1
|
Lindvall O. History of cellular grafting for central nervous system repair-A clinical perspective. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:15-40. [PMID: 39341652 DOI: 10.1016/b978-0-323-90120-8.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
As late as in the 1970s, the evidence supporting that brain function might be restored by replacing dead cells by transplantation of new healthy cells was scarce in experimental animals and lacking in humans. Repairing the human brain was regarded as completely unrealistic by clinicians. Fifty years later, the situation is very different, and cellular grafting has reached patient application in several conditions affecting the CNS. The clinical studies performed so far have shown that cellular grafts can survive, grow, and function also in the diseased adult human brain. However, no proven treatment based on cell transplantation is currently available for any brain disorder. Here, the history of cellular grafting is described from a clinical perspective, including some of the preclinical work that has formed the basis for its translation to patient application. The focus is on cell transplantation for Parkinson disease, which in many ways is paving the way for this field of research. The chapter gives an account of the scientific milestones, the ups and downs, as well as the positive and negative reactions from the scientific and clinical community, and how this research field despite many obstacles has continued to move forward over more than four decades.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden; Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Barker RA, Buttery PC. Disease-specific interventions: The use of cell and gene therapies for Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:171-191. [PMID: 39341654 DOI: 10.1016/b978-0-323-90120-8.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Approaches to repair the brain around the loss of the nigrostriatal dopaminergic pathways in Parkinson disease (PD) are not new and have been attempted over many years. However, of late, the situation has moved forward in two main ways. In the case of cell therapies, the ability to make large numbers of authentic midbrain dopaminergic neuroblasts from human pluripotent stem cell sources has turned what was an interesting avenue of research into a major area of investment and trialing, by academics in conjunction with Pharma. In the case of gene therapies, their use around dopamine replacement has waned, as the interest in using them for disease modification targeting PD-specific pathways has grown. In this chapter, we discuss all these developments and the current status of cell and gene therapies for PD.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Philip C Buttery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Wang F, Sun Z, Peng D, Gianchandani S, Le W, Boltze J, Li S. Cell-therapy for Parkinson's disease: a systematic review and meta-analysis. J Transl Med 2023; 21:601. [PMID: 37679754 PMCID: PMC10483810 DOI: 10.1186/s12967-023-04484-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cell-based strategies focusing on replacement or protection of dopaminergic neurons have been considered as a potential approach to treat Parkinson's disease (PD) for decades. However, despite promising preclinical results, clinical trials on cell-therapy for PD reported mixed outcomes and a thorough synthesis of these findings is lacking. We performed a systematic review and meta-analysis to evaluate cell-therapy for PD patients. METHODS We systematically identified all clinical trials investigating cell- or tissue-based therapies for PD published before July 2023. Out of those, studies reporting transplantation of homogenous cells (containing one cell type) were included in meta-analysis. The mean difference or standardized mean difference in quantitative neurological scale scores before and after cell-therapy was analyzed to evaluate treatment effects. RESULTS The systematic literature search revealed 106 articles. Eleven studies reporting data from 11 independent trials (210 patients) were eligible for meta-analysis. Disease severity and motor function evaluation indicated beneficial effects of homogenous cell-therapy in the 'off' state at 3-, 6-, 12-, or 24-month follow-ups, and for motor function even after 36 months. Most of the patients were levodopa responders (61.6-100% in different follow-ups). Cell-therapy was also effective in improving the daily living activities in the 'off' state of PD patients. Cells from diverse sources were used and multiple transplantation modes were applied. Autografts did not improve functional outcomes, while allografts exhibited beneficial effects. Encouragingly, both transplantation into basal ganglia and to areas outside the basal ganglia were effective to reduce disease severity. Some trials reported adverse events potentially related to the surgical procedure. One confirmed and four possible cases of graft-induced dyskinesia were reported in two trials included in this meta-analysis. CONCLUSIONS This meta-analysis provides preliminary evidence for the beneficial effects of homogenous cell-therapy for PD, potentially to the levodopa responders. Allogeneic cells were superior to autologous cells, and the effective transplantation sites are not limited to the basal ganglia. PROSPERO registration number: CRD42022369760.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Zhengwu Sun
- Department of Clinical Pharmacy, Central Hospital of Dalian University of Technology, Dalian, China
| | - Daoyong Peng
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Shikha Gianchandani
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial Hospital, Chengdu, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Beijing, 100038, China.
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Functional Reconstruction of Denervated Muscle by Xenotransplantation of Neural Cells from Porcine to Rat. Int J Mol Sci 2022; 23:ijms23158773. [PMID: 35955906 PMCID: PMC9368947 DOI: 10.3390/ijms23158773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Neural cell transplantation targeting peripheral nerves is a potential treatment regime for denervated muscle atrophy. This study aimed to develop a new therapeutic technique for intractable muscle atrophy by the xenotransplantation of neural stem cells derived from pig fetuses into peripheral nerves. In this study, we created a denervation model using neurotomy in nude rats and transplanted pig-fetus-derived neural stem cells into the cut nerve stump. Three months after transplantation, the survival of neural cells, the number and area of regenerated axons, and the degree of functional recovery by electrical stimulation of peripheral nerves were compared among the gestational ages (E 22, E 27, E 45) of the pigs. Transplanted neural cells were engrafted at all ages. Functional recovery by electric stimulation was observed at age E 22 and E 27. This study shows that the xenotransplantation of fetal porcine neural stem cells can restore denervated muscle function. When combined with medical engineering, this technology can help in developing a new therapy for paralysis.
Collapse
|
5
|
Ahmad MA, Pottoo FH, Akbar M. Gene Therapy Repairs for the Epileptic Brain: Potential for Treatment and Future Directions. Curr Gene Ther 2021; 19:367-375. [PMID: 32003688 DOI: 10.2174/1566523220666200131142423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/01/2020] [Accepted: 01/15/2020] [Indexed: 01/19/2023]
Abstract
Epilepsy is a syndrome specified by frequent seizures and is one of the most prevalent neurological conditions, and that one-third of people of epilepsy are resistant to available drugs. Surgery is supposed to be the main treatment for the remedy of multiple drug-resistant epilepsy, but it is a drastic procedure. Advancement in genomic technologies indicates that gene therapy can make such surgery unnecessary. The considerable number of new studies show the significance of mutation in mammalian target of rapamycin pathway, NMDA receptors, GABA receptors, potassium channels and G-protein coupled receptors. Illustration of the meticulous drug in epilepsy targeting new expression of mutations in SCN8A, GRIN2A, GRIN2D and KCNT1 are conferred. Various methods are utilized to express a gene in a precise area of the brain; Transplantation of cells in an ex vivo approach (fetal cells, fibroblasts, immortalized cells), nonviral vector delivery and viral vector delivery like retrovirus, herpes simplex virus adenovirus and adeno-related virus. Gene therapy has thus been explored to generate anti-epileptogenic, anti-seizure and disease-modifying effects. Specific targeting of the epileptogenic region is facilitated by gene therapy, hence sparing the adjacent healthy tissue and decreasing the adverse effects that frequently go hand in hand with antiepileptic medication.
Collapse
Affiliation(s)
- Md A Ahmad
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Md Akbar
- Department of Pharmacology, School of Pharmaceutical, Education and Research, Jamia Hamdard, New Delhi- 110062, India
| |
Collapse
|
6
|
Gu BJ, Kung DK, Chen HCI. Cell Therapy for Stroke: A Mechanistic Analysis. Neurosurgery 2021; 88:733-745. [PMID: 33370810 DOI: 10.1093/neuros/nyaa531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/26/2020] [Indexed: 11/12/2022] Open
Abstract
Cell therapy has been widely recognized as a promising strategy to enhance recovery in stroke survivors. However, despite an abundance of encouraging preclinical data, successful clinical translation remains elusive. As the field continues to advance, it is important to reexamine prior clinical trials in the context of their intended mechanisms, as this can inform future preclinical and translational efforts. In the present work, we review the major clinical trials of cell therapy for stroke and highlight a mechanistic shift between the earliest studies, which aimed to replace dead and damaged neurons, and later ones that focused on exploiting the various neuromodulatory effects afforded by stem cells. We discuss why both mechanisms are worth pursuing and emphasize the means through which cell replacement can still be achieved.
