1
|
Oakes A, Liu Y, Dubielecka PM. Complement or insult: the emerging link between complement cascade deficiencies and pathology of myeloid malignancies. J Leukoc Biol 2024; 116:966-984. [PMID: 38836653 PMCID: PMC11531810 DOI: 10.1093/jleuko/qiae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The complement cascade is an ancient and highly conserved arm of the immune system. The accumulating evidence highlights elevated activity of the complement cascade in cancer microenvironment and emphasizes its effects on the immune, cancer, and cancer stroma cells, pointing to a role in inflammation-mediated etiology of neoplasms. The role the cascade plays in development, progression, and relapse of solid tumors is increasingly recognized, however its role in hematological malignancies, especially those of myeloid origin, has not been thoroughly assessed and remains obscure. As the role of inflammation and autoimmunity in development of myeloid malignancies is becoming recognized, in this review we focus on summarizing the links that have been identified so far for complement cascade involvement in the pathobiology of myeloid malignancies. Complement deficiencies are primary immunodeficiencies that cause an array of clinical outcomes including an increased risk of a range of infectious as well as local or systemic inflammatory and thrombotic conditions. Here, we discuss the impact that deficiencies in complement cascade initiators, mid- and terminal-components and inhibitors have on the biology of myeloid neoplasms. The emergent conclusions indicate that the links between complement cascade, inflammatory signaling, and the homeostasis of hematopoietic system exist, and efforts should continue to detail the mechanistic involvement of complement cascade in the development and progression of myeloid cancers.
Collapse
Affiliation(s)
- Alissa Oakes
- Department of Medicine, Alpert Medical School, Brown University, 69 Brown St, Providence, RI 02906, USA
- Division of Hematology/Oncology, Rhode Island Hospital, 69 Brown St, Providence, RI 02906, USA
- Therapeutic Sciences Graduate program, Brown University, 69 Brown St, Providence, RI 02906, USA
| | - Yuchen Liu
- Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201-1595, USA
| | - Patrycja M Dubielecka
- Department of Medicine, Alpert Medical School, Brown University, 69 Brown St, Providence, RI 02906, USA
- Division of Hematology/Oncology, Rhode Island Hospital, 69 Brown St, Providence, RI 02906, USA
- Therapeutic Sciences Graduate program, Brown University, 69 Brown St, Providence, RI 02906, USA
- Legorreta Cancer Center, Brown University, One Hoppin St., Coro West, Suite 5.01, Providence, RI 02903, USA
| |
Collapse
|
2
|
Shi L, Zha H, Huang H, Xia Y, Li H, Huang J, Yue R, Li C, Zhu J, Song Z. miR-199a-5p aggravates renal ischemia-reperfusion and transplant injury by targeting AKAP1 to disrupt mitochondrial dynamics. Am J Physiol Renal Physiol 2024; 327:F910-F929. [PMID: 39265082 DOI: 10.1152/ajprenal.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a complex pathophysiological process and a major cause of delayed graft function (DGF) after transplantation. MicroRNA (miRNA) has important roles in the pathogenesis of IRI and may represent promising therapeutic targets for mitigating renal IRI. miRNA sequencing was performed to profile microRNA expression in mouse kidneys after cold storage and transplantation (CST). Lentivirus incorporating a miR-199a-5p modulator was injected into mouse kidney in situ before syngenetic transplantation and unilateral IRI to determine the effect of miR-199a-5p in vivo. miR-199a-5p mimic or inhibitor was transfected cultured tubular cells before ATP depletion recovery treatment to examine the role of miR-199a-5p in vitro. Sequencing data and microarray showed upregulation of miR-199a-5p in mice CST and human DGF samples. Lentivirus incorporating a miR-199a-5p mimic aggravated renal IRI, and protective effects were obtained with a miR-199a-5p inhibitor. Treatment with the miR-199a-5p inhibitor ameliorated graft function loss, tubular injury, and immune response after CST. In vitro experiments revealed exacerbation of mitochondria dysfunction upon ATP depletion and repletion model in the presence of the miR-199a-5p mimic, whereas dysfunction was attenuated when the miR-199a-5p inhibitor was applied. miR-199a-5p was shown to target A-kinase anchoring protein 1 (AKAP1) by double luciferase assay and miR-199a-5p activation reduced dynamin-related protein 1 (Drp1)-s637 phosphorylation and mitochondrial length. Overexpression of AKAP1 preserved Drp1-s637 phosphorylation and reduced mitochondrial fission. miR-199a-5p activation reduced AKAP1 expression, promoted Drp1-s637 dephosphorylation, aggravated the disruption of mitochondrial dynamics, and contributed to renal IRI.NEW & NOTEWORTHY This study identifies miR-199a-5p as a key regulator in renal ischemia-reperfusion injury through microRNA sequencing in mouse models and human delayed graft function. miR-199a-5p worsens renal IRI by aggravating graft dysfunction, tubular injury, and immune response, while its inhibition shows protective effects. miR-199a-5p downregulates A-kinase anchoring protein 1 (AKAP1), reducing dynamin-related protein 1 (Drp1)-s637 phosphorylation, increasing mitochondrial fission, and causing dysfunction. Targeting the miR-199a-5p/AKAP1/Drp1 axis offers therapeutic potential for renal IRI, as AKAP1 overexpression preserves mitochondrial integrity by maintaining Drp1-s637 phosphorylation.
