1
|
Nagao M, Fukuda A, Kashima H, Matsuyama S, Iimori K, Nakayama S, Mizukoshi K, Kawai M, Yamakawa G, Omatsu M, Namikawa M, Masuda T, Hiramatsu Y, Muta Y, Maruno T, Nakanishi Y, Tsuruyama T, Seno H. Cholangiocyte organoids for disease, cancer, and regenerative medicine. Eur J Cell Biol 2024; 104:151472. [PMID: 39721346 DOI: 10.1016/j.ejcb.2024.151472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
The biliary tract is a ductal network comprising the intrahepatic (IHBDs) and extrahepatic bile duct (EHBDs). Biliary duct disorders include cholangitis, neoplasms, and injury. However, the underlying mechanisms are not fully understood. With advancements in 3D culture technology, cholangiocyte organoids (COs) derived from primary tissues or induced pluripotent stem cells (iPSCs) can accurately replicate the structural and functional properties of biliary tissues. These organoids have become powerful tools for studying the pathogenesis of biliary diseases, such as cystic fibrosis and primary sclerosing cholangitis, and for developing new therapeutic strategies for cholangiocarcinoma. Additionally, COs have the potential to repair bile duct injuries and facilitate transplantation therapies. This review also discusses the use of organoids in genetically engineered mouse models to provide mechanistic insights into tumorigenesis and cancer progression. Continued innovation and standardization of organoid technology are crucial for advancing precision medicine for biliary diseases and cancer.
Collapse
Affiliation(s)
- Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Hirotaka Kashima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sho Matsuyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kei Iimori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinnosuke Nakayama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenta Mizukoshi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Munenori Kawai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Go Yamakawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mayuki Omatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Gastroenterology and Hepatology, The Japan Baptist Hospital, 47 Yamanomoto-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8273, Japan
| | - Tomonori Masuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yu Muta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuaki Tsuruyama
- Department of Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
2
|
Wang WL, Lian H, Liang Y, Ye Y, Tam PKH, Chen Y. Molecular Mechanisms of Fibrosis in Cholestatic Liver Diseases and Regenerative Medicine-Based Therapies. Cells 2024; 13:1997. [PMID: 39682745 DOI: 10.3390/cells13231997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this review is to explore the potential of new regenerative medicine approaches in the treatment of cholestatic liver fibrosis. Cholestatic liver diseases, such as primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and biliary atresia (BA), due to the accumulation of bile, often progress to liver fibrosis, cirrhosis, and liver failure. When the disease becomes severe enough to require liver transplantation. Deeply understanding the disease's progression and fibrosis formation is crucial for better diagnosis and treatment. Current liver fibrosis treatments mainly target the root causes and no direct treatment method in fibrosis itself. Recent advances in regenerative medicine offer a potential approach that may help find the ways to target fibrosis directly, offering hope for improved outcomes. We also summarize, analyze, and discuss the current state and benefits of regenerative medicine therapies such as mesenchymal stem cell (MSC) therapy, induced pluripotent stem cells (iPSCs), and organoid technology, which may help the treatment of cholestatic liver diseases. Focusing on the latest research may reveal new targets and enhance therapeutic efficacy, potentially leading to more effective management and even curative strategies for cholestatic liver diseases.
Collapse
Affiliation(s)
- Wei-Lu Wang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Haoran Lian
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yingyu Liang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yongqin Ye
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Paul Kwong Hang Tam
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- Precision Regenerative Medicine Research Centre, Medical Sciences Division, Macau University of Science and Technology, Macao SAR, China
| | - Yan Chen
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- Precision Regenerative Medicine Research Centre, Medical Sciences Division, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
3
|
Yan J, Ye Z, Wang X, Zhong D, Wang Z, Yan T, Li T, Yuan Y, Liu Y, Wang Y, Cai X. Recent research progresses of bioengineered biliary stents. Mater Today Bio 2024; 29:101290. [PMID: 39444940 PMCID: PMC11497374 DOI: 10.1016/j.mtbio.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Bile duct lesion, including benign (eg. occlusion, cholelithiasis, dilatation, malformation) and malignant (cholangiocarcinoma) diseases, is a frequently encountered challenge in hepatobiliary diseases, which can be repaired by interventional or surgical procedures. A viable cure for bile duct lesions is implantation with biliary stents. Despite the placement achieved by current clinical biliary stents, the creation of functional and readily transplantable biliary stents remains a formidable obstacle. Excellent biocompatibility, stable mechanics, and absorbability are just a few benefits of using bioengineered biliary stents, which can also support and repair damaged bile ducts that drain bile. Additionally, cell sources & organoids derived from the biliary system that are loaded onto scaffolds can encourage bile duct regeneration. Therefore, the implantation of bioengineered biliary stent is considered as an ideal treatment for bile duct lesion, holding a broad potential for clinical applications in future. In this review, we look back on the development of conventional biliary stents, biodegradable biliary stents, and bioengineered biliary stents, highlighting the crucial elements of bioengineered biliary stents in promoting bile duct regeneration. After providing an overview of the various types of cell sources & organoids and fabrication methods utilized for the bioengineering process, we present the in vitro and in vivo applications of bioengineered biliary ducts, along with the latest advances in this exciting field. Finally, we also emphasize the ongoing challenges and future development of bioengineered biliary stents.
Collapse
Affiliation(s)
- Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yu Liu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
4
|
Li Y, Yuan K, Deng C, Tang H, Wang J, Dai X, Zhang B, Sun Z, Ren G, Zhang H, Wang G. Biliary stents for active materials and surface modification: Recent advances and future perspectives. Bioact Mater 2024; 42:587-612. [PMID: 39314863 PMCID: PMC11417150 DOI: 10.1016/j.bioactmat.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Demand for biliary stents has expanded with the increasing incidence of biliary disease. The implantation of plastic or self-expandable metal stents can be an effective treatment for biliary strictures. However, these stents are nondegradable and prone to restenosis. Surgical removal or replacement of the nondegradable stents is necessary in cases of disease resolution or restenosis. To overcome these shortcomings, improvements were made to the materials and surfaces used for the stents. First, this paper reviews the advantages and limitations of nondegradable stents. Second, emphasis is placed on biodegradable polymer and biodegradable metal stents, along with functional coatings. This also encompasses tissue engineering & 3D-printed stents were highlighted. Finally, the future perspectives of biliary stents, including pro-epithelialization coatings, multifunctional coated stents, biodegradable shape memory stents, and 4D bioprinting, were discussed.
Collapse
Affiliation(s)
- Yuechuan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Hui Tang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Jinxuan Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Bing Zhang
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ziru Sun
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Guiying Ren
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Frau C, Vallier L. Exploiting the plasticity of cholangiocytes to repair the biliary tree. Curr Opin Genet Dev 2024; 89:102257. [PMID: 39255689 DOI: 10.1016/j.gde.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
Cholangiocytes are the main cell type lining the epithelium of the biliary tree of the liver. This cell type has been implicated not only in diseases affecting the biliary tree but also in chronic liver diseases targeting other hepatic cells such as hepatocytes. However, the isolation and culture of cholangiocytes have been particularly arduous, thereby limiting the development of new therapies. The emergence of organoids has the potential to address in part this challenge. Indeed, cholangiocyte organoids can be established from both the intra- and extrahepatic regions of the biliary tree, providing an advantageous platform for disease modeling and mechanism investigations. Accordingly, recent studies on cholangiocyte organoids, together with the advent of single-cell -omics, have opened the field to exciting discoveries concerning the plastic nature of these cells and their capability to adapt to different environments and stimuli. This review will focus on describing how these plasticity properties could be exploited in regenerative medicine and cell-based therapy, opening new frontiers for treating disorders affecting the biliary tree and beyond.
Collapse
Affiliation(s)
- Carla Frau
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin Institute of Health @Charite, Berlin, Germany.
| | - Ludovic Vallier
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin Institute of Health @Charite, Berlin, Germany.
| |
Collapse
|
6
|
Zhou G, Li R, Sheng S, Huang J, Zhou F, Wei Y, Liu H, Su J. Organoids and organoid extracellular vesicles-based disease treatment strategies. J Nanobiotechnology 2024; 22:679. [PMID: 39506799 PMCID: PMC11542470 DOI: 10.1186/s12951-024-02917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Organoids are "mini-organs" that self-organize and differentiate from stem cells under in vitro 3D culture conditions, mimicking the spatial structure and function of tissues in vivo. Extracellular vesicles (EVs) are nanoscale phospholipid bilayer vesicles secreted by living cells, rich in bioactive molecules, with excellent biocompatibility and low immunogenicity. Compared to EVs, organoid-derived EVs (OEVs) exhibit higher yield and enhanced biological functions. Organoids possess stem cell characteristics, and OEVs are capable of delivering active substances, making both highly promising for medical applications. In this review, we provide an overview of the fundamental biological principles of organoids and OEVs, and discuss their current applications in disease treatment. We then focus on the differences between OEVs and traditional EVs. Subsequently, we present methods for the engineering modification of OEVs. Finally, we critically summarize the advantages and challenges of organoids and OEVs. In conclusion, we believe that a deeper understanding of organoids and OEVs will provide innovative solutions to complex diseases.