Collapse
Affiliation(s)
- Ben Jiahe Gu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David K Kung
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Han-Chiao Isaac Chen
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Huang CP, Yang CY, Shyr CR. Utilizing Xenogeneic Cells As a Therapeutic Agent for Treating Diseases. Cell Transplant 2021; 30:9636897211011995. [PMID: 33975464 PMCID: PMC8120531 DOI: 10.1177/09636897211011995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022] Open
Abstract
The utilization of biologically produced cells to treat diseases is a revolutionary invention in modern medicine after chemically synthesized small molecule drugs and biochemically made protein drugs. Cells are basic units of life with diverse functions in mature and developing organs, which biological properties could be utilized as a promising therapeutic approach for currently intractable and incurable diseases. Xenogeneic cell therapy utilizing animal cells other than human for medicinal purpose has been studied as a new way of treating diseases. Xenogeneic cell therapy is considered as a potential regenerative approach to fulfill current unmet medical needs because xenogeneic cells could be isolated from different animal organs and expanded ex vivo as well as maintain the characteristics of original organs, providing a versatile and plenty cell source for cell-based therapeutics beside autologous and allogeneic sources. The swine species is considered the most suitable source because of the similarity with humans in size and physiology of many organs in addition to the economic and ethical reasons plus the possibility of genetic modification. This review discusses the old proposed uses of xenogeneic cells such as xenogeneic pancreatic islet cells, hepatocytes and neuronal cells as a living drug for the treatment of degenerative and organ failure diseases. Novel applications of xenogeneic mesenchymal stroma cells and urothelial cells are also discussed. There are formidable immunological barriers toward successful cellular xenotransplantation in clinic despite major progress in the development of novel immunosuppression regimens and genetically multimodified donor pigs. However, immunological barriers could be turn into immune boosters by using xenogeneic cells of specific tissue types as a novel immunotherapeutic agent to elicit bystander antitumor immunity due to rejection immune responses. Xenogeneic cells have the potential to become a safe and efficacious option for intractable diseases and hard-to-treat cancers, adding a new class of cellular medicine in our drug armamentarium.
Collapse
Affiliation(s)
- Chi-Ping Huang
- Department of Urology, School of Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Chi-Yu Yang
- Animal Technology Research Center/Division of Animal Technology, Agriculture Technology Research Institute, Miaoli, Taiwan
| | - Chih-Rong Shyr
- Sex Hormone Research Center, Department of Medical Laboratory Science and Biotechnology, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Salado-Manzano C, Perpiña U, Straccia M, Molina-Ruiz FJ, Cozzi E, Rosser AE, Canals JM. Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases? Front Cell Neurosci 2020; 14:250. [PMID: 32848630 PMCID: PMC7433375 DOI: 10.3389/fncel.2020.00250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.
Collapse
Affiliation(s)
- Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Unai Perpiña
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Emanuele Cozzi
- Department of Cardio-Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Anne E. Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
9
|
Henchcliffe C, Sarva H. Restoring Function to Dopaminergic Neurons: Progress in the Development of Cell-Based Therapies for Parkinson's Disease. CNS Drugs 2020; 34:559-577. [PMID: 32472450 DOI: 10.1007/s40263-020-00727-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is escalating interest in cell-based therapies to restore lost dopamine inputs in Parkinson's disease. This is based upon the rationale that implanting dopamine progenitors into the striatum can potentially improve dopamine-responsive motor symptoms. A rich body of data describing clinical trials of previous cell transplantation exists. These have included multiple cell sources for transplantation including allogeneic (human embryonic mesencephalic tissue, retinal pigment epithelial cells) and autologous (carotid body, adrenal medullary tissue) cells, as well as xenotransplantation. However, there are multiple limitations related to these cell sources, including availability of adequate numbers of cells for transplant, heterogeneity within cells transplanted, imprecisely defined mechanisms of action, and poor cell survival after transplantation in some cases. Nonetheless, evidence has accrued from a subset of trials to support the rationale for such a regenerative approach. Recent rapid advances in stem cell technology may now overcome these prior limitations. For example, dopamine neuron precursor cells for transplant can be generated from induced pluripotent cells and human embryonic stem cells. The benefits of these innovative approaches include: the possibility of scalability; a high degree of quality control; and improved understanding of mechanisms of action with rigorous preclinical testing. In this review, we focus on the potential for cell-based therapies in Parkinson's disease to restore the function of dopaminergic neurons, we critically review previous attempts to harness such strategies, we discuss potential benefits and predicted limitations, and we address how previous roadblocks may be overcome to bring a cell-based approach to the clinic.
Collapse
Affiliation(s)
- Claire Henchcliffe
- Department of Neurology, Weill Medical College of Cornell University, 428 East 72nd Street, Suite 400, New York, NY, 10021, USA.
| | - Harini Sarva
- Department of Neurology, Weill Medical College of Cornell University, 428 East 72nd Street, Suite 400, New York, NY, 10021, USA
| |
Collapse
|
10
|
Schweitzer JS, Song B, Herrington TM, Park TY, Lee N, Ko S, Jeon J, Cha Y, Kim K, Li Q, Henchcliffe C, Kaplitt M, Neff C, Rapalino O, Seo H, Lee IH, Kim J, Kim T, Petsko GA, Ritz J, Cohen BM, Kong SW, Leblanc P, Carter BS, Kim KS. Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson's Disease. N Engl J Med 2020; 382:1926-1932. [PMID: 32402162 PMCID: PMC7288982 DOI: 10.1056/nejmoa1915872] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the implantation of patient-derived midbrain dopaminergic progenitor cells, differentiated in vitro from autologous induced pluripotent stem cells (iPSCs), in a patient with idiopathic Parkinson's disease. The patient-specific progenitor cells were produced under Good Manufacturing Practice conditions and characterized as having the phenotypic properties of substantia nigra pars compacta neurons; testing in a humanized mouse model (involving peripheral-blood mononuclear cells) indicated an absence of immunogenicity to these cells. The cells were implanted into the putamen (left hemisphere followed by right hemisphere, 6 months apart) of a patient with Parkinson's disease, without the need for immunosuppression. Positron-emission tomography with the use of fluorine-18-L-dihydroxyphenylalanine suggested graft survival. Clinical measures of symptoms of Parkinson's disease after surgery stabilized or improved at 18 to 24 months after implantation. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Jeffrey S Schweitzer
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Bin Song
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Todd M Herrington
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Tae-Yoon Park
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Nayeon Lee
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Sanghyeok Ko
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Jeha Jeon
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Young Cha
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Kyungsang Kim
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Quanzheng Li
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Claire Henchcliffe
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Michael Kaplitt
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Carolyn Neff
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Otto Rapalino
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Hyemyung Seo
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - In-Hee Lee
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Jisun Kim
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Taewoo Kim
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Gregory A Petsko
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Jerome Ritz
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Bruce M Cohen
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Sek-Won Kong
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Pierre Leblanc
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Bob S Carter
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| | - Kwang-Soo Kim
- From the Departments of Neurosurgery (J.S.S., B.S.C.), Neurology (T.M.H.), and Radiology (K.K., Q.L.), the Gordon Center for Medical Imaging (K.K., Q.L.), and the Division of Neuroradiology (O.R.), Massachusetts General Hospital, the Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital (I.-H.L., S.-W.K.), and the Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber/Harvard Cancer Center (J.R.), Boston, and the Department of Psychiatry (B.M.C.) and the Molecular Neurobiology Laboratory (B.S., T.-Y.P., N.L., S.K., J.J., Y.C., H.S., J.K., T.K., P.L., K.-S.K.), McLean Hospital, Belmont - all in Massachusetts; the Departments of Neurology (C.H.) and Neurosurgery (M.K.) and the Brain and Mind Research Institute (G.A.P.), Weill Cornell Medical College, New York; the Department of Neurology, Kaiser Permanente, Irvine, CA (C.N.); and the Department of Molecular and Life Sciences, Hanyang University, Seoul, South Korea (H.S.)
| |
Collapse
|
11
|
Osborn TM, Hallett PJ, Schumacher JM, Isacson O. Advantages and Recent Developments of Autologous Cell Therapy for Parkinson's Disease Patients. Front Cell Neurosci 2020; 14:58. [PMID: 32317934 PMCID: PMC7147334 DOI: 10.3389/fncel.2020.00058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s Disease (PD) is a progressive degenerative disease characterized by tremor, bradykinesia, rigidity and postural instability. There are approximately 7–10 million PD patients worldwide. Currently, there are no biomarkers available or pharmaceuticals that can halt the dopaminergic neuron degeneration. At the time of diagnosis about 60% of the midbrain dopamine (mDA) neurons have already degenerated, resulting in a depletion of roughly 70% of striatal dopamine (DA) levels and synapses. Symptomatic treatment (e.g., with L-dopa) can initially restore DA levels and motor function, but with time often lead to side-effects like dyskinesia. Deep-brain-stimulation can alleviate these side-effects and some of the motor symptoms but requires repeat procedures and adds limitations for the patients. Restoration of dopaminergic synapses using neuronal cell replacement therapy has shown benefit in clinical studies using cells from fetal ventral midbrain. This approach, if done correctly, increases DA levels and restores synapses, allowing biofeedback regulation between the grafted cells and the host brain. Drawbacks are that it is not scalable for a large patient population and the patients require immunosuppression. Stem cells differentiated in vitro to mDA neurons or progenitors have shown promise in animal studies and is a scalable approach that allows for cryopreservation of transplantable cells and rigorous quality control prior to transplantation. However, all allogeneic grafts require immunosuppression. HLA-donor-matching, reduces, but does not completely eliminate, the need for immunosuppression, and is currently investigated in a clinical trial for PD in Japan. Since immune compatibility is very important in all areas of transplantation, these approaches may ultimately be of less benefit to the patients than an autologous approach. By using the patient’s own somatic cells, reprogrammed to induced pluripotent stem cells (iPSCs) and differentiated to mDA neurons immunosuppression is not required, and may also present with several biological and functional advantages in the patients, as described in this article. The proof-of-principle of autologous iPSC mDA restoration of function has been shown in parkinsonian non-human primates (NHPs), and this can now be investigated in clinical trials in addition to the allogeneic and HLA-matched approaches. In this review, we focus on the autologous approach of cell therapy for PD.
