1
|
Gao G, Liu SM, Hao FB, Wang QN, Wang XP, Wang MJ, Bao XY, Han C, Duan L. Factors Influencing Collateral Circulation Formation After Indirect Revascularization for Moyamoya Disease: a Narrative Review. Transl Stroke Res 2024; 15:1005-1014. [PMID: 37592190 DOI: 10.1007/s12975-023-01185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Indirect revascularization is one of the main techniques for the treatment of Moyamoya disease. The formation of good collateral circulation is a key measure to improve cerebral blood perfusion and reduce the risk of secondary stroke, and is the main method for evaluating the effect of indirect revascularization. Therefore, how to predict and promote the formation of collateral circulation before and after surgery is important for improving the success rate of indirect revascularization in Moyamoya disease. Previous studies have shown that vascular endothelial growth factor, endothelial progenitor cells, Caveolin-1, and other factors observed in patients with Moyamoya disease may play a key role in the generation of collateral vessels after indirect revascularization through endothelial hyperplasia and smooth muscle migration. In addition, mutations in the genetic factor RNF213 have also been associated with this process. This study summarizes the factors and mechanisms influencing collateral circulation formation after indirect revascularization in Moyamoya disease.
Collapse
Affiliation(s)
- Gan Gao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Si-Meng Liu
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Fang-Bin Hao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Qian-Nan Wang
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiao-Peng Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Min-Jie Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiang-Yang Bao
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Cong Han
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.
| |
Collapse
|
2
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
3
|
Li L, Li D, Zhu J, Wang Y, Zhao F, Cheng J, Tuan RS, Hu X, Ao Y. Downregulation of TGF-β1 in fibro-adipogenic progenitors initiates muscle ectopic mineralization. J Bone Miner Res 2024; 39:1147-1161. [PMID: 38896028 DOI: 10.1093/jbmr/zjae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
In previous studies, we have demonstrated that stress response-induced high glucocorticoid levels could be the underlying cause of traumatic heterotopic ossification (HO), and we have developed a glucocorticoid-induced ectopic mineralization (EM) mouse model by systemic administration of a high dose of dexamethasone (DEX) to animals with muscle injury induced by cardiotoxin injection. In this model, dystrophic calcification (DC) developed into HO in a cell autonomous manner. However, it is not clear how DC is formed after DEX treatment. Therefore, in this study, we aimed to explore how glucocorticoids initiate muscle EM at a cellular and molecular level. We showed that DEX treatment inhibited inflammatory cell infiltration into injured muscle but inflammatory cytokine production in the muscle was significantly increased, suggesting that other non-inflammatory muscle cell types may regulate the inflammatory response and the muscle repair process. Accompanying this phenotype, transforming growth factor β1 (TGF-β1) expression in fibro-adipogenic progenitors (FAPs) was greatly downregulated. Since TGF-β1 is a strong immune suppressor and FAP's regulatory role has a large impact on muscle repair, we hypothesized that downregulation of TGF-β1 in FAPs after DEX treatment resulted in this hyperinflammatory state and subsequent failed muscle repair and EM formation. To test our hypothesis, we utilized a transgenic mouse model to specifically knockout Tgfb1 gene in PDGFRα-positive FAPs to investigate if the transgenic mice could recapitulate the phenotype that was induced by DEX treatment. Our results showed that the transgenic mice completely phenocopied this hyperinflammatory state and spontaneously developed EM following muscle injury. On the contrary, therapeutics that enhanced TGF-β1 signaling in FAPs inhibited the inflammatory response and attenuated muscle EM. In summary, these results indicate that FAPs-derived TGF-β1 is a key molecule in regulating muscle inflammatory response and subsequent EM, and that glucocorticoids exert their effect via downregulating TGF-β1 in FAPs.
Collapse
Affiliation(s)
- La Li
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Dai Li
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jingxian Zhu
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Yiqun Wang
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Feng Zhao
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jin Cheng
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Yingfang Ao
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| |
Collapse
|
4
|
Chupp DP, Rivera CE, Zhou Y, Xu Y, Ramsey PS, Xu Z, Zan H, Casali P. A humanized mouse that mounts mature class-switched, hypermutated and neutralizing antibody responses. Nat Immunol 2024; 25:1489-1506. [PMID: 38918608 PMCID: PMC11291283 DOI: 10.1038/s41590-024-01880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/18/2024] [Indexed: 06/27/2024]
Abstract
Humanized mice are limited in terms of modeling human immunity, particularly with regards to antibody responses. Here we constructed a humanized (THX) mouse by grafting non-γ-irradiated, genetically myeloablated KitW-41J mutant immunodeficient pups with human cord blood CD34+ cells, followed by 17β-estradiol conditioning to promote immune cell differentiation. THX mice reconstitute a human lymphoid and myeloid immune system, including marginal zone B cells, germinal center B cells, follicular helper T cells and neutrophils, and develop well-formed lymph nodes and intestinal lymphoid tissue, including Peyer's patches, and human thymic epithelial cells. These mice have diverse human B cell and T cell antigen receptor repertoires and can mount mature T cell-dependent and T cell-independent antibody responses, entailing somatic hypermutation, class-switch recombination, and plasma cell and memory B cell differentiation. Upon flagellin or a Pfizer-BioNTech coronavirus disease 2019 (COVID-19) mRNA vaccination, THX mice mount neutralizing antibody responses to Salmonella or severe acute respiratory syndrome coronavirus 2 Spike S1 receptor-binding domain, with blood incretion of human cytokines, including APRIL, BAFF, TGF-β, IL-4 and IFN-γ, all at physiological levels. These mice can also develop lupus autoimmunity after pristane injection. By leveraging estrogen activity to support human immune cell differentiation and maturation of antibody responses, THX mice provide a platform to study the human immune system and to develop human vaccines and therapeutics.
Collapse
Affiliation(s)
- Daniel P Chupp
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Invivyd, Waltham, MA, USA
| | - Carlos E Rivera
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yulai Zhou
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yijiang Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Patrick S Ramsey
- Department of Obstetrics & Gynecology, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Zhenming Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Hong Zan
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Prellis Biologics, Berkeley, CA, USA
| | - Paolo Casali
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA.
- Department of Medicine, The University of Texas Long School of Medicine, San Antonio, TX, USA.
| |
Collapse
|
5
|
Szeőcs D, Vida B, Petővári G, Póliska S, Janka E, Sipos A, Uray K, Sebestyén A, Krasznai Z, Bai P. Cell-free ascites from ovarian cancer patients induces Warburg metabolism and cell proliferation through TGFβ-ERK signaling. GeroScience 2024; 46:3581-3597. [PMID: 38196068 PMCID: PMC11226691 DOI: 10.1007/s11357-023-01056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024] Open
Abstract
Ascites plays a key role in supporting the metastatic potential of ovarian cancer cells. Shear stress and carry-over of cancer cells by ascites flow support carcinogenesis and metastasis formation. In addition, soluble factors may participate in the procarcinogenic effects of ascites in ovarian cancer. This study aimed to determine the biological effects of cell-free ascites on carcinogenesis in ovarian cancer cells. Cell-free ascites from ovarian cancer patients (ASC) non-selectively induced cell proliferation in multiple models of ovarian cancer and untransformed primary human dermal fibroblasts. Furthermore, ASC induced a Warburg-type rearrangement of cellular metabolism in A2780 ovarian cancer cells characterized by increases in cellular oxygen consumption and glycolytic flux; increases in glycolytic flux were dominant. ASC induced mitochondrial uncoupling and fundamentally reduced fatty acid oxidation. Ascites-elicited effects were uniform among ascites specimens. ASC-elicited transcriptomic changes in A2780 ovarian cancer cells included induction of the TGFβ-ERK/MEK pathway, which plays a key role in inducing cell proliferation and oncometabolism. ASC-induced gene expression changes, as well as the overexpression of members of the TGFβ signaling system, were associated with poor survival in ovarian cancer patients. We provided evidence that the activation of the autocrine/paracrine of TGFβ signaling system may be present in bladder urothelial carcinoma and stomach adenocarcinoma. Database analysis suggests that the TGFβ system may feed forward bladder urothelial carcinoma and stomach adenocarcinoma. Soluble components of ASC support the progression of ovarian cancer. These results suggest that reducing ascites production may play an essential role in the treatment of ovarian cancer by inhibiting the progression and reducing the severity of the disease.
Collapse
Affiliation(s)
- Dóra Szeőcs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary
| | - Beáta Vida
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Gábor Petővári
- Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary, 4032
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary
| | - Anna Sebestyén
- Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zoárd Krasznai
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032.
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary.
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary, 4032.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary, 4032.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032.
| |
Collapse
|
6
|
Fessel J. The several ways to authentically cure Alzheimer's dementia. Ageing Res Rev 2023; 92:102093. [PMID: 37865143 DOI: 10.1016/j.arr.2023.102093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Although drugs may slow its progression, authentic cure of AD has never been accomplished. Here, six approaches are suggested that might achieve genuine cure. The six therapies include: 1) treatments addressing levels of TGF-β and Wnt/β-catenin, that become significantly reduced after MCI transitions to AD, and addressing also the impaired epithelial-to-mesenchymal transition (EMT) in AD's pathogenesis; 2) and 3) are two formulations that address the inadequate counter-responses to initial loss of cognition; 4) treatments addressing the brain cells whose impaired functions result in MCI and dementia; 5) the need for using partner drugs even when a particular drug addresses a single pathogenetic cause such as amyloid deposition; 6) enhancing the likelihood of genuine cure by using combinations of approaches chosen from the foregoing. Briefly, genuine cure of AD is possible; however, since AD denotes not one but multiple, phenotypically similar conditions, no one therapy can be generalized to all cases.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA.