Collapse
Affiliation(s)
- Guangyin Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Ruiyang Li
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jingtao Huang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
7
|
Zhao H, Cheng Y, Li J, Zhou J, Yang H, Yu F, Yu F, Khutsishvili D, Wang Z, Jiang S, Tan K, Kuang Y, Xing X, Ma S. Droplet-engineered organoids recapitulate parental tissue transcriptome with inter-organoid homogeneity and inter-tumor cell heterogeneity. FUNDAMENTAL RESEARCH 2024; 4:1506-1514. [PMID: 39734523 PMCID: PMC11670719 DOI: 10.1016/j.fmre.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
Organoids are expected to function as effective human organ models for precision cancer studies and drug development. Currently, primary tissue-derived organoids, termed non-engineered organoids (NEOs), are produced by manual pipetting or liquid handling that compromises organoid-organoid homogeneity and organoid-tissue consistency. Droplet-based microfluidics enables automated organoid production with high organoid-organoid homogeneity, organoid-tissue consistency, and a significantly improved production spectrum. It takes advantage of droplet-encapsulation of defined populations of cells and droplet-rendered microstructures that guide cell self-organization. Herein, we studied the droplet-engineered organoids (DEOs), derived from mouse liver tissues and human liver tumors, by using transcriptional analysis and cellular deconvolution on bulk RNA-seq data. The characteristics of DEOs are compared with the parental liver tissues (or tumors) and NEOs. The DEOs are proven higher reproducibility and consistency with the parental tissues, have a high production spectrum and shortened modeling time, and possess inter-organoid homogeneity and inter-tumor cell heterogeneity.
Collapse
Affiliation(s)
- Haoran Zhao
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Yifan Cheng
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Jiawei Li
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Jiaqi Zhou
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Haowei Yang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Feng Yu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Feihong Yu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Davit Khutsishvili
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Zitian Wang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Shengwei Jiang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Kaixin Tan
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China
- HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Xinhui Xing
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| |
Collapse
|
8
|
Murphy JF, Lavelle M, Asciak L, Burdis R, Levis HJ, Ligorio C, McGuire J, Polleres M, Smith PO, Tullie L, Uribe-Gomez J, Chen B, Dawson JI, Gautrot JE, Hooper NM, Kelly DJ, Li VSW, Mata A, Pandit A, Phillips JB, Shu W, Stevens MM, Williams RL, Armstrong JPK, Huang YYS. Biofabrication and biomanufacturing in Ireland and the UK. Biodes Manuf 2024; 7:825-856. [PMID: 39650072 PMCID: PMC11618173 DOI: 10.1007/s42242-024-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/11/2024] [Indexed: 12/11/2024]
Abstract
As we navigate the transition from the Fourth to the Fifth Industrial Revolution, the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare. These sectors are benefiting from a synergy of synthetic and engineering biology, sustainable manufacturing, and integrated design principles. Advanced techniques such as 3D bioprinting, tissue engineering, directed assembly, and self-assembly are instrumental in creating biomimetic scaffolds, tissues, organoids, medical devices, and biohybrid systems. The field of biofabrication in the United Kingdom and Ireland is emerging as a pivotal force in bioscience and healthcare, propelled by cutting-edge research and development. Concentrating on the production of biologically functional products for use in drug delivery, in vitro models, and tissue engineering, research institutions across these regions are dedicated to innovating healthcare solutions that adhere to ethical standards while prioritising sustainability, affordability, and healthcare system benefits. Graphic abstract
Collapse
Affiliation(s)
- Jack F. Murphy
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ UK
| | - Martha Lavelle
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | - Lisa Asciak
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Ross Burdis
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
| | - Jamie McGuire
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Marlene Polleres
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Poppy O. Smith
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Juan Uribe-Gomez
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH UK
| | - Jonathan I. Dawson
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Julien E. Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS UK
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, M13 9PL UK
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 H903 Ireland
| | - Vivian S. W. Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - James B. Phillips
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Molly M. Stevens
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
- Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | - Rachel L. Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - James P. K. Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | | |
Collapse
|
9
|
Frank AK, Chung BK, De Novales MLL, Engesæter LK, Hoyle HW, Øgaard J, Heslop J, Karlsen TH, Tysoe O, Brevini T, Tchorz JS, Vallier L, Mohorianu I, Sampaziotis F, Melum E. Single-Cell Transcriptomic Profiling of Cholangiocyte Organoids Derived from Bile Ducts of Primary Sclerosing Cholangitis Patients. Dig Dis Sci 2024; 69:3810-3823. [PMID: 39160386 PMCID: PMC11489200 DOI: 10.1007/s10620-024-08570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disorder without effective medical treatment which is characterized by inflammation and fibrotic structures around the bile ducts. Biliary epithelial cells (cholangiocytes) are the target and potential disease drivers in PSC, yet little is known if cholangiocytes from PSC patients differ from non-PSC controls. To characterize cholangiocytes at early rather than end-stage disease, cholangiocyte organoids (COs) were derived from diseased bile ducts of PSC patients and compared to organoids generated from disease controls. METHODS Cholangiocytes were obtained during endoscopic retrograde cholangiopancreatography (ERCP) brushing of diseased bile duct areas and expanded as organoids using previously established culture methods. Stable CO lines were analyzed for cell type identity, basic cholangiocyte function, and transcriptomic signature. RESULTS We demonstrate that cholangiocytes, derived from the damaged area within the bile ducts of PSC patients, can be expanded in culture without displaying functional or genetic disease-related features. We further show that COs from patients who later were diagnosed with dysplasia exhibit higher expression of the cancer-associated genes PGC, FXYD2, MIR4435-2HG, and HES1. CONCLUSIONS Our results demonstrate that PSC organoids are largely similar to control organoids after culture and highlight the significance of COs as a tool for regenerative medicine approaches as well as their potential for discovering new potential biomarkers for diagnosing cholangiocarcinoma.
Collapse
Affiliation(s)
- Anna Katharina Frank
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Hybrid Technology Hub, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Brian K Chung
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Miguel Larraz Lopez De Novales
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Lise Katrine Engesæter
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Henry William Hoyle
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Hybrid Technology Hub, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jonas Øgaard
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - James Heslop
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Olivia Tysoe
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Teresa Brevini
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ludovic Vallier
- Berlin Institute of Health, Center for Regenerative Therapies at Charité Universitätsmedizin, Berlin, Germany
- Max Plank Institute for Molecular Genetics, Berlin, Germany
| | - Irina Mohorianu
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Research Institute of Internal Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Hybrid Technology Hub, Institute of Basic Medical Science, University of Oslo, Oslo, Norway.
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| |
Collapse
|
10
|
Hussein KH, Ahmadzada B, Correa JC, Sultan A, Wilken S, Amiot B, Nyberg SL. Liver tissue engineering using decellularized scaffolds: Current progress, challenges, and opportunities. Bioact Mater 2024; 40:280-305. [PMID: 38973992 PMCID: PMC11226731 DOI: 10.1016/j.bioactmat.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Liver transplantation represents the only definitive treatment for patients with end-stage liver disease. However, the shortage of liver donors provokes a dramatic gap between available grafts and patients on the waiting list. Whole liver bioengineering, an emerging field of tissue engineering, holds great potential to overcome this gap. This approach involves two main steps; the first is liver decellularization and the second is recellularization. Liver decellularization aims to remove cellular and nuclear materials from the organ, leaving behind extracellular matrices containing different structural proteins and growth factors while retaining both the vascular and biliary networks. Recellularization involves repopulating the decellularized liver with appropriate cells, theoretically from the recipient patient, to reconstruct the parenchyma, vascular tree, and biliary network. The aim of this review is to identify the major advances in decellularization and recellularization strategies and investigate obstacles for the clinical application of bioengineered liver, including immunogenicity of the designed liver extracellular matrices, the need for standardization of scaffold fabrication techniques, selection of suitable cell sources for parenchymal repopulation, vascular, and biliary tree reconstruction. In vivo transplantation models are also summarized for evaluating the functionality of bioengineered livers. Finally, the regulatory measures and future directions for confirming the safety and efficacy of bioengineered liver are also discussed. Addressing these challenges in whole liver bioengineering may offer new solutions to meet the demand for liver transplantation and improve patient outcomes.
Collapse
Affiliation(s)
- Kamal H. Hussein
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
- Department of Surgery, Anesthesiology, and Radiology, College of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Boyukkhanim Ahmadzada
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Julio Cisneros Correa
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Ahmer Sultan
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Silvana Wilken
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
12
|
Kreiner P, Eggenhofer E, Schneider L, Rejas C, Goetz M, Bogovic N, Brunner SM, Evert K, Schlitt HJ, Geissler EK, Junger H. Extrahepatic Bile Duct Organoids as a Model to Study Ischemia/Reperfusion Injury During Liver Transplantation. Transpl Int 2024; 37:13212. [PMID: 39323909 PMCID: PMC11422091 DOI: 10.3389/ti.2024.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Biliary complications are still a major cause for morbidity and mortality after liver transplantation (LT). Ischemia/reperfusion injury (IRI) leads to disruption of the biliary epithelium. We introduce a novel model to study the effect of IRI on human cholangiocytes using extrahepatic cholangiocyte organoids (ECOs). Extrahepatic bile duct tissue was collected during LT at static cold storage and after reperfusion (n = 15); gallbladder tissue was used for controls (n = 5). ECOs (n = 9) were cultured from extrahepatic biliary tissue, with IRI induced in an atmosphere of 95% air (nitrogen), 1% O2 and 5% CO2for 48 h, followed by 24 h of reoxygenation. Qualitative and quantitative histology and qRT-PCR were performed to discern phenotype, markers of hypoxia, programmed cell death and proliferation. ECOs self-organized into circular structures resembling biliary architecture containing cholangiocytes that expressed EpCAM, CK19, LGR5 and SOX-9. After hypoxia, ECOs showed increased expression of VEGF A (p < 0.0001), SLC2A1 (p < 0.0001) and ACSL4 (p < 0.0001) to indicate response to hypoxic damage and subsequent programmed cell death. Increase in cyclin D1 (p < 0.0001) after reoxygenation indicated proliferative activity in ECOs. Therefore, ECO structure and response to IRI are comparable to that found in-vivo, providing a suitable model to study IRI of the bile duct in-vitro.