Collapse
Affiliation(s)
- Teresia M Osborn
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - James M Schumacher
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
12
|
Weng SJ, Chen CFF, Huang YS, Chiu CH, Wu SC, Lin CY, Chueh SH, Cheng CY, Ma KH. Olfactory ensheathing cells improve the survival of porcine neural xenografts in a Parkinsonian rat model. Xenotransplantation 2019; 27:e12569. [PMID: 31777103 DOI: 10.1111/xen.12569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) features the motor control deficits resulting from irreversible, progressive degeneration of dopaminergic (DA) neurons of the nigrostriatal pathway. Although intracerebral transplantation of human fetal ventral mesencephalon (hfVM) has been proven effective at reviving DA function in the PD patients, this treatment is clinically limited by availability of hfVM and the related ethical issues. Homologous tissues to hfVM, such as porcine fetal ventral mesencephalon (pfVM) thus present a strong clinical potential if immune response following xenotransplantation could be tamed. Olfactory ensheathing cells (OECs) are glial cells showing immunomodulatory properties. It is unclear but intriuging whether these properties can be applied to reducing immune response following neural xenotransplantation of PD. METHODS To determine whether OECs may benefit neural xenografts for PD, different compositions of grafting cells were transplanted into striatum of the PD model rats. We used apomorphine-induced rotational behavior to evaluate effectiveness of the neural grafts on reviving DA function. Immunohistochemistry was applied to investigate the effect of OECs on the survival of neuroxenografts and underlying mechanisms of this effect. RESULTS Four weeks following the xenotransplantation, we found that the PD rats receiving pfVM + OECs co-graft exhibited a better improvement in apomorphine-induced rotational behavior compared with those receiving only pfVM cells. This result can be explained by higher survival of DA neurons (tyrosine hydroxylase immunoreactivity) in grafted striatum of pfVM + OECs group. Furthermore, pfVM + OECs group has less immune response (CD3+ T cells and OX-6+ microglia) around the grafted area compared with pfVM only group. These results suggest that OECs may enhance the survival of the striatal xenografts via dampening the immune response at the grafted sites. CONCLUSIONS Using allogeneic OECs as a co-graft material for xenogeneic neural grafts could be a feasible therapeutic strategy to enhance results and applicability of the cell replacement therapy for PD.
Collapse
Affiliation(s)
- Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Fu F Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shinn-Chih Wu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Ying Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Huei Chueh
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
13
|
Marshall LJ, Willett C. Parkinson's disease research: adopting a more human perspective to accelerate advances. Drug Discov Today 2018; 23:1950-1961. [PMID: 30240875 DOI: 10.1016/j.drudis.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) affects 1% of the population over 60 years old and, with global increases in the aging population, presents huge economic and societal burdens. The etiology of PD remains unknown; most cases are idiopathic, presumed to result from genetic and environmental risk factors. Despite 200 years since the first description of PD, the mechanisms behind initiation and progression of the characteristic neurodegenerative processes are not known. Here, we review progress and limitations of the multiple PD animal models available and identify advances that could be implemented to better understand pathological processes, improve disease outcome, and reduce dependence on animal models. Lessons learned from reducing animal use in PD research could serve as guideposts for wider biomedical research.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Humane Society International, The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA
| | - Catherine Willett
- Humane Society International, The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA.
| |
Collapse
|
14
|
Mine Y, Momiyama T, Hayashi T, Kawase T. Grafted Miniature-Swine Neural Stem Cells of Early Embryonic Mesencephalic Neuroepithelial Origin can Repair the Damaged Neural Circuitry of Parkinson's Disease Model Rats. Neuroscience 2018; 386:51-67. [PMID: 29932984 DOI: 10.1016/j.neuroscience.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Although recent progress in the use of human iPS cell-derived midbrain dopaminergic progenitors is remarkable, alternatives are essential in the strategies of treatment of basal-ganglia-related diseases. Attention has been focused on neural stem cells (NSCs) as one of the possible candidates of donor material for neural transplantation, because of their multipotency and self-renewal characteristics. In the present study, miniature-swine (mini-swine) mesencephalic neuroepithelial stem cells (M-NESCs) of embryonic 17 and 18 days grafted in the parkinsonian rat striatum were assessed immunohistochemically, behaviorally and electrophysiologically to confirm their feasibility for the neural xenografting as a donor material. Grafted mini-swine M-NESCs survived in parkinsonian rat striatum at 8 weeks after transplantation and many of them differentiated into tyrosine hydroxylase (TH)-positive cells. The parkinsonian model rats grafted with mini-swine M-NESCs exhibited a functional recovery from their parkinsonian behavioral defects. The majority of donor-derived TH-positive cells exhibited a matured morphology at 8 weeks. Whole-cell recordings from donor-derived neurons in the host rat brain slices incorporating the graft revealed the presence of multiple types of neurons including dopaminergic. Glutamatergic and GABAergic post-synaptic currents were evoked in the donor-derived cells by stimulation of the host site, suggesting they receive both excitatory and inhibitory synaptic inputs from host area. The present study shows that non-rodent mammalian M-NESCs can differentiate into functionally active neurons in the diseased xenogeneic environment and could improve the parkinsonian behavioral defects over the species. Neuroepithelial stem cells could be an attractive candidate as a source of donor material for neural transplantation.
Collapse
Affiliation(s)
- Yutaka Mine
- Department of Neurosurgery and Endovascular Surgery, Brain Nerve Center, Saiseikai Yokohamashi Tobu Hospital, Yokohama 230-8765, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Neurosurgery, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Clinical Research, Tochigi Medical Center, National Hospital Organization, Utsunomiya 320-8580, Japan
| | - Toshihiko Momiyama
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan; Department of Pharmacology, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Takuro Hayashi
- Department of Neurosurgery, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Neurosurgery, Tokyo Medical Center, National Hospital Organization, Tokyo 152-8902, Japan
| | - Takeshi Kawase
- Department of Neurosurgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
15
|
Smith KE, Johnson RC, Papas KK. Update on cellular encapsulation. Xenotransplantation 2018; 25:e12399. [DOI: 10.1111/xen.12399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Kate E. Smith
- Department of Physiological Sciences; University of Arizona; Tucson AZ USA
- Department of Surgery; University of Arizona; Tucson AZ USA
| | | | | |
Collapse
|
16
|
Indications and prospects of neural transplantation for chronic neurological diseases. Curr Opin Organ Transplant 2017; 21:490-6. [PMID: 27517509 DOI: 10.1097/mot.0000000000000344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The replacement of damaged cells in the central nervous system (CNS) affected by degenerative disorders represents an attractive therapeutic strategy. The advent of stem cell technology may offer the possibility of generating a large number of renewable, specifically differentiated cells to potentially cure large cohorts of patients. In this review, we discuss current knowledge and issues involved in neural cell transplantation. The most important preclinical and clinical results of cellular transplantation applied to Parkinson's, Huntington's disease and amyotrophic lateral sclerosis will be summarized. RECENT FINDINGS Cellular transplantation is emerging as a possible therapy for a variety of incurable neurological disorders. The disorders that will primarily take advantage from neural stem cell grafting are those involving a well defined cell population in a restricted area of the CNS. Several clinical trials have been initiated to assess safety and efficacy of different stem cell-derived products, and promising results have been obtained for disorders such as Parkinson's disease. However, several scientific questions remain unanswered. Among these, the impact of the immunological interaction between host and graft in the particular environment of the CNS still requires additional investigations. SUMMARY Several chronic neurological disorders appear to be amenable to cell regenerative therapies. However, safety, efficacy and immunological issues will need to be carefully evaluated beforehand.
Collapse
|
17
|
Veng LM, Bjugstad KB, Freed CR, Marrack P, Clarkson ED, Bell KP, Hutt C, Zawada WM. Xenografts of MHC-Deficient Mouse Embryonic Mesencephalon Improve Behavioral Recovery in Hemiparkinsonian Rats. Cell Transplant 2017. [DOI: 10.3727/096020198389735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The limited availability of human embryonic tissue for dopamine cell transplants in Parkinson's patients has led to an increased interest in using xenogeneic donor tissue. Unfortunately, without aggressive immunosup-pression, such brain xenografts are rejected by the host immune system. Chronic brain xenograft rejection is largely mediated by helper T cells, which require presentation of xenoantigens by major histocompatability complex (MHC) class II for their activation. We examined survival and function of xenografts of E13 mouse mesencephalon deficient in either MHC class I, class II, or both after transplantation into adult hemiparkinsonian rats without immunosuppression. Recipients received grafts from C57BL/6 mice that were either: 1) wild-type (wt), 2) MHC class I knockout (KO), 3) MHC class II KO, 4) MHC class I and II double KO, or 5) saline sham transplants. At 6 weeks after transplantation, recipients of MHC class I KO, class II KO, and double KO xenografts significantly reduced methamphetamine-induced circling rate while rats with wt xenografts and sham-operated rats showed no improvement. MHC class II KO grafts had the greatest number of surviving dopamine neurons. All transplants, including saline sham controls, contained infiltrating host MHC class II-positive cells. Saline sham grafts and MHC class II KO xenografts contained significantly fewer infiltrating host MHC class II-positive cells than did wt grafts. Our results show that MHC class II-deficient xenografts survive transplantation for at least 6 weeks in the absence of immunosup-pression, reduce rotational asymmetry, and provoke lesser immune reaction than wt grafts.
