RNA-based therapeutics for metabolic syndrome and associated conditions: a comprehensive review of the literature. Mol Biol Rep 2024; 51:493. [PMID: 38580818 DOI: 10.1007/s11033-024-09457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Metabolic syndrome (MetS) is a prevalent and intricate health condition affecting a significant global population, characterized by a cluster of metabolic and hormonal disorders disrupting lipid and glucose metabolism pathways. Clinical manifestations encompass obesity, dyslipidemia, insulin resistance, and hypertension, contributing to heightened risks of diabetes and cardiovascular diseases. Existing medications often fall short in addressing the syndrome's multifaceted nature, leading to suboptimal treatment outcomes and potential long-term health risks. This scenario underscores the pressing need for innovative therapeutic approaches in MetS management. RNA-based treatments, employing small interfering RNAs (siRNAs), microRNAs (miRNAs), and antisense oligonucleotides (ASOs), emerge as promising strategies to target underlying biological abnormalities. However, a summary of research available on the role of RNA-based therapeutics in MetS and related co-morbidities is limited. Murine models and human studies have been separately interrogated to determine whether there have been recent advancements in RNA-based therapeutics to offer a comprehensive understanding of treatment available for MetS. In a narrative fashion, we searched for relevant articles pertaining to MetS co-morbidities such as cardiovascular disease, fatty liver disease, dementia, colorectal cancer, and endocrine abnormalities. We emphasize the urgency of exploring novel therapeutic avenues to address the intricate pathophysiology of MetS and underscore the potential of RNA-based treatments, coupled with advanced delivery systems, as a transformative approach for achieving more comprehensive and efficacious outcomes in MetS patients.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Badar
- Department of Biomedical Science, The University of the West Scotland, Paisley, Scotland
| | - Mohammad Said
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siddiqah Shah
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Krishna Ramamoorthy
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, Brunswick, NJ, USA
| | | | | | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Narjiss Aji
- Faculty of Medicine and Health, McGill University, Montreal, QC, Canada
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Priyanka Roy
- Directorate of Factories, Department of Labour, Government of West Bengal, Kolkata, India
| | - Mainak Bardhan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
22
|
Strilchuk AW, Hur WS, Batty P, Sang Y, Abrahams SR, Yong AS, Leung J, Silva LM, Schroeder JA, Nesbitt K, de Laat B, Moutsopoulos NM, Bugge TH, Shi Q, Cullis PR, Merricks EP, Wolberg AS, Flick MJ, Lillicrap D, Nichols TC, Kastrup CJ. Lipid nanoparticles and siRNA targeting plasminogen provide lasting inhibition of fibrinolysis in mouse and dog models of hemophilia A. Sci Transl Med 2024; 16:eadh0027. [PMID: 38381848 PMCID: PMC11293256 DOI: 10.1126/scitranslmed.adh0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Antifibrinolytic drugs are used extensively for on-demand treatment of severe acute bleeding. Controlling fibrinolysis may also be an effective strategy to prevent or lessen chronic recurring bleeding in bleeding disorders such as hemophilia A (HA), but current antifibrinolytics have unfavorable pharmacokinetic profiles. Here, we developed a long-lasting antifibrinolytic using small interfering RNA (siRNA) targeting plasminogen packaged in clinically used lipid nanoparticles (LNPs) and tested it to determine whether reducing plasmin activity in animal models of HA could decrease bleeding frequency and severity. Treatment with the siRNA-carrying LNPs reduced circulating plasminogen and suppressed fibrinolysis in wild-type and HA mice and dogs. In HA mice, hemostatic efficacy depended on the injury model; plasminogen knockdown improved hemostasis after a saphenous vein injury but not tail vein transection injury, suggesting that saphenous vein injury is a murine bleeding model sensitive to the contribution of fibrinolysis. In dogs with HA, LNPs carrying siRNA targeting plasminogen were as effective at stabilizing clots as tranexamic acid, a clinical antifibrinolytic, and in a pilot study of two dogs with HA, the incidence of spontaneous or excess bleeding was reduced during 4 months of prolonged knockdown. Collectively, these data demonstrate that long-acting antifibrinolytic therapy can be achieved and that it provides hemostatic benefit in animal models of HA.
Collapse
Affiliation(s)
- Amy W. Strilchuk
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 2A1, Canada
| | - Woosuk S. Hur
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul Batty
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Yaqiu Sang
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sara R. Abrahams
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alyssa S.M. Yong
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Jerry Leung
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 2A1, Canada
| | - Lakmali M. Silva
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jocelyn A. Schroeder
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kate Nesbitt
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Bas de Laat
- Synapse Research Institute, Maastricht 6217 KM, Netherlands
| | - Niki M. Moutsopoulos
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas H. Bugge
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qizhen Shi
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pieter R. Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 2A1, Canada
| | - Elizabeth P. Merricks
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Timothy C. Nichols
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christian J. Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 2A1, Canada
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
23
|
Ayyar VS, Song D. Mechanistic Pharmacokinetics and Pharmacodynamics of GalNAc-siRNA: Translational Model Involving Competitive Receptor-Mediated Disposition and RISC-Dependent Gene Silencing Applied to Givosiran. J Pharm Sci 2024; 113:176-190. [PMID: 37871778 DOI: 10.1016/j.xphs.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Triantennary N-acetyl-D galactosamine (GalNAc)3-conjugated small interfering RNA (siRNA) have majorly advanced the development of RNA-based therapeutics. Chemically stabilized GalNAc-siRNAs exhibit extensive albeit capacity-limited (nonlinear) distribution into hepatocytes with additional complexities in intracellular liver disposition and pharmacology. A mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) model of GalNAc-siRNA was developed to i) quantitate ASGPR-mediated disposition and downstream RNA-induced silencing complex (RISC)-dependent pharmacology following intravenous (IV) and subcutaneous (SC) dosing, ii) assess the kinetics of formed active metabolite, iii) leverage, as an example, published experimental data for givosiran, and iv) demonstrate PK translation across two preclinical species (rat and monkey) with subsequent prediction of human plasma PK. The structural model is based on competition between parent and formed active metabolite for occupancy and uptake via ASGPR into hepatocytes, intracellular sequestration and degradation, and downstream engagement of RNA-induced silencing complex (RISC) governing target mRNA degradation. The model jointly and accurately captured available concentration-time profiles of givosiran and/or AS(N-1)3' givosiran in rat and/or monkey plasma, liver, and/or kidney following givosiran administered both IV and SC. RISC-dependent gene silencing of ALAS1 mRNA was well-characterized. The model estimated an in vivo affinity (KD) value of 27.7 nM for GalNAc-ASGPR and weight-based allometric exponents of -0.27 and -0.24 for SC absorption and intracellular (endolysosomal) degradation rate constants. The model well-predicted reported givosiran plasma PK profiles in humans. PK simulations revealed net-shifts in liver-to-kidney distribution ratios with increasing IV and SC dose. Importantly, decreases in the relative liver uptake efficiency were demonstrated following IV and, to a lesser extent, following SC dosing explained by differential ASGPR occupancy profiles over time.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Clinical Pharmacology & Pharmacometrics, Janssen Research and Development, Spring House, PA, USA.
