1
|
Porier DL, Adam A, Kang L, Michalak P, Tupik J, Santos MA, Tanelus M, López K, Auguste DI, Lee C, Allen IC, Wang T, Auguste AJ. Humoral and T-cell-mediated responses to an insect-specific flavivirus-based Zika virus vaccine candidate. PLoS Pathog 2024; 20:e1012566. [PMID: 39388457 PMCID: PMC11495591 DOI: 10.1371/journal.ppat.1012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/22/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Flaviviruses represent a significant global health threat and relatively few licensed vaccines exist to protect against them. Insect-specific flaviviruses (ISFVs) are incapable of replication in humans and have emerged as a novel and promising tool for flavivirus vaccine development. ISFV-based flavivirus vaccines have shown exceptional safety, immunogenicity, and efficacy, however, a detailed assessment of the correlates of protection and immune responses induced by these vaccines are still needed for vaccine optimization. Here, we explore the mechanisms of protective immunity induced by a previously created pre-clinical Zika virus (ZIKV) vaccine candidate, called Aripo/Zika (ARPV/ZIKV). In brief, immunocompromised IFN-αβR-/- mice passively immunized with ARPV/ZIKV immune sera experienced protection after lethal ZIKV challenge, although this protection was incomplete. ARPV/ZIKV-vaccinated IFN-αβR-/- mice depleted of CD4+ or CD8+ T-cells at the time of ZIKV challenge showed no morbidity or mortality. However, the adoptive transfer of ARPV/ZIKV-primed T-cells into recipient IFN-αβR-/- mice resulted in a two-day median increase in survival time compared to controls. Altogether, these results suggest that ARPV/ZIKV-induced protection is primarily mediated by neutralizing antibodies at the time of challenge and that T-cells may play a comparatively minor but cumulative role in the protection observed. Lastly, ARPV/ZIKV-vaccinated Tcra KO mice, which are deficient in T-cell responses, experienced significant mortality post-challenge. These results suggest that ARPV/ZIKV-induced cell-mediated responses are critical for development of protective immune responses at vaccination. Despite the strong focus on neutralizing antibody responses to novel flavivirus vaccine candidates, these results suggest that cell-mediated responses induced by ISFV-based vaccines remain important to overall protective responses.
Collapse
Affiliation(s)
- Danielle L. Porier
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lin Kang
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, United States of America
| | - Pawel Michalak
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Juselyn Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Matthew A. Santos
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Manette Tanelus
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Krisangel López
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Dawn I. Auguste
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Christy Lee
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Albert J. Auguste
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
2
|
Graham VA, Easterbrook L, Rayner E, Findlay-Wilson S, Flett L, Kennedy E, Fotheringham S, Kempster S, Almond N, Dowall S. Comparison of Chikungunya Virus-Induced Disease Progression and Pathogenesis in Type-I Interferon Receptor-Deficient Mice (A129) and Two Wild-Type (129Sv/Ev and C57BL/6) Mouse Strains. Viruses 2024; 16:1534. [PMID: 39459867 PMCID: PMC11512278 DOI: 10.3390/v16101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus causing a debilitating febrile illness with rheumatic disease symptoms of arthralgia and arthritis. Since its spread outside of Africa in 2005, it continues to cause outbreaks and disseminates into new territories. Intervention strategies are urgently required, including vaccination and antiviral approaches. To test efficacy, the use of small animal models is required. Two mouse strains, A129, with a deficiency in their type-I interferon (IFN) receptor, and C57BL/6 are widely used. A direct comparison of these strains alongside the wild-type parental strain of the A129 mice, 129Sv/Ev, was undertaken to assess clinical disease progression, viral loads in key tissues, histological changes and levels of sera biomarkers. Our results confirm the severe disease course in A129 mice which was not observed in the parental 129Sv/Ev strain. Of the two wild-type strains, viral loads were higher in 129Sv/Ev mice compared to C57BL/6 counterparts. Our results have established these models and parameters for the future testing of vaccines and antiviral approaches.
Collapse
Affiliation(s)
- Victoria A. Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Stephen Findlay-Wilson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Lucy Flett
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Emma Kennedy
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Sarah Kempster
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK; (S.K.); (N.A.)
| | - Neil Almond
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK; (S.K.); (N.A.)
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| |
Collapse
|
3
|
Adam A, Woolsey C, Lu H, Plante K, Wallace SM, Rodriguez L, Shinde DP, Cui Y, Franz AWE, Thangamani S, Comer JE, Weaver SC, Wang T. A safe insect-based Chikungunya fever vaccine affords rapid and durable protection in cynomolgus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595029. [PMID: 38826312 PMCID: PMC11142085 DOI: 10.1101/2024.05.21.595029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chikungunya virus (CHIKV), which induces chikungunya fever and chronic arthralgia, is an emerging public health concern. Safe and efficient vaccination strategies are needed to prevent or mitigate virus-associated acute and chronic morbidities for preparation of future outbreaks. Eilat (EILV)/CHIKV, a chimeric alphavirus which contains the structural proteins of CHIKV and the non-structural proteins of EILV, does not replicate in vertebrate cells. The chimeric virus was previously reported to induce protective adaptive immunity in mice. Here, we assessed the capacity of the virus to induce quick and durable protection in cynomolgus macaques. EILV/CHIKV protected macaques from wild-type (WT) CHIKV infection one year after a single dose vaccination. Transcriptome and in vitro functional analyses reveal that the chimeric virus triggered toll-like receptor signaling and T cell, memory B cell and antibody responses in a dose-dependent manner. Notably, EILV/CHIKV preferentially induced more durable, robust, and broader repertoire of CHIKV-specific T cell responses, compared to a live attenuated CHIKV 181/25 vaccine strain. The insect-based chimeric virus did not cause skin hypersensitivity reactions in guinea pigs sensitized to mosquito bites. Furthermore, EILV/CHIKV induced strong neutralization antibodies and protected cynomolgus macaques from WT CHIKV infection within six days post vaccination. Transcriptome analysis also suggest that the chimeric virus induction of multiple innate immune pathways, including Toll-like receptor signaling, type I IFN and IL-12 signaling, antigen presenting cell activation, and NK receptor signaling. Our findings suggest that EILV/CHIKV is a safe, highly efficacious vaccine, and provides both rapid and long-lasting protection in cynomolgus macaques.
Collapse
|
4
|
Holmes AC, Lucas CJ, Brisse ME, Ware BC, Hickman HD, Morrison TE, Diamond MS. Ly6C + monocytes in the skin promote systemic alphavirus dissemination. Cell Rep 2024; 43:113876. [PMID: 38446669 PMCID: PMC11005330 DOI: 10.1016/j.celrep.2024.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Alphaviruses are mosquito-transmitted pathogens that induce high levels of viremia, which facilitates dissemination and vector transmission. One prevailing paradigm is that, after skin inoculation, alphavirus-infected resident dendritic cells migrate to the draining lymph node (DLN), facilitating further rounds of infection and dissemination. Here, we assess the contribution of infiltrating myeloid cells to alphavirus spread. We observe two phases of virus transport to the DLN, one that occurs starting at 1 h post infection and precedes viral replication, and a second that requires replication in the skin, enabling transit to the bloodstream. Depletion of Ly6C+ monocytes reduces local chikungunya (CHIKV) or Ross River virus (RRV) infection in the skin, diminishes the second phase of virus transport to the DLN, and delays spread to distal sites. Our data suggest that infiltrating monocytes facilitate alphavirus infection at the initial infection site, which promotes more rapid spread into circulation.
Collapse
Affiliation(s)
- Autumn C Holmes
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Morgan E Brisse
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Brian C Ware
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Carvalho VL, Prakoso D, Schwarz ER, Logan TD, Nunes BTD, Beachboard SE, Long MT. Negevirus Piura Suppresses Zika Virus Replication in Mosquito Cells. Viruses 2024; 16:350. [PMID: 38543716 PMCID: PMC10976066 DOI: 10.3390/v16030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 05/23/2024] Open
Abstract
We investigated the interaction between the insect-specific virus, Piura virus (PIUV), and the arbovirus Zika virus (ZIKV) in Aedes albopictus cells. We performed coinfection experiments in C6/36 cells. Piura virus (Cor 33 strain, Colombia) and ZIKV (PRVABC58 strain, Puerto Rico) were co-inoculated into C6/36 cells using two multiplicity of infection (MOI) combinations: 0.1 for both viruses and 1.0 for ZIKV, 0.1 for PIUV. Wells were infected in triplicate with either PIUV and ZIKV coinfection, ZIKV-only, or PIUV-only. Mock infected cells served as control wells. The cell suspension was collected daily 7 days post-infection. Zika virus load was titrated by TCID50 on Vero 76 cells. The ZIKV-only infection and PIUV and ZIKV coinfection experiments were also quantified by RT-qPCR. We also investigated whether ZIKV interfered in the PIUV replication. PIUV suppressed the replication of ZIKV, resulting in a 10,000-fold reduction in ZIKV titers within 3 days post-infection. PIUV viral loads were not reduced in the presence of ZIKV. We conclude that, when concurrently infected, PIUV suppresses ZIKV in C6/36 cells while ZIKV does not interfere in PIUV replication.