Collapse
Affiliation(s)
- Lone M. Veng
- Neuroscience Program, University of Colorado School of Medicine, Denver, CO 80262
- Departments of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - Kimberly B. Bjugstad
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - Curt R. Freed
- Neuroscience Program, University of Colorado School of Medicine, Denver, CO 80262
- Departments of Medicine, University of Colorado School of Medicine, Denver, CO 80262
- Departments of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - Philippa Marrack
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206
| | - Edward D. Clarkson
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - K. Patricia Bell
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - Cindy Hutt
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - W. Michael Zawada
- Neuroscience Program, University of Colorado School of Medicine, Denver, CO 80262
- Departments of Medicine, University of Colorado School of Medicine, Denver, CO 80262
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| |
Collapse
|
18
|
Koopmans J, de Haan A, Bruin E, van der Gun I, van Dijk H, Rozing J, de Leij L, Staal M. Individual Human Serum Differs in the Amount of Antibodies with Affinity for Pig Fetal Ventral Mesencephalic Cells and the Ability to Lyse These Cells by Complement Activation. Cell Transplant 2017; 13:631-7. [PMID: 15648733 DOI: 10.3727/000000004783983503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Xenografting pig fetal ventral mesencephalic (pfVM) cells to repair the dopamine deficit in patients with Parkinson's disease is the focus of both experimental and clinical investigations. Although there have been marked advances in the experimental and even clinical application of these xenogeneic transplantations, questions regarding the host's xenospecific immune response remain unanswered. It has been shown that human serum is able to lyse pfVM tissue by both anti-gal-gal and non-anti-gal-gal antibodies by complement activation. The aim of this study was to investigate whether interindividual differences exist in the levels of pfVM cell-specific IgM and IgG subclass antibodies, their ability to lyse pfVM cells in vitro and the relationship between both. Pig fetal VM cells were incubated with heat-inactivated serum from 10 different individuals and binding of IgM antibodies and IgG subclass antibodies to pfVM cells was analyzed by flow cytometry. The ability to lyse pfVM cells was analyzed exposing 51Cr-labeled pfVM cells to fresh serum or isolated IgM and IgG from the same individuals and subsequent determination of released 51Cr from lysed cells. Strong differences were found between individuals in the levels of pfVM cell-specific IgM antibodies: antibody levels differed up to 40-fold. pfVM-specific IgG1 and IgG2 levels were only detectable in a few individuals. The ability to lyse pfVM cells ranged from negligible lysis up to 66.5% specific lysis. There was a strong correlation between the levels of individual pfVM-specific IgM antibodies and the ability to lyse pfVM cells in vitro. Isolated IgM, but not IgG, was able to lyse pfVM cells in the presence of complement. In conclusion, the interindividual differences in the levels of IgM with affinity for pfVM cells and their ability to lyse pfVM cells in vitro are considerable. Only few individuals possessed IgG1 and IgG2 subclass antibodies with affinity for pfVM. These findings may influence patient selection for porcine transplants and chances of graft survival in individual patients.
Collapse
Affiliation(s)
- Jan Koopmans
- Department of Neurosurgery, University Hospital Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Brevig T, Pedersen EB, Kristensen T, Zimmer J. Proliferative Response of Human T Lymphocytes to Porcine Fetal Brain Cells. Cell Transplant 2017; 6:571-7. [PMID: 9440866 DOI: 10.1177/096368979700600611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intracerebral grafting of porcine fetal brain cells is a potential treatment of neurodegenerative disorders in humans. Although it is well known that the survival of fetal pig brain cells in the rat brain requires immunosuppression, the response of human T lymphocytes to fetal pig brain cells is unknown. Here we report on the proliferative response of human T lymphocytes to freshly isolated cells and 14-18 days cultured cells from 28- or 35-day-old porcine fetal brains. After 5 days of mixed lymphocyte-brain cell culture, we observed no or only minor T cell responses to the freshly isolated brain cells, while both CD4 cells and CD8 cells proliferated in response to the cultured brain cells. Pretreatment of the cultured brain cells with heat-inactivated human serum significantly reduced the proliferative T cell response. The data suggest that the porcine fetal brain contains cells that can stimulate the human cellular immune system, and that this stimulation may be reduced by pretreatment of the fetal pig brain cells with human serum.
Collapse
Affiliation(s)
- T Brevig
- Department of Clinical Immunology, Odense University Hospital, Odense University, Odense C, Denmark
| | | | | | | |
Collapse
|
20
|
Larsson LC, Anderson P, Widner H, Korsgren O. Enhanced Survival of Porcine Neural Xenografts in Mice Lacking CD1d1, But No Effect of NK1.1 Depletion. Cell Transplant 2017; 10:295-304. [DOI: 10.3727/000000001783986765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of embryonic porcine neurons may restore neurological function in patients with Parkinson's disease, if immunological rejection could be prevented. This study was performed to investigate the role of natural killer cells (NK cells) and NK1.1+ T cells (NK T cells) in the rejection of neural xenografts. A cell suspension was prepared from the ventral mesencephalon of 26 – 27-day-old pig embryos, and 2 μl was implanted in the right striata of mutant CD1d1 null (CD1.1-/-) mice, NK1.1-depleted mice, and controls. The CD1.1-/- mice are deficient in NK T cells and the antigen-presenting molecule CD1d1. Graft survival and host responses were determined immunohistochemically using markers for dopamine neurons, CD4-, CD8- cells, microglia, and macrophages. At 2 weeks, the grafts were significantly larger in CD1.1-/- mice, 0.09 ± 0.02 μl (mean ± SEM), compared with controls, 0.05 ± 0.01 μl. There was no significant difference between NK1.1-depleted mice, 0.02 ± 0.01 μl, and controls. At 5 weeks, two grafts were still present in the CD1-/- mice, whereas only scars remained in the controls and in the NK1.1-depleted mice. Immune reactions were strong at 2 weeks and less pronounced at 5 weeks in all groups. Microglial activation was lower in NK-depleted mice than in the controls at 2 weeks. In contrast to organ xenografting, NK1.1+ cells do not seem to be important mediators of the rejection of discordant cellular neural xenografts. However, our results suggest that the antigen-presenting molecule CD1d1 may be involved in the rejection process.
Collapse
Affiliation(s)
- Lena C. Larsson
- Wallenberg Neuroscience Center, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | - Per Anderson
- Wallenberg Neuroscience Center, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | - Håkan Widner
- Wallenberg Neuroscience Center, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | - Olle Korsgren
- Department of Clinical Immunology and Transfusion Medicine, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala, Sweden
| |
Collapse
|
21
|
Castro AJ, Meyer M, Møller-Dall A, Zimmer J. Transplantation of Embryonic Porcine Neocortical Tissue into Newborn Rats. Cell Transplant 2017; 12:733-41. [PMID: 14653620 DOI: 10.3727/000000003108747343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Several previous studies, suggesting the potential use of embryonic xenografts in the treatment of neurological disorders, indicate that neural growth and axonal guidance factors may function across species. In this light, blocks of fetal porcine neocortex were grafted into small cortical lesion cavities made in newborn rats. Sacrifice at 3–12.5 weeks posttransplantation revealed healthy looking grafts in several animals. Apparent graft rejection evidenced by areas of necrosis and OX1 reactivity was observed in some of the older transplants. Treatment of nursing mothers or of postweaning newborns with cyclosporin A did not appear to promote graft survival. Some transplants grew to extremely large proportions and were characterized by bands of cells and bundles of axons as observed using immunohistochemical staining for pig neurofilament. Neurofilament-positive axons projected from several of the grafts to course through the corpus callosum to the contralateral cortex or to course ipsilaterally within the subcortical white matter, where labeled fibers could be traced to the midbrain crus cerebri in older transplants. Bundles of axons were also observed coursing within the ipsilateral caudate putamen where terminal branching was apparent. The normal course of transplant efferents within the host brain indicates that growing pig axons can respond to rodent axonal guidance factors.