| | - Dawei Song
- Clinical Pharmacology & Pharmacometrics, Janssen Research and Development, Spring House, PA, USA
| |
Collapse
|
24
|
Atsou S, Schellenberg C, Lagrange J, Lacolley P, Lenting PJ, Denis CV, Christophe OD, Regnault V. Thrombin generation on vascular cells in the presence of factor VIII and/or emicizumab. J Thromb Haemost 2024; 22:112-125. [PMID: 37776978 DOI: 10.1016/j.jtha.2023.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/18/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND The effect of factor VIII (FVIII) or emicizumab on thrombin generation is usually assessed in assays using synthetic phospholipids. Here, we assessed thrombin generation at the surface of human arterial cells (aortic endothelial cells [hAECs] and aortic vascular smooth muscle cells [hVSMCs]). OBJECTIVES To explore the capacity of hAECs (resting or stimulated) and hVSMCs to support thrombin generation by FVIII or emicizumab. METHODS Primary hVSMCs and hAECs were analyzed for tissue factor (TF)-activity and antigen, phosphatidylserine (PS)-exposure, tissue factor pathway inhibitor (TFPI)-content and thrombomodulin expression. Cells were incubated with FVIII-deficient plasma spiked with FVIII, emicizumab, activated prothrombin complex concentrate (APCC) or combinations thereof. RESULTS TF activity and PS-exposure were present on both hVSMCs and hAECs. In contrast, thrombomodulin and TFPI were expressed on hAECs, while virtually lacking on hVSMCs, confirming the procoagulant nature of hVSMCs. Tumor necrosis factor α-mediated stimulation of hAECs increased not only TF antigen, TF activity, and PS-exposure but also TFPI and thrombomodulin expression. As expected, FVIII and emicizumab promoted thrombin generation on nonstimulated hAECs and hVSMCs, with more thrombin being generated on hVSMCs. Unexpectedly, FVIII and emicizumab increased thrombin generation to a lesser extent on stimulated hAECs compared with nonstimulated hAECs. Finally, adding emicizumab to FVIII did not further increase thrombin generation, whereas the addition of emicizumab to APCC resulted in exaggerated thrombin generation. CONCLUSION Tumor necrosis factor stimulation of hAECs increases both pro- and anticoagulant activity. Unexpectedly, the increased anticoagulant activity is sufficient to limit both FVIII- and emicizumab-induced thrombin generation. This protective effect disappears when emicizumab is combined with APCC.
Collapse
Affiliation(s)
- Sénadé Atsou
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, 94276, Le KremLin-Bicêtre, France
| | - Célia Schellenberg
- Université de Lorraine, INSERM, Défaillance Cardiovasculaire Aigüe et Chronique DCAC U1116, 54505 Vandoeuvre-les-Nancy, France
| | - Jeremy Lagrange
- Université de Lorraine, INSERM, Défaillance Cardiovasculaire Aigüe et Chronique DCAC U1116, 54505 Vandoeuvre-les-Nancy, France
| | - Patrick Lacolley
- Université de Lorraine, INSERM, Défaillance Cardiovasculaire Aigüe et Chronique DCAC U1116, 54505 Vandoeuvre-les-Nancy, France
| | - Peter J Lenting
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, 94276, Le KremLin-Bicêtre, France.
| | - Cécile V Denis
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, 94276, Le KremLin-Bicêtre, France. https://twitter.com/InsermU1176
| | - Olivier D Christophe
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, 94276, Le KremLin-Bicêtre, France
| | - Véronique Regnault
- Université de Lorraine, INSERM, Défaillance Cardiovasculaire Aigüe et Chronique DCAC U1116, 54505 Vandoeuvre-les-Nancy, France
| |
Collapse
|
25
|
Wang AF, Ayyar VS. Pharmacodynamic Models of Indirect Effects and Irreversible Inactivation with Turnover: Applicability to Mechanism-Based Modeling of Gene Silencing and Targeted Protein Degradation. J Pharm Sci 2024; 113:191-201. [PMID: 37884193 DOI: 10.1016/j.xphs.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Indirect response (IDR) and turnover with inactivation (TI) comprise two arrays of mechanism-based pharmacodynamic (PD) models widely used to describe delayed drug effects. IDR Model-IV (stimulation of response loss) and TI (irreversible loss) have been described with discerning "signature" profiles; classical IDR-IV response-time profiles display slow declines where peak response shifts later with increasing dose, whereas TI profiles feature steep response declines with earlier-shifting nadirs. Herein, we demonstrate mathematical convergence of IDR-IV and TI models upon implementation with identical linear versus nonlinear pharmacologic effect terms. Time of peak response in IDR-IV can in fact shift earlier or later depending on PK or PD parameters (e.g., kel, Smax) and effect type. A generalized dynamic model linking mRNA and protein turnover is proposed. Applicability of IDR-IV and TI, with either linear or nonlinear terms acting on degradation/catabolism/loss of response, is demonstrated through model-fitting PK-PD effects of three proteolysis-targeting chimeras (PROTACs) and two ligand-conjugated small interfering RNAs (siRNA). This work clarifies mathematical properties, convergence, and expected responses of IDR-IV and TI, demonstrates their applicability for targeted gene-silencing and protein-degrading agents, and illustrates how well-designed in vivo studies covering broad dose ranges with richly sampled time-points can influence PK-PD model structure and parameter resolution.
Collapse
Affiliation(s)
- Angelia F Wang
- Clinical Pharmacology & Pharmacometrics, Janssen Research and Development, Spring House, PA, USA
| | - Vivaswath S Ayyar
- Clinical Pharmacology & Pharmacometrics, Janssen Research and Development, Spring House, PA, USA.