Collapse
Affiliation(s)
- Lang Shi
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongchu Zha
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Hua Huang
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Huimin Li
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Jing Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruchi Yue
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiefu Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhixia Song
- Department of Nephrology, The People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
3
|
Mon-Wei Yu S, King E, Fribourg M, Hartzell S, Tsou L, Gee L, D'Agati VD, Thurman JM, He JC, Cravedi P. A Newly Identified Protective Role of C5a Receptor 1 in Kidney Tubules against Toxin-Induced Acute Kidney Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00367-5. [PMID: 39427763 DOI: 10.1016/j.ajpath.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Acute kidney injury (AKI) remains a major reason for hospitalization with limited therapeutic options. Although complement activation is implicated in AKI, the role of C5a receptor 1 (C5aR1) in kidney tubular cells is unclear. We used aristolochic acid nephropathy (AAN) and folic acid nephropathy models to establish the role of C5aR1 in kidney tubules during AKI in germline C5ar1-/- mice, myeloid cell-specific mice, and kidney tubule-specific C5ar1 knockout mice. After aristolochic acid and folic acid injection, C5ar1-/- mice had increased AKI severity and a higher degree of tubular injury. Macrophage depletion in C5ar1-/- mice or myeloid cell-specific C5ar1 deletion did not affect the outcomes of aristolochic acid-induced AKI. RNA-sequencing data from renal tubular epithelial cells (RTECs) showed that C5ar1 deletion was associated with the down-regulation of mitochondrial metabolism and ATP production transcriptional pathways. Metabolic studies confirmed reduced mitochondrial membrane potential at baseline and increased mitochondrial oxidative stress after injury in C5ar1-/- RTECs. Moreover, C5ar1-/- RTECs had enhanced glycolysis, glucose uptake, and lactate production on injury, corroborated by metabolomics analysis of kidneys from AAN mice. Kidney tubule-specific C5ar1 knockout mice recapitulated exacerbated AKI observed in C5ar1-/- mice in AAN and folic acid nephropathy. Our data indicate that C5aR1 signaling in kidney tubules exerts renoprotective effects against toxin-induced AKI by limiting overt glycolysis and maintaining mitochondrial function, revealing a novel link between the complement system and tubular cell metabolism.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York.
| | - Emily King
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Miguel Fribourg
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Susan Hartzell
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Liam Tsou
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Logan Gee
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Joshua M Thurman
- Medicine-Renal Med Diseases/Hypertension, Colorado University, Aurora, Colorado
| | - John Cijiang He
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York; James J. Peters Veteran Administration Medical Center, New York, New York
| | - Paolo Cravedi
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York.
| |
Collapse
|
4
|
Abstract
The complement cascade comprises soluble and cell surface proteins and is an important arm of the innate immune system. Once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammatory, vasoactive and metabolic responses. Although complement is crucial to host defence and homeostasis, its inappropriate or uncontrolled activation can also drive tissue injury. For example, the complement system has been known for more than 50 years to be activated by glomerular immune complexes and to contribute to autoimmune kidney disease. Notably, the latest research shows that complement is also activated in kidney diseases that are not traditionally thought of as immune-mediated, including haemolytic-uraemic syndrome, diabetic kidney disease and focal segmental glomerulosclerosis. Several complement-targeted drugs have been approved for the treatment of kidney disease, and additional anti-complement agents are being investigated in clinical trials. These drugs are categorically different from other immunosuppressive agents and target pathological processes that are not effectively inhibited by other classes of immunosuppressants. The development of these new drugs might therefore have considerable benefits in the treatment of kidney disease.