Collapse
Affiliation(s)
- Valéria L. Carvalho
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, s/n, Ananindeua 67030-000, PA, Brazil
| | - Dhani Prakoso
- Professor Nidom Foundation, Surabaya, East Java 60236, Indonesia;
| | - Erika R. Schwarz
- Montana Veterinary Diagnostic Laboratory, 1911 W Lincoln St., Bozeman, MT 59718, USA
| | - Tracey D. Logan
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr. Suite 4101, Gainesville, FL 32611, USA
| | - Bruno Tardelli Diniz Nunes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, s/n, Ananindeua 67030-000, PA, Brazil
| | - Sarah E. Beachboard
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 1945 SW 16th Ave., Gainesville, FL 32608, USA
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 1945 SW 16th Ave., Gainesville, FL 32608, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Ribeiro AC, Martins L, Silva H, Freitas MN, Santos M, Gonçalves E, Sousa A, Prazeres I, Santos A, Cruz AC, Silva S, Chiang J, Casseb L, Carvalho V. Viral Interference between the Insect-Specific Virus Brejeira and the Saint Louis Encephalitis Virus In Vitro. Viruses 2024; 16:210. [PMID: 38399986 PMCID: PMC10893346 DOI: 10.3390/v16020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
The Saint Louis encephalitis virus (SLEV) is an encephalitogenic arbovirus (Flaviviridae family) that has a wide geographical distribution in the western hemisphere, especially in the Americas. The negevirus Brejeira (BREV) was isolated for the first time in Brazil in 2005. This study aimed to verify the existence of a possible interfering effect of BREV on the course of SLEV infection and vice versa. We used clone C6/36 cells. Three combinations of MOIs were used (SLEV 0.1 × BREV 1; SLEV 1 × BREV 0.1; SLEV 1 × BREV 1) in the kinetics of up to 7 days and then the techniques of indirect immunofluorescence (IFA), a plaque assay on Vero cells, and RT-PCR were performed. Our results showed that the cytopathic effect (CPE) caused by BREV was more pronounced than the CPE caused by SLEV. Results of IFA, the plaque assay, and RT-PCR showed the suppression of SLEV replication in the co-infection condition in all the MOI combinations used. The SLEV suppression was dose-dependent. Therefore, the ISV Brejeira can suppress SLEV replication in Aedes albopictus cells, but SLEV does not negatively interfere with BREV replication.
Collapse
Affiliation(s)
- Ana Cláudia Ribeiro
- Post-Graduation Program in Virology, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (L.M.); (M.N.F.); (A.C.C.); (J.C.); (L.C.)
| | - Lívia Martins
- Post-Graduation Program in Virology, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (L.M.); (M.N.F.); (A.C.C.); (J.C.); (L.C.)
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| | - Heloisa Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| | - Maria Nazaré Freitas
- Post-Graduation Program in Virology, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (L.M.); (M.N.F.); (A.C.C.); (J.C.); (L.C.)
| | - Maissa Santos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| | - Ercília Gonçalves
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| | - Alana Sousa
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| | - Ivy Prazeres
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| | - Alessandra Santos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| | - Ana Cecilia Cruz
- Post-Graduation Program in Virology, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (L.M.); (M.N.F.); (A.C.C.); (J.C.); (L.C.)
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| | - Sandro Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| | - Jannifer Chiang
- Post-Graduation Program in Virology, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (L.M.); (M.N.F.); (A.C.C.); (J.C.); (L.C.)
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| | - Livia Casseb
- Post-Graduation Program in Virology, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (L.M.); (M.N.F.); (A.C.C.); (J.C.); (L.C.)
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| | - Valéria Carvalho
- Post-Graduation Program in Virology, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (L.M.); (M.N.F.); (A.C.C.); (J.C.); (L.C.)
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil; (H.S.); (M.S.); (E.G.); (A.S.); (I.P.); (A.S.); (S.S.)
| |
Collapse
|
7
|
Koh C, Saleh MC. Translating mosquito viromes into vector management strategies. Trends Parasitol 2024; 40:10-20. [PMID: 38065789 DOI: 10.1016/j.pt.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
Mosquitoes are best known for transmitting human and animal viruses. However, they also harbour mosquito-specific viruses (MSVs) as part of their microbiota. These are a group of viruses whose diversity and prevalence overshadow their medically relevant counterparts. Although metagenomics sequencing has remarkably accelerated the discovery of these viruses, what we know about them is often limited to sequence information, leaving much of their fundamental biology to be explored. Understanding the biology and ecology of MSVs can enlighten our knowledge of virus-virus interactions and lead to new innovations in the management of mosquito-borne viral diseases. We retrace the history of their discovery and discuss research milestones that would line the path from mosquito virome knowledge to vector management strategies.
Collapse
Affiliation(s)
- Cassandra Koh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France.
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| |
Collapse
|
8
|
Comes JDG, Pijlman GP, Hick TAH. Rise of the RNA machines - self-amplification in mRNA vaccine design. Trends Biotechnol 2023; 41:1417-1429. [PMID: 37328401 PMCID: PMC10266560 DOI: 10.1016/j.tibtech.2023.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/18/2023]
Abstract
mRNA vaccines have won the race for early COVID-19 vaccine approval, yet improvements are necessary to retain this leading role in combating infectious diseases. A next generation of self-amplifying mRNAs, also known as replicons, form an ideal vaccine platform. Replicons induce potent humoral and cellular responses with few adverse effects upon a minimal, single-dose immunization. Delivery of replicons is achieved with virus-like replicon particles (VRPs), or in nonviral vehicles such as liposomes or lipid nanoparticles. Here, we discuss innovative advances, including multivalent, mucosal, and therapeutic replicon vaccines, and highlight novelties in replicon design. As soon as essential safety evaluations have been resolved, this promising vaccine concept can transform into a widely applied clinical platform technology taking center stage in pandemic preparedness.
Collapse
Affiliation(s)
- Jerome D G Comes
- Wageningen University and Research, Laboratory of Virology, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Wageningen University and Research, Laboratory of Virology, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Tessy A H Hick
- Wageningen University and Research, Laboratory of Virology, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
9
|
Powers AM, Williamson LE, Carnahan RH, Crowe JE, Hyde JL, Jonsson CB, Nasar F, Weaver SC. Developing a Prototype Pathogen Plan and Research Priorities for the Alphaviruses. J Infect Dis 2023; 228:S414-S426. [PMID: 37849399 PMCID: PMC11007399 DOI: 10.1093/infdis/jiac326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
The Togaviridae family, genus, Alphavirus, includes several mosquito-borne human pathogens with the potential to spread to near pandemic proportions. Most of these are zoonotic, with spillover infections of humans and domestic animals, but a few such as chikungunya virus (CHIKV) have the ability to use humans as amplification hosts for transmission in urban settings and explosive outbreaks. Most alphaviruses cause nonspecific acute febrile illness, with pathogenesis sometimes leading to either encephalitis or arthralgic manifestations with severe and chronic morbidity and occasional mortality. The development of countermeasures, especially against CHIKV and Venezuelan equine encephalitis virus that are major threats, has included vaccines and antibody-based therapeutics that are likely to also be successful for rapid responses with other members of the family. However, further work with these prototypes and other alphavirus pathogens should target better understanding of human tropism and pathogenesis, more comprehensive identification of cellular receptors and entry, and better understanding of structural mechanisms of neutralization.
Collapse
Affiliation(s)
- Ann M Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Lauren E Williamson
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer L Hyde
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Farooq Nasar
- Emerging Infectious Diseases Branch and Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Schmitz KS, Comvalius AD, Nieuwkoop NJ, Geers D, Weiskopf D, Ramsauer K, Sette A, Tschismarov R, de Vries RD, de Swart RL. A measles virus-based vaccine induces robust chikungunya virus-specific CD4 + T-cell responses in a phase II clinical trial. Vaccine 2023; 41:6495-6504. [PMID: 37726181 DOI: 10.1016/j.vaccine.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that causes a debilitating disease characterized by fever and long-lasting polyarthralgia. To date, no vaccine has been licensed, but multiple vaccine candidates are under evaluation in clinical trials. One of these vaccines is based on a measles virus vector encoding for the CHIKV structural genes C, E3, E2, 6K, and E1 (MV-CHIK), which proved safe in phase I and II clinical trials and elicited CHIKV-specific antibody responses in adult measles seropositive vaccine recipients. Here, we predicted T-cell epitopes in the CHIKV structural genes and investigated whether MV-CHIK vaccination induced CHIKV-specific CD4+ and/or CD8+ T-cell responses. Immune-dominant regions containing multiple epitopes in silico predicted to bind to HLA class II molecules were found for four of the five structural proteins, while no such regions were predicted for HLA class I. Experimentally, CHIKV-specific CD4+ T-cells were detected in six out of twelve participants after a single MV-CHIK vaccination and more robust responses were found 4 weeks after two vaccinations (ten out of twelve participants). T-cells were mainly directed against the three large structural proteins C, E2 and E1. Next, we sorted and expanded CHIKV-specific T cell clones (TCC) and identified human CHIKV T-cell epitopes by deconvolution. Interestingly, eight out of nine CD4+ TCC recognized an epitope in accordance with the in silico prediction. CHIKV-specific CD8+ T-cells induced by MV-CHIK vaccination were inconsistently detected. Our data show that the MV-CHIK vector vaccine induced a functional transgene-specific CD4+ T cell response which, together with the evidence of neutralizing antibodies as correlate of protection for CHIKV, makes MV-CHIK a promising vaccine candidate in the prevention of chikungunya.
Collapse
Affiliation(s)
| | | | | | - Daryl Geers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Daniela Weiskopf
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Katrin Ramsauer
- Themis Bioscience GmbH, Vienna, Austria, a Subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Roland Tschismarov
- Themis Bioscience GmbH, Vienna, Austria, a Subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Prado NDR, Brilhante-Da-Silva N, Sousa RMO, Morais MSDS, Roberto SA, Luiz MB, Assis LCD, Marinho ACM, Araujo LFLD, Pontes RDS, Stabeli RG, Fernandes CFC, Pereira SDS. Single-domain antibodies applied as antiviral immunotherapeutics. J Virol Methods 2023; 320:114787. [PMID: 37516366 DOI: 10.1016/j.jviromet.2023.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Viral infections have been the cause of high mortality rates throughout different periods in history. Over the last two decades, outbreaks caused by zoonotic diseases and transmitted by arboviruses have had a significant impact on human health. The emergence of viral infections in different parts of the world encourages the search for new inputs to fight pathologies of viral origin. Antibodies represent the predominant class of new drugs developed in recent years and approved for the treatment of various human diseases, including cancer, autoimmune and infectious diseases. A promising group of antibodies are single-domain antibodies derived from camelid heavy chain immunoglobulins, or VHHs, are biomolecules with nanometric dimensions and unique pharmaceutical and biophysical properties that can be used in the diagnosis and immunotherapy of viral infections. For viral neutralization to occur, VHHs can act in different stages of the viral cycle, including the actual inhibition of infection, to hindering viral replication or assembly. This review article addresses advances involving the use of VHHs in therapeutic propositions aimed to battle different viruses that affect human health.