Collapse
Affiliation(s)
- P Kreiner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - E Eggenhofer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - L Schneider
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - C Rejas
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - M Goetz
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - N Bogovic
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - S M Brunner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - K Evert
- Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - H J Schlitt
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - E K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - H Junger
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Luo X, Gong Y, Gong Z, Fan K, Suo T, Liu H, Ni X, Ni X, Abudureyimu M, Liu H. Liver and bile duct organoids and tumoroids. Biomed Pharmacother 2024; 178:117104. [PMID: 39024834 DOI: 10.1016/j.biopha.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
Organoids refer to 3D cultures established to recapitulate histology, pathology, architecture, and genetic traits of various organs and tissues in the body, thereby replacing 2D cell cultures, xenograft, and animal models. Organoids form a 3D in vitro mimic of original tissues like the liver and are derived from embryonic or adult tissue stem cells. Liver and bile duct tumor organoids, also called, tumoroids capture genetic diversity, cellular, and pathophysiological properties of original tumors. Moreover, co-culture techniques along with genetic modulation of organoids allow for using tumoroids in liver and bile duct cancer research and drug screening/testing. Therefore, tumoroids are promising platforms for studying liver and bile duct cancer, which paves the way for the new era of personalized therapies. In the current review, we aimed to discuss liver and bile duct organoids with special emphasis on tumoroids and their applications, advantages, and shortcomings.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Yuda Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Zijun Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Kun Fan
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Han Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaoling Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaojian Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Dwyer BJ, Tirnitz-Parker JEE. Patient-derived organoid models to decode liver pathophysiology. Trends Endocrinol Metab 2024:S1043-2760(24)00200-5. [PMID: 39191607 DOI: 10.1016/j.tem.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer. Improved understanding of liver microenvironments, innovative biomaterials, and advanced imaging techniques now facilitate comprehensive and unbiased data analysis, paving the way for personalised medicine. In this review, we discuss state-of-the-art patient-derived liver organoid models, recent technological advancements, and strategies to enhance their clinical impact.
Collapse
Affiliation(s)
- Benjamin J Dwyer
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| | - Janina E E Tirnitz-Parker
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; Liver Cancer Collaborative, Perth, WA, Australia; www.livercancercollaborative.au.
| |
Collapse
|
15
|
Ghasemzadeh-Hasankolaei M, Pinheiro D, Nadine S, Mano JF. Strategies to decouple cell micro-scale and macro-scale environments for designing multifunctional biomimetic tissues. SOFT MATTER 2024; 20:6313-6326. [PMID: 39049813 DOI: 10.1039/d4sm00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The regulation of cellular behavior within a three-dimensional (3D) environment to execute a specific function remains a challenge in the field of tissue engineering. In native tissues, cells and matrices are arranged into 3D modular units, comprising biochemical and biophysical signals that orchestrate specific cellular activities. Modular tissue engineering aims to emulate this natural complexity through the utilization of functional building blocks with unique stimulation features. By adopting a modular approach and using well-designed biomaterials, cellular microenvironments can be effectively decoupled from their macro-scale surroundings, enabling the development of engineered tissues with enhanced multifunctionality and heterogeneity. We overview recent advancements in decoupling the cellular micro-scale niches from their macroenvironment and evaluate the implications of this strategy on cellular and tissue functionality.
Collapse
Affiliation(s)
| | - Diogo Pinheiro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sara Nadine
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Liu Q, Wang S, Fu J, Chen Y, Xu J, Wei W, Song H, Zhao X, Wang H. Liver regeneration after injury: Mechanisms, cellular interactions and therapeutic innovations. Clin Transl Med 2024; 14:e1812. [PMID: 39152680 PMCID: PMC11329751 DOI: 10.1002/ctm2.1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
The liver possesses a distinctive capacity for regeneration within the human body. Under normal circumstances, liver cells replicate themselves to maintain liver function. Compensatory replication of healthy hepatocytes is sufficient for the regeneration after acute liver injuries. In the late stage of chronic liver damage, a large number of hepatocytes die and hepatocyte replication is blocked. Liver regeneration has more complex mechanisms, such as the transdifferentiation between cell types or hepatic progenitor cells mediated. Dysregulation of liver regeneration causes severe chronic liver disease. Gaining a more comprehensive understanding of liver regeneration mechanisms would facilitate the advancement of efficient therapeutic approaches. This review provides an overview of the signalling pathways linked to different aspects of liver regeneration in various liver diseases. Moreover, new knowledge on cellular interactions during the regenerative process is also presented. Finally, this paper explores the potential applications of new technologies, such as nanotechnology, stem cell transplantation and organoids, in liver regeneration after injury, offering fresh perspectives on treating liver disease.
Collapse
Affiliation(s)
- Qi Liu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Senyan Wang
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Jing Fu
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Yao Chen
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Jing Xu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Wenjuan Wei
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hao Song
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Xiaofang Zhao
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hongyang Wang
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| |
Collapse
|
17
|
Shimamura A, Higashi M, Nagayabu K, Ono S. Stable two- and three-dimensional cholangiocyte culture systems from extrahepatic bile ducts of biliary atresia patients: use of structural and functional bile duct epithelium models for in vitro analyses. Cytotechnology 2024; 76:415-424. [PMID: 38933870 PMCID: PMC11196525 DOI: 10.1007/s10616-024-00620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 06/28/2024] Open
Abstract
We herein report two- (2D) and three-dimensional (3D) culture methods of cholangiocytes originating from extrahepatic bile ducts of biliary atresia (BA) patients. Cells were stabilized for in vitro analyses, and 3D culture by two different methods showed the structural and functional features of cholangiocytes in the gel scaffold. First, cells were obtained from gallbladder contents or resected tissues of patients at surgery and then cultured in our original conditioned medium with a cocktail of signaling inhibitors that maintains the immaturity and amplification of cells. Cells were immortalized by inducing SV40T and hTERT genes using lentivirus systems. Immunostaining with CK19 and Sox9 antibodies confirmed the cells as cholangiocytes. 3D organoids were formed in Matrigel in two different ways: by forming spheroids or via vertical growth from 2D cell sheets (2 + 1D culture). Organoids generated with both methods showed the uptake and excretion of rhodamine-123, and duct-like structures were also found. Our culture methods are simpler than previously reported methods and still show the structural and functional characteristics of cholangiocytes. Thus, this system is expected to be useful for the in vitro investigation of cholangiocyte damage or regeneration in BA patients.
Collapse
Affiliation(s)
- Ai Shimamura
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mayumi Higashi
- Department of Emergency and Critical Care Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Kazuya Nagayabu
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Ono
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
Rejas C, Junger H. Cholangiocyte Organoids in Liver Transplantation; a Comprehensive Review. Transpl Int 2024; 37:12708. [PMID: 39100755 PMCID: PMC11294148 DOI: 10.3389/ti.2024.12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024]
Abstract
Liver transplantation is the only curative option for many liver diseases that end up in liver failure, and cholangiopathy remains a challenging complication post-liver transplant, associated with significant morbidity and potential graft loss. The low availability of organs and high demand for transplantation motivate scientists to find novel interventions. Organoids, as three-dimensional cell cultures derived from adult cells or induced pluripotent cells, may help to address this problem. Different types of organoids have been described, from which cholangiocyte organoids offer a high level of versatility and plasticity for a deeper study of liver disease mechanisms. Cholangiocytes can be obtained from different segments of the biliary tree and have shown a remarkable capacity to adapt to new environments, presenting an effective system for studying cholangiopathies. Studies using cholangiocyte organoids show promising results for disease modeling, where organoids offer fundamental features to recapitulate the complexities of tissues in vitro and uncover fundamental pathological pathways to potentially reveal therapeutic strategies for personalized medicine. Organoids could hold the potential for regeneration of injured livers, representing tools of clinical impact in regenerative medicine when tissue damage is already present.