| |
Collapse
|
26
|
Nakajima Y, Ogiwara K, Inaba K, Kitazawa T, Nogami K. NXT007-mediated hemostatic potential is suppressed by activated protein C-catalyzed inactivation of activated factor V. Res Pract Thromb Haemost 2024; 8:102271. [PMID: 38115953 PMCID: PMC10727940 DOI: 10.1016/j.rpth.2023.102271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Background Activated protein C (APC) inactivates activated factor (F) V (FVa) and FVIIIa. NXT007, an emicizumab-based engineered therapeutic bispecific antibody, enhances the coagulation potential of FVIII-deficient plasma (FVIIIdef-plasma) to near normal levels. However, little is known about the effect of APC-induced inactivation in NXT007-mediated hemostatic function. Objectives To investigate the contribution of APC-mediated reactions to NXT007-driven hemostasis. Methods In pooled normal plasma (PNP) or FVIIIdef-plasma spiked with NXT007 (10 μg/mL), effects of APC (0-16 nM) were measured using a thrombin generation assay (TGA). The direct effects of APC on cofactor activity of NXT007 or FVIIIa in a FXa generation assay were also measured. The FVdef-plasma and FV Leiden plasma (FVLeiden plasma) were preincubated with 2 anti-FVIII monoclonal antibodies (termed FVIII-depleted), and the APC effect in the presence of NXT007 in FVIII-depleted FVdef-plasma with the addition of exogenous FV (7.5-30 nM) or FVIII-depleted FVLeiden plasma was investigated. Results The APC dose-dependent suppression effect in TGA of FVIIIdef-plasma spiked with NXT007 was similar to that of PNP. FXa generation with NXT007 was not impaired by the addition of APC, suggesting that the APC-induced reaction in TGA with NXT007 was attributed to the direct inactivation of FVa. The addition of APC to FVIII-depleted FVdef-plasma, along with NXT007 and various FV concentrations, showed a similar attenuation to PNP. The NXT007-driven thrombin generation in FVIII-depleted FVLeiden plasma was suppressed by APC, similar to the reaction in native FVLeiden plasma. Conclusion NXT007 did not impair APC-mediated downregulation of FVa in FVIIIdef-plasmas, regardless of the presence of FV mutation with APC resistance.
Collapse
Affiliation(s)
- Yuto Nakajima
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara, Japan
| | - Kenichi Ogiwara
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Keito Inaba
- Research Division, Chugai Pharmaceutical Co, Ltd, Yokohama, Japan
| | | | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
27
|
Gogate A, Belcourt J, Shah M, Wang AZ, Frankel A, Kolmel H, Chalon M, Stephen P, Kolli A, Tawfik SM, Jin J, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. Targeting the Liver with Nucleic Acid Therapeutics for the Treatment of Systemic Diseases of Liver Origin. Pharmacol Rev 2023; 76:49-89. [PMID: 37696583 PMCID: PMC10753797 DOI: 10.1124/pharmrev.123.000815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Systemic diseases of liver origin (SDLO) are complex diseases in multiple organ systems, such as cardiovascular, musculoskeletal, endocrine, renal, respiratory, and sensory organ systems, caused by irregular liver metabolism and production of functional factors. Examples of such diseases discussed in this article include primary hyperoxaluria, familial hypercholesterolemia, acute hepatic porphyria, hereditary transthyretin amyloidosis, hemophilia, atherosclerotic cardiovascular diseases, α-1 antitrypsin deficiency-associated liver disease, and complement-mediated diseases. Nucleic acid therapeutics use nucleic acids and related compounds as therapeutic agents to alter gene expression for therapeutic purposes. The two most promising, fastest-growing classes of nucleic acid therapeutics are antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). For each listed SDLO disease, this article discusses epidemiology, symptoms, genetic causes, current treatment options, and advantages and disadvantages of nucleic acid therapeutics by either ASO or siRNA drugs approved or under development. Furthermore, challenges and future perspectives on adverse drug reactions and toxicity of ASO and siRNA drugs for the treatment of SDLO diseases are also discussed. In summary, this review article will highlight the clinical advantages of nucleic acid therapeutics in targeting the liver for the treatment of SDLO diseases. SIGNIFICANCE STATEMENT: Systemic diseases of liver origin (SDLO) contain rare and common complex diseases caused by irregular functions of the liver. Nucleic acid therapeutics have shown promising clinical advantages to treat SDLO. This article aims to provide the most updated information on targeting the liver with antisense oligonucleotides and small interfering RNA drugs. The generated knowledge may stimulate further investigations in this growing field of new therapeutic entities for the treatment of SDLO, which currently have no or limited options for treatment.
Collapse
Affiliation(s)
- Anagha Gogate
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Jordyn Belcourt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Milan Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Alicia Zongxun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Alexis Frankel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Holly Kolmel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Matthew Chalon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Prajith Stephen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Aarush Kolli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Sherouk M Tawfik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
28
|
Ragni MV, Chan SY. Innovations in RNA therapy for hemophilia. Blood 2023; 142:1613-1621. [PMID: 37478403 PMCID: PMC10862240 DOI: 10.1182/blood.2022018661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
Given the shortcomings of current factor-, nonfactor-, and adeno-associated virus gene-based therapies, the recent advent of RNA-based therapeutics for hemophilia is changing the fundamental approach to hemophilia management. From small interfering RNA therapeutics that knockdown clot regulators antithrombin, protein S, and heparin cofactor II, to CRISPR/Cas9 gene editing that may personalize treatment, improved technologies have the potential to reduce bleeds and factor use and avoid inhibitor formation. These novel agents, some in preclinical studies and others in early phase trials, have the potential to simplify treatment and improve hemostasis and quality of life. Furthermore, because these therapies arise from manipulation of the coagulation cascade and thrombin generation and its regulation, they will enhance our understanding of hemostasis and thrombosis and ultimately lead to better therapies for children and adults with inherited bleeding disorders. What does the future hold? With the development of novel preclinical technologies at the bench, there will be fewer joint bleeds, debilitating joint disease, orthopedic surgery, and improved physical and mental health, which were not previously possible. In this review, we identify current limitations of treatment and progress in the development of novel RNA therapeutics, including messenger RNA nanoparticle delivery and gene editing for the treatment of hemophilia.
Collapse
Affiliation(s)
- Margaret V. Ragni
- Division of Hematology Oncology, Department of Medicine, University of Pittsburgh, Hemophilia Center of Western Pennsylvania, Pittsburgh, PA
| | - Stephen Y. Chan
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, Pittsburgh, PA
| |
Collapse
|
29
|
Ramanan R, McFadyen JD, Perkins AC, Tran HA. Congenital fibrinogen disorders: Strengthening genotype-phenotype correlations through novel genetic diagnostic tools. Br J Haematol 2023; 203:355-368. [PMID: 37583269 DOI: 10.1111/bjh.19039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Congenital fibrinogen disorders or CFDs are heterogenous, both in clinical manifestation and array of culprit molecular lesions. Correlations between phenotype and genotype remain poorly defined. This review examines the genetic landscape discovered to date for this rare condition. The question of a possible oligogenic model of inheritance influencing phenotypic heterogeneity is raised, with discussion of the benefits and challenges of sequencing technology used to enhance discovery in this space. Considerable work lies ahead in order to achieve diagnostic and prognostic precision and subsequently provide targeted management to this complex cohort of patients.