Collapse
Affiliation(s)
- Vojtech Petr
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M Thurman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
5
|
Mulvey JF, Shaheed SU, Charles PD, Snashall C, Lo Faro ML, Sutton CW, Jochmans I, Pirenne J, van Kooten C, Leuvenink HGD, Kaisar M, Ploeg RJ. Perfusate Proteomes Provide Biological Insight Into Oxygenated Versus Standard Hypothermic Machine Perfusion in Kidney Transplantation. Ann Surg 2023; 278:676-682. [PMID: 37503631 DOI: 10.1097/sla.0000000000006046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
OBJECTIVE To provide mechanistic insight into key biological alterations in donation after circulatory death kidneys during continuous pefusion we performed mass spectrometry profiling of perfusate samples collected during a phase 3 randomized double-blind paired clinical trial of hypothermic machine perfusion with and without oxygen (COMPARE). BACKGROUND Despite the clinical benefits of novel perfusion technologies aiming to better preserve donor organs, biological processes that may be altered during perfusion have remained largely unexplored. The collection of serial perfusate samples during the COMPARE clinical trial provided a unique resource to study perfusate proteomic profiles, with the hypothesis that in-depth profiling may reveal biologically meaningful information on how donor kidneys benefit from this intervention. METHODS Multiplexed liquid chromatography-tandem mass spectrometry was used to obtain a proteome profile of 210 perfusate samples. Partial least squares discriminant analysis and multivariate analysis involving clinical and perfusion parameters were used to identify associations between profiles and clinical outcomes. RESULTS Identification and quantitation of 1716 proteins indicated that proteins released during perfusion originate from the kidney tissue and blood, with blood-based proteins being the majority. Data show that the overall hypothermic machine perfusion duration is associated with increasing levels of a subgroup of proteins. Notably, high-density lipoprotein and complement cascade proteins are associated with 12-month outcomes, and blood-derived proteins are enriched in the perfusate of kidneys that developed acute rejection. CONCLUSIONS Perfusate profiling by mass spectrometry was informative and revealed proteomic changes that are biologically meaningful and, in part, explain the clinical observations of the COMPARE trial.
Collapse
Affiliation(s)
- John F Mulvey
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Sadr Ul Shaheed
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Philip D Charles
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
| | - Corinna Snashall
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Maria Letizia Lo Faro
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | - Ina Jochmans
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
- Lab of Abdominal Transplantation, Transplantation Research Group, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
- Lab of Abdominal Transplantation, Transplantation Research Group, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Cees van Kooten
- Department of Internal Medicine Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
- Transplant Center, Leiden University Medical Centre, Leiden, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Centre Groningen, Groningen, The Netherlands
| | - Maria Kaisar
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Research and Development, NHS Blood and Transplant Oxford & Bristol, UK
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Transplant Center, Leiden University Medical Centre, Leiden, The Netherlands
- Research and Development, NHS Blood and Transplant Oxford & Bristol, UK
| |
Collapse
|
6
|
Golshayan D, Schwotzer N, Fakhouri F, Zuber J. Targeting the Complement Pathway in Kidney Transplantation. J Am Soc Nephrol 2023; 34:1776-1792. [PMID: 37439664 PMCID: PMC10631604 DOI: 10.1681/asn.0000000000000192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023] Open
Abstract
The complement system is paramount in the clearance of pathogens and cell debris, yet is increasingly recognized as a key component in several pathways leading to allograft injury. There is thus a growing interest in new biomarkers to assess complement activation and guide tailored therapies after kidney transplantation (KTx). C5 blockade has revolutionized post-transplant management of atypical hemolytic uremic syndrome, a paradigm of complement-driven disease. Similarly, new drugs targeting the complement amplification loop hold much promise in the treatment and prevention of recurrence of C3 glomerulopathy. Although unduly activation of the complement pathway has been described after brain death and ischemia reperfusion, any clinical attempts to mitigate the ensuing renal insults have so far provided mixed results. However, the intervention timing, strategy, and type of complement blocker need to be optimized in these settings. Furthermore, the fast-moving field of ex vivo organ perfusion technology opens new avenues to deliver complement-targeted drugs to kidney allografts with limited iatrogenic risks. Complement plays also a key role in the pathogenesis of donor-specific ABO- and HLA-targeted alloantibodies. However, C5 blockade failed overall to improve outcomes in highly sensitized patients and prevent the progression to chronic antibody-mediated rejection (ABMR). Similarly, well-conducted studies with C1 inhibitors in sensitized recipients yielded disappointing results so far, in part, because of subtherapeutic dosage used in clinical studies. The emergence of new complement blockers raises hope to significantly reduce the negative effect of ischemia reperfusion, ABMR, and nephropathy recurrence on outcomes after KTx.