Collapse
Affiliation(s)
- Nidiane Dantas Reis Prado
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | - Nairo Brilhante-Da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil
| | - Rosa Maria Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | | | - Sibele Andrade Roberto
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Marcos Barros Luiz
- Instituto Federal de Rondônia Campus Guajará-Mirim, IFRO, Guajará-Mirim, RO, Brazil
| | - Livia Coelho de Assis
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil
| | - Anna Carolina M Marinho
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Luiz Felipe Lemes de Araujo
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rafael de Souza Pontes
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
12
|
Barker D, Han X, Wang E, Dagley A, Anderson DM, Jha A, Weaver SC, Julander J, Nykiforuk C, Kodihalli S. Equine Polyclonal Antibodies Prevent Acute Chikungunya Virus Infection in Mice. Viruses 2023; 15:1479. [PMID: 37515166 PMCID: PMC10384969 DOI: 10.3390/v15071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted pathogen that causes chikungunya disease (CHIK); the disease is characterized by fever, muscle ache, rash, and arthralgia. This arthralgia can be debilitating and long-lasting, seriously impacting quality of life for years. Currently, there is no specific therapy available for CHIKV infection. We have developed a despeciated equine polyclonal antibody (CHIKV-EIG) treatment against CHIKV and evaluated its protective efficacy in mouse models of CHIKV infection. In immunocompromised (IFNAR-/-) mice infected with CHIKV, daily treatment for five consecutive days with CHIKV-EIG administered at 100 mg/kg starting on the day of infection prevented mortality, reduced viremia, and improved clinical condition as measured by body weight loss. These beneficial effects were seen even when treatment was delayed to 1 day after infection. In immunocompetent mice, CHIKV-EIG treatment reduced virus induced arthritis (including footpad swelling), arthralgia-associated cytokines, viremia, and tissue virus loads in a dose-dependent fashion. Collectively, these results suggest that CHIKV-EIG is effective at preventing CHIK and could be a viable candidate for further development as a treatment for human disease.
Collapse
Affiliation(s)
- Douglas Barker
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Xiaobing Han
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Eryu Wang
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555, USA
| | - Ashley Dagley
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | | | - Aruni Jha
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555, USA
| | - Justin Julander
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Cory Nykiforuk
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | | |
Collapse
|
13
|
Kumar S, Arora A, Kumar R, Senapati NN, Singh BK. Recent advances in synthesis of sugar and nucleoside coumarin conjugates and their biological impact. Carbohydr Res 2023; 530:108857. [PMID: 37343455 DOI: 10.1016/j.carres.2023.108857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Naturally occurring coumarin and sugar molecules have a diverse range of applications along with superior biocompatibility. Coumarin, a member of the benzopyrone family, exhibits a wide spectrum of medicinal properties, such as anti-coagulant, anti-bacterial, anti-tumor, anti-oxidant, anti-cancer, anti-inflammatory and anti-viral activities. The sugar moiety functions as the central scaffold for the synthesis of complex molecules, attributing to their excellent biocompatibility, well-defined stereochemistry, benign nature and outstanding aqueous solubility. When the coumarin moiety is conjugated with the sugar or nucleoside molecule, the resulting conjugates exhibit significant biological properties. Due to the remarkable growth of such bioconjugates in the field of science over the last decade, owing to their future prospect as a potential bioactive core, an update to this area is very much needed. The present review focusses on the synthesis, characterization and the various therapeutic applications of coumarin conjugates, i.e., sugar and nucleoside coumarin conjugates along with their perspective for future research.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry and Environmental Science, Medgar Evers College, City University of New York, Brooklyn, NY, 11225, USA
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rajesh Kumar
- P.G. Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur, 842002, India.
| | | | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
14
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
15
|
Li FS, Carpentier KS, Hawman DW, Lucas CJ, Ander SE, Feldmann H, Morrison TE. Species-specific MARCO-alphavirus interactions dictate chikungunya virus viremia. Cell Rep 2023; 42:112418. [PMID: 37083332 DOI: 10.1016/j.celrep.2023.112418] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Arboviruses are public health threats that cause explosive outbreaks. Major determinants of arbovirus transmission, geographic spread, and pathogenesis are the magnitude and duration of viremia in vertebrate hosts. Previously, we determined that multiple alphaviruses are cleared efficiently from murine circulation by the scavenger receptor MARCO (Macrophage receptor with collagenous structure). Here, we define biochemical features on chikungunya (CHIKV), o'nyong 'nyong (ONNV), and Ross River (RRV) viruses required for MARCO-dependent clearance in vivo. In vitro, MARCO expression promotes binding and internalization of CHIKV, ONNV, and RRV via the scavenger receptor cysteine-rich (SRCR) domain. Furthermore, we observe species-specific effects of the MARCO SRCR domain on CHIKV internalization, where those from known amplification hosts fail to promote CHIKV internalization. Consistent with this observation, CHIKV is inefficiently cleared from the circulation of rhesus macaques in contrast with mice. These findings suggest a role for MARCO in determining whether a vertebrate serves as an amplification or dead-end host following CHIKV infection.
Collapse
Affiliation(s)
- Frances S Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
Porier DL, Adam A, Kang L, Michalak P, Tupik J, Santos MA, Lee C, Allen IC, Wang T, Auguste AJ. Humoral and T-cell-mediated responses to a pre-clinical Zika vaccine candidate that utilizes a unique insect-specific flavivirus platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530296. [PMID: 36909623 PMCID: PMC10002724 DOI: 10.1101/2023.03.01.530296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Vaccination is critical for the control and prevention of viral outbreaks, yet conventional vaccine platforms may involve trade-offs between immunogenicity and safety. Insect-specific viruses have emerged as a novel vaccine platform to overcome this challenge. Detailed studies of humoral and T-cell responses induced by new insect-specific flavivirus (ISFV)-based vaccine platforms are needed to better understand correlates of protection and improve vaccine efficacy. Previously, we used a novel ISFV called Aripo virus (ARPV) to create a Zika virus (ZIKV) vaccine candidate (designated ARPV/ZIKV). ARPV/ZIKV demonstrated exceptional safety and single-dose efficacy, completely protecting mice from a lethal ZIKV challenge. Here, we explore the development of immune responses induced by ARPV/ZIKV immunization and evaluate its correlates of protection. Passive transfer of ARPV/ZIKV-induced immune sera to naïve mice prior to challenge emphasized the importance of neutralizing antibodies as a correlate of protection. Depletion of T-cells in vaccinated mice and adoptive transfer of ARPV/ZIKV-primed T-cells to naïve mice prior to challenge indicated that ARPV/ZIKV-induced CD4 + and CD8 + T-cell responses contribute to the observed protection but may not be essential for protection during ZIKV challenge. However, vaccination of Rag1 KO, Tcra KO, and muMt - mice demonstrated the critical role for ARPV/ZIKV-induced T-cells in developing protective immune responses following vaccination. Overall, both humoral and T-cell-mediated responses induced by ISFV-based vaccines are important for comprehensive immunity, and ISFV platforms continue to be a promising method for future vaccine development.
Collapse
|
17
|
Insect-Specific Chimeric Viruses Potentiated Antiviral Responses and Inhibited Pathogenic Alphavirus Growth in Mosquito Cells. Microbiol Spectr 2023; 11:e0361322. [PMID: 36511715 PMCID: PMC9927327 DOI: 10.1128/spectrum.03613-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most alphaviruses are transmitted by mosquito vectors and infect a wide range of vertebrate hosts, with a few exceptions. Eilat virus (EILV) in this genus is characterized by a host range restricted to mosquitoes. Its chimeric viruses have been developed as safe and effective vaccine candidates and diagnostic tools. Here, we investigated the interactions between these insect-specific viruses (ISVs) and mosquito cells, unveiling their potential roles in determining vector competence and arbovirus transmission. By RNA sequencing, we found that these ISVs profoundly modified host cell gene expression profiles. Two EILV-based chimeras, consisting of EILV's nonstructural genes and the structural genes of Chikungunya virus (CHIKV) or Venezuelan equine encephalitis virus (VEEV), namely, EILV/CHIKV (E/C) and EILV/VEEV (E/V), induced more intensive transcriptome regulation than parental EILV and activated different antiviral mechanisms in host cells. We demonstrated that E/C robustly promoted antimicrobial peptide production and E/V strongly upregulated the RNA interference pathway components. This also highlighted the intrinsic divergences between CHIKV and VEEV, representatives of the Old World and New World alphaviruses. In contrast, EILV triggered a limited antiviral response. We further showed that initial chimera infections efficiently inhibited subsequent pathogenic alphavirus replication, especially in the case of E/V infection, which almost prevented VEEV and Sindbis virus (SINV) superinfections. Altogether our study provided valuable information on developing ISVs as biological control agents. IMPORTANCE Mosquito-borne alphaviruses can cause emerging and reemerging infectious diseases, posing a considerable threat to human and animal health worldwide. However, no specific antivirals or commercial vaccines are currently available. Therefore, it is vital to develop biological control measures to contain virus transmission. Insect-specific EILV and its chimeras are supposed to induce superinfection exclusion owing to the close phylogenetical relationship with pathogenic alphaviruses. These viruses might also, like bacterial symbionts, modulate mosquito hosts' vector competence for arboviruses. However, little is known about the responses of mosquitoes or mosquito cells to ISV infections. Here, we found that EILV barely elicited antiviral defenses in host cells, while its chimeras, namely, E/C and E/V, potentiated the responses via different mechanisms. Furthermore, we showed that initial chimera infections could largely inhibit subsequent pathogenic alphavirus infections. Taken together, our study proposed insect-specific chimeras as a promising candidate for developing biological control measures against pathogenic alphaviruses.
Collapse
|
18
|
Heinig-Hartberger M, Hellhammer F, Zöller DDJA, Dornbusch S, Bergmann S, Vocadlova K, Junglen S, Stern M, Lee KZ, Becker SC. Culex Y Virus: A Native Virus of Culex Species Characterized In Vivo. Viruses 2023; 15:235. [PMID: 36680275 PMCID: PMC9863036 DOI: 10.3390/v15010235] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Mosquitoes are vectors of various pathogens that cause diseases in humans and animals. To prevent the outbreak of mosquito-borne diseases, it is essential to control vector populations, as treatment or vaccination for mosquito-borne diseases are often unavailable. Insect-specific viruses (ISVs) have previously been described as being potentially helpful against arboviral disease outbreaks. In this study, we present the first in vivo characterization of the ISV Culex Y virus (CYV). CYV was first isolated from free-living Culex pipiens mosquitoes in 2010; then, it was found in several mosquito cell lines in a further study in 2018. For mammalian cells, we were able to confirm that CYV does not replicate as it was previously described. Additionally, we found that CYV does not replicate in honey bees or locusts. However, we detected replication in the Culex pipiens biotype molestus, Aedes albopictus, and Drosophila melanogaster, thus indicating dipteran specificity. We detected significantly higher mortality in Culex pipiens biotype molestus males and Drosophila melanogaster, but not in Aedes albopictus and female Culex pipiens biotype molestus. CYV could not be transmitted transovarially to offspring, but we detected venereal transmission as well as CYV in mosquitos' saliva, indicating that an oral route of infection would also be possible. CYV's dipteran specificity, transmission routes, and killing effect with respect to Culex males may be used as powerful tools with which to destabilize arbovirus vector populations in the future.