Collapse
Affiliation(s)
- Radha Ramanan
- Department of Haematology, Alfred Hospital, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
- Department of Pathology, Alfred Hospital, Melbourne, Victoria, Australia
| | - James D McFadyen
- Department of Haematology, Alfred Hospital, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew C Perkins
- Department of Haematology, Alfred Hospital, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
- Department of Pathology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Huyen A Tran
- Department of Haematology, Alfred Hospital, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Ranjbar S, Zhong XB, Manautou J, Lu X. A holistic analysis of the intrinsic and delivery-mediated toxicity of siRNA therapeutics. Adv Drug Deliv Rev 2023; 201:115052. [PMID: 37567502 PMCID: PMC10543595 DOI: 10.1016/j.addr.2023.115052] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Small interfering RNAs (siRNAs) are among the most promising therapeutic platforms in many life-threatening diseases. Owing to the significant advances in siRNA design, many challenges in the stability, specificity and delivery of siRNA have been addressed. However, safety concerns and dose-limiting toxicities still stand among the reasons for the failure of clinical trials of potent siRNA therapies, calling for a need of more comprehensive understanding of their potential mechanisms of toxicity. This review delves into the intrinsic and delivery related toxicity mechanisms of siRNA drugs and takes a holistic look at the safety failure of the clinical trials to identify the underlying causes of toxicity. In the end, the current challenges, and potential solutions for the safety assessment and high throughput screening of investigational siRNA and delivery systems as well as considerations for design strategies of safer siRNA therapeutics are outlined.
Collapse
Affiliation(s)
- Sheyda Ranjbar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - José Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
31
|
Sekayan T, Simmons DH, von Drygalski A. Etranacogene dezaparvovec-drlb gene therapy for patients with hemophilia B (congenital factor IX deficiency). Expert Opin Biol Ther 2023; 23:1173-1184. [PMID: 37962325 DOI: 10.1080/14712598.2023.2282138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Congenital hemophilia B (HB) is an X-linked bleeding disorder resulting in Factor IX (FIX) deficiency and bleeding of variable severity. There is no cure for HB. Typical management consists of prophylactic intravenous (IV) recombinant or plasma-derived FIX infusions. Etranacogene dezaparvovec-drlb (Hemgenix, AMT-061) is an adeno-associated virus serotype 5 (AAV5) vector containing a codon-optimized Padua variant of the human F9 gene with a liver-specific promoter. Etranacogene dezaparvovec-drlb received FDA approval on 22 November 2022 for the treatment of HB in adult patients who use FIX prophylaxis therapy, have current or historical life-threatening hemorrhage, or have experienced repeated, serious spontaneous bleeding episodes. AREAS COVERED This drug profile discusses the safety and efficacy of etranacogene dezaparvovec-drlb in patients with HB. EXPERT OPINION Etranacogene dezaparvovec-drlb therapy results in stable and sustained expression of near-normal to normal FIX levels in patients with HB regardless of neutralizing antibodies to AAV5 up to a titer of 678. Its use has led to significant reduction in bleeding and FIX prophylaxis. Etranacogene dezaparvovec-drlb was well tolerated; however, 17% of patients required corticosteroid therapy for alanine aminotransferase (ALT) elevation. Etranacogene dezaparvovec-drlb therapy marks the beginning of an exciting era in HB treatment and opens questions regarding treatment longevity and long-term safety.
Collapse
Affiliation(s)
- Tro Sekayan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | | | - Annette von Drygalski
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
32
|
Soroka AB, Feoktistova SG, Mityaeva ON, Volchkov PY. Gene Therapy Approaches for the Treatment of Hemophilia B. Int J Mol Sci 2023; 24:10766. [PMID: 37445943 DOI: 10.3390/ijms241310766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In contrast to the standard enzyme-replacement therapy, administered from once per 7-14 days to 2-3 times a week in patients with severe hemophilia B, as a result of a single injection, gene therapy can restore F9 gene expression and maintain it for a prolonged time. In clinical research, the approach of delivering a functional copy of a gene using adeno-associated viral (AAV) vectors is widely used. The scientific community is actively researching possible modifications to improve delivery efficiency and expression. In preclinical studies, the possibility of genome editing using CRISPR/Cas9 technology for the treatment of hemophilia B is also being actively studied.
Collapse
Affiliation(s)
- Anastasiia B Soroka
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
| | - Sofya G Feoktistova
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
| | - Olga N Mityaeva
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
| | - Pavel Y Volchkov
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
| |
Collapse
|
33
|
Lee JH, Han JP, Song DW, Lee GS, Choi BS, Kim M, Lee Y, Kim S, Lee H, Yeom SC. In vivo genome editing for hemophilia B therapy by the combination of rebalancing and therapeutic gene knockin using a viral and non-viral vector. MOLECULAR THERAPY - NUCLEIC ACIDS 2023; 32:161-172. [PMID: 37064777 PMCID: PMC10090481 DOI: 10.1016/j.omtn.2023.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Recent therapeutic strategies for hemophilia include long-term therapeutic gene expression using adeno-associated virus (AAV) and rebalancing therapy via the downregulation of anticoagulant pathways. However, these approaches have limitations in immune responses or insufficiency to control acute bleeding. Thus, we developed a therapeutic strategy for hemophilia B by a combined rebalancing and human factor 9 (hF9) gene knockin (KI) using a lipid nanoparticle (LNP) and AAV. Antithrombin (AT; Serpin Family C Member 1 [Serpinc1]) was selected as the target anticoagulation pathway for the gene KI. First, the combined use of LNP-clustered regularly interspaced short palindromic repeats (CRISPR) and AAV donor resulted in 20% insertions or deletions (indels) in Serpinc1 and 67% reduction of blood mouse AT concentration. Second, hF9 coding sequences were integrated into approximately 3% of the target locus. hF9 KI yielded approximately 1,000 ng/mL human factor IX (hFIX) and restored coagulation activity to a normal level. LNP-CRISPR injection caused sustained AT downregulation and hFIX production up to 63 weeks. AT inhibition and hFIX protein-production ability could be maintained by the proliferation of genetically edited hepatocytes in the case of partial hepatectomy. The co-administration of AAV and LNP showed no severe side effects except random integrations. Our results demonstrate hemophilia B therapy by a combination of rebalancing and hF9 KI using LNP and AAV.
Collapse
|
34
|
Young G, Lenting PJ, Croteau SE, Nolan B, Srivastava A. Antithrombin lowering in hemophilia: a closer look at fitusiran. Res Pract Thromb Haemost 2023; 7:100179. [PMID: 37358958 PMCID: PMC10285540 DOI: 10.1016/j.rpth.2023.100179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Thrombin is a key enzyme in the maintenance of normal hemostatic function and is the central product of an interconnected set of simultaneously occurring cellular and proteolytic events. Antithrombin (AT) is a natural anticoagulant that downregulates different components of the clotting process, particularly thrombin generation. In good health, well-regulated hemostasis is the result of a balance between procoagulant and anticoagulant elements. Cumulative understanding of the regulation of thrombin generation and its central role in hemostasis and bleeding disorders has led to the clinical development of therapeutic strategies that aim to rebalance hemostasis in individuals with hemophilia and other coagulation factor deficiencies to improve bleeding phenotype. The aim of this review is to discuss the rationale for AT lowering in individuals with hemophilia, with a focus on fitusiran, its mechanism of action, and its potential as a prophylactic therapy for individuals with hemophilia A or B, with or without inhibitors. Fitusiran is an investigational small, interfering RNA therapeutic that targets and lowers AT. It is currently in phase III clinical trials and results have shown its potential to increase thrombin generation, leading to enhanced hemostasis and improved quality of life while reducing the overall treatment burden.