Collapse
Affiliation(s)
- Anthony J Castro
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University School of Medicine, Maywood, IL 60153, USA.
| | | | | | | |
Collapse
|
22
|
Dall AM, Danielsen EH, Sørensen JC, Andersen F, Møller A, Zimmer J, Gjedde AH, Cumming P, Zimmer J, Brevig T, Dall AM, Meyer M, Pedersen EB, Gjedde A, Danielsen EH, Cumming P, Andersen F, Bender D, Falborg L, Gee A, Gillings NM, Hansen SB, Hermansen F, Jørgensen HA, Munk O, Poulsen PH, Rodell AB, Sakoh M, Simonsen CZ, Smith DF, Sørensen JC, Østergård L, Moller A, Johansen TE. Quantitative [18F]Fluorodopa/PET and Histology of Fetal Mesencephalic Dopaminergic Grafts to the Striatum of MPTP-Poisoned Minipigs. Cell Transplant 2017. [DOI: 10.3727/000000002783985314] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The functional restoration of the dopamine innervation of striatum in MPTP-poisoned Göttingen minipigs was assessed for 6 months following grafting of fetal pig mesencephalic neurons. Pigs were assigned to a normal control group and a MPTP-poisoned group, members of which received no further treatment, or which received bilateral grafts to the striatum of tissue blocks harvested from E28 fetal pig mesencephalon with and without immunosuppressive treatment after grafting, or with additional co-grafting with immortalized rat neural cells transfected to produce GDNF. In the baseline condition, and again at 3 and 6 months postsurgery, all animals were subjected to quantitative [18F]fluorodopa PET scans and testing for motor impairment. At the end of 6 months, tyrosine hydroxylase (TH)-containing neurons were counted in the grafts by stereological methods. The MPTP poisoning persistently reduced the magnitude of k3D, the relative activity of DOPA decarboxylase in striatum, by 60%. Grafting restored the rate of [18F]fluorodopa decarboxylation to the normal range, and normalized the scores in motor function. The biochemical and functional recovery was associated with survival of approximately 100,000 TH-positive graft neurons in each hemisphere. Immunosuppression did not impart a greater recovery of [18F]fluorodopa uptake, nor were the number of TH-positive graft neurons or the volumes of the grafts increased in the immunosuppressed group. Contrary to expectation, co-grafting of transfected GDNF-expressing HiB5 cells, a rat-derived neural cell line, tended to impair the survival of the grafts with the lowest values for graft volumes, TH-positive cell numbers, behavioral scores, and relative DOPA decarboxylase activity. From the results we conclude that pig ventral mesencephalic allografts can restore functional dopamine innervation in adult MPTP-lesioned minipigs.
Collapse
Affiliation(s)
- Annette Møller Dall
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
| | | | | | | | | | - Jens Zimmer
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
| | - Albert H. Gjedde
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
- McGill University, Montreal, Quebec, Canada
| | - Paul Cumming
- PET Centre, Aarhus General Hospital, 8000 Aarhus C, Denmark
| | - J. Zimmer
- Department of Anatomy and Neurobiology, SDU Odense University
| | - T. Brevig
- Department of Anatomy and Neurobiology, SDU Odense University
| | - A. M. Dall
- Department of Anatomy and Neurobiology, SDU Odense University
| | - M. Meyer
- Department of Anatomy and Neurobiology, SDU Odense University
| | - E. B. Pedersen
- Department of Anatomy and Neurobiology, SDU Odense University
| | - A. Gjedde
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - E. H. Danielsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - P. Cumming
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - F. Andersen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - D. Bender
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - L. Falborg
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - A. Gee
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - N. M. Gillings
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - S. B. Hansen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - F. Hermansen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - H. A. Jørgensen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - O. Munk
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - P. H. Poulsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - A. B. Rodell
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - M. Sakoh
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - C. Z. Simonsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - D. F. Smith
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - J. C. Sørensen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - L. Østergård
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | | | | | | |
Collapse
|
23
|
Koopmans J, HogenEsch I, Copray S, Middel B, van Dijk H, Go KG, Staal M. Cryopreservation of Porcine Fetal Ventral Mesencephalic Tissue for Intrastriatal Transplantation in Parkinson's Disease. Cell Transplant 2017. [DOI: 10.3727/000000001783986378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jan Koopmans
- Department of Neurosurgery, University Hospital Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Ineke HogenEsch
- Department of Neurology, Fylkessjukehuset, N-5500 Haugesund, Norway
| | - Sjef Copray
- Department of Medical Physiology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Berrie Middel
- Department of Health Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk van Dijk
- Department of Veterinary Anatomy and Physiology, University of Utrecht, Yalelaan 1, 3584 CL, The Netherlands
| | - Kian-Gwan Go
- Department of Neurosurgery, University Hospital Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Michiel Staal
- Department of Neurosurgery, University Hospital Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
24
|
Koopmans J, de Haan A, Bruin E, van der Gun I, van Dijk H, Rozing J, de Leij L, Staal M. Porcine Fetal Ventral Mesencephalic Cells are Targets for Primed Xenoreactive Human T Cells. Cell Transplant 2017; 15:381-7. [PMID: 16970280 DOI: 10.3727/000000006783981846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Xenotransplantation of porcine fetal ventral mesencephalic (pfVM) cells to overcome the dopamine shortage in the striatum of patients with Parkinson's disease seems a viable alternative to allotransplantion of human fetal donor tissue, especially because the latter is complicated by both practical and ethical issues. There is, however, little known about the xenospecific immune responses involved in such an intracerebral xenotransplantation. The aim of our study was to investigate whether 1) naive human peripheral blood mononuclear cells (PMBC) display cytotoxicity against pfVM cells of E28 pig fetuses, and 2) priming of human PBMC by xenogeneic antigen presenting cells (APC) modulates pfVM-directed cellular cytotoxicity. For this purpose fresh PMBC from nine individual donors were primed by incubation with either irradiated pfVM cells or porcine spleen cells (PSC) as APC in the presence of IL-2 for 1 week before assessing cytotoxicity in a 51Cr release assay. Also, direct NK reactivity and antibody-dependent cellular cytotoxicity (ADCC) of fresh PMBC against pfVM cells was assessed. No direct cytotoxicity of naive cells (either NK reactivity or ADCC) against pfVM cells could be determined. Only PMBC primed with PSC were capable of lysing pfVM cells. PBMC primed with pfVM cells did not show cytolytic capacity towards pfVM. Interestingly, large differences in xenospecific T-cell responses exist between individual donor PBMC. Thus, human T cells are capable of killing pfVM cells in a xenoreactive response, but only after priming by donor APC. The large interindividual differences between human donors in their xenoreactive response may influence patient selection for xenotransplantation and chances of graft survival for individual patients.
Collapse
Affiliation(s)
- Jan Koopmans
- Department of Neurosurgery, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Brevig T, Meyer M, Kristensen T, Zimmer J. Neural Xenotransplantation: Pretreatment of Porcine Embryonic Nigral Tissue with Anti-Gal Antibodies and Complement is not Toxic for the Dopaminergic Neurons. Cell Transplant 2017. [DOI: 10.3727/000000001783986954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Thomas Brevig
- Department of Anatomy and Neurobiology, University of Southern Denmark, DK-5000 Odense C, Denmark
- Department of Clinical Immunology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - Morten Meyer
- Department of Anatomy and Neurobiology, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Tom Kristensen
- Department of Clinical Immunology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - Jens Zimmer
- Department of Anatomy and Neurobiology, University of Southern Denmark, DK-5000 Odense C, Denmark
| |
Collapse
|
26
|
Granholm AC, Henry S, Herbert MA, Eken S, Gerhardt GA, van Horne C. Kidney Cografts Enhance Fiber Outgrowth from Ventral Mesencephalic Grafts to the 6-Ohda–Lesioned Striatum, and Improve Behavioral Recovery. Cell Transplant 2017; 7:197-212. [PMID: 9588601 DOI: 10.1177/096368979800700214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent studies have demonstrated the presence of many different neurotrophic factors in the developing and adult kidney. Due to its production of this mixture of neurotrophic factors, we wanted to investigate whether fetal kidney tissue could be beneficial for neuritic fiber growth and/or cell survival in intracranial transplants of fetal ventral mesencephalic tissue (VM). A retrograde lesion of nigral dopaminergic neurons was performed in adult Fischer 344 male rats by injecting 6-hydroxydopamine into the medial forebain. The animals were monitored for spontaneous locomotor activity in addition to apomorphine-induced rotations once a week. Four weeks following the lesion, animals were anesthetized and embryonic day 14 VM tissue from rat fetuses was implanted stereotaxically into the dorsal striatum. One group of animals received a cograft of kidney tissue from the same embryos in the same needle track. The animals were then monitored behaviorally for an additional 4 months. There was a significant improvement in both spontaneous locomotor activity (distance traveled) and apomorphine-induced rotations with both single VM grafts and VM–kidney cografts, with the VM–kidney double grafts enhancing the motor behaviors to a significantly greater degree. Tyrosine hydroxylase (TH) immunohistochemistry and image analysis revealed a significantly denser innervation of the host striatum from the VM–kidney cografts than from the single VM grafts. TH-positive neurons were also significantly larger in the cografts compared to the single VM grafts. In addition to the dense TH-immunoreactive innervation, the kidney portion of cografts contained a rich cholinergic innervation, as evidenced from antibodies against choline acetyltransferase (ChAT). The striatal cholinergic cell bodies surrounding the VM–kidney cografts were enlarged and had a slightly higher staining density for ChAT. Taken together, these data support the hypothesis that neurotrophic factors secreted from fetal kidney grafts stimulated both TH-positive neurons in the VM cografts and cholinergic neurons in the host striatum. Thus, these factors may be combined for treatment of degenerative diseases involving both dopaminergic and cholinergic neurons.