Collapse
Affiliation(s)
- Mareike Heinig-Hartberger
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - David D. J. A. Zöller
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Susann Dornbusch
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Katerina Vocadlova
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
19
|
Wen D, Ding LS, Zhang Y, Li X, Zhang X, Yuan F, Zhao T, Zheng A. Suppression of flavivirus transmission from animal hosts to mosquitoes with a mosquito-delivered vaccine. Nat Commun 2022; 13:7780. [PMID: 36526630 PMCID: PMC9755785 DOI: 10.1038/s41467-022-35407-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Zoonotic viruses circulate in the natural reservoir and sporadically spill over into human populations, resulting in endemics or pandemics. We previously found that the Chaoyang virus (CYV), an insect-specific flavivirus (ISF), is replication-defective in vertebrate cells. Here, we develope a proof-of-concept mosquito-delivered vaccine to control the Zika virus (ZIKV) within inaccessible wildlife hosts using CYV as the vector. The vaccine is constructed by replacing the pre-membrane and envelope (prME) proteins of CYV with those of ZIKV, assigned as CYV-ZIKV. CYV-ZIKV replicates efficiently in Aedes mosquitoes and disseminates to the saliva, with no venereal or transovarial transmission observed. To reduce the risk of CYV-ZIKV leaking into the environment, mosquitoes are X-ray irradiated to ensure 100% infertility, which does not affect the titer of CYV-ZIKV in the saliva. Immunization of mice via CYV-ZIKV-carrying mosquito bites elicites robust and persistent ZIKV-specific immune responses and confers complete protection against ZIKV challenge. Correspondingly, the immunized mice could no longer transmit the challenged ZIKV to naïve mosquitoes. Therefore, immunization with an ISF-vectored vaccine via mosquito bites is feasible to induce herd immunity in wildlife hosts of ZIKV. Our study provides a future avenue for developing a mosquito-delivered vaccine to eliminate zoonotic viruses in the sylvatic cycle.
Collapse
Affiliation(s)
- Dan Wen
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Limin S. Ding
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanan Zhang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiaoye Li
- grid.462338.80000 0004 0605 6769College of life sciences, Henan Normal University, 45300 Xinxiang, China
| | - Xing Zhang
- grid.410726.60000 0004 1797 8419College of life sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fei Yuan
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Tongbiao Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Aihua Zheng
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
20
|
Schein CH, Rafael G, Baker WS, Anaya ES, Schmidt JG, Weaver SC, Negi S, Braun W. PCP consensus protein/peptide alphavirus antigens stimulate broad spectrum neutralizing antibodies. Peptides 2022; 157:170844. [PMID: 35878658 DOI: 10.1016/j.peptides.2022.170844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
Vaccines based on proteins and peptides may be safer and if calculated based on many sequences, more broad-spectrum than those designed based on single strains. Physicochemical Property Consensus (PCPcon) alphavirus (AV) antigens from the B-domain of the E2 envelope protein were designed, synthesized recombinantly and shown to be immunogenic (i.e. sera after inoculation detected the antigen in dotspots and ELISA). Antibodies in sera after inoculation with B-region antigens based on individual AV species (eastern or Venezuelan equine encephalitis (EEEVcon, VEEVcon), or chikungunya (CHIKVcon) bound only their cognate protein, while those designed against multiple species (Mosaikcon and EVCcon) recognized all three serotype specific antigens. The VEEVcon and EEEVcon sera only showed antiviral activity against their related strains (in plaque reduction neutralization assays (PRNT50/80). Peptides designed to surface exposed areas of the E2-A-domain of CHIKVcon were added to CHIKVcon inocula to provide anti-CHIKV antibodies. EVCcon, based on three different alphavirus species, combined with E2-A-domain peptides from AllAVcon, a PCPcon of 24 diverse AV, generated broad spectrum, antiviral antibodies against VEEV, EEEV and CHIKV, AV with less than 35% amino acid identity to each other (>65% diversity). This is a promising start to a molecularly defined vaccine against all AV. Further study with these antigens can illuminate what areas are most important for a robust immune response, resistant to mutations in rapidly evolving viruses. The validated computational methods can also be used to design broad spectrum antigens against many other pathogen families.
Collapse
Affiliation(s)
- Catherine H Schein
- Departments of Biochemistry and Molecular Biology, UTMB; Institute for Human Infections and Immunity (IHII), UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA.
| | - Grace Rafael
- Microbiology and Immunology, UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Wendy S Baker
- Departments of Biochemistry and Molecular Biology, UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | | - Scott C Weaver
- Microbiology and Immunology, UTMB; Institute for Human Infections and Immunity (IHII), UTMB; World Reference Center for Emerging Viruses and Arboviruses, UTMB; Sealy Center for Structural Biology and Molecular Biophysics, UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Surendra Negi
- Departments of Biochemistry and Molecular Biology, UTMB; Sealy Center for Structural Biology and Molecular Biophysics, UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Werner Braun
- Departments of Biochemistry and Molecular Biology, UTMB; Sealy Center for Structural Biology and Molecular Biophysics, UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
21
|
Schmidt C, Schnierle BS. Chikungunya Vaccine Candidates: Current Landscape and Future Prospects. Drug Des Devel Ther 2022; 16:3663-3673. [PMID: 36277603 PMCID: PMC9580835 DOI: 10.2147/dddt.s366112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus that has spread globally in the last twenty years. Although mortality is rather low, infection can result in debilitating arthralgia that can persist for years. Unfortunately, no treatments or preventive vaccines are currently licensed against CHIKV infections. However, a large range of promising preclinical and clinical vaccine candidates have been developed during recent years. This review will give an introduction into the biology of CHIKV and the immune responses that are induced by infection, and will summarize CHIKV vaccine development.
Collapse
Affiliation(s)
- Christin Schmidt
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany
| | - Barbara S Schnierle
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany,Correspondence: Barbara S Schnierle, Paul-Ehrlich-Institut, Department of Virology, Section AIDS and newly emerging pathogens, Paul-Ehrlich-Strasse 51.59, Langen, 63225, Germany, Tel/Fax +49 6103 77 5504, Email
| |
Collapse
|
22
|
Travieso T, Li J, Mahesh S, Mello JDFRE, Blasi M. The use of viral vectors in vaccine development. NPJ Vaccines 2022; 7:75. [PMID: 35787629 PMCID: PMC9253346 DOI: 10.1038/s41541-022-00503-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
Vaccines represent the single most cost-efficient and equitable way to combat and eradicate infectious diseases. While traditional licensed vaccines consist of either inactivated/attenuated versions of the entire pathogen or subunits of it, most novel experimental vaccines against emerging infectious diseases employ nucleic acids to produce the antigen of interest directly in vivo. These include DNA plasmid vaccines, mRNA vaccines, and recombinant viral vectors. The advantages of using nucleic acid vaccines include their ability to induce durable immune responses, high vaccine stability, and ease of large-scale manufacturing. In this review, we present an overview of pre-clinical and clinical data on recombinant viral vector vaccines and discuss the advantages and limitations of the different viral vector platforms.
Collapse
Affiliation(s)
- Tatianna Travieso
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jenny Li
- Duke University, Durham, NC, USA
| | - Sneha Mahesh
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Juliana Da Fonzeca Redenze E Mello
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maria Blasi
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. .,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
23
|
Curley SM, Putnam D. Biological Nanoparticles in Vaccine Development. Front Bioeng Biotechnol 2022; 10:867119. [PMID: 35402394 PMCID: PMC8984165 DOI: 10.3389/fbioe.2022.867119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccines represent one of the most successful public health initiatives worldwide. However, despite the vast number of highly effective vaccines, some infectious diseases still do not have vaccines available. New technologies are needed to fully realize the potential of vaccine development for both emerging infectious diseases and diseases for which there are currently no vaccines available. As can be seen by the success of the COVID-19 mRNA vaccines, nanoscale platforms are promising delivery vectors for effective and safe vaccines. Synthetic nanoscale platforms, including liposomes and inorganic nanoparticles and microparticles, have many advantages in the vaccine market, but often require multiple doses and addition of artificial adjuvants, such as aluminum hydroxide. Biologically derived nanoparticles, on the other hand, contain native pathogen-associated molecular patterns (PAMPs), which can reduce the need for artificial adjuvants. Biological nanoparticles can be engineered to have many additional useful properties, including biodegradability, biocompatibility, and are often able to self-assemble, thereby allowing simple scale-up from benchtop to large-scale manufacturing. This review summarizes the state of the art in biologically derived nanoparticles and their capabilities as novel vaccine platforms.
Collapse
Affiliation(s)
- Stephanie M. Curley
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
24
|
High titer self-propagating capsidless Chikungunya virus generated in Vero cells as a strategy for alphavirus vaccine development. J Virol 2022; 96:e0148021. [PMID: 35107379 DOI: 10.1128/jvi.01480-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In our previous study, we found a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) is still infectious in BHK-21 cells and demonstrated its potential as a live attenuated vaccine candidate. However, the low yield as well as the disability to propagate in vaccine production cell line Vero of ΔC-CHIKV are not practical for commercial vaccine development. In this study, we not only achieved the successful propagation of the viral particle in Vero cells, but significantly improved its yield through construction of a chimeric VEEV-ΔC-CHIKV and extensive passage in Vero cells. Mechanistically, high production of VEEV-ΔC-CHIKV is due to the improvement of viral RNA packaging efficiency conferred by adaptive mutations, especially those in envelope proteins. Similar to ΔC-CHIKV, the passaged VEEV-ΔC-CHIKV is safe, immunogenic and efficacious which protects mice from CHIKV challenge after only one shot of immunization. Our study demonstrates that the utilization of infectious capsidless viral particle of CHIKV as a vaccine candidate is a practical strategy for the development of alphavirus vaccine. IMPORTANCE Chikungunya virus (CHIKV) is one of important emerging alphaviruses. Currently, there are no licensed vaccines against CHIKV infection. We have previously found a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) as a live attenuated vaccine candidate which is not suitable for commercial vaccine development with the low viral titer production. In this study, we significantly improved its production through construction of a chimeric VEEV-ΔC-CHIKV. Our results proved that the utilization of infectious capsidless viral particle of CHIKV as a safe and practical vaccine candidate.