| |
Collapse
|
7
|
Fessel J. Analysis of Why Alzheimer's Dementia Never Spontaneously Reverses, Suggests the Basis for Curative Treatment. J Clin Med 2023; 12:4873. [PMID: 37510988 PMCID: PMC10381682 DOI: 10.3390/jcm12144873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
A paradox regarding Alzheimer's dementia (AD) and mild cognitive impairment (MCI) is thats spontaneous cure of AD has never been reported, whereas spontaneous cure for MCI occurs fequently. This article analyzes what accounts for this difference. It holds that it is not merely because, for any condition, a stage is reached beyond which it cannot be reversed, since even widely metastatic cancer would be curable were there effective chemotherapy and rheumatoid arthritis became controllable when immune-suppressant treatment was introduced; thus, so could AD be reversible via effective therapy. The analysis presented leads to an explanation of the paradox that is in four categories: (1) levels of transforming growth factor-β are significantly reduced after the transition from MCI to AD; (2) levels of Wnt/β-catenin are significantly reduced after the transition; (3) there is altered epidermal-mesenchymal transition (EMT) in neurons after the transition; (4) there may be risk factors that are either newly operative or pre-existing but worsened at the time of transition, that are particular to individual patients. It is suggested that addressing and ameliorating all of those four categories might cure AD. Medications to address and ameliorate each of the four categories are described.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
8
|
Gómez-Bernal F, Quevedo-Abeledo JC, García-González M, Fernández-Cladera Y, González-Rivero AF, Martín-González C, González-Gay MÁ, Ferraz-Amaro I. Transforming growth factor beta 1 is associated with subclinical carotid atherosclerosis in patients with systemic lupus erythematosus. Arthritis Res Ther 2023; 25:64. [PMID: 37069672 PMCID: PMC10108540 DOI: 10.1186/s13075-023-03046-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Transforming growth factor beta (TGF-β1) is a multifunctional cytokine that has anti-inflammatory and immunosuppressive effects. TGF-β1 has been linked to cardiovascular disease in the general population. The immunosuppressive effect of TGF-β1 is believed to be dysregulated in patients with systemic lupus erythematosus (SLE). In the present work, we aimed to study the relationship of serum levels of TGF-β1 with subclinical carotid atherosclerosis in patients with SLE. METHODS The study included 284 patients with SLE. Serum levels of TGF-β1 and subclinical carotid atherosclerosis (by carotid ultrasonography) were evaluated. In addition, the complete lipid profile and insulin resistance were analyzed. Multivariable linear and logistic regression analysis was performed to establish the relationship of TGF-β1 with carotid subclinical atherosclerosis adjusting for traditional cardiovascular risk factors that included lipid profile and insulin resistance. RESULTS Circulating TGF-β1 was positively and significantly associated with higher levels of LDL:HDL cholesterol ratio and atherogenic index. TGF-β1 was also associated with significantly lower levels of HDL cholesterol and apolipoprotein A1. Remarkably, TGF-β1 was associated with the presence of carotid plaque not only after adjustment for demographics (age, sex, body mass index, diabetes, hypertension, and aspirin use) but also after adjustment for relationships of TGF-β1 with lipid profile molecules, insulin resistance, and SLEDAI disease score (odds ratio 1.14 [95% confidence interval 1.003-1.30], p = 0.045). CONCLUSION TGF-β1 serum levels are positively and independently associated with the presence of subclinical atherosclerosis disease in patients with SLE.
Collapse
Affiliation(s)
| | | | | | | | | | - Candelaria Martín-González
- Division of Internal Medicine, Hospital Universitario de Canarias, Tenerife, Spain
- Department of Internal Medicine, University of La Laguna (ULL), Tenerife, Spain
| | - Miguel Á. González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group On Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
- Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Rheumatology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Iván Ferraz-Amaro
- Division of Rheumatology, Hospital Universitario de Canarias, Tenerife, Spain
- Department of Internal Medicine, University of La Laguna (ULL), Tenerife, Spain
| |
Collapse
|
9
|
Pakhtusov NN, Yusupova AO, Zhbanov KA, Shchedrygina AA, Privalova EV, Belenkov YN. Evaluation of Fibrosis Markers as a Potential Method for Diagnosing Non-Obstructive Coronary Artery Disease in Patients with Stable Coronary Artery Disease. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023. [DOI: 10.20996/1819-6446-2022-11-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim. To study the levels of fibrosis markers in patients with stable coronary artery disease (CAD) and various types of coronary artery (CA) lesions (obstructive and non-obstructive), to identify possible differences for diagnosing the types of coronary obstruction.Material and methods. The observational study included three groups of patients: with non-obstructive (main group, coronary artery stenosis <50%; n=20) and obstructive (comparison group, hemodynamically significant coronary artery stenosis according to the results of coronary angiography; n=20) CAD and healthy volunteers (control group; n=40). Transforming growth factor beta 1 (TGF-β1) and matrix metalloproteinase 9 (MMP-9) levels were measured in plasma by enzyme immunoassay. According to the results of echocardiography, all patients included in the study were divided into four groups depending on the type of myocardial remodeling.Results. TGF-β1 levels were significantly higher in patients with obstructive CAD (p=0.008) than in patients with non-obstructive CAD and healthy volunteers (p <0.001). There were no significant differences between the main and control groups (p>0.05). There were no statistically significant differences in TGF-β1 levels depending on the type of left ventricular remodeling (p=0.139). The maximum level of MMP-9 was in the group with obstructive coronary disease and significantly differed from the main group (p <0.001) and the control group (p=0.04).Conclusio. The maximum levels of TGF-β1 and MMP-9 were found in the group with obstructive coronary artery disease. The levels of these biomarkers in the main group were statistically different from the values obtained in the control group. Thus, considering the pathogenesis of the development of non-obstructive CAD, the use of fibrosis markers TGF-β1 and MMP-9 may be promising for diagnosing the severity of CA obstruction.
Collapse
Affiliation(s)
- N. N. Pakhtusov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. O. Yusupova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. A. Zhbanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. A. Shchedrygina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E. V. Privalova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - Yu. N. Belenkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
10
|
Ye M, Ni Q, Wang H, Wang Y, Yao Y, Li Y, Wang W, Yang S, Chen J, Lv L, Zhao Y, Xue G, Guo X, Zhang L. CircRNA circCOL1A1 Acts as a Sponge of miR-30a-5p to Promote Vascular Smooth Cell Phenotype Switch through Regulation of Smad1 Expression. Thromb Haemost 2023; 123:97-107. [PMID: 36462769 DOI: 10.1055/s-0042-1757875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis. The mRNA expression of the synthetic biomarker Collagen Type I Alpha 1 Chain (COL1A1) gene is upregulated during the switch of VSMCs from the contractile to the synthetic phenotype. The association of noncoding circular RNAs transcribed by the COL1A1 gene with VSMC phenotype alteration and atherogenesis remains unclear. Here we reported a COL1A1 circular RNA (circCOL1A1) which is specifically expressed in VSMCs and is upregulated during phenotype alteration of VSMCs. CircCOL1A1 is also detectable in the serum or plasma. Healthy vascular tissues have a low expression of CircCOL1A1, while it is upregulated in atherosclerosis patients. Through ex vivo and in vitro assays, we found that circCOL1A1 can promote VSMC phenotype switch. Mechanistic analysis showed that circCOL1A1 may exert its function as a competing endogenous RNA of miR-30a-5p. Upregulation of circCOL1A1 ameliorates the inhibitory effect of miR-30a-5p on its target SMAD1, which leads to suppression of transforming growth factor-β (TGF-β) signaling. Our findings demonstrate that circCOL1A1 promotes the phenotype switch of VSMCs through the miR-30a-5p/SMAD1/TGF-β axis and it may serve as a novel marker of atherogenesis or as a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Meng Ye
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qihong Ni
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Han Wang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yuli Wang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yongjie Yao
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yinan Li
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Weilun Wang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jiaquan Chen
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Lei Lv
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yiping Zhao
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Guanhua Xue
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xiangjiang Guo
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Lan Zhang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Ahmadi J, Hosseini E, Kargar F, Ghasemzadeh M. Stable CAD patients show higher levels of platelet-borne TGF-β1 associated with a superior pro-inflammatory state than the pro-aggregatory status; Evidence highlighting the importance of platelet-derived TGF-β1 in atherosclerosis. J Thromb Thrombolysis 2023; 55:102-115. [PMID: 36352058 DOI: 10.1007/s11239-022-02729-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
Abstract
Activated platelets are involved in the atherogenic stage of atherosclerosis, while they can also progress it to atherothrombosis which may cause an ischemic state and organ failure. In general, coronary artery disease (CAD) is considered as common and severe clinical consequence of atherosclerosis, manifesting as a chronic inflammatory condition with the release of platelet mediators, among which the importance of platelet-borne TGF-β1 is not yet well understood. Hence, for the first time, this study aimed to examine platelet level of TGF-β1 (latent/mature) in CAD-patients and its association with the expression of platelet pro-inflammatory molecules. Platelet from stable CAD-patients candidate for CABG and healthy controls were subjected to flowcytometry analysis to evaluate P-selectin and CD40L expressions and PAC-1 binding. Platelet-borne and soluble TGF-β1, both mature/active and latent forms were also examined with western blotting. Higher expression levels of P-selectin and CD40L in patients with CAD than in controls were associated with comparable levels of PAC-1 binding in both groups. Platelet TGF-β1 levels were also significantly higher in patients, while their platelets showed clear bands of mature TGF-β1 that were barely visible in healthy individuals. Soluble TGF-β1 was also higher in patients. Significant correlations between mature/active TGF-β1 and platelet pro-inflammatory markers (P-selectin and CD40L) as well as common indicators of inflammation (CRP and ESR) were observed in CAD patients. In this study, given the insignificant changes in pro-aggregatory potentials in stable CAD, the pro-inflammatory state of platelets may be more involved in disease development and progression. Direct correlations between active platelet-borne TGF-β1 and pro-inflammatory markers with its presence in CAD-patients, which was almost absent in the platelets of healthy individuals, may also underscore the significant contribution of platelet-borne TGF-β1 to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Javad Ahmadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Faranak Kargar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran. .,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Next to the Milad Tower, Hemmat Exp. Way, P.O.Box:14665-1157, Tehran, Iran.
| |
Collapse
|
12
|
Vogt BJ, Peters DK, Anseth KS, Aguado BA. Inflammatory serum factors from aortic valve stenosis patients modulate sex differences in valvular myofibroblast activation and osteoblast-like differentiation. Biomater Sci 2022; 10:6341-6353. [PMID: 36226463 PMCID: PMC9741081 DOI: 10.1039/d2bm00844k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aortic valve stenosis (AVS) is a sexually dimorphic cardiovascular disease that is driven by fibrosis and calcification of the aortic valve leaflets. Circulating inflammatory factors present in serum from AVS patients contribute to sex differences in valve fibro-calcification by driving the activation of valvular interstitial cells (VICs) to myofibroblasts and/or osteoblast-like cells. However, the molecular mechanisms by which inflammatory factors contribute to sex-specific valve fibro-calcification remain largely unknown. In this study, we identified inflammatory factors present in serum samples from AVS patients that regulate sex-specific myofibroblast activation and osteoblast-like differentiation. After correlating serum proteomic datasets with clinical and in vitro myofibroblast datasets, we identified annexin A2 and cystatin C as candidate inflammatory factors that correlate with both AVS patient severity and myofibroblast activation measurements in vitro. Validation experiments utilizing hydrogel biomaterials as cell culture platforms that mimic the valve extracellular matrix confirmed that annexin A2 and cystatin C promote sex-specific VIC activation to myofibroblasts via p38 MAPK signaling. Additionally, annexin A2 and cystatin C increase osteoblast-like differentiation primarily in male VICs. Our results implicate serum inflammatory factors as potential AVS biomarkers that also contribute to sexually dimorphic AVS progression by driving VIC myofibroblast activation and/or osteoblast-like differentiation. Collectively, the results herein further our overall understanding as to how biological sex may impact inflammation-driven AVS and may lead to the development of sex-specific drug treatment strategies.