Collapse
Affiliation(s)
- Guy Young
- Hemostasis and Thrombosis Center, Cancer and Blood Diseases Institute, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Peter J. Lenting
- Laboratory for Hemostasis, Inflammation and Thrombosis, Unité Mixed de Recherche, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre
| | - Stacy E. Croteau
- Boston Hemophilia Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| |
Collapse
|
35
|
Han JL, Entcheva E. Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes. Stem Cell Rev Rep 2023; 19:886-905. [PMID: 36656467 PMCID: PMC9851124 DOI: 10.1007/s12015-023-10506-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Precise control of gene expression (knock-out, knock-in, knockdown or overexpression) is at the heart of functional genomics - an approach to dissect the contribution of a gene/protein to the system's function. The development of a human in vitro system that can be patient-specific, induced pluripotent stem cells, iPSC, and the ability to obtain various cell types of interest, have empowered human disease modeling and therapeutic development. Scalable tools have been deployed for gene modulation in these cells and derivatives, including pharmacological means, DNA-based RNA interference and standard RNA interference (shRNA/siRNA). The CRISPR/Cas9 gene editing system, borrowed from bacteria and adopted for use in mammalian cells a decade ago, offers cell-specific genetic targeting and versatility. Outside genome editing, more subtle, time-resolved gene modulation is possible by using a catalytically "dead" Cas9 enzyme linked to an effector of gene transcription in combination with a guide RNA. The CRISPRi / CRISPRa (interference/activation) system evolved over the last decade as a scalable technology for performing functional genomics with libraries of gRNAs. Here, we review key developments of these approaches and their deployment in cardiovascular research. We discuss specific use with iPSC-cardiomyocytes and the challenges in further translation of these techniques.
Collapse
Affiliation(s)
- Julie Leann Han
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Suite 5000, Washington, DC, 20052, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Suite 5000, Washington, DC, 20052, USA.
| |
Collapse
|
36
|
Ivanciu L, Arruda VR, Camire RM. Factor IXa variants resistant to plasma inhibitors enhance clot formation in vivo. Blood 2023; 141:2022-2032. [PMID: 36724452 PMCID: PMC10163311 DOI: 10.1182/blood.2022018083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Factor IXa (FIXa) plays a pivotal role in coagulation by contributing to FX activation via the intrinsic pathway. Although antithrombin (AT) and other plasma inhibitors are thought to regulate FIXa procoagulant function, the impact of FIXa inhibition on thrombin generation and clot formation in vivo remains unclear. Here, we generated FIXa variants with altered reactivity to plasma inhibitors that target the FIXa active site but maintain procoagulant function when bound to its cofactor, FVIIIa. We found that selected FIXa variants (eg, FIXa-V16L) have a prolonged activity half-life in the plasma due, in part, to AT resistance. Studies using hemophilia B mice have shown that delayed FIXa inhibition has a major impact on reducing the bleeding phenotype and promoting thrombus formation following administration of FIX protein. Overall, these results demonstrate that the regulation of FIXa inhibition contributes in a major way to the spatial and temporal control of coagulation at the site of vascular injury. Our findings provide novel insights into the physiological regulation of FIXa, enhance our understanding of thrombus formation in vivo via the intrinsic pathway, and suggest that altering FIXa inhibition could have therapeutic benefits.
Collapse
Affiliation(s)
- Lacramioara Ivanciu
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Valder R. Arruda
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rodney M. Camire
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
37
|
Peyvandi F, Garagiola I, Abbattista M. Fitusiran in haemophilia: a breakthrough drug with many unknowns. Lancet 2023; 401:1400-1401. [PMID: 37003290 DOI: 10.1016/s0140-6736(23)00514-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Flora Peyvandi
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy; Department of Pathophysiology and Department of Transplantation, Università degli Studi di Milano, Milan 20122, Italy.
| | - Isabella Garagiola
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Maria Abbattista
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| |
Collapse
|
38
|
Srivastava A, Rangarajan S, Kavakli K, Klamroth R, Kenet G, Khoo L, You CW, Xu W, Malan N, Frenzel L, Bagot CN, Stasyshyn O, Chang CY, Poloskey S, Qiu Z, Andersson S, Mei B, Pipe SW. Fitusiran prophylaxis in people with severe haemophilia A or haemophilia B without inhibitors (ATLAS-A/B): a multicentre, open-label, randomised, phase 3 trial. THE LANCET HAEMATOLOGY 2023; 10:e322-e332. [PMID: 37003278 DOI: 10.1016/s2352-3026(23)00037-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Fitusiran, a subcutaneous investigational siRNA therapeutic, targets antithrombin with the goal of rebalancing haemostasis in people with haemophilia A or haemophilia B, regardless of inhibitor status. We aimed to evaluate the efficacy and safety of fitusiran prophylaxis in people with severe haemophilia without inhibitors. METHODS This multicentre, open-label, randomised phase 3 study was conducted at 45 sites in 17 countries. Male participants aged at least 12 years with severe haemophilia A or B without inhibitors, who had previously been treated on-demand with clotting factor concentrates, were randomly assigned in a 2:1 ratio to receive 80 mg subcutaneous fitusiran prophylaxis once per month or to continue on-demand clotting factor concentrates for a total of 9 months. Randomisation was stratified by the number of bleeding events in the 6 months before screening (≤10 bleeds and >10 bleeds) and by haemophilia type (haemophilia A or B). The primary endpoint was annualised bleeding rate, analysed in the intention-to-treat analysis set. Safety and tolerability were assessed in the safety analysis set. This trial is registered with ClinicalTrials.gov, NCT03417245, and is complete. FINDINGS Between March 1, 2018, and July 14, 2021, 177 male participants were screened for eligibility and 120 were randomly assigned to receive fitusiran prophylaxis (n=80) or on-demand clotting factor concentrates (n=40). Median follow-up was 7·8 months (IQR 7·8-7·8) in the fitusiran group and 7·8 months (7·8-7·8) in the on-demand clotting factor concentrates group. The median annualised bleeding rate was 0·0 (0·0-3·4) in the fitusiran group and 21·8 (8·4-41·0) in the on-demand clotting factor concentrates group. The estimated mean annualised bleeding rate was significantly lower in the fitusiran prophylaxis group (3·1 [95% CI 2·3-4·3]) than in the on-demand clotting factor concentrates group (31·0 [21·1-45·5]; rate ratio 0·101 [95% CI 0·064-0·159]; p<0·0001). In the fitusiran group, 40 (51%) of 79 treated participants had no treated bleeds compared with two (5%) of 40 participants in the on-demand clotting factor concentrates group. Increased alanine aminotransferase concentration (18 [23%] of 79 participants in the safety analysis set) was the most common treatment-emergent adverse event in the fitusiran group and hypertension (four (10%) of 40 participants) was the most common in the on-demand clotting factor concentrates group. Treatment-emergent serious adverse events were reported in five (6%) participants in the fitusiran group (cholelithiasis [n=2, 3%], cholecystitis [n=1, 1%], lower respiratory tract infection [n=1, 1%], and asthma [n=1, 1%]) and five (13%) participants in the on-demand clotting factor concentrates group (gastroenteritis, pneumonia, suicidal ideation, diplopia, osteoarthritis, epidural haemorrhage, humerus fracture, subdural haemorrhage, and tibia fracture [all n=1, 3%]). No treatment-related thrombosis or deaths were reported. INTERPRETATION In participants with haemophilia A or B without inhibitors, fitusiran prophylaxis resulted in significant reductions in annualised bleeding rate compared with on-demand clotting factor concentrates and no bleeding events in approximately half of participants. Fitusiran prophylaxis shows haemostatic efficacy in both haemophilia A and haemophilia B, and therefore has the potential to be transformative in the management of all people with haemophilia. FUNDING Sanofi.