Collapse
|
25
|
Mapalagamage M, Weiskopf D, Sette A, De Silva AD. Current Understanding of the Role of T Cells in Chikungunya, Dengue and Zika Infections. Viruses 2022; 14:v14020242. [PMID: 35215836 PMCID: PMC8878350 DOI: 10.3390/v14020242] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Arboviral infections such as Chikungunya (CHIKV), Dengue (DENV) and Zika (ZIKV) are a major disease burden in tropical and sub-tropical countries, and there are no effective vaccinations or therapeutic drugs available at this time. Understanding the role of the T cell response is very important when designing effective vaccines. Currently, comprehensive identification of T cell epitopes during a DENV infection shows that CD8 and CD4 T cells and their specific phenotypes play protective and pathogenic roles. The protective role of CD8 T cells in DENV is carried out through the killing of infected cells and the production of proinflammatory cytokines, as CD4 T cells enhance B cell and CD8 T cell activities. A limited number of studies attempted to identify the involvement of T cells in CHIKV and ZIKV infection. The identification of human immunodominant ZIKV viral epitopes responsive to specific T cells is scarce, and none have been identified for CHIKV. In CHIKV infection, CD8 T cells are activated during the acute phase in the lymph nodes/blood, and CD4 T cells are activated during the chronic phase in the joints/muscles. Studies on the role of T cells in ZIKV-neuropathogenesis are limited and need to be explored. Many studies have shown the modulating actions of T cells due to cross-reactivity between DENV-ZIKV co-infections and have repeated heterologous/homologous DENV infection, which is an important factor to consider when developing an effective vaccine.
Collapse
Affiliation(s)
- Maheshi Mapalagamage
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 00700, Sri Lanka;
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Aruna Dharshan De Silva
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Paraclinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Colombo 10390, Sri Lanka
- Correspondence:
| |
Collapse
|
26
|
Xu Z, Ho M, Bordoloi D, Kudchodkar S, Khoshnejad M, Giron L, Zaidi F, Jeong M, Roberts CC, Park YK, Maslow J, Abdel-Mohsen M, Muthumani K. Techniques for Developing and Assessing Immune Responses Induced by Synthetic DNA Vaccines for Emerging Infectious Diseases. Methods Mol Biol 2022; 2410:229-263. [PMID: 34914050 DOI: 10.1007/978-1-0716-1884-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines are one of mankind's greatest medical advances, and their use has drastically reduced and in some cases eliminated (e.g., smallpox) disease and death caused by infectious agents. Traditional vaccine modalities including live-attenuated pathogen vaccines, wholly inactivated pathogen vaccines, and protein-based pathogen subunit vaccines have successfully been used to create efficacious vaccines against measles, mumps, rubella, polio, and yellow fever. These traditional vaccine modalities, however, take many months to years to develop and have thus proven less effective for use in creating vaccines to emerging or reemerging infectious diseases (EIDs) including influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), Middle East respiratory syndrome (MERS), and the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV and SARS-CoV-2). As factors such as climate change and increased globalization continue to increase the pace of EID development, newer vaccine modalities are required to develop vaccines that can prevent or attenuate EID outbreaks throughout the world. One such modality, DNA vaccines, has been studied for over 30 years and has numerous qualities that make them ideal for meeting the challenge of EIDs including; (1) DNA vaccine candidates can be designed within hours of publishing of a pathogens genetic sequence; (2) they can be manufactured cheaply and rapidly in large quantities; (3) they are thermostable and have reduced requirement for a cold-chain during distribution, and (4) they have a remarkable safety record in the clinic. Optimizations made in plasmid design as well as in DNA vaccine delivery have greatly improved the immunogenicity of these vaccines. Here we describe the process of making a DNA vaccine to an EID pathogen and describe methods used for assessing the immunogenicity and protective efficacy of DNA vaccines in small animal models.
Collapse
Affiliation(s)
- Ziyang Xu
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Michelle Ho
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Devivasha Bordoloi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | - Makan Khoshnejad
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Leila Giron
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Faraz Zaidi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | - Joel Maslow
- GeneOne Life Science Inc., Seoul, South Korea
| | | | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA.
- GeneOne Life Science Inc., Seoul, South Korea.
| |
Collapse
|
27
|
Abstract
The chikungunya virus has spread globally with a remarkably high attack rate. Infection causes arthralgic sequelae that can last for years. Nevertheless, there are no specific drugs or vaccines to contain the virus. Understanding the biology of the virus, such as its replication cycle, is a powerful tool to identify new drugs and comprehend virus-host interactions. Even though the chikungunya virus has been known for a long time (first described in 1952), many aspects of the replication cycle remain unclear. Furthermore, part of the cycle is based on observations of other alphaviruses. In this study, we used electron and scanning microscopy, as well as biological assays, to analyze and investigate the stages of the chikungunya virus replication cycle. Based on our data, we found other infection cellular activities than those usually described for the chikungunya virus replication cycle, i.e. we show particles enveloping intracellularly without budding in a membrane-delimited morphogenesis area; and we also observed virion release by membrane protrusions. Our work provides novel details regarding the biology of chikungunya virus and fills gaps in our knowledge of its replication cycle. These findings may contribute to a better understanding of virus-host interactions and support the development of antivirals. IMPORTANCE The understanding of virus biology is essential to containing virus dissemination, and exploring the virus replication cycle is a powerful tool to do this. There are many points in the biology of the chikungunya virus that need to be clarified, especially regarding its replication cycle. Our incomplete understanding of chikungunya virus infection stages is based on studies with other alphaviruses. We systematized the chikungunya virus replication cycle using microscopic imaging in the order of infection stages: entry, replication, protein synthesis, assembly/morphogenesis, and release. The imaging evidence shows novel points in the replication cycle of enveloping without budding, as well as particle release by cell membrane protrusion.
Collapse
|
28
|
Harrison JJ, Hobson-Peters J, Bielefeldt-Ohmann H, Hall RA. Chimeric Vaccines Based on Novel Insect-Specific Flaviviruses. Vaccines (Basel) 2021; 9:1230. [PMID: 34835160 PMCID: PMC8623431 DOI: 10.3390/vaccines9111230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Vector-borne flaviviruses are responsible for nearly half a billion human infections worldwide each year, resulting in millions of cases of debilitating and severe diseases and approximately 115,000 deaths. While approved vaccines are available for some of these viruses, the ongoing efficacy, safety and supply of these vaccines are still a significant problem. New technologies that address these issues and ideally allow for the safe and economical manufacture of vaccines in resource-poor countries where flavivirus vaccines are in most demand are urgently required. Preferably a new vaccine platform would be broadly applicable to all flavivirus diseases and provide new candidate vaccines for those diseases not yet covered, as well as the flexibility to rapidly pivot to respond to newly emerged flavivirus diseases. Here, we review studies conducted on novel chimeric vaccines derived from insect-specific flaviviruses that provide a potentially safe and simple system to produce highly effective vaccines against a broad spectrum of flavivirus diseases.
Collapse
Affiliation(s)
- Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| |
Collapse
|
29
|
Porier DL, Wilson SN, Auguste DI, Leber A, Coutermarsh-Ott S, Allen IC, Caswell CC, Budnick JA, Bassaganya-Riera J, Hontecillas R, Weger-Lucarelli J, Weaver SC, Auguste AJ. Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus Vaccine. Vaccines (Basel) 2021; 9:vaccines9101142. [PMID: 34696250 PMCID: PMC8539214 DOI: 10.3390/vaccines9101142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccination remains critical for viral disease outbreak prevention and control, but conventional vaccine development typically involves trade-offs between safety and immunogenicity. We used a recently discovered insect-specific flavivirus as a vector in order to develop an exceptionally safe, flavivirus vaccine candidate with single-dose efficacy. To evaluate the safety and efficacy of this platform, we created a chimeric Zika virus (ZIKV) vaccine candidate, designated Aripo/Zika virus (ARPV/ZIKV). ZIKV has caused immense economic and public health impacts throughout the Americas and remains a significant public health threat. ARPV/ZIKV vaccination showed exceptional safety due to ARPV/ZIKV’s inherent vertebrate host-restriction. ARPV/ZIKV showed no evidence of replication or translation in vitro and showed no hematological, histological or pathogenic effects in vivo. A single-dose immunization with ARPV/ZIKV induced rapid and robust neutralizing antibody and cellular responses, which offered complete protection against ZIKV-induced morbidity, mortality and in utero transmission in immune-competent and -compromised murine models. Splenocytes derived from vaccinated mice demonstrated significant CD4+ and CD8+ responses and significant cytokine production post-antigen exposure. Altogether, our results further support that chimeric insect-specific flaviviruses are a promising strategy to restrict flavivirus emergence via vaccine development.
Collapse
Affiliation(s)
- Danielle L. Porier
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA; (D.L.P.); (S.N.W.); (D.I.A.)
| | - Sarah N. Wilson
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA; (D.L.P.); (S.N.W.); (D.I.A.)
| | - Dawn I. Auguste
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA; (D.L.P.); (S.N.W.); (D.I.A.)
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory Institute, Blacksburg, VA 24060, USA; (A.L.); (J.B.-R.); (R.H.)
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA; (S.C.-O.); (I.C.A.); (C.C.C.); (J.A.B.); (J.W.-L.)
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA; (S.C.-O.); (I.C.A.); (C.C.C.); (J.A.B.); (J.W.-L.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Clayton C. Caswell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA; (S.C.-O.); (I.C.A.); (C.C.C.); (J.A.B.); (J.W.-L.)
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA
| | - James A. Budnick
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA; (S.C.-O.); (I.C.A.); (C.C.C.); (J.A.B.); (J.W.-L.)