Collapse
Affiliation(s)
- Brandon J Vogt
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
| | - Douglas K Peters
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
| | - Brian A Aguado
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Mavroudis PD, Pillai N, Wang Q, Pouzin C, Greene B, Fretland J. A multi-model approach to predict efficacious clinical dose for an anti-TGF-β antibody (GC2008) in the treatment of osteogenesis imperfecta. CPT Pharmacometrics Syst Pharmacol 2022; 11:1485-1496. [PMID: 36004727 PMCID: PMC9662198 DOI: 10.1002/psp4.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous group of inherited bone dysplasias characterized by reduced skeletal mass and bone fragility. Although the primary manifestation of the disease involves the skeleton, OI is a generalized connective tissue disorder that requires a multidisciplinary treatment approach. Recent studies indicate that application of a transforming growth factor beta (TGF-β) neutralizing antibody increased bone volume fraction (BVF) and strength in an OI mouse model and improved bone mineral density (BMD) in a small cohort of patients with OI. In this work, we have developed a multitiered quantitative pharmacology approach to predict human efficacious dose of a new anti-TGF-β antibody drug candidate (GC2008). This method aims to translate GC2008 pharmacokinetic/pharmacodynamic (PK/PD) relationship in patients, using a number of appropriate mathematical models and available preclinical and clinical data. Compartmental PK linked with an indirect PD effect model was used to characterize both pre-clinical and clinical PK/PD data and predict a GC2008 dose that would significantly increase BMD or BVF in patients with OI. Furthermore, a physiologically-based pharmacokinetic model incorporating GC2008 and the body's physiological properties was developed and used to predict a GC2008 dose that would decrease the TGF-β level in bone to that of healthy individuals. By using multiple models, we aim to reveal information for different aspects of OI disease that will ultimately lead to a more informed dose projection of GC2008 in humans. The different modeling efforts predicted a similar range of pharmacologically relevant doses in patients with OI providing an informed approach for an early clinical dose setting.
Collapse
Affiliation(s)
| | - Nikhil Pillai
- Quantitative PharmacologyDMPK, Sanofi USWalthamMassachusettsUSA
| | | | | | - Benjamin Greene
- Rare and Neurologic Diseases ResearchSanofiFraminghamMassachusettsUSA
| | | |
Collapse
|
14
|
Mooney RE, Linden GJ, Winning L, Linden K, Kee F, McKeown PP, Woodside JV, Patterson CC, McKay GJ. Association of TGFB1 rs1800469 and BCMO1 rs6564851 with coronary heart disease and IL1B rs16944 with all-cause mortality in men from the Northern Ireland PRIME study. PLoS One 2022; 17:e0273333. [PMID: 35994463 PMCID: PMC9394803 DOI: 10.1371/journal.pone.0273333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Historically, high levels of morbidity and mortality have been associated with cardiovascular disease in the Northern Ireland population. Previously reported associations between single nucleotide polymorphisms (SNPs) and cardiovascular disease within other populations have not always been consistent. OBJECTIVE To investigate associations between 33 SNPs with fatal or non-fatal incident coronary heart disease (CHD) events and all-cause mortality in the Northern Irish participants of the Prospective Epidemiological Study of Myocardial Infarction (PRIME). METHOD Phase 2 of the PRIME study prospectively evaluated 2,010 men aged 58-74 years in Northern Ireland for more than 10 years for incident CHD events (myocardial infarction, percutaneous coronary intervention, coronary artery bypass, and cardiac death) and more than 15 years for all-cause mortality. SNPs previously reported in association with cardiovascular outcomes were evaluated against incident CHD events and all-cause mortality using Cox's proportional hazards models adjusted for established cardiovascular disease risk factors. RESULTS During the follow-up period, 177 incident CHD events were recorded, and 821 men died. Both BCMO1 rs6564851 (Hazard ratio [HR] = 0.76; 95% confidence intervals [CI]: 0.60-0.96; P = 0.02) and TGFB1 rs1800469 (HR = 1.30; CI: 1.02-1.65; P = 0.04) were significantly associated with incident CHD events in adjusted models. Only IL1B rs16944 was significantly associated with all-cause mortality (HR = 1.18; CI: 1.05-1.33; P = 0.005). No associations remained significant following Bonferonni correction for multiple testing. CONCLUSION We report a novel association between BCMO1 rs6564851 and risk of incident CHD events. In addition, TGFB1 rs1800469 and IL1B rs16944 were associated with the risk of incident CHD events and all-cause mortality outcomes respectively, supporting previously reported associations.
Collapse
Affiliation(s)
- Rachel E. Mooney
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Gerry J. Linden
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Lewis Winning
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Katie Linden
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Frank Kee
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Pascal P. McKeown
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Jayne V. Woodside
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Gareth J. McKay
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
15
|
Marei I, Chidiac O, Thomas B, Pasquier J, Dargham S, Robay A, Vakayil M, Jameesh M, Triggle C, Rafii A, Jayyousi A, Al Suwaidi J, Abi Khalil C. Angiogenic content of microparticles in patients with diabetes and coronary artery disease predicts networks of endothelial dysfunction. Cardiovasc Diabetol 2022; 21:17. [PMID: 35109843 PMCID: PMC8812242 DOI: 10.1186/s12933-022-01449-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Elevated endothelial microparticles (EMPs) levels are surrogate markers of vascular dysfunction. We analyzed EMPs with apoptotic characteristics and assessed the angiogenic contents of microparticles in the blood of patients with type 2 diabetes (T2D) according to the presence of coronary artery disease (CAD). METHODS A total of 80 participants were recruited and equally classified as (1) healthy without T2D, (2) T2D without cardiovascular complications, (3) T2D and chronic coronary artery disease (CAD), and (4) T2D and acute coronary syndrome (ACS). MPs were isolated from the peripheral circulation, and EMPs were characterized using flow cytometry of CD42 and CD31. CD62E was used to determine EMPs' apoptotic/activation state. MPs content was extracted and profiled using an angiogenesis array. RESULTS Levels of CD42- CD31 + EMPs were significantly increased in T2D with ACS (257.5 ± 35.58) when compared to healthy subjects (105.7 ± 12.96, p < 0.01). There was no significant difference when comparing T2D with and without chronic CAD. The ratio of CD42-CD62 +/CD42-CD31 + EMPs was reduced in all T2D patients, with further reduction in ACS when compared to chronic CAD, reflecting a release by apoptotic endothelial cells. The angiogenic content of the full population of MPs was analyzed. It revealed a significant differential expression of 5 factors in patients with ACS and diabetes, including TGF-β1, PD-ECGF, platelet factor 4, serpin E1, and thrombospondin 1. Ingenuity Pathway Analysis revealed that those five differentially expressed molecules, mainly TGF-β1, inhibit key pathways involved in normal endothelial function. Further comparison of the three diabetes groups to healthy controls and diabetes without cardiovascular disease to diabetes with CAD identified networks that inhibit normal endothelial cell function. Interestingly, DDP-IV was the only differentially expressed protein between chronic CAD and ACS in patients with diabetes. CONCLUSION Our data showed that the release of apoptosis-induced EMPs is increased in diabetes, irrespective of CAD, ACS patients having the highest levels. The protein contents of MPs interact in networks that indicate vascular dysfunction.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Omar Chidiac
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Binitha Thomas
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Jennifer Pasquier
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Soha Dargham
- Biostatistics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Amal Robay
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Muneera Vakayil
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | | | - Arash Rafii
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Amin Jayyousi
- Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar
| | | | - Charbel Abi Khalil
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.
- Heart Hospital, Hamad Medical Corporation, Doha, Qatar.
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
16
|
Farahi L, Sinha SK, Lusis AJ. Roles of Macrophages in Atherogenesis. Front Pharmacol 2021; 12:785220. [PMID: 34899348 PMCID: PMC8660976 DOI: 10.3389/fphar.2021.785220] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that may ultimately lead to local proteolysis, plaque rupture, and thrombotic vascular disease, resulting in myocardial infarction, stroke, and sudden cardiac death. Circulating monocytes are recruited to the arterial wall in response to inflammatory insults and differentiate into macrophages which make a critical contribution to tissue damage, wound healing, and also regression of atherosclerotic lesions. Within plaques, macrophages take up aggregated lipoproteins which have entered the vessel wall to give rise to cholesterol-engorged foam cells. Also, the macrophage phenotype is influenced by various stimuli which affect their polarization, efferocytosis, proliferation, and apoptosis. The heterogeneity of macrophages in lesions has recently been addressed by single-cell sequencing techniques. This article reviews recent advances regarding the roles of macrophages in different stages of disease pathogenesis from initiation to advanced atherosclerosis. Macrophage-based therapies for atherosclerosis management are also described.
Collapse
Affiliation(s)
- Lia Farahi
- Monoclonal Antibody Research Center, Avicenna Research Institute, Tehran, Iran
| | - Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aldons J. Lusis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Ren W, Niu J, Du Y, Jiang H. Hydraulic expansion facilitates remodeling of arteriovenous fistulas without increasing venous intimal hyperplasia in rabbits. ASIAN BIOMED 2021; 15:223-232. [PMID: 37551325 PMCID: PMC10388758 DOI: 10.2478/abm-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background An arteriovenous fistula (AVF) is considered essential for chronic hemodialysis. Objective To determine the effects of hydraulic expansion on the intimal hyperplasia of an AVF. Methods We divided 12 healthy male New Zealand white rabbits into a control group (vein without special handling and direct anastomosis with an artery, n = 6) and a hydraulic expansion group (vein dilated by hydraulic pressure before anastomosis, n = 6). Histopathomorphology was examined with hematoxylin and eosin staining and immunohistochemistry. Analysis of covariance (ANCOVA) was used to compare the data between the groups. Results Immediately and 1 day after surgery, the diameter of the fistula vein in rabbits in the hydraulic expansion group was significantly larger than it was in the control group (P = 0.02 and 0.03 respectively), but not on subsequent days. After hydraulic expansion and before construction of the fistula, the wall of vein was noticeably thinner on macroscopic observation, and the anterior and posterior walls were indistinguishable. At 3 weeks after surgery in the hydraulic expansion group, cells in the vein wall were disordered, there were fewer elastic fibers, tissues from the endothelium to tunica externa were less dense, and there was less extracellular matrix than in the control group. Expression of connective tissue growth factor in the hydraulic expansion group was significantly less than that in the control group (P = 0.01). No differences were found in intimal thickness or immunohistochemistry scores for transforming growth factor-β1 between the groups. Conclusion Hydraulic expansion did not increase intimal hyperplasia of an AVF, but facilitates remodeling of AVFs in rabbits.
Collapse
Affiliation(s)
- Wanjun Ren
- Department of Nephrology and Blood Purification Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan250013, Shandong Province, China
| | - Jiyuan Niu
- Department of Nephrology, Linyi Central Hospital, Linyi276400, Shandong Province, China
| | - Yuejuan Du
- Department of Nephrology and Blood Purification Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan250013, Shandong Province, China
| | - Huili Jiang
- Department of Nephrology and Blood Purification Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan250013, Shandong Province, China
| |
Collapse
|
18
|
Shi Y, Jiang Z, Jiang L, Xu J. Integrative analysis of key candidate genes and signaling pathways in acute coronary syndrome related to obstructive sleep apnea by bioinformatics. Sci Rep 2021; 11:14153. [PMID: 34239024 PMCID: PMC8266822 DOI: 10.1038/s41598-021-93789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022] Open
Abstract
Although obstructive sleep apnea (OSA) has been clinically reported to be associated with acute coronary syndrome (ACS), the pathogenesis between the two is unclear. Herein, we analyzed and screened out the prospective molecular marker. To explore the candidate genes, as well as signaling cascades involved in ACS related to OSA, we extracted the integrated differentially expressed genes (DEGs) from the intersection of genes from the Gene Expression Omnibus (GEO) cohorts and text mining, followed by enrichment of the matching cell signal cascade through DAVID analysis. Moreover, the MCODE of Cytoscape software was employed to uncover the protein-protein interaction (PPI) network and the matching hub gene. A total of 17 and 56 integrated human DEGs in unstable angina (UA) and myocardial infarction (MI) group associated with OSAs that met the criteria of |log2 fold change (FC)|≥ 1, adjusted P < 0.05, respectively, were uncovered. After PPI network construction, the top five hub genes associated with UA were extracted, including APP, MAPK3, MMP9, CD40 and CD40LG, whereas those associated with MI were PPARG, MAPK1, MMP9, AGT, and TGFB1. The establishment of the aforementioned candidate key genes, as well as the enriched signaling cascades, provides promising molecular marker for OSA-related ACS, which will to provide a certain predictive value for the occurrence of ACS in OSA patients in the future.