Collapse
|
39
|
Mohammadian Gol T, Ureña-Bailén G, Hou Y, Sinn R, Antony JS, Handgretinger R, Mezger M. CRISPR medicine for blood disorders: Progress and challenges in delivery. Front Genome Ed 2023; 4:1037290. [PMID: 36687779 PMCID: PMC9853164 DOI: 10.3389/fgeed.2022.1037290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Blood disorders are a group of diseases including hematological neoplasms, clotting disorders and orphan immune deficiency diseases that affects human health. Current improvements in genome editing based therapeutics demonstrated preclinical and clinical proof to treat different blood disorders. Genome editing components such as Cas nucleases, guide RNAs and base editors are supplied in the form of either a plasmid, an mRNA, or a ribonucleoprotein complex. The most common delivery vehicles for such components include viral vectors (e.g., AAVs and RV), non-viral vectors (e.g., LNPs and polymers) and physical delivery methods (e.g., electroporation and microinjection). Each of the delivery vehicles specified above has its own advantages and disadvantages and the development of a safe transferring method for ex vivo and in vivo application of genome editing components is still a big challenge. Moreover, the delivery of genome editing payload to the target blood cells possess key challenges to provide a possible cure for patients with inherited monogenic blood diseases and hematological neoplastic tumors. Here, we critically review and summarize the progress and challenges related to the delivery of genome editing elements to relevant blood cells in an ex vivo or in vivo setting. In addition, we have attempted to provide a future clinical perspective of genome editing to treat blood disorders with possible clinical grade improvements in delivery methods.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Yujuan Hou
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Ralph Sinn
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Justin S. Antony
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Markus Mezger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,*Correspondence: Markus Mezger,
| |
Collapse
|
40
|
Traber GM, Yu AM. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies. J Pharmacol Exp Ther 2023; 384:133-154. [PMID: 35680378 PMCID: PMC9827509 DOI: 10.1124/jpet.122.001234] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/26/2023] Open
Abstract
RNA interference (RNAi) provides researchers with a versatile means to modulate target gene expression. The major forms of RNAi molecules, genome-derived microRNAs (miRNAs) and exogenous small interfering RNAs (siRNAs), converge into RNA-induced silencing complexes to achieve posttranscriptional gene regulation. RNAi has proven to be an adaptable and powerful therapeutic strategy where advancements in chemistry and pharmaceutics continue to bring RNAi-based drugs into the clinic. With four siRNA medications already approved by the US Food and Drug Administration (FDA), several RNAi-based therapeutics continue to advance to clinical trials with functions that closely resemble their endogenous counterparts. Although intended to enhance stability and improve efficacy, chemical modifications may increase risk of off-target effects by altering RNA structure, folding, and biologic activity away from their natural equivalents. Novel technologies in development today seek to use intact cells to yield true biologic RNAi agents that better represent the structures, stabilities, activities, and safety profiles of natural RNA molecules. In this review, we provide an examination of the mechanisms of action of endogenous miRNAs and exogenous siRNAs, the physiologic and pharmacokinetic barriers to therapeutic RNA delivery, and a summary of the chemical modifications and delivery platforms in use. We overview the pharmacology of the four FDA-approved siRNA medications (patisiran, givosiran, lumasiran, and inclisiran) as well as five siRNAs and several miRNA-based therapeutics currently in clinical trials. Furthermore, we discuss the direct expression and stable carrier-based, in vivo production of novel biologic RNAi agents for research and development. SIGNIFICANCE STATEMENT: In our review, we summarize the major concepts of RNA interference (RNAi), molecular mechanisms, and current state and challenges of RNAi drug development. We focus our discussion on the pharmacology of US Food and Drug Administration-approved RNAi medications and those siRNAs and miRNA-based therapeutics that entered the clinical investigations. Novel approaches to producing new true biological RNAi molecules for research and development are highlighted.
Collapse
Affiliation(s)
- Gavin M Traber
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California
| |
Collapse
|
41
|
Nogami K, Shima M. Current and future therapies for haemophilia-Beyond factor replacement therapies. Br J Haematol 2023; 200:23-34. [PMID: 35869698 DOI: 10.1111/bjh.18379] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Some non-factor products that work by facilitating the coagulation pathway (emicizumab) and blocking the anticoagulant pathway (fitusiran, concizumab and marstacimab) for patients with haemophilia (H) have been developed, and clinical trials using these products are currently ongoing. Prophylaxis using non-factor products by subcutaneous administration provides marked reductions of bleeding episodes in patients with HA or HB, regardless of the presence of inhibitor. Emicizumab has already been approved globally. Emicizumab alters the phenotype of patients with HA from severe to mild by maintaining trough levels of equivalent factor VIII activity (15-20 iu/dl). Phase 3 clinical trials and long-term observations assessing emicizumab revealed tolerable safety and efficacy. However, thrombotic events have occurred in patients receiving these non-factor products. Furthermore, monitoring of the haemostatic function of these products with concomitant therapy is also required in clinical practice. These products have promising haemostatic efficiency, but wider clinical experience is needed to provide optimal therapeutic strategies in the future.