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory Institute, Blacksburg, VA 24060, USA; (A.L.); (J.B.-R.); (R.H.)
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory Institute, Blacksburg, VA 24060, USA; (A.L.); (J.B.-R.); (R.H.)
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA; (S.C.-O.); (I.C.A.); (C.C.C.); (J.A.B.); (J.W.-L.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Albert J. Auguste
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA; (D.L.P.); (S.N.W.); (D.I.A.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Correspondence:
| |
Collapse
|
30
|
Adam A, Luo H, Osman SR, Wang B, Roundy CM, Auguste AJ, Plante KS, Peng BH, Thangamani S, Frolova EI, Frolov I, Weaver SC, Wang T. Optimized production and immunogenicity of an insect virus-based chikungunya virus candidate vaccine in cell culture and animal models. Emerg Microbes Infect 2021; 10:305-316. [PMID: 33539255 PMCID: PMC7919884 DOI: 10.1080/22221751.2021.1886598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A chimeric Eilat/ Chikungunya virus (EILV/CHIKV) was previously reported to replicate only in mosquito cells but capable of inducing robust adaptive immunity in animals. Here, we initially selected C7/10 cells to optimize the production of the chimeric virus. A two-step procedure produced highly purified virus stocks, which was shown to not cause hypersensitive reactions in a mouse sensitization study. We further optimized the dose and characterized the kinetics of EILV/CHIKV-induced immunity. A single dose of 108 PFU was sufficient for induction of high levels of CHIKV-specific IgM and IgG antibodies, memory B cell and CD8+ T cell responses. Compared to the live-attenuated CHIKV vaccine 181/25, EILV/CHIKV induced similar levels of CHIKV-specific memory B cells, but higher CD8+ T cell responses at day 28. It also induced stronger CD8+, but lower CD4+ T cell responses than another live-attenuated CHIKV strain (CHIKV/IRES) at day 55 post-vaccination. Lastly, the purified EILV/CHIKV triggered antiviral cytokine responses and activation of antigen presenting cell (APC)s in vivo, but did not induce APCs alone upon in vitro exposure. Overall, our results demonstrate that the EILV/CHIKV vaccine candidate is safe, inexpensive to produce and a potent inducer of both innate and adaptive immunity in mice.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Samantha R Osman
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Binbin Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Christopher M Roundy
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Albert J Auguste
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Kenneth S Plante
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Saravanan Thangamani
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elena I Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott C Weaver
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
31
|
Auguste AJ, Langsjoen RM, Porier DL, Erasmus JH, Bergren NA, Bolling BG, Luo H, Singh A, Guzman H, Popov VL, Travassos da Rosa APA, Wang T, Kang L, Allen IC, Carrington CVF, Tesh RB, Weaver SC. Isolation of a novel insect-specific flavivirus with immunomodulatory effects in vertebrate systems. Virology 2021; 562:50-62. [PMID: 34256244 DOI: 10.1016/j.virol.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
We describe the isolation and characterization of a novel insect-specific flavivirus (ISFV), tentatively named Aripo virus (ARPV), that was isolated from Psorophora albipes mosquitoes collected in Trinidad. The ARPV genome was determined and phylogenetic analyses showed that it is a dual host associated ISFV, and clusters with the main mosquito-borne flaviviruses. ARPV antigen was significantly cross-reactive with Japanese encephalitis virus serogroup antisera, with significant cross-reactivity to Ilheus and West Nile virus (WNV). Results suggest that ARPV replication is limited to mosquitoes, as it did not replicate in the sandfly, culicoides or vertebrate cell lines tested. We also demonstrated that ARPV is endocytosed into vertebrate cells and is highly immunomodulatory, producing a robust innate immune response despite its inability to replicate in vertebrate systems. We show that prior infection or coinfection with ARPV limits WNV-induced disease in mouse models, likely the result of a robust ARPV-induced type I interferon response.
Collapse
Affiliation(s)
- Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Rose M Langsjoen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Danielle L Porier
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jesse H Erasmus
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicholas A Bergren
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bethany G Bolling
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Huanle Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ankita Singh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hilda Guzman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, Monroe, LA, 71203, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA
| | - Irving C Allen
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Robert B Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
32
|
Abstract
Chikungunya fever (CHIKF) is an arbovirus disease caused by chikungunya virus (CHIKV), an alphavirus of Togaviridae family. Transmission follows a human-mosquito-human cycle starting with a mosquito bite. Subsequently, symptoms develop after 2-6 days of incubation, including high fever and severe arthralgia. The disease is self-limiting and usually resolve within 2 weeks. However, chronic disease can last up to several years with persistent polyarthralgia. Overlapping symptoms and common vector with dengue and malaria present many challenges for diagnosis and treatment of this disease. CHIKF was reported in India in 1963 for the first time. After a period of quiescence lasting up to 32 years, CHIKV re-emerged in India in 2005. Currently, every part of the country has become endemic for the disease with outbreaks resulting in huge economic and productivity losses. Several mutations have been identified in circulating strains of the virus resulting in better adaptations or increased fitness in the vector(s), effective transmission, and disease severity. CHIKV evolution has been a significant driver of epidemics in India, hence, the need to focus on proper surveillance, and implementation of prevention and control measure in the country. Presently, there are no licensed vaccines or antivirals available; however, India has initiated several efforts in this direction including traditional medicines. In this review, we present the current status of CHIKF in India.
Collapse
|
33
|
The utilization of advance telemetry to investigate critical physiological parameters including electroencephalography in cynomolgus macaques following aerosol challenge with eastern equine encephalitis virus. PLoS Negl Trop Dis 2021; 15:e0009424. [PMID: 34138849 PMCID: PMC8259972 DOI: 10.1371/journal.pntd.0009424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/06/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
Most alphaviruses are mosquito-borne and can cause severe disease in humans and domesticated animals. In North America, eastern equine encephalitis virus (EEEV) is an important human pathogen with case fatality rates of 30–90%. Currently, there are no therapeutics or vaccines to treat and/or prevent human infection. One critical impediment in countermeasure development is the lack of insight into clinically relevant parameters in a susceptible animal model. This study examined the disease course of EEEV in a cynomolgus macaque model utilizing advanced telemetry technology to continuously and simultaneously measure temperature, respiration, activity, heart rate, blood pressure, electrocardiogram (ECG), and electroencephalography (EEG) following an aerosol challenge at 7.0 log10 PFU. Following challenge, all parameters were rapidly and substantially altered with peak alterations from baseline ranged as follows: temperature (+3.0–4.2°C), respiration rate (+56–128%), activity (-15-76% daytime and +5–22% nighttime), heart rate (+67–190%), systolic (+44–67%) and diastolic blood pressure (+45–80%). Cardiac abnormalities comprised of alterations in QRS and PR duration, QTc Bazett, T wave morphology, amplitude of the QRS complex, and sinoatrial arrest. An unexpected finding of the study was the first documented evidence of a critical cardiac event as an immediate cause of euthanasia in one NHP. All brain waves were rapidly (~12–24 hpi) and profoundly altered with increases of up to 6,800% and severe diffuse slowing of all waves with decreases of ~99%. Lastly, all NHPs exhibited disruption of the circadian rhythm, sleep, and food/fluid intake. Accordingly, all NHPs met the euthanasia criteria by ~106–140 hpi. This is the first of its kind study utilizing state of the art telemetry to investigate multiple clinical parameters relevant to human EEEV infection in a susceptible cynomolgus macaque model. The study provides critical insights into EEEV pathogenesis and the parameters identified will improve animal model development to facilitate rapid evaluation of vaccines and therapeutics. In North America, EEEV causes the most severe mosquito-borne disease in humans highlighted by fatal encephalitis and permeant debilitating neurological sequelae in survivors. The first confirmed human cases were reported more than 80 years ago and since then multiple sporadic outbreaks have occurred including one of the largest in 2019. Unfortunately, most human infections are diagnosed at the on-set of severe neurological symptoms and consequently a detailed disease course in humans is lacking. This gap in knowledge is a significant obstacle in the development of appropriate animal models to evaluate countermeasures. Here, we performed a cutting-edge study by utilizing a new telemetry technology to understand the course of EEEV infection in a susceptible macaque model by measuring multiple physiological parameters relevant to human disease. Our study demonstrates that the infection rapidly produces considerable alterations in many critical parameters including the electrical activity of the heart and the brain leading to severe disease. The study also highlights the extraordinary potential of new telemetry technology to develop the next generation of animal models to comprehensively investigate pathogenesis as well as evaluate countermeasures to treat and/or prevent EEEV disease.
Collapse
|
34
|
White AV, Fan M, Mazzara JM, Roper RL, Richards SL. Mosquito-infecting virus Espirito Santo virus inhibits replication and spread of dengue virus. J Med Virol 2021; 93:3362-3373. [PMID: 33219544 DOI: 10.1002/jmv.26686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 01/09/2023]
Abstract
The primary vector of dengue virus (DENV) is Aedes aegypti. The mosquito-infecting virus, Espirito Santo virus (ESV), does not infect Vero (mammalian) cells and grows in mosquito (C6/36) cells without cytopathic effects. Effects of ESV infection on replication of DENV were explored in vitro and in vivo, analyzing protein, RNA genome expression, and plaque formation. ESV and DENV simultaneous coinfection did not block protein synthesis from either virus but did result in inhibition of DENV replication in mosquito cells. Furthermore, ESV superinfected with DENV resulted in inhibition of DENV replication and spread in A. aegypti, thus reducing vector competence. Tissue culture experiments on viral kinetics of ESV and DENV coinfection showed that neither virus significantly affects the replication of the other in Vero, HeLa, or HEK cells. Hence, ESV blocks DENV replication in insect cells, but not the mammalian cells evaluated here. Our study provides new insights into ESV-induced suppression of DENV, a globally important pathogen impacting public health.