Collapse
Affiliation(s)
| | - H. Junger
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Budi NYP, Lai WY, Huang YH, Ho HN. 3D organoid cultivation improves the maturation and functional differentiation of cholangiocytes from human pluripotent stem cells. Front Cell Dev Biol 2024; 12:1361084. [PMID: 39040044 PMCID: PMC11260683 DOI: 10.3389/fcell.2024.1361084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
Idiopathic cholangiopathies are diseases that affect cholangiocytes, and they have unknown etiologies. Currently, orthotopic liver transplantation is the only treatment available for end-stage liver disease. Limited access to the bile duct makes it difficult to model cholangiocyte diseases. In this study, by mimicking the embryonic development of cholangiocytes and using a robust, feeder- and serum-free protocol, we first demonstrate the generation of unique functional 3D organoids consisting of small and large cholangiocytes derived from human pluripotent stem cells (PSCs), as opposed to traditional 2D culture systems. At day 28 of differentiation, the human PSC-derived cholangiocytes expressed markers of mature cholangiocytes, such as CK7, CK19, and cystic fibrosis transmembrane conductance regulator (CFTR). Compared with the 2D culture system-generated cholangiocytes, the 3D cholangiocyte organoids (COs) showed higher expression of the region-specific markers of intrahepatic cholangiocytes YAP1 and JAG1 and extrahepatic cholangiocytes AQP1 and MUC1. Furthermore, the COs had small-large tube-like structures and functional assays revealed that they exhibited characteristics of mature cholangiocytes, such as multidrug resistance protein 1 transporter function and CFTR channel activity. In addition to the extracellular matrix supports, the epidermal growth factor receptor (EGFR)-mediated signaling regulation might be involved in this cholangiocyte maturation and differentiation. These results indicated the successful generation of intrahepatic and extrahepatic cholangiocytes by using our 3D organoid protocol. The results highlight the advantages of our 3D culture system over the 2D culture system in promoting the functional differentiation and maturation of cholangiocytes. In summary, in advance of the previous works, our study provides a possible concept of small-large cholangiocyte transdifferentiation of human PSCs under cost-effective 3D culture conditions. The study findings have implications for the development of effective cell-based therapy using COs for patients with cholangiopathies.
Collapse
Affiliation(s)
- Nova Yuli Prasetyo Budi
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Wei-Yu Lai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Nerng Ho
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Fang H, Xu H, Yu J, Cao H, Li L. Human Hepatobiliary Organoids: Recent Advances in Drug Toxicity Verification and Drug Screening. Biomolecules 2024; 14:794. [PMID: 39062508 PMCID: PMC11274902 DOI: 10.3390/biom14070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Many drug and therapeutic modalities have emerged over the past few years. However, successful commercialization is dependent on their safety and efficacy evaluations. Several preclinical models are available for drug-screening and safety evaluations, including cellular- and molecular-level models, tissue and organoid models, and animal models. Organoids are three-dimensional cell cultures derived from primary tissues or stem cells that are structurally and functionally similar to the original organs and can self-renew, and they are used to establish various disease models. Human hepatobiliary organoids have been used to study the pathogenesis of diseases, such as hepatitis, liver fibrosis, hepatocellular carcinoma, primary sclerosing cholangitis and biliary tract cancer, as they retain the physiological and histological characteristics of the liver and bile ducts. Here, we review recent research progress in validating drug toxicity, drug screening and personalized therapy for hepatobiliary-related diseases using human hepatobiliary organoid models, discuss the challenges encountered in current research and evaluate the possible solutions.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Pathology and Pathophysiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
| | - Haoying Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| | - Jiong Yu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| |
Collapse
|
21
|
Afonso MB, Marques V, van Mil SW, Rodrigues CM. Human liver organoids: From generation to applications. Hepatology 2024; 79:1432-1451. [PMID: 36815360 PMCID: PMC11095893 DOI: 10.1097/hep.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Saskia W.C. van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, The Netherlands
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| |
Collapse
|
22
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
23
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
24
|
Jin H, Xue Z, Liu J, Ma B, Yang J, Lei L. Advancing Organoid Engineering for Tissue Regeneration and Biofunctional Reconstruction. Biomater Res 2024; 28:0016. [PMID: 38628309 PMCID: PMC11018530 DOI: 10.34133/bmr.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue damage and functional abnormalities in organs have become a considerable clinical challenge. Organoids are often applied as disease models and in drug discovery and screening. Indeed, several studies have shown that organoids are an important strategy for achieving tissue repair and biofunction reconstruction. In contrast to established stem cell therapies, organoids have high clinical relevance. However, conventional approaches have limited the application of organoids in clinical regenerative medicine. Engineered organoids might have the capacity to overcome these challenges. Bioengineering-a multidisciplinary field that applies engineering principles to biomedicine-has bridged the gap between engineering and medicine to promote human health. More specifically, bioengineering principles have been applied to organoids to accelerate their clinical translation. In this review, beginning with the basic concepts of organoids, we describe strategies for cultivating engineered organoids and discuss the multiple engineering modes to create conditions for breakthroughs in organoid research. Subsequently, studies on the application of engineered organoids in biofunction reconstruction and tissue repair are presented. Finally, we highlight the limitations and challenges hindering the utilization of engineered organoids in clinical applications. Future research will focus on cultivating engineered organoids using advanced bioengineering tools for personalized tissue repair and biofunction reconstruction.
Collapse
Affiliation(s)
- Hairong Jin
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
- Ningxia Medical University, Ningxia 750004, China
| | - Zengqi Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinnv Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Binbin Ma
- Department of Biology,
The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jianfeng Yang
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
25
|
Mao W, Li W, Hu X. Tumor hyperthermia research progress and application prospect in tumoroids (Review). Mol Clin Oncol 2024; 20:31. [PMID: 38476334 PMCID: PMC10928662 DOI: 10.3892/mco.2024.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Tumor hyperthermia is the fifth tumor treatment method after surgery, chemotherapy, radiotherapy and biological therapy, and is also one of the important adjuvant treatment methods for tumors. Hyperthermia can not only directly eliminate tumor cells, but also stimulate the antitumor immune response of the body, and improve the sensitivity of tumor tissues to radiotherapy and chemotherapy. An organoid is a tissue-specific cell cluster formed by 3D culture of various types of cells derived from target organ stem cells, which can reproduce the functions of target organs in vivo. At present, the research models of hepatocellular carcinoma (HCC) in vitro are mainly 2D culture cell line models, and there is no clinical report on tumor hyperthermia using HCC tumoroids. It was hypothesized that this will be a promising research direction.
Collapse
Affiliation(s)
- Wei Mao
- Department of General Surgery, Nanchang University Infectious Disease Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Wen Li
- Central Laboratory, Nanchang University Infectious Disease Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Xuguang Hu
- Department of Hepatobiliary Surgery, Organ Transplantation Center, Jiangxi Provincial People's Hospital, Donghu, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
26
|
Song X, Hou K, Zhou H, Yang J, Cao T, Zhang J. Liver organoids and their application in liver cancer research. Regen Ther 2024; 25:128-137. [PMID: 38226058 PMCID: PMC10788409 DOI: 10.1016/j.reth.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024] Open
Abstract
Liver cancer, a common and intractable liver-related disease, is a malignant tumor with a high morbidity, which needs a high treatment cost but still lacks perfect clinical treatment methods. Looking for an effective platform for liver cancer study and drug screening is urgent and important. Traditional analytical methods for liver disease studies mainly rely on the 2D cell culture and animal experiments, which both cannot fully recapitulate physiological and pathological processes of human liver. For example, cell culture can only show basic functions of cells in vitro, while animal models always hold the problem of species divergence. The organoids, a 3D invitro culture system emerged in recent years, is a cell-bound body with different cell types and has partial tissue functions. The organoid technology can reveal the growth state, structure, function and characteristics of the tissue or organ, and plays an important role in reconstructing invitro experimental models that can truly simulate the human liver. In this paper, we will give a brief introduction of liver organoids and review their applications in liver cancer research, especially in liver cancer pathogenesis, drug screening, precision medicine, regenerative medicine, and other fields. We have also discussed advantages and disadvantages of organoids, as well as future directions and perspectives towards liver organoids.
Collapse
Affiliation(s)
- Xinyu Song
- Binzhou Medical University, 264003 Yantai, Shandong, China
| | - Kaifei Hou
- Binzhou Medical University, 264003 Yantai, Shandong, China
| | - Hongyan Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 250300 Jinan, Shandong, China
| | - Jingyi Yang
- Binzhou Medical University, 264003 Yantai, Shandong, China
| | - Ting Cao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, Zhejiang, China
| | - Jiayu Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, 264003 Yantai, Shandong, China
| |
Collapse
|
27
|
Islam D, Israr I, Taleb MAB, Rao A, Yosief R, Sultana R, Sampaziotis F, Tysoe OC, Trauner M, Karpen SJ, Ghanekar A, Kamath BM. A novel model to study mechanisms of cholestasis in human cholangiocytes reveals a role for the SIPR2 pathway. Hepatol Commun 2024; 8:e0389. [PMID: 38407207 PMCID: PMC10898671 DOI: 10.1097/hc9.0000000000000389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/09/2023] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Ductular reactivity is central to the pathophysiology of cholangiopathies. Mechanisms underlying the reactive phenotype activation by exogenous inflammatory mediators and bile acids are poorly understood. METHODS Using human extrahepatic cholangiocyte organoids (ECOs) we developed an injury model emulating the cholestatic microenvironment with exposure to inflammatory mediators and various pathogenic bile acids. Moreover, we explored roles for the bile acid activated Sphingosine-1-phosphate receptor 2 (S1PR2) and potential beneficial effects of therapeutic bile acids UDCA and norUDCA. RESULTS Synergistic exposure to bile acids (taurocholic acid, glycocholic acid, glycochenodeoxycholic acid) and TNF-α for 24 hours induced a reactive state as measured by ECO diameter, proliferation, lactate dehydrogenase activity and reactive phenotype markers. While NorUDCA and UDCA treatments given 8 hours after injury induction both suppressed reactive phenotype activation and most injury parameters, proliferation was improved by NorUDCA only. Extrahepatic cholangiocyte organoid stimulation with S1PR2 agonist sphingosine-1-phosphate reproduced the cholangiocyte reactive state and upregulated S1PR2 downstream mediators; these effects were suppressed by S1PR2 antagonist JET-013 (JET), downstream mediator extracellular signal-regulated kinase 1/2 inhibitor, and by norUDCA or UDCA treatments. JET also partially suppressed reactive phenotype after bile acid injury. CONCLUSIONS We developed a novel model to study the reactive cholangiocyte state in response to pathological stimuli in cholestasis and demonstrated a contributory role of S1PR2 signaling in both injury and NorUDCA/UDCA treatments. This model is a valuable tool to further explore the pathophysiology of human cholangiopathies.