Collapse
Affiliation(s)
- Yanxi Shi
- Department of Cardiology, Jiaxing Second Hospital, Jiaxing, China
| | - Zhengye Jiang
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Liqin Jiang
- Department of Cardiology, Jiaxing Second Hospital, Jiaxing, China
| | - Jianjiang Xu
- Department of Cardiology, Jiaxing Second Hospital, Jiaxing, China.
| |
Collapse
|
19
|
Levkovich TV, Pronko TP. ROLE OF THE TRANSFORMING GROWTH FACTOR β1 IN THE GENESIS OF ARTERIAL HYPERTENSION AND ITS COMPLICATIONS. JOURNAL OF THE GRODNO STATE MEDICAL UNIVERSITY 2021. [DOI: 10.25298/2221-8785-2021-19-1-16-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transforming growth factor beta 1 (TGFβ1) is an actively studied cytokine with rather contradictory effects. The article systematizes and summarizes the scientific data on TGFβ1 and its role in the development and progression of arterial hypertension, with an emphasis on arterial stiffness.
Collapse
|
20
|
Cheng WL, Zhang Q, Cao JL, Chen XL, Li W, Zhang L, Chao SP, Zhao F. ALK7 Acts as a Positive Regulator of Macrophage Activation through Down-Regulation of PPARγ Expression. J Atheroscler Thromb 2020; 28:375-384. [PMID: 32641645 PMCID: PMC8147563 DOI: 10.5551/jat.54445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Activin receptor-like kinase 7 (ALK7) acts as a key receptor for TGF-β family members, which play important roles in regulating cardiovascular activity. However, ALK7's potential role, and underlying mechanism, in the macrophage activation involved in atherogenesis remain unexplored. Methods: ALK7 expression in macrophages was tested by RT-PCR, western blot, and immunofluorescence co-staining. The loss-of-function strategy using AdshALK7 was performed for functional study. Oil Red O staining was used to observe the foam cell formation, while inflammatory mediators and genes related to cholesterol efflux and influx were determined by RT-PCR and western blot. A PPARγ inhibitor (G3335) was used to reveal whether PPARγ was required for ALK7 to affect macrophage activation. Results: The results exhibited upregulated ALK7 expression in oxidized low-density lipoprotein (Ox-LDL) induced bone marrow derived macrophages (BMDMs) and mouse peritoneal macrophages (MPMs), isolated from ApoE-deficient mice, while ALK7's strong immunoreactivity in BMDMs was observed. ALK7 knockdown significantly attenuated pro-inflammatory, but promoted anti-inflammatory, macrophage markers expression. Additionally, ALK7 silencing decreased foam cell formation, accompanied by the up-regulation of ABCA1 and ABCG1 involved in cholesterol efflux but the down-regulation of CD36 and SR-A implicated in cholesterol influx. Mechanistically, ALK7 knockdown upregulated PPARγ expression, which was required for the ameliorated effect of ALK7 silencing macrophage activation. Conclusions: Our study demonstrated that ALK7 was a positive regulator for macrophage activation, partially through down-regulation of PPARγ expression, which suggested that neutralizing ALK7 might be promising therapeutic strategy for treating atherosclerosis.
Collapse
Affiliation(s)
- Wen-Lin Cheng
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Quan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jian-Lei Cao
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Xi-Lu Chen
- Department of Pediatric Surgery, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology
| | - Wenyan Li
- Department of Pharmacy, The First Hospital of Nanchang
| | - Lin Zhang
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Sheng-Ping Chao
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Fang Zhao
- Department of Cardiology, Zhongnan hospital, Wuhan University
| |
Collapse
|
21
|
Caruso G, Fresta CG, Grasso M, Santangelo R, Lazzarino G, Lunte SM, Caraci F. Inflammation as the Common Biological Link Between Depression and Cardiovascular Diseases: Can Carnosine Exert a Protective Role? Curr Med Chem 2020; 27:1782-1800. [PMID: 31296155 DOI: 10.2174/0929867326666190712091515] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 01/03/2023]
Abstract
Several epidemiological studies have clearly shown the high co-morbidity between depression and Cardiovascular Diseases (CVD). Different studies have been conducted to identify the common pathophysiological events of these diseases such as the overactivation of the hypothalamic- pituitary-adrenal axis and, most importantly, the dysregulation of immune system which causes a chronic pro-inflammatory status. The biological link between depression, inflammation, and CVD can be related to high levels of pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, released by macrophages which play a central role in the pathophysiology of both depression and CVD. Pro-inflammatory cytokines interfere with many of the pathophysiological mechanisms relevant to depression by upregulating the rate-limiting enzymes in the metabolic pathway of tryptophan and altering serotonin metabolism. These cytokines also increase the risk to develop CVD, because activation of macrophages under this pro-inflammatory status is closely associated with endothelial dysfunction and oxidative stress, a preamble to atherosclerosis and atherothrombosis. Carnosine (β-alanyl-L-histidine) is an endogenous dipeptide which exerts a strong antiinflammatory activity on macrophages by suppressing reactive species and pro-inflammatory cytokines production and altering pro-inflammatory/anti-inflammatory macrophage polarization. This dipeptide exhibits antioxidant properties scavenging reactive species and preventing oxidative stress-induced pathologies such as CVD. In the present review we will discuss the role of oxidative stress and chronic inflammation as common pathophysiological events both in depression and CVD and the preclinical and clinical evidence on the protective effect of carnosine in both diseases as well as the therapeutic potential of this dipeptide in depressed patients with a high co-morbidity of cardiovascular diseases.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy
| | - Claudia G Fresta
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95125, Italy
| | - Margherita Grasso
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy.,Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Rosa Santangelo
- Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania 95125, Italy
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence 66045, Kansas, United States.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence 66045, Kansas, United States.,Department of Chemistry, University of Kansas, Lawrence 66045, Kansas, United States
| | - Filippo Caraci
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy.,Department of Drug Sciences, University of Catania, Catania 95125, Italy
| |
Collapse
|
22
|
Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020; 21:E4501. [PMID: 32599910 PMCID: PMC7350010 DOI: 10.3390/ijms21124501] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidylcholines are a group of bioactive lipids heavily investigated in the context of inflammation and atherosclerosis development. While present in plasma during physiological conditions, their concentration can drastically increase in certain inflammatory states. Lysophosphatidylcholines are widely regarded as potent pro-inflammatory and deleterious mediators, but an increasing number of more recent studies show multiple beneficial properties under various pathological conditions. Many of the discrepancies in the published studies are due to the investigation of different species or mixtures of lysophatidylcholines and the use of supra-physiological concentrations in the absence of serum or other carrier proteins. Furthermore, interpretation of the results is complicated by the rapid metabolism of lysophosphatidylcholine (LPC) in cells and tissues to pro-inflammatory lysophosphatidic acid. Interestingly, most of the recent studies, in contrast to older studies, found lower LPC plasma levels associated with unfavorable disease outcomes. Being the most abundant lysophospholipid in plasma, it is of utmost importance to understand its physiological functions and shed light on the discordant literature connected to its research. LPCs should be recognized as important homeostatic mediators involved in all stages of vascular inflammation. In this review, we want to point out potential pro- and anti-inflammatory activities of lysophospholipids in the vascular system and highlight recent discoveries about the effect of lysophosphatidylcholines on immune cells at the endothelial vascular interface. We will also look at their potential clinical application as biomarkers.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
23
|
ALK5 deficiency inhibits macrophage inflammation and lipid loading by targeting KLF4. Biosci Rep 2020; 40:222146. [PMID: 32065217 PMCID: PMC7056445 DOI: 10.1042/bsr20194188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
The transforming growth factor type-β (TGF-β) has been demonstrated to play an important role in the development of atherosclerosis through binding to the serine/threonine kinase transmembrane type I and type II receptors. However, as a key type I receptor for TGF-β, the exact role and the underlying mechanism of Activin receptor-like kinase 5 (ALK5) on macrophage activation involved in atherogenesis remain unclear. In the present study, enhanced ALK5 expression was found in bone marrow derived macrophages (BMDMs) upon OX-LDL stimulation tested by RT-PCR and Western blot, which was further verified by co-immunofluorescence staining. Next, the loss-of-function of ALK5 used AdshALK5 transfection was performed to test the effect of ALK5 on macrophage activation. We observed that ALK5 silencing inhibited pro-inflammatory but promoted anti-inflammatory macrophage markers expression. Moreover, decreased foam cell formation was found in ALK5 knockdown macrophages accompanied by increased cholesterol efflux. Mechanistically, ALK5 knockdown significantly increased KLF4 expression that was responsible for the attenuated macrophage activation induced by ALK5 knockdown. Collectively, these findings suggested that neutralization of ALK5 may act as a promising strategy for the management of atherosclerosis.
Collapse
|
24
|
Singh S, Torzewski M. Fibroblasts and Their Pathological Functions in the Fibrosis of Aortic Valve Sclerosis and Atherosclerosis. Biomolecules 2019; 9:biom9090472. [PMID: 31510085 PMCID: PMC6769553 DOI: 10.3390/biom9090472] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases, such as atherosclerosis and aortic valve sclerosis (AVS) are driven by inflammation induced by a variety of stimuli, including low-density lipoproteins (LDL), reactive oxygen species (ROS), infections, mechanical stress, and chemical insults. Fibrosis is the process of compensating for tissue injury caused by chronic inflammation. Fibrosis is initially beneficial and maintains extracellular homeostasis. However, in the case of AVS and atherosclerosis, persistently active resident fibroblasts, myofibroblasts, and smooth muscle cells (SMCs) perpetually remodel the extracellular matrix under the control of autocrine and paracrine signaling from the immune cells. Myofibroblasts also produce pro-fibrotic factors, such as transforming growth factor-β1 (TGF-β1), angiotensin II (Ang II), and interleukin-1 (IL-1), which allow them to assist in the activation and migration of resident immune cells. Post wound repair, these cells undergo apoptosis or become senescent; however, in the presence of unresolved inflammation and persistence signaling for myofibroblast activation, the tissue homeostasis is disturbed, leading to excessive extracellular matrix (ECM) secretion, disorganized ECM, and thickening of the affected tissue. Accumulating evidence suggests that diverse mechanisms drive fibrosis in cardiovascular pathologies, and it is crucial to understand the impact and contribution of the various mechanisms for the control of fibrosis before the onset of a severe pathological consequence.