Collapse
Affiliation(s)
- Avian V White
- Department of Health Education and Promotion, Environmental Health Sciences Program, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA
| | - Ming Fan
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jordan M Mazzara
- Department of Health Education and Promotion, Environmental Health Sciences Program, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA
| | - Rachel L Roper
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Stephanie L Richards
- Department of Health Education and Promotion, Environmental Health Sciences Program, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
35
|
Mechanisms Underlying Host Range Variation in Flavivirus: From Empirical Knowledge to Predictive Models. J Mol Evol 2021; 89:329-340. [PMID: 34059925 DOI: 10.1007/s00239-021-10013-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022]
Abstract
Preventing and controlling epidemics caused by vector-borne viruses are particularly challenging due to their diverse pool of hosts and highly adaptive nature. Many vector-borne viruses belong to the Flavivirus genus, whose members vary greatly in host range and specificity. Members of the Flavivirus genus can be categorized to four main groups: insect-specific viruses that are maintained solely in arthropod populations, mosquito-borne viruses and tick-borne viruses that are transmitted to vertebrate hosts by mosquitoes or ticks via blood feeding, and those with no-known vector. The mosquito-borne group encompasses the yellow fever, dengue, and West Nile viruses, all of which are globally spread and cause severe morbidity in humans. The Flavivirus genus is genetically diverse, and its members are subject to different host-specific and vector-specific selective constraints, which do not always align. Thus, understanding the underlying genetic differences that led to the diversity in host range within this genus is an important aspect in deciphering the mechanisms that drive host compatibility and can aid in the constant arms-race against viral threats. Here, we review the phylogenetic relationships between members of the genus, their infection bottlenecks, and phenotypic and genomic differences. We further discuss methods that utilize these differences for prediction of host shifts in flaviviruses and can contribute to viral surveillance efforts.
Collapse
|
36
|
Voigt EA, Fuerte-Stone J, Granger B, Archer J, Van Hoeven N. Live-attenuated RNA hybrid vaccine technology provides single-dose protection against Chikungunya virus. Mol Ther 2021; 29:2782-2793. [PMID: 34058388 DOI: 10.1016/j.ymthe.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022] Open
Abstract
We present a live-attenuated RNA hybrid vaccine technology that uses an RNA vaccine delivery vehicle to deliver in vitro-transcribed, full-length, live-attenuated viral genomes to the site of vaccination. This technology allows ready manufacturing in a cell-free environment, regardless of viral attenuation level, and it promises to avoid many safety and manufacturing challenges of traditional live-attenuated vaccines. We demonstrate this technology through development and testing of a live-attenuated RNA hybrid vaccine against Chikungunya virus (CHIKV), comprised of an in vitro-transcribed, highly attenuated CHIKV genome delivered by a highly stable nanostructured lipid carrier (NLC) formulation as an intramuscular injection. We demonstrate that single-dose immunization of immunocompetent C57BL/6 mice results in induction of high CHIKV-neutralizing antibody titers and protection against mortality and footpad swelling after lethal CHIKV challenge.
Collapse
Affiliation(s)
- Emily A Voigt
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102, USA.
| | - Jasmine Fuerte-Stone
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102, USA
| | - Brian Granger
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102, USA
| | - Jacob Archer
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102, USA
| | - Neal Van Hoeven
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102, USA; PAI Life Sciences, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| |
Collapse
|
37
|
Agboli E, Zahouli JBZ, Badolo A, Jöst H. Mosquito-Associated Viruses and Their Related Mosquitoes in West Africa. Viruses 2021; 13:v13050891. [PMID: 34065928 PMCID: PMC8151702 DOI: 10.3390/v13050891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Mosquito-associated viruses (MAVs), including mosquito-specific viruses (MSVs) and mosquito-borne (arbo)viruses (MBVs), are an increasing public, veterinary, and global health concern, and West Africa is projected to be the next front for arboviral diseases. As in-depth knowledge of the ecologies of both western African MAVs and related mosquitoes is still limited, we review available and comprehensive data on their diversity, abundance, and distribution. Data on MAVs’ occurrence and related mosquitoes were extracted from peer-reviewed publications. Data on MSVs, and mosquito and vertebrate host ranges are sparse. However, more data are available on MBVs (i.e., dengue, yellow fever, chikungunya, Zika, and Rift Valley fever viruses), detected in wild and domestic animals, and humans, with infections more concentrated in urban areas and areas affected by strong anthropogenic changes. Aedes aegypti, Culex quinquefasciatus, and Aedes albopictus are incriminated as key arbovirus vectors. These findings outline MAV, related mosquitoes, key knowledge gaps, and future research areas. Additionally, these data highlight the need to increase our understanding of MAVs and their impact on host mosquito ecology, to improve our knowledge of arbovirus transmission, and to develop specific strategies and capacities for arboviral disease surveillance, diagnostic, prevention, control, and outbreak responses in West Africa.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana
| | - Julien B. Z. Zahouli
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouake, 27 BP 529 Abidjan 27, Cote D’Ivoire;
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Département de Recherche et Développement, 01 BP 1303 Abidjan 01, Cote D’Ivoire
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, Universitée Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso;
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- Correspondence:
| |
Collapse
|
38
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
39
|
A Productive Expression Platform Derived from Host-Restricted Eilat Virus: Its Extensive Validation and Novel Strategy. Viruses 2021; 13:v13040660. [PMID: 33920474 PMCID: PMC8069092 DOI: 10.3390/v13040660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 12/17/2022] Open
Abstract
Most alphaviruses are transmitted by mosquitoes and infect a wide range of insects and vertebrates. However, Eilat virus (EILV) is defective for infecting vertebrate cells at multiple levels of the viral life cycle. This host-restriction property renders EILV an attractive expression platform since it is not infectious for vertebrates and therefore provides a highly advantageous safety profile. Here, we investigated the feasibility of versatile EILV-based expression vectors. By replacing the structural genes of EILV with those of other alphaviruses, we generated seven different chimeras. These chimeras were readily rescued in the original mosquito cells and were able to reach high titers, suggesting that EILV is capable of packaging the structural proteins of different lineages. We also explored the ability of EILV to express authentic antigens via double subgenomic (SG) RNA vectors. Four foreign genetic materials of varied length were introduced into the EILV genome, and the expressed heterologous genetic materials were readily detected in the infected cells. By inserting an additional SG promoter into the chimera genome containing the structural genes of Chikungunya virus (CHIKV), we developed a bivalent vaccine candidate against CHIKV and Zika virus. These data demonstrate the outstanding compatibility of the EILV genome. The produced recombinants can be applied to vaccine and diagnostic tool development, but more investigations are required.
Collapse
|
40
|
Perspectives on New Vaccines against Arboviruses Using Insect-Specific Viruses as Platforms. Vaccines (Basel) 2021; 9:vaccines9030263. [PMID: 33809576 PMCID: PMC7999276 DOI: 10.3390/vaccines9030263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are global pathogens circulating endemically with local explosive outbreaks and constant encroachment into new locations. Few vaccines against arboviruses exist; most for humans are in development or clinical trials. Insect-specific viruses (ISVs) offer a unique platform for expression of arbovirus proteins, through the creation of ISV/arbovirus chimeras. Studies have shown promising results of these vaccines with several advantages over their wild-type counterparts. In this review, we discuss the current status of these potential vaccines using ISVs.
Collapse
|
41
|
Carvalho VL, Long MT. Insect-Specific Viruses: An overview and their relationship to arboviruses of concern to humans and animals. Virology 2021; 557:34-43. [PMID: 33631523 DOI: 10.1016/j.virol.2021.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
The group of Insect-specific viruses (ISVs) includes viruses apparently restricted to insects based on their inability to replicate in the vertebrates. Increasing numbers of ISVs have been discovered and characterized representing a diverse number of viral families. However, most studies have focused on those ISVs belonging to the family Flaviviridae, which highlights the importance of ISV study from other viral families, which allow a better understanding for the mechanisms of transmission and evolution used for this diverse group of viruses. Some ISVs have shown the potential to modulate arboviruses replication and vector competence of mosquitoes. Based on this, ISVs may be used as an alternative tool for biological control, development of vaccines, and diagnostic platforms for arboviruses. In this review, we provide an update of the general characteristics of ISVs and their interaction with arboviruses that infect vertebrates.
Collapse
Affiliation(s)
- Valéria L Carvalho
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, S/n, Ananindeua, Para, 67030-000, Brazil.
| | - Maureen T Long
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA.
| |
Collapse
|
42
|
Comas-Garcia M, Colunga-Saucedo M, Rosales-Mendoza S. The Role of Virus-Like Particles in Medical Biotechnology. Mol Pharm 2020; 17:4407-4420. [PMID: 33147978 DOI: 10.1021/acs.molpharmaceut.0c00828] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Virus-like particles (VLPs) are protein-based, nanoscale, self-assembling, cage architectures, which have relevant applications in biomedicine. They can be used for the development of vaccines, imaging approaches, drug and gene therapy delivery systems, and in vitro diagnostic methods. Today, three relevant viruses are targeted using VLP-based recombinant vaccines. VLP-based drug delivery, nanoreactors for therapy, and imaging systems are approaches under development with promising outcomes. Several VLP-based vaccines are under clinical evaluation. Herein, an updated view on the VLP-based biomedical applications is provided; advanced methods for the production, functionalization, and drug loading of VLPs are described, and perspectives for the field are identified.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Department of Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78295, México.,Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,High-Resolution Microscopy Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Mayra Colunga-Saucedo
- Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Sergio Rosales-Mendoza
- Departament of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,Biotechnology Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| |
Collapse
|
43
|
Moscona A. Chikungunya infection: de-linking replication from symptomatology reveals the central role of muscle. J Clin Invest 2020; 130:1099-1101. [PMID: 32039916 DOI: 10.1172/jci134746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging arbovirus, endemic in many parts of the world, that is spread by travelers and adapts to new mosquito vectors that live in temperate climates. CHIKV replicates in many host tissues and initially causes a self-limiting febrile illness similar to dengue. However, in 30%-40% of cases, CHIKV also causes long-term painful and debilitating muscle and joint pain, the pathogenesis of which remains unknown. In this issue of the JCI, Lentscher et al. engineered a skeletal muscle-restricted CHIKV to show that while musculoskeletal disease requires viral replication in affected muscle, muscular pathology is mediated by host immunological factors. These findings de-link viral replication and disease symptoms, illuminate the virus-host interplay in CHIKV symptomatology, and raise the possibility that immune modulation is a therapeutic option. The results also highlight possible solutions to existing vaccine barriers and provide insights that may apply to other viral diseases.