Collapse
Affiliation(s)
- Diana Islam
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Izza Israr
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mohamed A. B. Taleb
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aditya Rao
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robel Yosief
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rukhsar Sultana
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fotios Sampaziotis
- Wellcome–MRC Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Olivia C. Tysoe
- Wellcome–MRC Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Saul J. Karpen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anand Ghanekar
- Division of General Surgery, Department of Surgery, University Health Network & The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Binita M. Kamath
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Cardinale V, Paradiso S, Alvaro D. Biliary stem cells in health and cholangiopathies and cholangiocarcinoma. Curr Opin Gastroenterol 2024; 40:92-98. [PMID: 38320197 DOI: 10.1097/mog.0000000000001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW This review discusses evidence regarding progenitor populations of the biliary tree in the tissue regeneration and homeostasis, and the pathobiology of cholangiopathies and malignancies. RECENT FINDINGS In embryogenesis biliary multipotent progenitor subpopulation contributes cells not only to the pancreas and gall bladder but also to the liver. Cells equipped with a constellation of markers suggestive of the primitive endodermal phenotype exist in the peribiliary glands, the bile duct glands, of the intra- and extrahepatic bile ducts. These cells are able to be isolated and cultured easily, which demonstrates the persistence of a stable phenotype during in vitro expansion, the ability to self-renew in vitro, and the ability to differentiate between hepatocyte and biliary and pancreatic islet fates. SUMMARY In normal human livers, stem/progenitors cells are mostly restricted in two distinct niches, which are the bile ductules/canals of Hering and the peribiliary glands (PBGs) present inside the wall of large intrahepatic bile ducts. The existence of a network of stem/progenitor cell niches within the liver and along the entire biliary tree inform a patho-biological-based translational approach to biliary diseases and cholangiocarcinoma since it poses the basis to understand biliary regeneration after extensive or chronic injuries and progression to fibrosis and cancer.
Collapse
Affiliation(s)
| | - Savino Paradiso
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
29
|
Qu S, Xu R, Yi G, Li Z, Zhang H, Qi S, Huang G. Patient-derived organoids in human cancer: a platform for fundamental research and precision medicine. MOLECULAR BIOMEDICINE 2024; 5:6. [PMID: 38342791 PMCID: PMC10859360 DOI: 10.1186/s43556-023-00165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Cancer is associated with a high degree of heterogeneity, encompassing both inter- and intra-tumor heterogeneity, along with considerable variability in clinical response to common treatments across patients. Conventional models for tumor research, such as in vitro cell cultures and in vivo animal models, demonstrate significant limitations that fall short of satisfying the research requisites. Patient-derived tumor organoids, which recapitulate the structures, specific functions, molecular characteristics, genomics alterations and expression profiles of primary tumors. They have been efficaciously implemented in illness portrayal, mechanism exploration, high-throughput drug screening and assessment, discovery of innovative therapeutic targets and potential compounds, and customized treatment regimen for cancer patients. In contrast to conventional models, tumor organoids offer an intuitive, dependable, and efficient in vitro research model by conserving the phenotypic, genetic diversity, and mutational attributes of the originating tumor. Nevertheless, the organoid technology also confronts the bottlenecks and challenges, such as how to comprehensively reflect intra-tumor heterogeneity, tumor microenvironment, tumor angiogenesis, reduce research costs, and establish standardized construction processes while retaining reliability. This review extensively examines the use of tumor organoid techniques in fundamental research and precision medicine. It emphasizes the importance of patient-derived tumor organoid biobanks for drug development, screening, safety evaluation, and personalized medicine. Additionally, it evaluates the application of organoid technology as an experimental tumor model to better understand the molecular mechanisms of tumor. The intent of this review is to explicate the significance of tumor organoids in cancer research and to present new avenues for the future of tumor research.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Rongyang Xu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Huayang Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
30
|
Delacher M, Schmidleithner L, Simon M, Stüve P, Sanderink L, Hotz-Wagenblatt A, Wuttke M, Schambeck K, Ruhland B, Hofmann V, Bittner S, Ritter U, Pant A, Helbich SS, Voss M, Lemmermann NA, Bessiri-Schake L, Bohn T, Eigenberger A, Menevse AN, Gebhard C, Strieder N, Abken H, Rehli M, Huehn J, Beckhove P, Hehlgans T, Junger H, Geissler EK, Prantl L, Werner JM, Schmidl C, Brors B, Imbusch CD, Feuerer M. The effector program of human CD8 T cells supports tissue remodeling. J Exp Med 2024; 221:e20230488. [PMID: 38226976 PMCID: PMC10791561 DOI: 10.1084/jem.20230488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.
Collapse
Affiliation(s)
- Michael Delacher
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Lisa Schmidleithner
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Malte Simon
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Lieke Sanderink
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center, Heidelberg, Germany
| | - Marina Wuttke
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Kathrin Schambeck
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Brigitte Ruhland
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Veronika Hofmann
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Sebastian Bittner
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Uwe Ritter
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Asmita Pant
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Sara Salome Helbich
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Morten Voss
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
- Institute of Virology, University Medical Center Mainz, Mainz, Germany
- Institute of Virology, University of Bonn, Bonn, Germany
| | - Lisa Bessiri-Schake
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Toszka Bohn
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Andreas Eigenberger
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Ayse Nur Menevse
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Interventional Immunology, University Regensburg, Regensburg, Germany
| | | | | | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
- RESIST, Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
| | - Philipp Beckhove
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Interventional Immunology, University Regensburg, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Henrik Junger
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Edward K. Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jens M. Werner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | - Benedikt Brors
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Heidelberg, Heidelberg University, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Charles D. Imbusch
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| |
Collapse
|
31
|
Cross-Najafi AA, Farag K, Chen AM, Smith LJ, Zhang W, Li P, Ekser B. The Long Road to Develop Custom-built Livers: Current Status of 3D Liver Bioprinting. Transplantation 2024; 108:357-368. [PMID: 37322580 PMCID: PMC10724374 DOI: 10.1097/tp.0000000000004668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although liver transplantation is the gold-standard therapy for end-stage liver disease, the shortage of suitable organs results in only 25% of waitlisted patients undergoing transplants. Three-dimensional (3D) bioprinting is an emerging technology and a potential solution for personalized medicine applications. This review highlights existing 3D bioprinting technologies of liver tissues, current anatomical and physiological limitations to 3D bioprinting of a whole liver, and recent progress bringing this innovation closer to clinical use. We reviewed updated literature across multiple facets in 3D bioprinting, comparing laser, inkjet, and extrusion-based printing modalities, scaffolded versus scaffold-free systems, development of an oxygenated bioreactor, and challenges in establishing long-term viability of hepatic parenchyma and incorporating structurally and functionally robust vasculature and biliary systems. Advancements in liver organoid models have also increased their complexity and utility for liver disease modeling, pharmacologic testing, and regenerative medicine. Recent developments in 3D bioprinting techniques have improved the speed, anatomical, and physiological accuracy, and viability of 3D-bioprinted liver tissues. Optimization focusing on 3D bioprinting of the vascular system and bile duct has improved both the structural and functional accuracy of these models, which will be critical in the successful expansion of 3D-bioprinted liver tissues toward transplantable organs. With further dedicated research, patients with end-stage liver disease may soon be recipients of customized 3D-bioprinted livers, reducing or eliminating the need for immunosuppressive regimens.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristine Farag
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela M. Chen
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lester J. Smith
- Department of Radiology and Imaging Sciences, Indiana University of School of Medicine, Indianapolis, IN, USA
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
32
|
Stüve P, Nerb B, Harrer S, Wuttke M, Feuerer M, Junger H, Eggenhofer E, Lungu B, Laslau S, Ritter U. Analysis of organoid and immune cell co-cultures by machine learning-empowered image cytometry. Front Med (Lausanne) 2024; 10:1274482. [PMID: 38298516 PMCID: PMC10827864 DOI: 10.3389/fmed.2023.1274482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/24/2023] [Indexed: 02/02/2024] Open
Abstract
Organoids are three-dimensional (3D) structures that can be derived from stem cells or adult tissue progenitor cells and exhibit an extraordinary ability to autonomously organize and resemble the cellular composition and architectural integrity of specific tissue segments. This feature makes them a useful tool for analyzing therapeutical relevant aspects, including organ development, wound healing, immune disorders and drug discovery. Most organoid models do not contain cells that mimic the neighboring tissue’s microenvironment, which could potentially hinder deeper mechanistic studies. However, to use organoid models in mechanistic studies, which would enable us to better understand pathophysiological processes, it is necessary to emulate the in situ microenvironment. This can be accomplished by incorporating selected cells of interest from neighboring tissues into the organoid culture. Nevertheless, the detection and quantification of organoids in such co-cultures remains a major technical challenge. These imaging analysis approaches would require an accurate separation of organoids from the other cell types in the co-culture. To efficiently detect and analyze 3D organoids in co-cultures, we developed a high-throughput imaging analysis platform. This method integrates automated imaging techniques and advanced image processing tools such as grayscale conversion, contrast enhancement, membrane detection and structure separation. Based on machine learning algorithms, we were able to identify and classify 3D organoids within dense co-cultures of immune cells. This procedure allows a high-throughput analysis of organoid-associated parameters such as quantity, size, and shape. Therefore, the technology has significant potential to advance contextualized research using organoid co-cultures and their potential applications in translational medicine.