Collapse
Affiliation(s)
- Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Midori Shima
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan.,Thrombosis and Hemostasis Research Centre, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
42
|
Boyce S, Rangarajan S. RNAi for the Treatment of People with Hemophilia: Current Evidence and Patient Selection. J Blood Med 2023; 14:317-327. [PMID: 37123985 PMCID: PMC10132380 DOI: 10.2147/jbm.s390521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Severe hemophilia is associated with spontaneous, prolonged and recurrent bleeding. Inadequate prevention and treatment of bleeding can lead to serious morbidity and mortality. Due to the limitations of intravenous clotting factor replacement, including the risk of inhibitory antibodies, innovative novel therapies have been developed that have dramatically changed the landscape of hemophilia therapy. Ribonucleic acid interference (RNAi) has brought the opportunity for multiple strategies to manipulate the hemostatic system and ameliorate the bleeding phenotype in severe bleeding disorders. Fitusiran is a RNAi therapeutic that inhibits the expression of the natural anticoagulant serpin antithrombin. Reduction in antithrombin is known to cause thrombosis if coagulation parameters are otherwise normal and can rebalance hemostasis in severe hemophilia. Reports from late stage clinical trials of fitusiran in hemophilia A and B participants, with and without inhibitory antibodies to exogenous clotting factor, have demonstrated efficacy in preventing bleeding events showing promise for a future "universal" prophylactic treatment of individuals with moderate-severe hemophilia.
Collapse
Affiliation(s)
- Sara Boyce
- Haemophilia Comprehensive Care Centre, University Hospital Southampton, Southampton, UK
- Correspondence: Sara Boyce, Email
| | | |
Collapse
|
43
|
Sidonio RF, Hoffman M, Kenet G, Dargaud Y. Thrombin generation and implications for hemophilia therapies: A narrative review. Res Pract Thromb Haemost 2022; 7:100018. [PMID: 36798897 PMCID: PMC9926221 DOI: 10.1016/j.rpth.2022.100018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 01/07/2023] Open
Abstract
Thrombin plays an essential role in achieving and maintaining effective hemostasis and stable clot formation. In people with hemophilia, deficiency of procoagulant factor (F)VIII or FIX results in insufficient thrombin generation, leading to reduced clot stability and various bleeding manifestations. A correlation has been found between the bleeding phenotype of people with hemophilia and the extent of thrombin generation, with individuals with increased thrombin generation being protected from bleeding and those with lower thrombin generation having increased bleeding tendency. The amount, location, and timing of thrombin generation have been found to affect the formation and stability of the resulting clot. The goal of all therapies for hemophilia is to enhance the generation of thrombin with the aim of restoring effective hemostasis and preventing or controlling bleeding; current treatment approaches rely on either replacing or mimicking the missing procoagulant (ie, FVIII or FIX) or rebalancing hemostasis through lowering natural anticoagulants, such as antithrombin. Global coagulation assays, such as the thrombin generation assay, may help guide the overall management of hemostasis by measuring and monitoring the hemostatic potential of patients and, thus, assessing the efficacy of treatment in people with hemophilia. Nevertheless, standardization of the thrombin generation assay is needed before it can be adopted in routine clinical practice.
Collapse
Affiliation(s)
- Robert F. Sidonio
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, Georgia, USA,Department of Pediatrics, Emory University, Atlanta, Georgia, USA,Correspondence Robert F Sidonio, Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA 30322, USA. @nashgreenie
| | - Maureane Hoffman
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gili Kenet
- The Israeli National Hemophilia Center and Thrombosis Unit, Sheba Medical Center, Tel Hashomer, Israel,The Amalia Biron Thrombosis Research Institute, Tel Aviv University, Tel Aviv, Israel
| | - Yesim Dargaud
- Unité d’Hémostase Clinique, Centre National de Reference de l'Hemophilie, Hôpital Cardiologique Louis Pradel, Université Lyon, Lyon, France
| |
Collapse
|
44
|
Luo L, Zheng Q, Chen Z, Huang M, Fu L, Hu J, Shi Q, Chen Y. Hemophilia a patients with inhibitors: Mechanistic insights and novel therapeutic implications. Front Immunol 2022; 13:1019275. [PMID: 36569839 PMCID: PMC9774473 DOI: 10.3389/fimmu.2022.1019275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
The development of coagulation factor VIII (FVIII) inhibitory antibodies is a serious complication in hemophilia A (HA) patients after FVIII replacement therapy. Inhibitors render regular prophylaxis ineffective and increase the risk of morbidity and mortality. Immune tolerance induction (ITI) regimens have become the only clinically proven therapy for eradicating these inhibitors. However, this is a lengthy and costly strategy. For HA patients with high titer inhibitors, bypassing or new hemostatic agents must be used in clinical prophylaxis due to the ineffective ITI regimens. Since multiple genetic and environmental factors are involved in the pathogenesis of inhibitor generation, understanding the mechanisms by which inhibitors develop could help identify critical targets that can be exploited to prevent or eradicate inhibitors. In this review, we provide a comprehensive overview of the recent advances related to mechanistic insights into anti-FVIII antibody development and discuss novel therapeutic approaches for HA patients with inhibitors.
Collapse
Affiliation(s)
- Liping Luo
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qiaoyun Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhenyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China
| | - Meijuan Huang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI, United States
- Midwest Athletes Against Childhood Cancer (MACC) Fund Research Center, Milwaukee, WI, United States
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
45
|
Boianelli A, Aoki Y, Ivanov M, Dahlén A, Gennemark P. Cross-Species Translation of Biophase Half-Life and Potency of GalNAc-Conjugated siRNAs. Nucleic Acid Ther 2022; 32:507-512. [PMID: 35867041 PMCID: PMC9784597 DOI: 10.1089/nat.2022.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Small interfering RNAs (siRNAs) with N-acetylgalactosamine (GalNAc) conjugation for improved liver uptake represent an emerging class of drugs to treat liver diseases. Understanding how pharmacokinetics and pharmacodynamics translate is pivotal for in vivo study design and human dose prediction. However, the literature is sparse on translational data for this modality, and pharmacokinetics in the liver is seldom measured. To overcome these difficulties, we collected time-course biomarker data for 11 GalNAc-siRNAs in various species and applied the kinetic-pharmacodynamic modeling approach to estimate the biophase (liver) half-life and the potency. Our analysis indicates that the biophase half-life is 0.6-3 weeks in mouse, 1-8 weeks in monkey, and 1.5-14 weeks in human. For individual siRNAs, the biophase half-life is 1-8 times longer in human than in mouse, and generally 1-3 times longer in human than in monkey. The analysis indicates that the siRNAs are more potent in human than in mouse and monkey.