Collapse
Affiliation(s)
- Savita Singh
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen, 70376 Stuttgart, Germany.
| | - Michael Torzewski
- Department of Laboratory Medicine and Hospital Hygiene, Robert-Bosch-Hospital, 70376 Stuttgart, Germany.
| |
Collapse
|
25
|
Haghighizadeh E, Shahrezaee M, Sharifzadeh SR, Momeni M. Transforming growth factor-β3 relation with osteoporosis and osteoporotic fractures. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:46. [PMID: 31160913 PMCID: PMC6540765 DOI: 10.4103/jrms.jrms_1062_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/13/2019] [Accepted: 02/25/2019] [Indexed: 11/05/2022]
Abstract
Background: The high socioeconomic impact of osteoporosis and osteoporotic fracture is due to their high mortality, morbidity, and disease-related costs. Nowadays, bone mineral density (BMD) is a comparatively expensive way to diagnose and follow up patients with osteoporosis. Transforming growth factor-β3 (TGF-β3) is a protein categorized into cytokines. Some previous in vitro studies showed TGF-β3 effects on osteocytes and bone formation. Therefore, we conducted this study to find if there is any significant relationship between TGF-β3 and BMD results. Materials and Methods: This was an analytical cross-sectional study conducted in 2017. We included individuals who had been referred from their physicians to undergo BMD dual-energy X-ray absorptiometry. Blood samples were taken from 150 participants for measuring TGF-β3 with ELISA method. Results: The mean ± standard deviation of TGF-β3 serum level was 79 ± 30.8 pg/ml (minimum 41 pg/ml and maximum 210 pg/ml). There was a statistically significant and direct proportional relationship between TGF-β3 and T-score as a marker for the diagnosis and follow-up of osteoporosis and osteoporotic fracture (P = 0.001) (Pearson's correlation = +0.95). Conclusion: There was a significant relationship between TGF-β3 serum level and BMD. TGF-β3 serum level may be used as a marker for the diagnosis and follow-up of osteoporosis and osteoporotic fracture.
Collapse
Affiliation(s)
| | - Mostafa Shahrezaee
- Department of Orthopedics, AJA University of Medical Sciences, Tehran, Iran
| | | | - Mitra Momeni
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Wu YJ, Lee YN, Wu TW, Chou CL, Wang LY. Common Genetic Variants on Bone Morphogenetic Protein Receptor Type IB (BMPR1B) Gene Are Predictive for Carotid Intima-Media Thickness. Circ J 2019; 83:749-756. [PMID: 30713213 DOI: 10.1253/circj.cj-18-1046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bone morphogenetic proteins (BMP) 2 and 4 are implicated in the development of atherosclerosis. However, the relationships between the proteins, their main receptors and carotid intima-media thickness (cIMT), a predictive preclinical phenotype of atherosclerosis, have not been established. METHODS AND RESULTS We screened and validated the relationships of single-nucleotide polymorphisms (SNPs) on BMP2, BMP4, BMPR1A, BMPR1B, and BMPR2 with thicker cIMT by 2 independent case-control studies that used different subject selection methods. Among 200 screened SNPs, 12 on BMPR1B were regarded as candidate genetic markers (P-value <5.0×10-4). After combining the discovery and validation studies and adjusting for traditional cardiovascular risk factors, rs4456963*G, rs4235438*T, rs2522530*T, and rs3796433*C showed significant higher odds ratios (ORs) of having thicker cIMT (adjusted ORs: 1.50-1.56; all P-values <2.5×10-4). Multivariate analyses showed that rs4456963 and rs3796433 were significantly independent determinants of cIMT thickening. The corresponding multivariate-adjusted ORs for rs4456963*G and rs3796433*C alleles were 1.50 (95% confidence interval (CI): 1.22-1.84) and 1.50 (95% CI: 1.23-1.82), respectively. Interaction between rs4456963 and rs3796433 was evident by the significantly higher OR (8.16, 95% CI: 3.12-21.3) for subjects with the GG-CC genotype. The rs4456963*G and rs3796433*C showed positively linear trends with severity of carotid atherosclerosis. CONCLUSIONS We identified 2 SNPs on BMPR1B showing significantly independent correlations with thicker cIMT. The study provides invaluable evidence supporting that BMPR1B is closely related to carotid atherosclerosis and a potential target for the development of therapeutic agents for atherosclerotic disease.
Collapse
Affiliation(s)
- Yih-Jer Wu
- Department of Medicine, Mackay Medical College
- Institute of Biomedical Sciences, Mackay Medical College
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital
- Department of Medical Research, MacKay Memorial Hospital
| | - Yi-Nan Lee
- Department of Medical Research, MacKay Memorial Hospital
| | - Tzu-Wei Wu
- Department of Medicine, Mackay Medical College
| | - Chao-Liang Chou
- Department of Medicine, Mackay Medical College
- Department of Neurology, Mackay Memorial Hospital
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College
- Institute of Biomedical Sciences, Mackay Medical College
| |
Collapse
|
27
|
Martín-González C, Martín-Ponce E, Fernández-Rodríguez C, Sánchez-Pérez MJ, Rodríguez-Gaspar M, de-la-Vega-Prieto MJ, Martínez-Riera A, González-Reimers E. Transforming Growth Factor Beta 1 and Vascular Risk in Alcoholics. Alcohol Alcohol 2019; 54:472-476. [PMID: 31188414 DOI: 10.1093/alcalc/agz048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Transforming growth factor beta-1 (TGF-β1) is a pleiotropic cytokine. Its relationship with atherosclerosis is debatable, protective or deleterious effects have been described. Alcoholics are at increased vascular risk. Although TGF-β1 is increased in alcoholics, its role on vascular risk factors has not been analyzed. This is the objective of this study. PATIENTS AND METHODS 79 heavy alcoholics and 34 controls were included. Calcium deposition in the aortic arch was assessed in the plain thorax X-ray film. Ankle-brachial index was recorded in 48 patients. All the patients underwent complete laboratory evaluation, including serum levels of TGF-β1, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, and interferon-γ (IFN-γ).We analyzed the relationships between TGF-β1 and vascular risk factors by both univariate (parametric or non parametric tests), or multivariate analysis to discern on which variables TGF-β1 levels depend. RESULTS Serum TGF-β1 levels were higher among patients (t = 2.73; P = 0.008), but no differences exist among cirrhotics (17246 ± 11,021 pg/mL) and non-cirrhotics (21,340 ± 12,442 pg/mL). TGF-β1 showed significant correlations with total cholesterol (r = 0.28; P = 0.017) and HDL- cholesterol (r = 0.25; P = 0.042), and inverse correlations with body mass index (BMI; ρ = -0.37; P = 0.004), IL-4 (ρ = -0.31; P = 0.009), INF-γ (ρ = -0.28; P = 0.001), and IL-6 (ρ = -0.38; P = 0.001). By multivariate analysis, only BMI, IL-6 and HDL-cholesterol showed independent relationships with TGF-β1. No relationships were observed with ankle-brachial index or calcium in the aortic arch, hypertension, diabetes, left ventricular hypertrophy or atrial fibrillation. CONCLUSION TGF-β1 levels are increased in alcoholics, but are unrelated to vessel wall calcification or arterial stiffness.
Collapse
Affiliation(s)
- C Martín-González
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - E Martín-Ponce
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - C Fernández-Rodríguez
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - M J Sánchez-Pérez
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - M Rodríguez-Gaspar
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - M J de-la-Vega-Prieto
- Servicio de Laboratorio, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - A Martínez-Riera
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - E González-Reimers
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| |
Collapse
|
28
|
Low EL, Baker AH, Bradshaw AC. TGFβ, smooth muscle cells and coronary artery disease: a review. Cell Signal 2019; 53:90-101. [PMID: 30227237 PMCID: PMC6293316 DOI: 10.1016/j.cellsig.2018.09.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the primary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia, while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling. Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia.
Collapse
Affiliation(s)
- Emma L Low
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew H Baker
- Queen's Medical Research Institute, University of Edinburgh, 47 Little Crescent, Edinburgh EH16 4TJ, UK
| | - Angela C Bradshaw
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
29
|
Gáll T, Pethő D, Nagy A, Hendrik Z, Méhes G, Potor L, Gram M, Åkerström B, Smith A, Nagy P, Balla G, Balla J. Heme Induces Endoplasmic Reticulum Stress (HIER Stress) in Human Aortic Smooth Muscle Cells. Front Physiol 2018; 9:1595. [PMID: 30515102 PMCID: PMC6255930 DOI: 10.3389/fphys.2018.01595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulation of damaged or misfolded proteins resulted from oxidative protein modification induces endoplasmic reticulum (ER) stress by activating the pathways of unfolded protein response. In pathologic hemolytic conditions, extracellular free hemoglobin is submitted to rapid oxidation causing heme release. Resident cells of atherosclerotic lesions, after intraplaque hemorrhage, are exposed to heme leading to oxidative injury. Therefore, we raised the question whether heme can also provoke ER stress. Smooth muscle cells are one of the key players of atherogenesis; thus, human aortic smooth muscle cells (HAoSMCs) were selected as a model cell to reveal the possible link between heme and ER stress. Using immunoblotting, quantitative polymerase chain reaction and immunocytochemistry, we quantitated the markers of ER stress. These were: phosphorylated eIF2α, Activating transcription factor-4 (ATF4), DNA-damage-inducible transcript 3 (also known as C/EBP homology protein, termed CHOP), X-box binding protein-1 (XBP1), Activating transcription factor-6 (ATF6), GRP78 (glucose-regulated protein, 78kDa) and heme responsive genes heme oxygenase-1 and ferritin. In addition, immunohistochemistry was performed on human carotid artery specimens from patients who had undergone carotid endarterectomy. We demonstrate that heme increases the phosphorylation of eiF2α in HAoSMCs and the expression of ATF4. Heme also enhances the splicing of XBP1 and the proteolytic cleavage of ATF6. Consequently, there is up-regulation of target genes increasing both mRNA and protein levels of CHOP and GRP78. However, TGFβ and collagen type I decreased. When the heme binding proteins, alpha-1-microglobulin (A1M) and hemopexin (Hpx) are present in cell media, the ER stress provoked by heme is inhibited. ER stress pathways are also retarded by the antioxidant N-acetyl cysteine (NAC) indicating that reactive oxygen species are involved in heme-induced ER stress. Consistent with these findings, elevated expression of the ER stress marker GRP78 and CHOP were observed in smooth muscle cells of complicated lesions with hemorrhage compared to either atheromas or healthy arteries. In conclusion, heme triggers ER stress in a time- and dose-dependent manner in HAoSMCs. A1M and Hpx as well as NAC effectively hamper heme-induced ER stress, supporting their use as a potential therapeutic approach to reverse such a deleterious effects of heme toxicity.