Collapse
Affiliation(s)
- A C Granholm
- Department of Basic Science, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
27
|
Edge AS, Gosse ME, Dinsmore J. Xenogeneic Cell Therapy: Current Progress and Future Developments in Porcine Cell Transplantation. Cell Transplant 2017; 7:525-39. [PMID: 9853581 DOI: 10.1177/096368979800700603] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The multitude of distinct cell types present in mature and developing tissues display unique physiologic characteristics. Cellular therapy is a novel technology with the promise of utilizing this diversity to treat a wide range of human degenerative diseases. Intractable diseases, disorders, and injuries are characterized by cell death or aberrant cellular function. Cell transplantation can replace diseased or lost tissue to provide restorative therapy for these conditions. The limited use of cell transplants as a basis for current therapy can, in part, be attributed to the lack of available human cells suitable for transplantation. This has prevented further realization of the promise of cell transplantation as a platform technology. Accordingly, cell-based therapies such as blood transfusions, for which the cells are readily available, are a standard part of current medical practice. Despite numerous attempts to expand primary human cells in tissue culture, current technological limitations of this approach in regard to proliferative capacity and maintenance of the differentiated phenotype has prevented their use for transplantation. Further, use of human stem cells for the derivation of specific cell types for transplantation is an area of future application with great potential, but hurdles remain in regard to deriving and sufficiently expanding these multi-potential cells. Thus, it appears that primary cells are at present a superior source for transplantation. This review focuses on pigs as a source of a variety of primary cells to advance cell therapy to the clinic and implement achievement of its full potential. We outline the advantages and disadvantages of xenogeneic cell therapy while underscoring the utility of transplantable porcine cells for the treatment of human disease. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- A S Edge
- Diacrin Inc., Charlestown, MA 02129, USA
| | | | | |
Collapse
|
28
|
Towards a Better Treatment Option for Parkinson’s Disease: A Review of Adult Neurogenesis. Neurochem Res 2016; 41:3161-3170. [DOI: 10.1007/s11064-016-2053-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 02/04/2023]
|
29
|
Aron Badin R, Vadori M, Vanhove B, Nerriere-Daguin V, Naveilhan P, Neveu I, Jan C, Lévèque X, Venturi E, Mermillod P, Van Camp N, Dollé F, Guillermier M, Denaro L, Manara R, Citton V, Simioni P, Zampieri P, D'avella D, Rubello D, Fante F, Boldrin M, De Benedictis GM, Cavicchioli L, Sgarabotto D, Plebani M, Stefani AL, Brachet P, Blancho G, Soulillou JP, Hantraye P, Cozzi E. Cell Therapy for Parkinson's Disease: A Translational Approach to Assess the Role of Local and Systemic Immunosuppression. Am J Transplant 2016; 16:2016-29. [PMID: 26749114 DOI: 10.1111/ajt.13704] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/29/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023]
Abstract
Neural transplantation is a promising therapeutic approach for neurodegenerative diseases; however, many patients receiving intracerebral fetal allografts exhibit signs of immunization to donor antigens that could compromise the graft. In this context, we intracerebrally transplanted mesencephalic pig xenografts into primates to identify a suitable strategy to enable long-term cell survival, maturation, and differentiation. Parkinsonian primates received WT or CTLA4-Ig transgenic porcine xenografts and different durations of peripheral immunosuppression to test whether systemic plus graft-mediated local immunosuppression might avoid rejection. A striking recovery of spontaneous locomotion was observed in primates receiving systemic plus local immunosuppression for 6 mo. Recovery was associated with restoration of dopaminergic activity detected both by positron emission tomography imaging and histological examination. Local infiltration by T cells and CD80/86+ microglial cells expressing indoleamine 2,3-dioxigenase were observed only in CTLA4-Ig recipients. Results suggest that in this primate neurotransplantation model, peripheral immunosuppression is indispensable to achieve the long-term survival of porcine neuronal xenografts that is required to study the beneficial immunomodulatory effect of local blockade of T cell costimulation.
Collapse
Affiliation(s)
- R Aron Badin
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - M Vadori
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy
| | - B Vanhove
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France.,CHU de Nantes, Institut de Transplantation Urologie Néphrologie, Université de Nantes, Nantes, France
| | - V Nerriere-Daguin
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - P Naveilhan
- Institut National de la Santé et de la Recherche Médicale UMR913, Nantes, France
| | - I Neveu
- Institut National de la Santé et de la Recherche Médicale UMR913, Nantes, France
| | - C Jan
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - X Lévèque
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - E Venturi
- INRA Physio Reproduction Femelle CR de Tours, Nouzilly, France
| | - P Mermillod
- INRA Physio Reproduction Femelle CR de Tours, Nouzilly, France
| | - N Van Camp
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - F Dollé
- CEA, I²BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | - L Denaro
- Neurosciences, University of Padua, Padua, Italy
| | - R Manara
- Neurosciences, University of Padua, Padua, Italy
| | - V Citton
- Neurosciences, University of Padua, Padua, Italy
| | - P Simioni
- Neurosciences, University of Padua, Padua, Italy
| | - P Zampieri
- Neurosciences, University of Padua, Padua, Italy
| | - D D'avella
- Neurosciences, University of Padua, Padua, Italy
| | - D Rubello
- Nuclear Medicine, S. Maria della Misericordia Hospital, Rovigo, Italy
| | - F Fante
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy
| | - M Boldrin
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy
| | - G M De Benedictis
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - L Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - D Sgarabotto
- Transplant Infectious Disease Unit, Padua University Hospital, Padua, Italy
| | - M Plebani
- Department of Laboratory Medicine, Padua University Hospital, Padua, Italy
| | - A L Stefani
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - P Brachet
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - G Blancho
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France.,CHU de Nantes, Institut de Transplantation Urologie Néphrologie, Université de Nantes, Nantes, France
| | - J P Soulillou
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - P Hantraye
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - E Cozzi
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy.,Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| |
Collapse
|
30
|
Current status of neuronal cell xenotransplantation. Int J Surg 2015; 23:267-272. [DOI: 10.1016/j.ijsu.2015.09.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/18/2022]
|
31
|
Aron Badin R, Vadori M, Cozzi E, Hantraye P. Translational research for Parkinson׳s disease: The value of pre-clinical primate models. Eur J Pharmacol 2015; 759:118-26. [DOI: 10.1016/j.ejphar.2015.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022]
|
32
|
Dittrich R, Lotz L, Fehm T, Krüssel J, von Wolff M, Toth B, van der Ven H, Schüring AN, Würfel W, Hoffmann I, Beckmann MW. Xenotransplantation of cryopreserved human ovarian tissue--a systematic review of MII oocyte maturation and discussion of it as a realistic option for restoring fertility after cancer treatment. Fertil Steril 2015; 103:1557-65. [PMID: 25881879 DOI: 10.1016/j.fertnstert.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To systematically review the reporting of MII (MII) oocyte development after xenotransplantation of human ovarian tissue. DESIGN Systematic review in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). SETTING Not applicable. PATIENT(S) Not applicable. INTERVENTION(S) Formation of MII oocytes after xenotransplantation of human ovarian tissue. MAIN OUTCOME MEASURE(S) Any outcome reported in Pubmed. RESULT(S) Six publications were identified that report on formation of MII oocytes after xenotransplantation of human ovarian tissue. CONCLUSION(S) Xenografting of human ovarian tissue has proved to be a useful model for examining ovarian function and follicle development in vivo. With human follicles that have matured through xenografting, the possibility of cancer transmission and relapse can also be eliminated, because cancer cells are not able to penetrate the zona pellucida. The reported studies have demonstrated that xenografted ovarian tissue from a range of species, including humans, can produce antral follicles that contain mature (MII) oocytes, and it has been shown that mice oocytes have the potential to give rise to live young. Although some ethical questions remain unresolved, xenotransplantation may be a promising method for restoring fertility. This review furthermore describes the value of xenotransplantation as a tool in reproductive biology and discusses the ethical and potential safety issues regarding ovarian tissue xenotransplantation as a means of recovering fertility.
Collapse
Affiliation(s)
- Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Laura Lotz
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Jan Krüssel
- Department of Obstetrics and Gynecology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Michael von Wolff
- Division of Gynecologic Endocrinology and Reproductive Medicine, University Women's Hospital, Berne, Switzerland
| | - Bettina Toth
- Department of Gynecologic Endocrinology and Fertility Disorders, Ruprecht-Karls University Hospital, Heidelberg, Germany
| | - Hans van der Ven
- Department of Obstetrics and Gynecology, Bonn University Hospital, Bonn, Germany
| | - Andreas N Schüring
- Department of Obstetrics and Gynecology, UKM Kinderwunschzentrum, Münster University Hospital, Münster, Germany
| | | | - Inge Hoffmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
33
|
Barker RA. What have open label studies of cell based therapies for Parkinson's disease told us, if anything? ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.baga.2014.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Remy P. Biotherapies for Parkinson disease. Rev Neurol (Paris) 2014; 170:763-9. [DOI: 10.1016/j.neurol.2014.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/17/2022]
|
35
|
Lévêque X, Mathieux E, Nerrière-Daguin V, Thinard R, Kermarrec L, Durand T, Haudebourg T, Vanhove B, Lescaudron L, Neveu I, Naveilhan P. Local control of the host immune response performed with mesenchymal stem cells: perspectives for functional intracerebral xenotransplantation. J Cell Mol Med 2014; 19:124-34. [PMID: 25310920 PMCID: PMC4288356 DOI: 10.1111/jcmm.12414] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/31/2014] [Indexed: 12/20/2022] Open
Abstract
Foetal pig neuroblasts are interesting candidates as a cell source for transplantation, but xenotransplantation in the brain requires the development of adapted immunosuppressive treatments. As systemic administration of high doses of cyclosporine A has side effects and does not protect xenotransplants forever, we focused our work on local control of the host immune responses. We studied the advantage of cotransplanting syngenic mesenchymal stem cells (MSC) with porcine neuroblasts (pNb) in immunocompetent rat striata. Two groups of animals were transplanted, either with pNb alone or with both MSC and pNb. At day 63, no porcine neurons were detected in the striata that received only pNb, while four of six rats transplanted with both pNb and MSC exhibited healthy porcine neurons. Interestingly, 50% of the cotransplanted rats displayed healthy grafts with pNF70+ and TH+ neurons at 120 days post-transplantation. qPCR analyses revealed a general dwindling of pro- and anti-inflammatory cytokines in the striata that received the cotransplants. Motor recovery was also observed following the transplantation of pNb and MSC in a rat model of Parkinson's disease. Taken together, the present data indicate that the immunosuppressive properties of MSC are of great interest for the long-term survival of xenogeneic neurons in the brain.