Collapse
Affiliation(s)
- Philipp Stüve
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Benedikt Nerb
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University of Regensburg, Regensburg, Germany
| | - Selina Harrer
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Marina Wuttke
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Markus Feuerer
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University of Regensburg, Regensburg, Germany
| | - Henrik Junger
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Elke Eggenhofer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Uwe Ritter
- Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Li J, Liu J, Xia W, Yang H, Sha W, Chen H. Deciphering the Tumor Microenvironment of Colorectal Cancer and Guiding Clinical Treatment With Patient-Derived Organoid Technology: Progress and Challenges. Technol Cancer Res Treat 2024; 23:15330338231221856. [PMID: 38225190 PMCID: PMC10793199 DOI: 10.1177/15330338231221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors of the digestive tract worldwide. Despite notable advancements in CRC treatment, there is an urgent requirement for preclinical model systems capable of accurately predicting drug efficacy in CRC patients, to identify more effective therapeutic options. In recent years, substantial strides have been made in the field of organoid technology, patient-derived organoid models can phenotypically replicate the original intra-tumor and inter-tumor heterogeneity of CRC, reflecting cellular interactions of the tumor microenvironment. Patient-derived organoid models have become an indispensable tool for investigating the pathogenesis of CRC and facilitating translational research. This review focuses on the application of organoid technology in CRC modeling, tumor microenvironment, and guiding clinical treatment, particularly in drug screening and personalized medicine. It also examines the existing challenges encountered in clinical organoid research and provides a prospective outlook on the future development directions of clinical organoid research, encompassing the standardization of organoid culture technology and the application of tissue engineering technology.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianhua Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wuzheng Xia
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Nejak-Bowen K, Monga SP. Wnt-β-catenin in hepatobiliary homeostasis, injury, and repair. Hepatology 2023; 78:1907-1921. [PMID: 37246413 PMCID: PMC10687322 DOI: 10.1097/hep.0000000000000495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
Wnt-β-catenin signaling has emerged as an important regulatory pathway in the liver, playing key roles in zonation and mediating contextual hepatobiliary repair after injuries. In this review, we will address the major advances in understanding the role of Wnt signaling in hepatic zonation, regeneration, and cholestasis-induced injury. We will also touch on some important unanswered questions and discuss the relevance of modulating the pathway to provide therapies for complex liver pathologies that remain a continued unmet clinical need.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
35
|
Cai YL, Nan F, Tang GT, Ma Y, Ren Y, Xiong XZ, Zhou RX, Li FY, Cheng NS, Jiang X. Fabrication of 3D printed PCL/PEG artificial bile ducts as supportive scaffolds to promote regeneration of extrahepatic bile ducts in a canine biliary defect model. J Mater Chem B 2023; 11:9443-9458. [PMID: 37727116 DOI: 10.1039/d3tb01250f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
In this study, a 3D porous poly(ε-caprolactone)/polyethylene glycol (PCL/PEG) composite artificial tubular bile duct was fabricated for extrahepatic bile duct regeneration. PCL/PEG composite scaffolds were fabricated by 3D printing, and the molecular structure, mechanical properties, thermal properties, morphology, and in vitro biocompatibility were characterized for further application as artificial bile ducts. A bile duct defect model was established in beagle dogs for in vivo implantation. The results demonstrated that the implanted PE1 ABD, serving as a supportive scaffold, effectively stimulated the regeneration of a new bile duct comprising CK19-positive and CK7-positive epithelial cells within 30 days. Remarkably, after 8 months, the newly formed bile duct exhibited an epithelial layer resembling the normal structure. Furthermore, the study revealed collagen deposition, biliary muscular formation, and the involvement of microvessels and fibroblasts in the regenerative process. In contrast, the anastomotic area without ABD implantation displayed only partial restoration of the epithelial layer, accompanied by fibroblast proliferation and subsequent bile duct fibrosis. These findings underscore the limited inherent repair capacity of the bile duct and underscore the beneficial role of the PE1 ABD artificial tubular bile duct in promoting biliary regeneration.
Collapse
Affiliation(s)
- Yu-Long Cai
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fang Nan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Guo-Tao Tang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yuan Ma
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yi Ren
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xian-Ze Xiong
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rong-Xing Zhou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fu-Yu Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Nan-Sheng Cheng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xia Jiang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
36
|
Rutherford D, Ho GT. Therapeutic Potential of Human Intestinal Organoids in Tissue Repair Approaches in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2023; 29:1488-1498. [PMID: 37094358 PMCID: PMC10472753 DOI: 10.1093/ibd/izad044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 04/26/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic immune-mediated conditions characterized by significant gut tissue damage due to uncontrolled inflammation. Anti-inflammatory treatments have improved, but there are no current prorepair approaches. Organoids have developed into a powerful experimental platform to study mechanisms of human diseases. Here, we specifically focus on its role as a direct tissue repair modality in IBD. We discuss the scientific rationale for this, recent parallel advances in scientific technologies (CRISPR [clustered regularly interspaced short palindromic repeats]/Cas9 and metabolic programming), and in addition, the clinical IBD context in which this therapeutic approach is tractable. Finally, we review the translational roadmap for the application of organoids and the need for this as a novel direction in IBD.
Collapse
Affiliation(s)
- Duncan Rutherford
- Gut Research Unit, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Gwo-Tzer Ho
- Gut Research Unit, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Lu Q, Liu T, Han Z, Zhao J, Fan X, Wang H, Song J, Ye H, Sun J. Revolutionizing cancer treatment: The power of cell-based drug delivery systems. J Control Release 2023; 361:604-620. [PMID: 37579974 DOI: 10.1016/j.jconrel.2023.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Intravenous administration of drugs is a widely used cancer therapy approach. However, the efficacy of these drugs is often hindered by various biological barriers, including circulation, accumulation, and penetration, resulting in poor delivery to solid tumors. Recently, cell-based drug delivery platforms have emerged as promising solutions to overcome these limitations. These platforms offer several advantages, including prolonged circulation time, active targeting, controlled release, and excellent biocompatibility. Cell-based delivery systems encompass cell membrane coating, intracellular loading, and extracellular backpacking. These innovative platforms hold the potential to revolutionize cancer diagnosis, monitoring, and treatment, presenting a plethora of opportunities for the advancement and integration of pharmaceuticals, medicine, and materials science. Nevertheless, several technological, ethical, and financial barriers must be addressed to facilitate the translation of these platforms into clinical practice. In this review, we explore the emerging strategies to overcome these challenges, focusing specifically on the functions and advantages of cell-mediated drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zeyu Han
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jian Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Helin Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiaxuan Song
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China; Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich 8092, Switzerland.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
38
|
Cardinale V, Lanthier N, Baptista PM, Carpino G, Carnevale G, Orlando G, Angelico R, Manzia TM, Schuppan D, Pinzani M, Alvaro D, Ciccocioppo R, Uygun BE. Cell transplantation-based regenerative medicine in liver diseases. Stem Cell Reports 2023; 18:1555-1572. [PMID: 37557073 PMCID: PMC10444572 DOI: 10.1016/j.stemcr.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023] Open
Abstract
This review aims to evaluate the current preclinical state of liver bioengineering, the clinical context for liver cell therapies, the cell sources, the delivery routes, and the results of clinical trials for end-stage liver disease. Different clinical settings, such as inborn errors of metabolism, acute liver failure, chronic liver disease, liver cirrhosis, and acute-on-chronic liver failure, as well as multiple cellular sources were analyzed; namely, hepatocytes, hepatic progenitor cells, biliary tree stem/progenitor cells, mesenchymal stromal cells, and macrophages. The highly heterogeneous clinical scenario of liver disease and the availability of multiple cellular sources endowed with different biological properties make this a multidisciplinary translational research challenge. Data on each individual liver disease and more accurate endpoints are urgently needed, together with a characterization of the regenerative pathways leading to potential therapeutic benefit. Here, we critically review these topics and identify related research needs and perspectives in preclinical and clinical settings.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Nicolas Lanthier
- Service d'Hépato-gastroentérologie, Cliniques Universitaires Saint-Luc, Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain; Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry, and Morphological Sciences with Interest in Transplant, Oncology, and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Orlando
- Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Roberta Angelico
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tommaso Maria Manzia
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Detlef Schuppan
- Institute of Translational Immunology, Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK
| | - Domenico Alvaro
- Department of Translation and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy.