Collapse
Affiliation(s)
- Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid Pethő
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamária Nagy
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Magnus Gram
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Ann Smith
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Péter Nagy
- Department of Vascular Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
30
|
Eftekhari H, Hosseini SR, Pourreza Baboli H, Mafi Golchin M, Heidari L, Abedian Z, Pourbagher R, Amjadi-Moheb F, Mousavi Kani SN, Nooreddini H, Akhavan-Niaki H. Association of interleukin-6 (rs1800796) but not transforming growth factor beta 1 (rs1800469) with serum calcium levels in osteoporotic patients. Gene 2018; 671:21-27. [PMID: 29860063 DOI: 10.1016/j.gene.2018.05.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/20/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Osteoporosis is a multifactorial disease with a strong genetic influence. Recent studies have demonstrated that cytokines, such as TGF-β1 and interleukin 6 (IL-6) play complex roles in the normal bone metabolism and pathophysiology of osteoporosis. Here, we investigated the roles of 2 polymorphisms mapping to the promoters of TGF-β1and IL-6 genes on the genetic susceptibility to osteoporosis as well as calcium and vitamin D levels. METHODS A cohort of 297 elderly participants in northern Iran comprising 181 osteoporotic patients (mean age ± SD, 68.36 ± 7.21 years) and 116 unrelated healthy controls (mean age ± SD, 64 ± 5.44 years) was studied for TGF-β1(C-509T) and IL-6 (G-634C) polymorphisms using PCR-RFLP method. RESULTS A significant relationship was observed between calcium level and IL-6 genotypes in osteoporotic males (P = 0.011) and females (P = 0.020). No significant differences were observed between osteoporotic and control groups with respect to allele frequency or genotype distribution based on the 2 selected polymorphisms under different genetic models. The results remained the same after comparing the BMD values of either the femur neck or lumbar spine with the genotypes of the elderly men and women when analyzed separately. CONCLUSION IL-6 genotype influences serum calcium levels in osteoporotic patients. The lack of association between the common genetic variations of TGF-β1 and IL-6 genes, and BMD highlights the complex genetic background of osteoporosis in the north of Iran.
Collapse
Affiliation(s)
- Hajar Eftekhari
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Reza Hosseini
- Social Determinants of Health (SDH) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadis Pourreza Baboli
- Genetic Laboratory, Amirkola Children's Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Mafi Golchin
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Laleh Heidari
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Abedian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Roghayeh Pourbagher
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Hajighorban Nooreddini
- Department of Radiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Genetic Laboratory, Amirkola Children's Hospital, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
31
|
Roohi A, Tabrizi M, Yaseri M, Mohammadrezaei FM, Nikbin B. Healthy Adult LDL-C Bears Reverse Association with Serum IL-17A Levels. Curr Chem Genom Transl Med 2018; 12:1-8. [PMID: 30069429 PMCID: PMC6047196 DOI: 10.2174/2213988501812010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/26/2018] [Accepted: 06/12/2018] [Indexed: 02/05/2023] Open
Abstract
Background: Hypercholesterolemia is a modifiable risk factor in atherosclerosis with a complex association with inflammation. Objective: In the present study, the association between low-density lipoprotein cholesterol (LDL-C) and interleukin 17A (IL-17A), as an inflammatory cytokine, was investigated. In addition to IL-17A, serum levels of interleukin 23 (IL-23) and transforming growth factor β (TGF-β), as effective cytokines in T helper 17 cell (Th17) development, were also determined. Method: Cytokine levels were measured using enzyme-linked immunosorbent assay (ELISA) in healthy subjects with LDL-C<130 versus LDL-C=>130 mg/dL. Results: Although IL-17A is an inflammatory cytokine and a positive association between its levels and LDL-C is expected, the data obtained in this study provide support for a reverse association (p<0.05). Conclusion: Inflammation plays a major role in atherosclerosis development; however, various inflammatory components involved in atherosclerosis assert their own unique association with hypercholesterolemia.
Collapse
Affiliation(s)
- Azam Roohi
- Department of Immunology, School of Public Health,Tehran University of Medical Sciences,Tehran,Iran
| | - Mina Tabrizi
- Department of Medical Genetics, School of Medicine,Tehran University of Medical Sciences,Tehran,Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health,Tehran University of Medical Sciences,Tehran,Iran
| | | | - Behrouz Nikbin
- Department of Immunology, School of Medicine,Tehran University of Medical Sciences,Tehran,Iran
| |
Collapse
|
32
|
Transforming Growth Factor- β Protects against Inflammation-Related Atherosclerosis in South African CKD Patients. Int J Nephrol 2018; 2018:8702372. [PMID: 29977619 PMCID: PMC6011064 DOI: 10.1155/2018/8702372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 12/18/2022] Open
Abstract
Background Transforming growth factor-β (TGF-β) may inhibit the development of atherosclerosis. We evaluated serum levels of TGF-β isoforms concurrently with serum levels of endotoxin and various inflammatory markers. In addition, we determined if any association exists between polymorphisms in the TGF-β1 gene and atherosclerosis in South African CKD patients. Methods We studied 120 CKD patients and 40 healthy controls. Serum TGF-β1, TGF-β2, TGF-β3, endotoxin, and inflammatory markers were measured. Functional polymorphisms in the TGF-β1 genes were genotyped using a polymerase chain reaction-sequence specific primer method and carotid intima media thickness (CIMT) was assessed by B-mode ultrasonography. Results TGF-β isoforms levels were significantly lower in the patients with atherosclerosis compared to patients without atherosclerosis (p<0.001). Overall, TGF-β isoforms had inverse relationships with CIMT. TGF-β1 and TGF-β2 levels were significantly lower in patients with carotid plaque compared to those without carotid plaque [TGF-β1: 31.9 (17.2 – 42.2) versus 45.9 (35.4 – 58.1) ng/ml, p=0.016; and TGF-β2: 1.46 (1.30 – 1.57) versus 1.70 (1.50 – 1.87) ng/ml, p=0.013]. In multiple logistic regression, age, TGF-β2, and TGF-β3 were the only independent predictors of subclinical atherosclerosis in CKD patients [age: odds ratio (OR), 1.054; 95% confidence interval (CI): 1.003 – 1.109, p=0.039; TGF-β2: OR, 0.996; 95% CI: 0.994–0.999, p=0.018; TGF-β3: OR, 0.992; 95% CI: 0.985–0.999, p=0.029). TGF-β1 genotypes did not influence serum levels of TGF-β1 and no association was found between the TGF-β1 gene polymorphisms and atherosclerosis risk. Conclusion TGF-β isoforms seem to offer protection against the development of atherosclerosis among South African CKD patients.
Collapse
|
33
|
Transplantation of periaortic adipose tissue inhibits atherosclerosis in apoE -/- mice by evoking TGF-β1-mediated anti-inflammatory response in transplanted graft. Biochem Biophys Res Commun 2018; 501:145-151. [PMID: 29705699 DOI: 10.1016/j.bbrc.2018.04.196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
Abstract
Perivascular adipose tissue (PAT) is associated with vascular homeostasis; however, its causal effect on atherosclerosis currently remains undefined. Here, we investigated the effect of experimental PAT transplantation on atherosclerosis. The thoracic periaortic adipose tissue (tPAT) was dissected from 16-week-old wild-type mice and transplanted over the infrarenal aorta of 20-week-old apoE deficient (apoE-/-) mice fed high-cholesterol diet for 3 months. Oil-red O staining after 4 weeks showed a significant 20% decrease in the atherosclerotic lesion of suprarenal aorta compared with that of sham control mice, while that of infrarenal aorta showed no difference between the two groups. TGF-β1 mRNA expression was significantly higher in grafted tPAT than donor tPAT, accompanied by a significant increase in serum TGF-β1 concentration, which was inversely correlated with the suprarenal lesion area (r = -0.63, P = 0.012). Treatment with neutralizing TGF-β antibody abrogated the anti-atherogenic effect of tPAT transplantation. Immunofluorescent analysis of grafted tPAT showed that TGF-β-positive cells were co-localized with Mac-2-positive cells and this number was significantly increased compared with donor tPAT. There was also marked increase in mRNA expression of alternatively activated macrophages-related genes. Furthermore, the percentage of eosinophils in stromal vascular fraction of donor tPAT was much higher than that in epididymal white adipose tissue, concomitant with the significantly higher protein level of IL-4. IL-4 mRNA expression levels in grafted tPAT were increased in a time-dependent manner after tPAT transplantation. Our findings show that tPAT transplantation inhibits atherosclerosis development by exerting TGF-β1-mediated anti-inflammatory response, which may involve alternatively activated macrophages.
Collapse
|
34
|
López-Mejías R, Castañeda S, Genre F, Remuzgo-Martínez S, Carmona FD, Llorca J, Blanco R, Martín J, González-Gay MA. Genetics of immunoglobulin-A vasculitis (Henoch-Schönlein purpura): An updated review. Autoimmun Rev 2018; 17:301-315. [DOI: 10.1016/j.autrev.2017.11.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
|
35
|
Guerrero S, Agüí L, Yáñez-Sedeño P, Pingarrón JM. Screen-printed Gold Electrodes Functionalized with Grafted p-Aminobenzoic Acid for the Construction of Electrochemical Immunosensors. Determination of TGF-β1 Cytokine in Human Plasma. ELECTROANAL 2018. [DOI: 10.1002/elan.201700744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sara Guerrero
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid Spain
| | - Lourdes Agüí
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid Spain
| | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid Spain
| | - José M. Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid Spain
| |
Collapse
|
36
|
Ray M, Autieri MV. Regulation of pro- and anti-atherogenic cytokines. Cytokine 2017; 122:154175. [PMID: 29221669 DOI: 10.1016/j.cyto.2017.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
Despite advances in prevention and treatment, vascular diseases continue to account for significant morbidity and mortality in the developed world. Incidence is expected to worsen as the number of patients with common co-morbidities linked with atherosclerotic vascular disease, such as obesity and diabetes, continues to increase, reaching epidemic proportions. Atherosclerosis is a lipid-driven vascular inflammatory disease involving multiple cell types in various stages of inflammation, activation, apoptosis, and necrosis. One commonality among these cell types is that they are activated and communicate with each other in a paracrine fashion via a complex network of cytokines. Cytokines mediate atherogenesis by stimulating expression of numerous proteins necessary for induction of a host of cellular responses, including inflammation, extravasation, proliferation, apoptosis, and matrix production. Cytokine expression is regulated by a number of transcriptional and post-transcriptional mechanisms. In this context, proteins that control and fine-tune cytokine expression can be considered key players in development of atherosclerosis and also represent targets for rational drug therapy to combat this disease. This review will describe the cellular and molecular mechanisms that drive atherosclerotic plaque progression and present key cytokines that participate in this process. We will also describe RNA binding proteins that mediate cytokine mRNA stability and regulate cytokine abundance. Identification and characterization of the cytokines and proteins that regulate their abundance are essential to our ability to identify therapeutic approaches to ameliorate atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Mitali Ray
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
37
|
Zielinski CE. Human T cell immune surveillance: Phenotypic, functional and migratory heterogeneity for tailored immune responses. Immunol Lett 2017; 190:125-129. [PMID: 28827022 DOI: 10.1016/j.imlet.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023]
Abstract
The human immune system constantly provides a balance between pathogen clearance as well as tolerance for autoantigens and the commensal microbiota. This is achieved by immune responses, which are highly specialized and diversified in terms of their phenotype, function, regulation and location. Despite the complexity that is inherent to human immunity, our current knowledge is primarily shaped by very reductionist insights gained from peripheral blood T cells. Since only 2% of human T cells recirculate in the blood, the vast majority remains undetected by common sampling strategies and therefore unexplored. This review highlights and discusses recent developments in human T cell immune surveillance with a particular focus on functional and migratory T cell heterogeneity and provides a critical framework for new conceptual ideas, which could serve as a starting point in the quest for novel targeted therapies for chronic tissue restricted inflammatory diseases.