Collapse
Affiliation(s)
- Xavier Lévêque
- INSERM, UMR 1064, Nantes, France; CHU de Nantes, Institut de Transplantation et de Recherche en Transplantation, ITERT, Nantes, France; Faculté de Médecine, Université de Nantes, LUNAM Université, Nantes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Identification of Niche Conditions Supporting Short-term Culture of Spermatogonial Stem Cells Derived from Porcine Neonatal Testis. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2014. [DOI: 10.12750/jet.2014.29.3.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
37
|
Porcine endogenous retroviruses in xenotransplantation--molecular aspects. Viruses 2014; 6:2062-83. [PMID: 24828841 PMCID: PMC4036542 DOI: 10.3390/v6052062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/15/2014] [Accepted: 04/26/2014] [Indexed: 02/06/2023] Open
Abstract
In the context of the shortage of organs and other tissues for use in human transplantation, xenotransplantation procedures with material taken from pigs have come under increased consideration. However, there are unclear consequences of the potential transmission of porcine pathogens to humans. Of particular concern are porcine endogenous retroviruses (PERVs). Three subtypes of PERV have been identified, of which PERV-A and PERV-B have the ability to infect human cells in vitro. The PERV-C subtype does not show this ability but recombinant PERV-A/C forms have demonstrated infectivity in human cells. In view of the risk presented by these observations, the International Xenotransplantation Association recently indicated the existence of four strategies to prevent transmission of PERVs. This article focuses on the molecular aspects of PERV infection in xenotransplantation and reviews the techniques available for the detection of PERV DNA, RNA, reverse transcriptase activity and proteins, and anti-PERV antibodies to enable carrying out these recommendations. These methods could be used to evaluate the risk of PERV transmission in human recipients, enhance the effectiveness and reliability of monitoring procedures, and stimulate discussion on the development of improved, more sensitive methods for the detection of PERVs in the future.
Collapse
|
38
|
Dolezalova D, Hruska-Plochan M, Bjarkam CR, Sørensen JCH, Cunningham M, Weingarten D, Ciacci JD, Juhas S, Juhasova J, Motlik J, Hefferan MP, Hazel T, Johe K, Carromeu C, Muotri A, Bui J, Strnadel J, Marsala M. Pig models of neurodegenerative disorders: Utilization in cell replacement-based preclinical safety and efficacy studies. J Comp Neurol 2014; 522:2784-801. [DOI: 10.1002/cne.23575] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Dasa Dolezalova
- Department of Anesthesiology; University of California; San Diego La Jolla CA USA
| | | | - Carsten R. Bjarkam
- Department of Neurosurgery; Aalborg University Hospital; Aalborg Denmark
- Department of Biomedicine; Institute of Anatomy, University of Aarhus; Aarhus Denmark
| | | | - Miles Cunningham
- MRC 312, McLean Hospital, Harvard Medical School; Belmont MA 02478 USA
| | - David Weingarten
- UCSD Division of Neurosurgery; University of California; San Diego CA USA
| | - Joseph D. Ciacci
- UCSD Division of Neurosurgery; University of California; San Diego CA USA
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | | | | | | | - Cassiano Carromeu
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Alysson Muotri
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Jack Bui
- Department of Pathology; University of California; San Diego CA USA
| | - Jan Strnadel
- Department of Pathology; University of California; San Diego CA USA
| | - Martin Marsala
- Department of Anesthesiology; University of California; San Diego La Jolla CA USA
- Institute of Neurobiology, Slovak Academy of Sciences; Kosice Slovakia
| |
Collapse
|
39
|
Zoonosis as a Risk to the Xenograft Recipient and to Society: Theoretical Issues. Xenotransplantation 2014. [DOI: 10.1128/9781555818043.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Cisbani G, Cicchetti F. Review: The fate of cell grafts for the treatment of Huntington's disease: thepost-mortemevidence. Neuropathol Appl Neurobiol 2014; 40:71-90. [DOI: 10.1111/nan.12104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022]
Affiliation(s)
- G. Cisbani
- Centre de Recherche du CHU de Québec (CHUL); Québec QC Canada
| | - F. Cicchetti
- Centre de Recherche du CHU de Québec (CHUL); Québec QC Canada
- Département de Psychiatrie et Neurosciences; Université Laval; Québec QC Canada
| |
Collapse
|
41
|
Sevc J, Goldberg D, van Gorp S, Leerink M, Juhas S, Juhasova J, Marsala S, Hruska-Plochan M, Hefferan MP, Motlik J, Rypacek F, Machova L, Kakinohana O, Santucci C, Johe K, Lukacova N, Yamada K, Bui JD, Marsala M. Effective long-term immunosuppression in rats by subcutaneously implanted sustained-release tacrolimus pellet: Effect on spinally grafted human neural precursor survival. Exp Neurol 2013; 248:85-99. [DOI: 10.1016/j.expneurol.2013.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 05/21/2013] [Accepted: 05/26/2013] [Indexed: 01/14/2023]
|
42
|
Shinozuka K, Staples M, Borlongan CV. Melatonin-based therapeutics for neuroprotection in stroke. Int J Mol Sci 2013; 14:8924-47. [PMID: 23698756 PMCID: PMC3676765 DOI: 10.3390/ijms14058924] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 01/25/2023] Open
Abstract
The present review paper supports the approach to deliver melatonin and to target melatonin receptors for neuroprotection in stroke. We discuss laboratory evidence demonstrating neuroprotective effects of exogenous melatonin treatment and transplantation of melatonin-secreting cells in stroke. In addition, we describe a novel mechanism of action underlying the therapeutic benefits of stem cell therapy in stroke, implicating the role of melatonin receptors. As we envision the clinical entry of melatonin-based therapeutics, we discuss translational experiments that warrant consideration to reveal an optimal melatonin treatment strategy that is safe and effective for human application.
Collapse
Affiliation(s)
- Kazutaka Shinozuka
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | | | | |
Collapse
|
43
|
Characterization of Porcine Ventral Mesencephalic Precursor Cells following Long-Term Propagation in 3D Culture. Stem Cells Int 2012; 2012:761843. [PMID: 23258982 PMCID: PMC3508616 DOI: 10.1155/2012/761843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 09/04/2012] [Indexed: 01/08/2023] Open
Abstract
The potential use of predifferentiated neural precursor cells for treatment of a neurological disorder like Parkinson's disease combines stem cell research with previous experimental and clinical transplantation of developing dopaminergic neurons. One current obstacle is, however, the lack of ability to generate dopaminergic neurons after long-term in vitro propagation of the cells. The domestic pig is considered a useful nonprimate large animal model in neuroscience, because of a better resemblance of the larger gyrencephalic pig brain to the human brain than the commonly used brains of smaller rodents. In the present study, porcine embryonic (28–30 days), ventral mesencephalic precursor cells were isolated and propagated as free-floating neural tissue spheres in medium containing epidermal growth factor and fibroblast growth factor 2. For passaging, the tissue spheres were cut into quarters, avoiding mechanical or enzymatic dissociation in order to minimize cellular trauma and preserve intercellular contacts. Spheres were propagated for up to 237 days with analysis of cellular content and differentiation at various time points. Our study provides the first demonstration that porcine ventral mesencephalic precursor cells can be long-term propagated as neural tissue spheres, thereby providing an experimental 3D in vitro model for studies of neural precursor cells, their niche, and differentiation capacity.
Collapse
|
44
|
Hammerman MR. Pancreas and kidney transplantation using embryonic donor organs. Organogenesis 2012; 1:3-13. [PMID: 19521554 DOI: 10.4161/org.1.1.1008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 06/01/2004] [Indexed: 01/09/2023] Open
Abstract
One novel solution to the shortage of human organs available for transplantation envisions 'growing' new organs in situ. This can be accomplished by transplantation of developing organ anlagen/primordia. We and others have shown that renal anlagen (metanephroi) transplanted into animal hosts undergo differentiation and growth, become vascularized by blood vessels of host origin and exhibit excretory function. Metanephroi can be stored for up to 3 days in vitro prior to transplantation with no impairment in growth or function post-implantation. Metanephroi can be transplanted across both concordant (rat to mouse) and highly disparate (pig to rodent) xenogeneic barriers. Similarly, pancreatic anlagen can be transplanted across concordant and highly disparate barriers, and undergo growth, differentiation and secrete insulin in a physiological manner following intra-peritoneal placement. Implantation of the embryonic pancreas, is followed by selective differentiation of islet components. Here we review studies exploring the potential therapeutic applicability for organogenesis of the kidney or endocrine pancreas.