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
39
|
ten Dam MJ, Frederix GW, ten Ham RM, van der Laan LJ, Schneeberger K. Toward Transplantation of Liver Organoids: From Biology and Ethics to Cost-effective Therapy. Transplantation 2023; 107:1706-1717. [PMID: 36757819 PMCID: PMC10358442 DOI: 10.1097/tp.0000000000004520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 02/10/2023]
Abstract
Liver disease is a common cause of morbidity and mortality, and many patients would benefit from liver transplantation. However, because of a shortage of suitable donor livers, even of those patients who are placed on the donor liver waiting list, many do not survive the waiting time for transplantation. Therefore, alternative treatments for end-stage liver disease need to be explored. Recent advances in organoid technology might serve as a solution to overcome the donor liver shortage in the future. In this overview, we highlight the potential of organoid technology for cell therapy and tissue engineering approaches. Both organoid-based approaches could be used as treatment for end-stage liver disease patients. Additionally, organoid-based cell therapy can also be used to repair liver grafts ex vivo to increase the supply of transplantable liver tissue. The potential of both approaches to become clinically available is carefully assessed, including their clinical, ethical, and economic implications. We provide insight into what aspects should be considered further to allow alternatives to donor liver transplantation to be successfully clinically implemented.
Collapse
Affiliation(s)
- Marjolein J.M. ten Dam
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Geert W.J. Frederix
- Department of Public Health, Healthcare Innovation and Evaluation and Medical Humanities, Julius Center, Utrecht University, Utrecht, The Netherlands
| | - Renske M.T. ten Ham
- Department of Public Health, Healthcare Innovation and Evaluation and Medical Humanities, Julius Center, Utrecht University, Utrecht, The Netherlands
| | - Luc J.W. van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Kerstin Schneeberger
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
40
|
Chen J, Ma S, Yang H, Liang X, Yao H, Guo B, Chen D, Jiang J, Shi D, Xin J, Ren K, Zhou X, Li Y, Geng L, Li J. Generation and metabolomic characterization of functional ductal organoids with biliary tree networks in decellularized liver scaffolds. Bioact Mater 2023; 26:452-464. [PMID: 37035760 PMCID: PMC10073412 DOI: 10.1016/j.bioactmat.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/18/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Developing functional ductal organoids (FDOs) is essential for liver regenerative medicine. We aimed to construct FDOs with biliary tree networks in rat decellularized liver scaffolds (DLSs) with primary cholangiocytes isolated from mouse bile ducts. The developed FDOs were dynamically characterized by functional assays and metabolomics for bioprocess clarification. FDOs were reconstructed in DLSs retaining native structure and bioactive factors with mouse primary cholangiocytes expressing enriched biomarkers. Morphological assessment showed that biliary tree-like structures gradually formed from day 3 to day 14. The cholangiocytes in FDOs maintained high viability and expressed 11 specific biomarkers. Basal-apical polarity was observed at day 14 with immunostaining for E-cadherin and acetylated α-tubulin. The rhodamine 123 transport assay and active collection of cholyl-lysyl-fluorescein exhibited the specific functions of bile secretion and transportation at day 14 compared to those in monolayer and hydrogel culture systems. The metabolomics analysis with 1075 peak pairs showed that serotonin, as a key molecule of the tryptophan metabolism pathway linked to biliary tree reconstruction, was specifically expressed in FDOs during the whole period of culture. Such FDOs with biliary tree networks and serotonin expression may be applied for disease modeling and drug screening, which paves the way for future clinical therapeutic applications.
Collapse
Affiliation(s)
- Jiaxian Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Shiwen Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Hui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Heng Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Beibei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xingping Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Yun Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- Corresponding author.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
- Corresponding author. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
| |
Collapse
|
41
|
Jensen KB, Little MH. Organoids are not organs: Sources of variation and misinformation in organoid biology. Stem Cell Reports 2023; 18:1255-1270. [PMID: 37315519 DOI: 10.1016/j.stemcr.2023.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
In the past decade, the term organoid has moved from obscurity to common use to describe a 3D in vitro cellular model of a tissue that recapitulates structural and functional elements of the in vivo organ it models. The term organoid is now applied to structures formed as a result of two distinct processes: the capacity for adult epithelial stem cells to re-create a tissue niche in vitro and the ability to direct the differentiation of pluripotent stem cells to a 3D self-organizing multicellular model of organogenesis. While these two organoid fields rely upon different stem cell types and recapitulate different processes, both share common challenges around robustness, accuracy, and reproducibility. Critically, organoids are not organs. This commentary serves to discuss these challenges, how they impact genuine utility, and shine a light on the need to improve the standards applied to all organoid approaches.
Collapse
Affiliation(s)
- Kim Bak Jensen
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Melissa Helen Little
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Centre for Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
42
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
43
|
Giuli L, Santopaolo F, Pallozzi M, Pellegrino A, Coppola G, Gasbarrini A, Ponziani FR. Cellular therapies in liver and pancreatic diseases. Dig Liver Dis 2023; 55:563-579. [PMID: 36543708 DOI: 10.1016/j.dld.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 04/29/2023]
Abstract
Over the past two decades, developments in regenerative medicine in gastroenterology have been greatly enhanced by the application of stem cells, which can self-replicate and differentiate into any somatic cell. The discovery of induced pluripotent stem cells has opened remarkable perspectives on tissue regeneration, including their use as a bridge to transplantation or as supportive therapy in patients with organ failure. The improvements in DNA manipulation and gene editing strategies have also allowed to clarify the physiopathology and to correct the phenotype of several monogenic diseases, both in vivo and in vitro. Further progress has been made with the development of three-dimensional cultures, known as organoids, which have demonstrated morphological and functional complexity comparable to that of a miniature organ. Hence, owing to its protean applications and potential benefits, cell and organoid transplantation has become a hot topic for the management of gastrointestinal diseases. In this review, we describe current knowledge on cell therapies in hepatology and pancreatology, providing insight into their future applications in regenerative medicine.
Collapse
Affiliation(s)
- Lucia Giuli
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Pallozzi
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Pellegrino
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
44
|
Sun XC, Kong DF, Zhao J, Faber KN, Xia Q, He K. Liver organoids: established tools for disease modeling and drug development. Hepatol Commun 2023; 7:02009842-202304010-00019. [PMID: 36972388 PMCID: PMC10043560 DOI: 10.1097/hc9.0000000000000105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
In the past decade, liver organoids have evolved rapidly as valuable research tools, providing novel insights into almost all types of liver diseases, including monogenic liver diseases, alcohol-associated liver disease, metabolic-associated fatty liver disease, various types of (viral) hepatitis, and liver cancers. Liver organoids in part mimic the microphysiology of the human liver and fill a gap in high-fidelity liver disease models to a certain extent. They hold great promise to elucidate the pathogenic mechanism of a diversity of liver diseases and play a crucial role in drug development. Moreover, it is challenging but opportunistic to apply liver organoids for tailored therapies of various liver diseases. The establishment, applications, and challenges of different types of liver organoids, for example, derived from embryonic, adult, or induced pluripotent stem cells, to model different liver diseases, are presented in this review.
Collapse
Affiliation(s)
- Xi-Cheng Sun
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - De-Fu Kong
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
45
|
Fiorotto R, Mariotti V, Taleb SA, Zehra SA, Nguyen M, Amenduni M, Strazzabosco M. Cell-matrix interactions control biliary organoid polarity, architecture, and differentiation. Hepatol Commun 2023; 7:e0094. [PMID: 36972396 PMCID: PMC10503667 DOI: 10.1097/hc9.0000000000000094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/19/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND AND AIMS Cholangiopathies are an important cause of morbidity and mortality. Their pathogenesis and treatment remain unclear in part because of the lack of disease models relevant to humans. Three-dimensional biliary organoids hold great promise; however, the inaccessibility of their apical pole and the presence of extracellular matrix (ECM) limits their application. We hypothesized that signals coming from the extracellular matrix regulate organoids' 3-dimensional architecture and could be manipulated to generate novel organotypic culture systems. APPROACH AND RESULTS Biliary organoids were generated from human livers and grown embedded into Culturex Basement Membrane Extract as spheroids around an internal lumen (EMB). When removed from the EMC, biliary organoids revert their polarity and expose the apical membrane on the outside (AOOs). Functional, immunohistochemical, and transmission electron microscope studies, along with bulk and single-cell transcriptomic, demonstrate that AOOs are less heterogeneous and show increased biliary differentiation and decreased expression of stem cell features. AOOs transport bile acids and have competent tight junctions. When cocultured with liver pathogenic bacteria (Enterococcus spp.), AOOs secrete a range of proinflammatory chemokines (ie, MCP1, IL8, CCL20, and IP-10). Transcriptomic analysis and treatment with a beta-1-integrin blocking antibody identified beta-1-integrin signaling as a sensor of the cell-extracellular matrix interaction and a determinant of organoid polarity. CONCLUSIONS This novel organoid model can be used to study bile transport, interactions with pathobionts, epithelial permeability, cross talk with other liver and immune cell types, and the effect of matrix changes on the biliary epithelium and obtain key insights into the pathobiology of cholangiopathies.