Collapse
Affiliation(s)
- Christina E Zielinski
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Germany; German Center for Infection Research (DZIF), Munich, Germany.
| |
Collapse
|
38
|
The potential role of platelets in the consensus molecular subtypes of colorectal cancer. Cancer Metastasis Rev 2017; 36:273-288. [DOI: 10.1007/s10555-017-9678-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Sharma S, Lang IM. Current understanding of the pathophysiology of chronic thromboembolic pulmonary hypertension. Thromb Res 2017. [PMID: 28624155 DOI: 10.1016/j.thromres.2017.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a unique form of pulmonary hypertension arising from fibrotic obliteration of major pulmonary arteries. Pro-thrombotic states, large clot burden and impaired dissolution are believed to contribute to the occurrence and progression of thrombosis after an acute pulmonary embolic event. Recent data utilizing several models have facilitated the understanding of clot resolution. This review summarizes current knowledge on pathophysiological mechanisms of major vessel occlusion in CTEPH.
Collapse
Affiliation(s)
- Smriti Sharma
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Irene M Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Rachidi S, Metelli A, Riesenberg B, Wu BX, Nelson MH, Wallace C, Paulos CM, Rubinstein MP, Garrett-Mayer E, Hennig M, Bearden DW, Yang Y, Liu B, Li Z. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci Immunol 2017; 2:2/11/eaai7911. [PMID: 28763790 DOI: 10.1126/sciimmunol.aai7911] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/16/2016] [Accepted: 03/23/2017] [Indexed: 12/13/2022]
Abstract
Cancer-associated thrombocytosis has long been linked to poor clinical outcome, but the underlying mechanism is enigmatic. We hypothesized that platelets promote malignancy and resistance to therapy by dampening host immunity. We show that genetic targeting of platelets enhances adoptive T cell therapy of cancer. An unbiased biochemical and structural biology approach established transforming growth factor β (TGFβ) and lactate as major platelet-derived soluble factors to obliterate CD4+ and CD8+ T cell functions. Moreover, we found that platelets are the dominant source of functional TGFβ systemically as well as in the tumor microenvironment through constitutive expression of the TGFβ-docking receptor glycoprotein A repetitions predominant (GARP) rather than secretion of TGFβ per se. Platelet-specific deletion of the GARP-encoding gene Lrrc32 blunted TGFβ activity at the tumor site and potentiated protective immunity against both melanoma and colon cancer. Last, this study shows that T cell therapy of cancer can be substantially improved by concurrent treatment with readily available antiplatelet agents. We conclude that platelets constrain T cell immunity through a GARP-TGFβ axis and suggest a combination of immunotherapy and platelet inhibitors as a therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Saleh Rachidi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alessandra Metelli
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brian Riesenberg
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bill X Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michelle H Nelson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Caroline Wallace
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mark P Rubinstein
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth Garrett-Mayer
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mirko Hennig
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel W Bearden
- National Institutes of Standards and Technology, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Yi Yang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bei Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA. .,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,First Affiliated Hospital, Zhengzhou University School of Medicine, Zhengzhou 450052, Henan, China
| |
Collapse
|
41
|
Taleb S. Inflammation in atherosclerosis. Arch Cardiovasc Dis 2016; 109:708-715. [DOI: 10.1016/j.acvd.2016.04.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
42
|
Osadnik T, Strzelczyk JK, Lekston A, Reguła R, Bujak K, Fronczek M, Gawlita M, Gonera M, Wasilewski J, Szyguła-Jurkiewicz B, Gierlotka M, Gąsior M. The association of functional polymorphisms in genes encoding growth factors for endothelial cells and smooth muscle cells with the severity of coronary artery disease. BMC Cardiovasc Disord 2016; 16:218. [PMID: 27835972 PMCID: PMC5106826 DOI: 10.1186/s12872-016-0402-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 11/08/2016] [Indexed: 12/18/2022] Open
Abstract
Background Despite the important roles of vascular smooth muscle cells and endothelial cells in atherosclerotic lesion formation, data regarding the associations of functional polymorphisms in the genes encoding growth factors with the severity of coronary artery disease (CAD) are lacking. The aim of the present study is to analyze the relationships between functional polymorphisms in genes encoding basic fibroblast growth factor (bFGF, FGF2), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), platelet derived growth factor-B (PDGFB), transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor A (VEGF-A) and the severity of coronary atherosclerosis in patients with stable CAD undergoing their first coronary angiography. Methods In total, 319 patients with stable CAD who underwent their first coronary angiography at the Silesian Centre for Heart Diseases in Zabrze, Poland were included in the analysis. CAD burden was assessed using the Gensini score. The TaqMan method was used for genotyping of selected functional polymorphisms in the FGF2, PDGFB, TGFB1, IGF1 and VEGFA genes, while rs4444903 in the EGF gene was genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The associations between the selected polymorphisms and the Gensini were calculated both for the whole cohort and for a subgroup of patients without previous myocardial infarction (MI). Results There were no differences in the distribution of the Gensini score between the genotypes of the analyzed polymorphisms in FGF2, EGF, IGF1, PDFGB, and TGFB1 in the whole cohort and in the subgroup of patients without previous MI. The Gensini score for VEGFA rs699947 single-nucleotide polymorphism (SNP) in patients without previous myocardial infarction, after correction for multiple testing, was highest in patients with the A/A genotype, lower in heterozygotes and lowest in patients with the C/C genotype, (p value for trend = 0.013, false discovery rate (FDR) = 0.02). After adjustment for clinical variables, and correction for multiple comparisons the association between the VEGFA genotype and Gensini score remained only nominally significant (p = 0.04, FDR = 0.19) under the dominant genetic model in patients without previous MI. Conclusions We were unable to find strong association between analyzed polymorphisms in growth factors and the severity of coronary artery disease, although there was a trend toward association between rs699947 and the severity of CAD in patients without previous MI. Electronic supplementary material The online version of this article (doi:10.1186/s12872-016-0402-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tadeusz Osadnik
- 2nd Department of Cardiology and Angiology, Silesian Center for Heart Diseases, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland. .,Genomics Laboratory, Kardio-Med Silesia Science and Technology Park, Marii Curie-Skłodowskiej Street 10C, 41-800, Zabrze, Poland.
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Jordana Street 19, 41-808, Zabrze, Poland
| | - Andrzej Lekston
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Rafał Reguła
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Kamil Bujak
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Martyna Fronczek
- Genomics Laboratory, Kardio-Med Silesia Science and Technology Park, Marii Curie-Skłodowskiej Street 10C, 41-800, Zabrze, Poland.,Silesian Center for Heart Diseases, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Marcin Gawlita
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Małgorzata Gonera
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Jarosław Wasilewski
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Bożena Szyguła-Jurkiewicz
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Marek Gierlotka
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Mariusz Gąsior
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| |
Collapse
|
43
|
Heath DE, Kang GCW, Cao Y, Poon YF, Chan V, Chan-Park MB. Biomaterials patterned with discontinuous microwalls for vascular smooth muscle cell culture: biodegradable small diameter vascular grafts and stable cell culture substrates. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1477-94. [PMID: 27444318 DOI: 10.1080/09205063.2016.1213217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The medial layer of small diameter blood vessels contains circumferentially aligned vascular smooth muscle cells (vSMC) that possess contractile phenotype. In tissue-engineered constructs, these cellular characteristics are usually achieved by seeding planar scaffolds with vSMC, rolling the cell-laden scaffold into a tubular structure, and maturing the construct in a pulsatile bioreactor, a lengthy process that can take up to two months. During the maturation phase, the cells circumferentially orient, their contractile protein expression increases, and they obtain a contractile phenotype. Generating cell culture platforms that enable the rapid production of directionally oriented vSMC with increased contractile protein expression would be a major step forward for blood vessel tissue engineering and would greatly facilitate the in vitro study of vSMC biology. Previously, we developed a micropatterned cell culture surface that promotes orientation and contractile protein expression of vSMC. Herein, we explore two potential applications of this technology. First, we fabricate tubular and biodegradable scaffolds that possess the micropatterning on their exterior surface. When vSMC are seeded on these scaffolds, they initially proliferate in order to fill the microchannels and as confluence is reached the cells align in the direction of the micropatterning resulting in a biodegradable scaffold that is inhabited by circumferentially aligned vSMC within a week. Second, we illustrate that we can generate biostable cell culture surfaces that allow the in vitro study of the cells in a more contractile state. Specifically, we explore contractile protein expression of cells cultured on the micropatterned surfaces with the addition of soluble transforming growth factor beta one (TGFβ1).
Collapse
Affiliation(s)
- Daniel E Heath
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| | - Gavin C W Kang
- b School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore
| | - Ye Cao
- b School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore
| | - Yin Fun Poon
- b School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore
| | - Vincent Chan
- b School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore
| | - Mary B Chan-Park
- b School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore
| |
Collapse
|
44
|
Sánchez-Tirado E, Martínez-García G, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Electrochemical immunosensor for sensitive determination of transforming growth factor (TGF) - β1 in urine. Biosens Bioelectron 2016; 88:9-14. [PMID: 27297187 DOI: 10.1016/j.bios.2016.05.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/11/2016] [Accepted: 05/30/2016] [Indexed: 01/15/2023]
Abstract
The first amperometric immunosensor for the quantification of TGF-β1, a cytokine proposed as a biomarker for patients having or at risk for renal disease, is described in this work. The immunosensor design involves disposable devices using carboxylic acid-functionalized magnetic microparticles supported onto screen-printed carbon electrodes and covalent immobilization of the specific antibody for TGF-β1 using Mix&Go polymer. A sandwich-type immunoassay was performed using biotin-anti-TGF and conjugation with peroxidase-labeled streptavidin (poly-HRP-Strept) polymer. Amperometric measurements were carried out at -0.20V by adding hydrogen peroxide solution onto the electrode surface in the presence of hydroquinone as the redox mediator. The calibration plot allowed a range of linearity extending between 15 and 3000pg/mL TGF-β1 which is adequate for the determination of the cytokine in plasma and urine. The limit of detection, 10pg/mL, is notably improved with respect to those obtained with ELISA kits. The usefulness of the immunosensor for the determination of low TGF-β1 concentrations in real samples was evaluated by analyzing spiked urine at different pg/mL concentration levels.