Collapse
|
44
|
Kumar S, Singh VK, Vasam M, Patil PS, Dhaked RK, Ansari AS, Lohiya NK, Parashar D, Tapryal S. An in vitro refolding method to produce oligomers of anti-CHIKV, E2-IgM Fc fusion subunit vaccine candidates expressed in E. coli. J Immunol Methods 2020; 487:112869. [PMID: 32971119 DOI: 10.1016/j.jim.2020.112869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Recombinant envelope protein-1 (E1) and E2 of Chikungunya virus (CHIKV) has been shown to elicit neutralizing antibodies and a balanced Th1/Th2 response in mice however with limited protection. Recently reported CHIK virus-like particles showed augmented immunity and protection in adult mice in comparison to E1 and E2, however exacerbated the disease in aged subjects. In order to improve the overall efficacy of protein based vaccines, novel strategies need to be adopted. The discovery of IgM Fc receptor (FcμR) and its role in humoral immune response led us to hypothesise that fusion of an antigen with Fc of IgM may enhance its immunogenicity by polymerizing it and FcμR mediated activation of B and other immune cells. We report in the current study, expression of E2 subunit of CHIKV in fusion with various IgM Fc domains/peptides in E. coli, their in-vitro refolding, characterization and immune response in C57BL/6 mice. Candidates fused with CH3-CH4 Fc fragment produced stable oligomers, whereas the one fused with peptides remained monomeric. The latter elicited a strong humoral and a balanced Th1/Th2 response in mice, whereas the polymeric candidate despite eliciting a strong humoral response, stimulated a biased Th1 response and exhibited higher virus neutralization in Vero cells.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Vikas Kumar Singh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Manohar Vasam
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Poonam Shewale Patil
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A Dr. Ambedkar Road, Pune 411001, India
| | - Rajeev K Dhaked
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| | - Abdul S Ansari
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| | - Nirmal K Lohiya
- Department of Zoology, Centre for Advanced Studies, Indian Society for the Study of Reproduction & Fertility, University of Rajasthan, Jaipur, Rajasthan 302004, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A Dr. Ambedkar Road, Pune 411001, India
| | - Suman Tapryal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
45
|
Hobson-Peters J, Harrison JJ, Watterson D, Hazlewood JE, Vet LJ, Newton ND, Warrilow D, Colmant AMG, Taylor C, Huang B, Piyasena TBH, Chow WK, Setoh YX, Tang B, Nakayama E, Yan K, Amarilla AA, Wheatley S, Moore PR, Finger M, Kurucz N, Modhiran N, Young PR, Khromykh AA, Bielefeldt-Ohmann H, Suhrbier A, Hall RA. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci Transl Med 2020; 11:11/522/eaax7888. [PMID: 31826984 DOI: 10.1126/scitranslmed.aax7888] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Flaviviruses such as dengue, yellow fever, Zika, West Nile, and Japanese encephalitis virus present substantial global health burdens. New vaccines are being sought to address safety and manufacturing issues associated with current live attenuated vaccines. Here, we describe a new insect-specific flavivirus, Binjari virus, which was found to be remarkably tolerant for exchange of its structural protein genes (prME) with those of the aforementioned pathogenic vertebrate-infecting flaviviruses (VIFs). Chimeric BinJ/VIF-prME viruses remained replication defective in vertebrate cells but replicated with high efficiency in mosquito cells. Cryo-electron microscopy and monoclonal antibody binding studies illustrated that the chimeric BinJ/VIF-prME virus particles were structurally and immunologically similar to their parental VIFs. Pilot manufacturing in C6/36 cells suggests that high yields can be reached up to 109.5 cell culture infectious dose/ml or ≈7 mg/liter. BinJ/VIF-prME viruses showed utility in diagnostic (microsphere immunoassays and ELISAs using panels of human and equine sera) and vaccine applications (illustrating protection against Zika virus challenge in murine IFNAR-/- mouse models). BinJ/VIF-prME viruses thus represent a versatile, noninfectious (for vertebrate cells), high-yield technology for generating chimeric flavivirus particles with low biocontainment requirements.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Carmel Taylor
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Queensland, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah Wheatley
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Peter R Moore
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Mitchell Finger
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Nina Kurucz
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
46
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
47
|
Stromberg ZR, Fischer W, Bradfute SB, Kubicek-Sutherland JZ, Hraber P. Vaccine Advances against Venezuelan, Eastern, and Western Equine Encephalitis Viruses. Vaccines (Basel) 2020; 8:vaccines8020273. [PMID: 32503232 PMCID: PMC7350001 DOI: 10.3390/vaccines8020273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/21/2023] Open
Abstract
Vaccinations are a crucial intervention in combating infectious diseases. The three neurotropic Alphaviruses, Eastern (EEEV), Venezuelan (VEEV), and Western (WEEV) equine encephalitis viruses, are pathogens of interest for animal health, public health, and biological defense. In both equines and humans, these viruses can cause febrile illness that may progress to encephalitis. Currently, there are no licensed treatments or vaccines available for these viruses in humans. Experimental vaccines have shown variable efficacy and may cause severe adverse effects. Here, we outline recent strategies used to generate vaccines against EEEV, VEEV, and WEEV with an emphasis on virus-vectored and plasmid DNA delivery. Despite candidate vaccines protecting against one of the three viruses, few studies have demonstrated an effective trivalent vaccine. We evaluated the potential of published vaccines to generate cross-reactive protective responses by comparing DNA vaccine sequences to a set of EEEV, VEEV, and WEEV genomes and determining the vaccine coverages of potential epitopes. Finally, we discuss future directions in the development of vaccines to combat EEEV, VEEV, and WEEV.
Collapse
Affiliation(s)
- Zachary R. Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Will Fischer
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
| | - Steven B. Bradfute
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 505, USA;
| | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Peter Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
- Correspondence:
| |
Collapse
|
48
|
Patterson EI, Villinger J, Muthoni JN, Dobel-Ober L, Hughes GL. Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. CURRENT OPINION IN INSECT SCIENCE 2020; 39:50-56. [PMID: 32278312 PMCID: PMC7302987 DOI: 10.1016/j.cois.2020.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 05/03/2023]
Abstract
Novel insect-specific viruses (ISVs) are being discovered in many important vectors due to advances in sequencing technology and a growing awareness of the virome. Several in vitro and in vivo studies indicate that ISVs are capable of modulating pathogenic arboviruses. In addition, there is growing evidence that both vertical and horizonal transmission strategies maintain ISVs in vector populations. As such there is potential to exploit ISVs for stand-alone vector control strategies and deploying them in synergy with other symbiont control approaches such as Wolbachia-mediated control. However, before the applied potential can be realized, a greater understanding of their basic biology is required, including their species range, ability to be maintained and transmitted in native and non-native vector hosts, and the effect of infection on a range of pathogens.
Collapse
Affiliation(s)
- Edward I Patterson
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Joseph N Muthoni
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Lucien Dobel-Ober
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
49
|
Rossi SL, Comer JE, Wang E, Azar SR, Lawrence WS, Plante JA, Ramsauer K, Schrauf S, Weaver SC. Immunogenicity and Efficacy of a Measles Virus-Vectored Chikungunya Vaccine in Nonhuman Primates. J Infect Dis 2020; 220:735-742. [PMID: 31053842 PMCID: PMC6667792 DOI: 10.1093/infdis/jiz202] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/26/2019] [Indexed: 12/23/2022] Open
Abstract
Background Chikungunya virus (CHIKV) infection can result in chikungunya fever (CHIKF), a self-limited acute febrile illness that can progress to chronic arthralgic sequelae in a large percentage of patients. A new measles virus-vectored vaccine was developed to prevent CHIKF, and we tested it for immunogenicity and efficacy in a nonhuman primate model. Methods Nine cynomolgus macaques were immunized and boosted with the measles virus-vectored chikungunya vaccine or sham-vaccinated. Sera were taken at multiple times during the vaccination phase to assess antibody responses against CHIKV. Macaques were challenged with a dose of CHIKV previously shown to cause fever and viremia, and core body temperature, viremia, and blood cell and chemistry panels were monitored. Results The vaccine was well tolerated in all macaques, and all seroconverted (high neutralizing antibody [PRNT80 titers, 40–640] and enzyme-linked immunosorbent assay titers) after the boost. Furthermore, the vaccinated primates were protected against viremia, fever, elevated white blood cell counts, and CHIKF-associated cytokine changes after challenge with the virulent La Reunión CHIKV strain. Conclusions These results further document the immunogenicity and efficacy of a measles-vectored chikungunya vaccine that shows promise in Phase I–II clinical trials. These findings are critical to human health because no vaccine to combat CHIKF is yet licensed.
Collapse
Affiliation(s)
- Shannan L Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Jason E Comer
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Eryu Wang
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Sasha R Azar
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston.,Institute for Translational Science, University of Texas Medical Branch, Galveston
| | - William S Lawrence
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Jessica A Plante
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston.,World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston
| | | | | | - Scott C Weaver
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston.,Institute for Translational Science, University of Texas Medical Branch, Galveston.,World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston
| |
Collapse
|
50
|
Sassone J, Reale C, Dati G, Regoni M, Pellecchia MT, Garavaglia B. The Role of VPS35 in the Pathobiology of Parkinson's Disease. Cell Mol Neurobiol 2020; 41:199-227. [PMID: 32323152 DOI: 10.1007/s10571-020-00849-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
The vacuolar protein sorting 35 (VPS35) gene located on chromosome 16 has recently emerged as a cause of late-onset familial Parkinson's disease (PD) (PARK17). The gene encodes a 796-residue protein nearly ubiquitously expressed in human tissues. The protein localizes on endosomes where it assembles with other peripheral membrane proteins to form the retromer complex. How VPS35 mutations induce dopaminergic neuron degeneration in humans is still unclear. Because the retromer complex recycles the receptors that mediate the transport of hydrolase to lysosome, it has been suggested that VPS35 mutations lead to impaired lysosomal and autophagy function. Recent studies also demonstrated that VPS35 and the retromer complex influence mitochondrial homeostasis, suggesting that VPS35 mutations elicit mitochondrial dysfunction. More recent studies have identified a key role of VPS35 in neurotransmission, whilst others reported a functional interaction between VPS35 and other genes associated with familial PD, including α-SYNUCLEIN-PARKIN-LRRK2. Here, we review the biological role of VPS35 protein, the VPS35 mutations identified in human PD patients, and the potential molecular mechanism by which VPS35 mutations can induce progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanna Dati
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|