Collapse
Affiliation(s)
- Alessandro Boianelli
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Address correspondence to: Alessandro Boianelli, PhD, Drug Metabolism and Pharmacokinetics Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Yasunori Aoki
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maxim Ivanov
- Quantitative Biology SE, Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| |
Collapse
|
46
|
Guzzardo GM, Sidonio R, Callaghan MU, Regling K. Early stage clinical trials for the treatment of hemophilia A. Expert Opin Investig Drugs 2022; 31:1169-1186. [PMID: 36265129 DOI: 10.1080/13543784.2022.2138742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Hemophilia A is a severe bleeding disorder affecting about 1 in 5,000 males. The gold standard for prophylaxis and treatment of acute bleeding has been factor (F) VIII concentrate. A multitude of treatment modalities are now available and under clinical investigation. AREAS COVERED This review discusses ongoing/recently completed early-phase clinical trials registered on ClinicalTrials.gov in patients with hemophilia A through April 2022. These new pipeline therapies are focused on addressing the safety and efficacy of new factor-related products, non-factor related products, and gene therapy options for hemophilia. EXPERT OPINION Current standard of care effectively prevents and treats acute bleeding and has significantly improved the quality of life in hemophilia. The biggest challenges in the improvement of care are treatment-related burden and the burden of cost in developing countries. New drugs under development are likely to enter practice by the end of this decade and address many of the unmet needs particularly of those with severe disease. Data is limited in unique populations (e.g. congenital/inherited FVIII inhibitors, non-severe hemophilia A, women/girls with hemophilia and children) which are important areas for future research; additional clinical trials and long-term outcome data are necessary prior to incorporating these new therapies in our treatment arsenal.
Collapse
Affiliation(s)
- Gianna M Guzzardo
- Pediatric Hematology Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Robert Sidonio
- Pediatric Hematology Oncology, Emory University and Aflac Cancer and Blood Disorders, Atlanta, GA, USA
| | - Michael U Callaghan
- Agios Pharmaceuticals, Cambridge, MA, USA.,Department of Pediatrics, Central Michigan University School of Medicine, Mount Pleasant, MI, USA
| | - Katherine Regling
- Pediatric Hematology Oncology, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Pediatrics, Central Michigan University School of Medicine, Mount Pleasant, MI, USA
| |
Collapse
|
47
|
Anandani G, Patel T, Parmar R. The Implication of New Developments in Hemophilia Treatment on Its Laboratory Evaluation. Cureus 2022; 14:e30212. [DOI: 10.7759/cureus.30212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
|
48
|
Abstract
The highly specific induction of RNA interference-mediated gene knockdown, based on the direct application of small interfering RNAs (siRNAs), opens novel avenues towards innovative therapies. Two decades after the discovery of the RNA interference mechanism, the first siRNA drugs received approval for clinical use by the US Food and Drug Administration and the European Medicines Agency between 2018 and 2022. These are mainly based on an siRNA conjugation with a targeting moiety for liver hepatocytes, N-acetylgalactosamine, and cover the treatment of acute hepatic porphyria, transthyretin-mediated amyloidosis, hypercholesterolemia, and primary hyperoxaluria type 1. Still, the development of siRNA therapeutics faces several challenges and issues, including the definition of optimal siRNAs in terms of target, sequence, and chemical modifications, siRNA delivery to its intended site of action, and the absence of unspecific off-target effects. Further siRNA drugs are in clinical studies, based on different delivery systems and covering a wide range of different pathologies including metabolic diseases, hematology, infectious diseases, oncology, ocular diseases, and others. This article reviews the knowledge on siRNA design and chemical modification, as well as issues related to siRNA delivery that may be addressed using different delivery systems. Details on the mode of action and clinical status of the various siRNA therapeutics are provided, before giving an outlook on issues regarding the future of siRNA drugs and on their potential as one emerging standard modality in pharmacotherapy. Notably, this may also cover otherwise un-druggable diseases, the definition of non-coding RNAs as targets, and novel concepts of personalized and combination treatment regimens.
Collapse
Affiliation(s)
- Maik Friedrich
- Faculty of Leipzig, Institute of Clinical Immunology, Max-Bürger-Forschungszentrum (MBFZ), University of Leipzig, Leipzig, Germany.,Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| |
Collapse
|
49
|
Swan D, Mahlangu J, Thachil J. Non-factor therapies for bleeding disorders: A primer for the general haematologist. EJHAEM 2022; 3:584-595. [PMID: 36051064 PMCID: PMC9422036 DOI: 10.1002/jha2.442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Management of patients with severe bleeding disorders, particularly haemophilia A and B, and to a lesser extent, von Willebrand disease, has come on leaps and bounds over the past decade. Until recently, patients relied upon the administration of factor concentrates to prevent or treat bleeding episodes. Factor administration requires intravenous access and, in up to one-third of patients, leads to the development of neutralising antibodies, or inhibitors, which are associated with more frequent bleeding episodes and higher morbidity. Novel non-factor therapies may offer a solution to these unmet needs. In this review, we discuss the factor mimetics, particularly emicizumab, and the rebalancing agents, which inhibit antithrombin, tissue factor pathway inhibitor and activated protein C, and novel treatments to enhance von Willebrand factor levels. We review the available trial data, unanswered questions and challenges associated with these new treatment modalities. Finally, we provide practical management algorithms to aid the general haematologist when faced with a patient receiving emicizumab who requires surgery or may develop bleeding.
Collapse
Affiliation(s)
- Dawn Swan
- National University IrelandGalwayRepublic of Ireland
| | - Johnny Mahlangu
- Department of Molecular Medicine and HaematologySchool of PathologyFaculty of Health SciencesUniversity of the Witwatersrand and NHLSJohannesburgSouth Africa
| | - Jecko Thachil
- Department of HaematologyManchester University Hospitals NHS Foundation TrustManchesterUK
| |
Collapse
|
50
|
Mallick AM, Tripathi A, Mishra S, Mukherjee A, Dutta C, Chatterjee A, Sinha Roy R. Emerging Approaches for Enabling RNAi Therapeutics. Chem Asian J 2022; 17:e202200451. [PMID: 35689534 DOI: 10.1002/asia.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) is a primitive evolutionary mechanism developed to escape incorporation of foreign genetic material. siRNA has been instrumental in achieving the therapeutic potential of RNAi by theoretically silencing any gene of interest in a reversible and sequence-specific manner. Extrinsically administered siRNA generally needs a delivery vehicle to span across different physiological barriers and load into the RISC complex in the cytoplasm in its functional form to show its efficacy. This review discusses the designing principles and examples of different classes of delivery vehicles that have proved to be efficient in RNAi therapeutics. We also briefly discuss the role of RNAi therapeutics in genetic and rare diseases, epigenetic modifications, immunomodulation and combination modality to inch closer in creating a personalized therapy for metastatic cancer. At the end, we present, strategies and look into the opportunities to develop efficient delivery vehicles for RNAi which can be translated into clinics.
Collapse
Affiliation(s)
- Argha M Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Asmita Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Chiranjit Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Present address:Department of Biological Sciences, NUS Environmental Research Institute (NERI), National University of Singapore (NUS), Block S2 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|