Collapse
|
45
|
Piquet AL, Venkiteswaran K, Marupudi NI, Berk M, Subramanian T. The immunological challenges of cell transplantation for the treatment of Parkinson's disease. Brain Res Bull 2012; 88:320-31. [PMID: 22521427 DOI: 10.1016/j.brainresbull.2012.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 01/24/2023]
Abstract
Dopaminergic cell transplantation is an experimental therapy for Parkinson's disease (PD). It has many potential theoretical advantages over current treatment strategies such as providing continuous local dopaminergic replenishment, eliminating motor fluctuations and medication-induced dyskinesias, slowing down disease progression or even reversing disease pathology in the host. Recent studies also show that dopaminergic cell transplants provide long-term neuromodulation in the basal ganglia that simulates the combined effects of oral dopaminergic therapy and surgical therapies like deep brain stimulation, the contemporary therapeutic approach to advanced PD. However, dopaminergic cell transplantation in PD as not been optimized and current experimental techniques have many drawbacks. In published experiments to date of attempted dopaminergic grafting in PD, the major challenges are unacceptable graft-induced dyskinesias or failure of such grafts to exceed the benefits afforded by sham surgery. A deleterious host immune response to the transplant has been implicated as a major putative cause for these adverse outcomes. This article focuses on recent advances in understanding the immunology of the transplantation in PD and possible methods to overcome adverse events such that we could translate cell replacement strategies into viable clinical treatments in the future.
Collapse
Affiliation(s)
- Amanda L Piquet
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, United States
| | | | | | | | | |
Collapse
|
46
|
Bonnamain V, Neveu I, Naveilhan P. Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system. Front Cell Neurosci 2012; 6:17. [PMID: 22514520 PMCID: PMC3323829 DOI: 10.3389/fncel.2012.00017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/26/2012] [Indexed: 01/18/2023] Open
Abstract
Neural transplantation is a promising therapeutic strategy for neurodegenerative diseases and other disorders of the central nervous system (CNS) such as Parkinson and Huntington diseases, multiple sclerosis or stroke. Although cell replacement therapy already went through clinical trials for some of these diseases using fetal human neuroblasts, several significant limitations led to the search for alternative cell sources that would be more suitable for intracerebral transplantation.Taking into account logistical and ethical issues linked to the use of tissue derived from human fetuses, and the immunologically special status of the CNS allowing the occurrence of deleterious immune reactions, neural stem/progenitor cells (NSPCs) appear to be an interesting cell source candidate. In addition to their ability for replacing cell populations lost during the pathological events, NSPCs also display surprising therapeutic effects of neuroprotection and immunomodulation. A better knowledge of the mechanisms involved in these specific characteristics will hopefully lead in the future to a successful use of NSPCs in regenerative medicine for CNS disorders.
Collapse
|
47
|
De Filippis L, Binda E. Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult. Stem Cells Transl Med 2012. [PMID: 23197809 DOI: 10.5966/sctm.2011-0045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The recent discovery of neural stem cells (NSCs) in the adult mammalian brain has fostered a plethora of translational and preclinical studies to investigate future therapeutic approaches for the cure of neurodegenerative diseases. These studies are finally at the clinical stage, and some of them are already under way. The definition of a bona fide stem cell has long been the object of much debate focused on the establishment of standard and univocal criteria to distinguish between stem and progenitor cells. It is commonly accepted that NSCs have to fulfill two basic requirements, the capacity for long-term self-renewal and the potential for differentiation, which account for their physiological role, namely central nervous system tissue homeostasis. Strategies such as immortalization or reprogramming of somatic cells to the embryonic-like stage of pluripotency indicate the relevance of extensive self-renewal ability of NSCs either in vitro or in vivo. Moreover, the discovery of stem-like tumor cells in brain tumors, such as gliomas, accompanied by the isolation of these cells through the same paradigm used for related healthy cells, has provided further evidence of the key role that self-renewal plays in the development and progression of neurodegenerative diseases and cancer. In this review we provide an overview of the current understanding of the self-renewal capacity of nontransformed human NSCs, with or without immortalization or reprogramming, and of stem-like tumor cells, referring to both research and therapeutic studies.
Collapse
Affiliation(s)
- Lidia De Filippis
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Italy.
| | | |
Collapse
|
48
|
Lévêque X, Nerrière-Daguin V, Neveu I, Naveilhan P. Pig Neural Cells Derived from Foetal Mesencephalon as Cell Source for Intracerebral Xenotransplantation. Xenotransplantation 2012; 885:233-43. [DOI: 10.1007/978-1-61779-845-0_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
49
|
Chang YL, Chen SJ, Kao CL, Hung SC, Ding DC, Yu CC, Chen YJ, Ku HH, Lin CP, Lee KH, Chen YC, Wang JJ, Hsu CC, Chen LK, Li HY, Chiou SH. Docosahexaenoic Acid Promotes Dopaminergic Differentiation in Induced Pluripotent Stem Cells and Inhibits Teratoma Formation in Rats with Parkinson-Like Pathology. Cell Transplant 2012; 21:313-32. [PMID: 21669041 DOI: 10.3727/096368911x580572] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic (DA) neurons in the midbrain. Induced pluripotent stem (iPS) cells have shown potential for differentiation and may become a resource of functional neurons for the treatment of PD. However, teratoma formation is a major concern for transplantation-based therapies. This study examined whether functional neurons could be efficiently generated from iPS cells using a five-step induction procedure combined with docosahexaenoic acid (DHA) treatment. We demonstrated that DHA, a ligand for the RXR/Nurr1 heterodimer, significantly activated expression of the Nurr1 gene and the Nurr1-related pathway in iPS cells. DHA treatment facilitated iPS differentiation into tyrosine hydroxylase (TH)-positive neurons in vitro and in vivo and functionally increased dopamine release in transplanted grafts in PD-like animals. Furthermore, DHA dramatically upregulated the endogenous expression levels of neuroprotective genes ( Bcl-2, Bcl-xl, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor) and protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced apoptosis in iPS-derived neuronal precursor cells. DHA-treated iPS cells significantly improved the behavior of 6-hydroxydopamine (6-OHDA)-treated PD-like rats compared to control or eicosapentaenoic acid-treated group. Importantly, the in vivo experiment suggests that DHA induces the differentiation of functional dopaminergic precursors and improves the abnormal behavior of 6-OHDA-treated PD-like rats by 4 months after transplantation. Furthermore, we found that DHA treatment in iPS cell-grafted rats significantly downregulated the mRNA expression of embryonic stem cell-specific genes (Oct-4 and c-Myc) in the graft and effectively blocked teratoma formation. Importantly, 3 Tesla-magnetic resonance imaging and ex vivo green fluorescence protein imaging revealed that no teratomas were present in transplanted grafts of DHA-treated iPS-derived DA neurons 4 months after implantation. Therefore, our data suggest that DHA plays a crucial role in iPS differentiation into functional DA neurons and that this approach could provide a novel therapeutic approach for PD treatment.
Collapse
Affiliation(s)
- Yuh-Lih Chang
- Institute of Pharmacology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Lan Kao
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Dah-Ching Ding
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital & Tzu Chi University, Taipei, Taiwan
| | - Cheng-Chia Yu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Oral Biology and Biomaterial Science, Chung-Shan Medical University & Department of Dentistry, Chung Shan Medical University Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hung-Hai Ku
- Institute of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Po Lin
- Brain Research Center, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Hsiung Lee
- Division of Biotechnology, Animal Technology Institute Taiwan, Chunan, Miaoli, Taiwan
| | - Yu-Chih Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jhi-Joung Wang
- Department of Surgery, Chi-Mei Medical Center & Chia Nan University of Pharmacy & Science, Taipei, Taiwan
| | - Chuan-Chih Hsu
- Department of Surgery, Chi-Mei Medical Center & Chia Nan University of Pharmacy & Science, Taipei, Taiwan
| | - Liang-Kung Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yang Li
- Institute of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
50
|
Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL, Larson GA, He Y, Huang Q, Tan AC, Zhang D, Benke TA, Sladek JR, Zahniser NR, Li CY. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 2011; 22:321-32. [PMID: 22105488 PMCID: PMC3271588 DOI: 10.1038/cr.2011.181] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transplantation of exogenous dopaminergic neuron (DA neurons) is a promising approach for treating Parkinson's disease (PD). However, a major stumbling block has been the lack of a reliable source of donor DA neurons. Here we show that a combination of five transcriptional factors Mash1, Ngn2, Sox2, Nurr1, and Pitx3 can directly and effectively reprogram human fibroblasts into DA neuron-like cells. The reprogrammed cells stained positive for various markers for DA neurons. They also showed characteristic DA uptake and production properties. Moreover, they exhibited DA neuron-specific electrophysiological profiles. Finally, they provided symptomatic relief in a rat PD model. Therefore, our directly reprogrammed DA neuron-like cells are a promising source of cell-replacement therapy for PD.
Collapse
Affiliation(s)
- Xinjian Liu
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|