Collapse
Affiliation(s)
- Romina Fiorotto
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Valeria Mariotti
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shakila Afroz Taleb
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Syeda A. Zehra
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mytien Nguyen
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mariangela Amenduni
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mario Strazzabosco
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Calà G, Sina B, De Coppi P, Giobbe GG, Gerli MFM. Primary human organoids models: Current progress and key milestones. Front Bioeng Biotechnol 2023; 11:1058970. [PMID: 36959902 PMCID: PMC10029057 DOI: 10.3389/fbioe.2023.1058970] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
During the past 10 years the world has experienced enormous progress in the organoids field. Human organoids have shown huge potential to study organ development, homeostasis and to model diseases in vitro. The organoid technology has been widely and increasingly applied to generate patient-specific in vitro 3D cultures, starting from both primary and reprogrammed stem/progenitor cells. This has consequently fostered the development of innovative disease models and new regenerative therapies. Human primary, or adult stem/progenitor cell-derived, organoids can be derived from both healthy and pathological primary tissue samples spanning from fetal to adult age. The resulting 3D culture can be maintained for several months and even years, while retaining and resembling its original tissue's properties. As the potential of this technology expands, new approaches are emerging to further improve organoid applications in biology and medicine. This review discusses the main organs and tissues which, as of today, have been modelled in vitro using primary organoid culture systems. Moreover, we also discuss the advantages, limitations, and future perspectives of primary human organoids in the fields of developmental biology, disease modelling, drug testing and regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Calà
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Beatrice Sina
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Politecnico di Milano, Milano, Italy
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Giovanni Giuseppe Giobbe
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Mattia Francesco Maria Gerli
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
47
|
Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G, Wang L, Griffiths C, Brown ML, Scott WE, Pereyra-Gerber P, Gelson WTH, Brown S, Dillon S, Muraro D, Sharp J, Neary M, Box H, Tatham L, Stewart J, Curley P, Pertinez H, Forrest S, Mlcochova P, Varankar SS, Darvish-Damavandi M, Mulcahy VL, Kuc RE, Williams TL, Heslop JA, Rossetti D, Tysoe OC, Galanakis V, Vila-Gonzalez M, Crozier TWM, Bargehr J, Sinha S, Upponi SS, Fear C, Swift L, Saeb-Parsy K, Davies SE, Wester A, Hagström H, Melum E, Clements D, Humphreys P, Herriott J, Kijak E, Cox H, Bramwell C, Valentijn A, Illingworth CJR, Dahman B, Bastaich DR, Ferreira RD, Marjot T, Barnes E, Moon AM, Barritt AS, Gupta RK, Baker S, Davenport AP, Corbett G, Gorgoulis VG, Buczacki SJA, Lee JH, Matheson NJ, Trauner M, Fisher AJ, Gibbs P, Butler AJ, Watson CJE, Mells GF, Dougan G, Owen A, Lohse AW, Vallier L, Sampaziotis F. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2023; 615:134-142. [PMID: 36470304 PMCID: PMC9977684 DOI: 10.1038/s41586-022-05594-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Teresa Brevini
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| | - Mailis Maes
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gwilym J Webb
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Binu V John
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | - Claudia D Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gustav Buescher
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lu Wang
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Chelsea Griffiths
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marnie L Brown
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - William E Scott
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - William T H Gelson
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Scott Dillon
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Jo Sharp
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Megan Neary
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Box
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lee Tatham
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - James Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Paul Curley
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Henry Pertinez
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sally Forrest
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | | | - Mahnaz Darvish-Damavandi
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Victoria L Mulcahy
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - James A Heslop
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Olivia C Tysoe
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | | | | | - Thomas W M Crozier
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Johannes Bargehr
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sara S Upponi
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Corrina Fear
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Lisa Swift
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Axel Wester
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Hybrid Technology Hub Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Jo Herriott
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edyta Kijak
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Cox
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Chloe Bramwell
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anthony Valentijn
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher J R Illingworth
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Bassam Dahman
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Dustin R Bastaich
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Raphaella D Ferreira
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | - Thomas Marjot
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Andrew M Moon
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Alfred S Barritt
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Gareth Corbett
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Simon J A Buczacki
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
- NHS Blood and Transplant, Cambridge, UK
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrew J Fisher
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Gibbs
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrew J Butler
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christopher J E Watson
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre, and the NIHR Blood and Transplant Research Unit (BTRU) at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT), Cambridge, UK
| | - George F Mells
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
- Berlin Institute of Health (BIH), BIH Centre for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
48
|
Afzal Z, Huguet EL. Bioengineering liver tissue by repopulation of decellularised scaffolds. World J Hepatol 2023; 15:151-179. [PMID: 36926238 PMCID: PMC10011915 DOI: 10.4254/wjh.v15.i2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Liver transplantation is the only curative therapy for end stage liver disease, but is limited by the organ shortage, and is associated with the adverse consequences of immunosuppression. Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution, allowing reliable and timely organ sourcing without the need for immunosuppression. Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact, as well as retaining the instructive cell fate determining biochemicals contained therein. Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models, using a wide range of cell types including primary cells, cell lines, foetal stem cells, and induced pluripotent stem cells. Within these models, a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo. Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes, though advances in organoid culture may help address this. Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo, but with cell types that would limit clinical applications, and which have not been shown to have the specific functions of liver sinusoidal endothelial cells. Minority cell groups such as Kupffer cells and stellate cells have not been repopulated. Bioengineering by repopulation of decellularised scaffolds has significantly progressed, but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.
Collapse
Affiliation(s)
- Zeeshan Afzal
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Laurent Huguet
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
49
|
Rezabeigi E, Griffanti G, Nazhat SN. Effect of Fibrillization pH on Gelation Viscoelasticity and Properties of Biofabricated Dense Collagen Matrices via Gel Aspiration-Ejection. Int J Mol Sci 2023; 24:ijms24043889. [PMID: 36835306 PMCID: PMC9967780 DOI: 10.3390/ijms24043889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Reconstituted hydrogels based on the self-assembly of acid-solubilized collagen molecules have been extensively used as in vitro models and precursors in biofabrication processes. This study investigated the effect of fibrillization pH-ranging from 4 to 11-on real-time rheological property changes during the gelation of collagen hydrogels and its interplay with the properties of subsequently biofabricated dense collagen matrices generated via automated gel aspiration-ejection (GAE). A contactless, nondestructive technique was used to characterize the temporal progression in shear storage modulus (G', or stiffness) during collagen gelation. There was a relative increase in G' of the hydrogels from 36 to 900 Pa with an increase in gelation pH. Automated GAE, which simultaneously imparts collagen fibrillar compaction and alignment, was then applied to these precursor collagen hydrogels to biofabricate native extracellular matrix-like densified gels. In line with viscoelastic properties, only hydrogels fibrillized in the 6.5 < pH ≤ 10 range could be densified via GAE. There was an increase in both fibrillar density and alignment in the GAE-derived matrices with an increase in gelation pH. These factors, combined with a higher G' in the alkaline precursor hydrogels, led to a significant increase in the micro-compressive modulus of GAE-densified gels of pH 9 and 10. Furthermore, NIH/3T3 fibroblast-seeded GAE-derived matrices densified from gels fibrillized in the pH range of 7 to 10 exhibited low cell mortality with >80% viability. It is anticipated that the results of this study can be potentially applicable to other hydrogel systems, as well as biofabrication techniques involving needles or nozzles, such as injection and bioprinting.
Collapse
|
50
|
Justin AW, Cammarata F, Guy AA, Estevez SR, Burgess S, Davaapil H, Stavropoulou-Tatla A, Ong J, Jacob AG, Saeb-Parsy K, Sinha S, Markaki AE. Densified collagen tubular grafts for human tissue replacement and disease modelling applications. BIOMATERIALS ADVANCES 2023; 145:213245. [PMID: 36549149 DOI: 10.1016/j.bioadv.2022.213245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
There is a significant need across multiple indications for an off-the-shelf bioengineered tubular graft which fulfils the mechanical and biological requirements for implantation and function but does not necessarily require cells for manufacture or deployment. Herein, we present a tissue-like tubular construct using a cell-free, materials-based method of manufacture, utilizing densified collagen hydrogel. Our tubular grafts are seamless, mechanically strong, customizable in terms of lumen diameter and wall thickness, and display a uniform fibril density across the wall thickness and along the tube length. While the method enables acellular grafts to be generated rapidly, inexpensively, and to a wide range of specifications, the cell-compatible densification process also enables a high density of cells to be incorporated uniformly into the walls of the tubes, which we show can be maintained under perfusion culture. Additionally, the method enables tubes consisting of distinct cell domains with cellular configurations at the boundaries which may be useful for modelling aortic disease. Further, we demonstrate additional steps which allow for luminal surface patterning. These results highlight the universality of this approach and its potential for developing the next generation of bioengineered grafts.
Collapse
Affiliation(s)
- Alexander W Justin
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Federico Cammarata
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Andrew A Guy
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Silas R Estevez
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Sebastian Burgess
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Hongorzul Davaapil
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - John Ong
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK; East of England Gastroenterology Speciality Training Program, Cambridge, UK
| | - Aishwarya G Jacob
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Sanjay Sinha
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Athina E Markaki
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| |
Collapse
|