Collapse
Affiliation(s)
- E Sánchez-Tirado
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - G Martínez-García
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - A González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - P Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| | - J M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| |
Collapse
|
45
|
Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment. Mediators Inflamm 2015; 2015:490120. [PMID: 26819499 PMCID: PMC4706979 DOI: 10.1155/2015/490120] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Recent studies suggest that IL-38 is associated with autoimmune diseases. Furthermore, IL-38 is expressed in human atheromatous plaque. However, the plasma levels of IL-38 in patients with ST-segment elevation myocardial infarction (STEMI) have not yet to be investigated. METHODS On admission, at 24 h, at 48 h, and at 7 days, plasma IL-38, C-reactive protein (CRP), cardiac troponin I (cTNI), and N-terminal of the prohormone brain natriuretic peptide (NT-proBNP) levels were measured and IL-38 gene in peripheral blood mononuclear cells (PBMCs) was detected in STEMI patients. RESULTS The results showed that plasma IL-38 levels and IL-38 gene expression in PBMCs were significantly increased in STEMI patients compared with control group and were time dependent, peaked at 24 h. In addition, plasma IL-38 levels were dramatically reduced in patients with reperfusion treatment compared with control group. Similar results were also demonstrated with CRP, cTNI, and NT-proBNP levels. Furthermore, IL-38 levels were found to be positively correlated with CRP, cTNI, and NT-proBNP and be weakly negatively correlated with left ventricular ejection fraction (LVEF) in STEMI patients. CONCLUSIONS The results indicate that circulating IL-38 is a potentially novel biomarker for patients with STEMI and IL-38 might be a new target for MI study.
Collapse
|
46
|
Functional interaction between COL4A1/COL4A2 and SMAD3 risk loci for coronary artery disease. Atherosclerosis 2015; 242:543-52. [DOI: 10.1016/j.atherosclerosis.2015.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/24/2015] [Accepted: 08/06/2015] [Indexed: 12/24/2022]
|
47
|
Grundtman C, Jakic B, Buszko M, Onestingel E, Almanzar G, Demetz E, Dietrich H, Cappellano G, Wick G. Mycobacterial heat shock protein 65 (mbHSP65)-induced atherosclerosis: Preventive oral tolerization and definition of atheroprotective and atherogenic mbHSP65 peptides. Atherosclerosis 2015; 242:303-10. [PMID: 26233917 DOI: 10.1016/j.atherosclerosis.2015.06.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to identify atherogenic and atheroprotective peptides of bacterial HSP60 [taking mycobacterial HSP65 (mbHSP65) as a potent paradigmatic representative] that could be used as candidates for an orally applied tolerizing vaccine against atherosclerosis. METHODS ApoE(-/-) mice were immunized with mbHSP65 protein or peptides, given mbHSP65 orally and then kept either on chow or high cholesterol diet. Atherosclerosis was assessed by en face and immunohistological analysis. Anti-HSP autoantibodies were detected by ELISA. The number and in vitro suppressive function of splenic and lymph node regulatory T cells (Tregs) were analyzed by flow cytometry. Specific T cell reactivity against mbHSP65 protein or peptides was assessed by proliferation assay. RESULTS Decreased lesion size was accompanied by (a) increased splenic Treg numbers; (b) increased interleukin (IL)-10 mRNA levels in the aorta; (c) increased levels of anti-mbHSP65 and anti-mouse HSP60 antibodies pointing to pro-eukaryotic HSP60 humoral crossreaction, not curtailed by oral tolerization; (d) most importantly, we identified and functionally characterized novel atherogenic and atheroprotective mbHSP65 epitopes. CONCLUSION Atheroprotective mbHSP65 peptides may be considered as potential candidates for the development of a tolerizing vaccine to prevent and treat atherosclerosis, while keeping protective immunity to non-atherogenic domains of mbHSP65 intact.
Collapse
Affiliation(s)
- Cecilia Grundtman
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Bojana Jakic
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maja Buszko
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Onestingel
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Giovanni Almanzar
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine VI, Clinical Immunology and Infectious Diseases, Medical University of Innsbruck, Innsbruck, Austria
| | - Hermann Dietrich
- Central Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Wick
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
48
|
Agarwal I, Arnold A, Glazer NL, Barasch E, Djousse L, Fitzpatrick AL, Gottdiener JS, Ix JH, Jensen RA, Kizer JR, Rimm EB, Siscovick DS, Tracy RP, Wong TY, Mukamal KJ. Fibrosis-related biomarkers and large and small vessel disease: the Cardiovascular Health Study. Atherosclerosis 2015; 239:539-46. [PMID: 25725316 PMCID: PMC4517825 DOI: 10.1016/j.atherosclerosis.2015.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Fibrosis has been implicated in a number of pathological, organ-based conditions of the liver, kidney, heart, and lungs. The objective of this study was to determine whether biomarkers of fibrosis are associated with vascular disease in the large and/or small vessels. METHODS We evaluated the associations of two circulating biomarkers of fibrosis, transforming growth factor-β (TGF-β) and procollagen type III N-terminal propeptide (PIIINP), with incident peripheral artery disease (PAD) and subclinical macrovascular (carotid intima-media thickness, flow-mediated vasodilation, ankle-brachial index, retinal vein diameter), and microvascular (retinal artery diameter and retinopathy) disease among older adults in the Cardiovascular Health Study. We measured TGF-β and PIIINP from samples collected in 1996 and ascertained clinical PAD through 2011. Measurements of large and small vessels were collected between 1996 and 1998. RESULTS After adjustment for sociodemographic, clinical, and biochemical risk factors, TGF-β was associated with incident PAD (hazard ratio [HR] = 1.36 per doubling of TGF-β, 95% confidence interval [CI] = 1.04, 1.78) and retinal venular diameter (1.63 μm per doubling of TGF-β, CI = 0.23, 3.02). PIIINP was not associated with incident PAD, but was associated with carotid intima-media thickness (0.102 mm per doubling of PIIINP, CI = 0.029, 0.174) and impaired brachial artery reactivity (-0.20% change per doubling of PIIINP, CI = -0.39, -0.02). Neither TGF-β nor PIIINP were associated with retinal arteriolar diameter or retinopathy. CONCLUSIONS Serum concentrations of fibrosis-related biomarkers were associated with several measures of large vessel disease, including incident PAD, but not with small vessel disease. Fibrosis may contribute to large vessel atherosclerosis in older adults.
Collapse
Affiliation(s)
- Isha Agarwal
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA.
| | - Alice Arnold
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Eddy Barasch
- Department of Research and Education, St. Francis Hospital/SUNY at Stony Brook, Stony Brook, NY, USA
| | - Luc Djousse
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Boston Veterans Healthcare System, Boston, MA, USA
| | | | - John S Gottdiener
- Department of Medicine, University of Maryland Medical School, Baltimore, MD, USA
| | - Joachim H Ix
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Richard A Jensen
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jorge R Kizer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eric B Rimm
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA; Department of Nutrition, Harvard School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David S Siscovick
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Russell P Tracy
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Tien Y Wong
- Department of Ophthalmology, Singapore Eye Research Institute, National University of Singapore, Singapore
| | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
49
|
Herlea-Pana O, Yao L, Heuser-Baker J, Wang Q, Wang Q, Georgescu C, Zou MH, Barlic-Dicen J. Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression. Cardiovasc Res 2015; 106:324-37. [PMID: 25765938 DOI: 10.1093/cvr/cvv111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/07/2015] [Indexed: 01/03/2023] Open
Abstract
AIMS Atherosclerosis manifests itself as arterial plaques, which lead to heart attacks or stroke. Treatments supporting plaque regression are therefore aggressively pursued. Studies conducted in models in which hypercholesterolaemia is reversible, such as the Reversa mouse model we have employed in the current studies, will be instrumental for the development of such interventions. Using this model, we have shown that advanced atherosclerosis regression occurs when lipid lowering is used in combination with bone-marrow endothelial progenitor cell (EPC) treatment. However, it remains unclear how EPCs home to regressing plaques and how they augment atherosclerosis reversal. Here we identify molecules that support functional responses of EPCs during plaque resolution. METHODS AND RESULTS Chemokines CXCL1 and CX3CL1 were detected in the vascular wall of atheroregressing Reversa mice, and their cognate receptors CXCR2 and CX3CR1 were observed on adoptively transferred EPCs in circulation. We tested whether CXCL1-CXCR2 and CX3CL1-CX3CR1 axes regulate functional responses of EPCs during plaque reversal. We show that pharmacological inhibition of CXCR2 or CX3CR1, or genetic inactivation of these two chemokine receptors interfered with EPC-mediated advanced atherosclerosis regression. We also demonstrate that CXCR2 directs EPCs to regressing plaques while CX3CR1 controls a paracrine function(s) of these cells. CONCLUSION CXCR2 and CX3CR1 differentially regulate EPC functional responses during atheroregression. Our study improves understanding of how chemokines and chemokine receptors regulate plaque resolution, which could determine the effectiveness of interventions reducing complications of atherosclerosis.
Collapse
Affiliation(s)
- Oana Herlea-Pana
- Cardiovascular Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Longbiao Yao
- Cardiovascular Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Janet Heuser-Baker
- Cardiovascular Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Qiongxin Wang
- Division of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Qilong Wang
- Division of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Constantin Georgescu
- Arthritis and Clinical Immunology Programs, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ming-Hui Zou
- Division of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jana Barlic-Dicen
- Cardiovascular Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|
50
|
Uluçay S, Çam FS, Batır MB, Sütçü R, Bayturan Ö, Demircan K. A novel association between TGFb1 and ADAMTS4 in coronary artery disease: A new potential mechanism in the progression of atherosclerosis and diabetes. Anatol J Cardiol 2014; 15:823-9. [PMID: 25592103 PMCID: PMC5336969 DOI: 10.5152/akd.2014.5762] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective: Coronary artery disease is characterized by atherosclerosis in the vessel wall. Recently, it has been thought that increasing LDL-binding capacity of subendothelial proteoglycan fragments that are formed by protease activity can be responsible for the initiation of atherosclerosis. ADAMTS4 is a member of the versican-degrading proteinases. In vitro studies demonstrated that TGFβ inhibits the expression of ADAMTS4 in macrophages. In this study, we aimed to investigate the role and association between TGFβ1 and ADAMTS4 in coronary artery disease. Methods: A total of 84 cases with atheroma plaque and 72 controls without plaque were analyzed. The severity of disease was determined by Gensini score. TGFβ1 gene polymorphisms were genotyped by the PCR-RFLP method. TGFβ1 and ADAMTS4 serum levels were measured by ELISA method. Statistical analyses of genotypes and their relationship with serum levels were performed by chi-square, student t test and ANOVA. Results: ADAMTS4 levels were higher in cases compared with controls (p<0.05). In the patient group, ADAMTS4 levels were higher than in controls and correlated with TGFβ1 serum levels (r=0.29; p<0.05) and severity of disease (r=0.20; p<0.05). The TGFβ1 gene CCA haplotype was associated with 3.3-fold increase in coronary artery disease (OR=3.26 95% CI 1.22-8.68; p<0.05). Unexpectedly, ADAMTS4 serum levels were also higher in diabetic cases (p=0.05). Conclusion: This study has demonstrated that ADAMTS4 may be responsible for the pathogenesis of atherosclerosis. This is the first report about the association between ADAMTS4 and TGFβ1 serum levels in the progression of atherosclerosis in CAD. Furthermore, it is seen that TGFβ1 haplotype can cause a genetic susceptibility to CAD in the Turkish population. To our knowledge, this is also the first report suggesting higher serum ADAMTS4 levels in diabetic patients.
Collapse
Affiliation(s)
- Safiye Uluçay
- Department of Medical Genetics, Faculty of Medicine, Celal Bayar University; Manisa Turkey.
| | | | | | | | | | | |
Collapse
|