Collapse
Affiliation(s)
- Dela Golshayan
- Transplantation Center, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nora Schwotzer
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fadi Fakhouri
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julien Zuber
- Service de Transplantation rénale adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| |
Collapse
|
7
|
Hreško S, Maďarová M, Dobošová M, Palušeková N, Niznerová P, Žiaran S, Varga I. The Diagnostic Significance of C3d Antigen in Kidney and Skin Histopathology - The Current State-Of-The-Art and Practical Examples. Physiol Res 2023; 72:S225-S232. [PMID: 37888966 PMCID: PMC10669952 DOI: 10.33549/physiolres.935175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of this narrative review is to summarize recent knowledge about the diagnostic significance of immunobiological detection of C3d with a focus on renal and skin tissue biopsies. We completed the present narrative review with our own experiences with preparation and practical use of monoclonal C3d antibodies at a small national level.
Collapse
Affiliation(s)
- S Hreško
- DB Biotech, a.s., Košice, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang Z, Zhang Z, Li Y, Zhang Y, Wei M, Li H, Yang S, Zhou Y, Zhou X, Xing G. Endothelial-derived complement factor D contributes to endothelial dysfunction in malignant nephrosclerosis via local complement activation. Hypertens Res 2023; 46:1759-1770. [PMID: 37188751 PMCID: PMC10184087 DOI: 10.1038/s41440-023-01300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/24/2022] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Malignant nephrosclerosis is a thrombotic microangiopathy associated with abnormal local activation of the complement alternative pathway (AP). However, the mechanism underlying local AP activation is not fully understood. We hypothesized that complement factor D (CFD) secreted by endothelial cells triggers vascular dysfunction in malignant nephrosclerosis via local complement activation. We investigated the deposition of CFD in human kidney biopsy tissues and the function of endothelial-derived CFD in endothelial cell cultures. Immunofluorescence microscopy and laser microdissection-targeted mass spectrometry revealed significant deposition of CFD in the kidneys of patients with malignant nephrosclerosis. Conditionally immortalized human glomerular endothelial cells (CiGEnCs) continuously expressed and secreted CFD in vitro. CFD knockdown in CiGEnCs by small interfering RNA reduced local complement activation and attenuated the upregulation of intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), von Willebrand factor (VWF), and endothelin-1 (ET-1) induced by Ang II. The expression of CFD in CiGEnCs was significantly higher than that in other types of microvascular endothelial cells. Our findings suggest that (i) glomerular endothelial cells are an important source of local renal CFD, (ii) endothelial-derived CFD can activate the local complement system, and (iii) endothelial-derived CFD mediates endothelial dysfunction, which may play a role in the pathogenesis of malignant nephrosclerosis.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhe Zhang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuan Li
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ying Zhang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Min Wei
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hui Li
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shanzhi Yang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yali Zhou
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xinjin Zhou
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
- Department of Pathology, Baylor University Medical Center at Dallas, Dallas, TX, USA.
| | - Guolan Xing
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
9
|
Gramkow AM, Isaksson GL, Palarasah Y, Jensen BL, Alnor A, Thiesson HC. Exploration of complement split products in plasma and urine as biomarkers of kidney graft rejection. Immunobiology 2023; 228:152462. [PMID: 37406469 DOI: 10.1016/j.imbio.2023.152462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION The complement system, consisting of more than thirty different soluble and cell-bound proteins, exerts essential functions both in the innate and adaptive immune systems and is believed to be an important contributor to allograft injury in kidney transplantation. The anaphylatoxins C3a and C5a are powerful chemoattractants, recruiting immune effector cells toward the site of complement activation and enhance T-cell response, while C3dg binding to CR2 on B-cells, enhances B-cell immunity at several stages of the B-cell differentiation. Complement split products in plasma and urine could reflect ongoing inflammation and tissue injury. We, therefore, investigated if complement split products increase in plasma and urine in kidney transplant recipients with rejection. METHOD In this case-control feasibility study, complement factors C3a, C3dg, C4a, and C5a were measured in plasma and C3dg and sC5b-9 associated C9 neoantigen in urine in 15 kidney transplant recipients with rejection (cases) and 15 kidney transplant recipients without (controls). The groups were matched on the type of transplantation and the time from transplantation to sampling. The complement split products were compared (i) between cases and controls and (ii) within the rejection group over time, comparing the measurements at rejection with measurements where the kidney transplant recipients were clinically stable. Possible moderators were explored, and results adjusted accordingly. P values < 0.05 were considered significant. Plasma C3dg was analyzed by immune-electrophoresis, plasma C3a, plasma C4a, and plasma C5a by flow cytometry, and urine C3dg and urine C9neo by ELISA. RESULTS In plasma, there were no significant differences between the rejection and the control group. However, steroids and pretransplant C3dg levels significantly influenced C3dg. Within the rejection group, plasma C3a and C3dg were significantly higher at the time of rejection compared to the stable phase (p < 0.01). In urine, C3dg/creatinine and C9 neoantigen/creatinine ratios were not different between the rejection and the control group. Urine C3dg/creatinine and urine C9 neoantigen/creatinine ratios correlated to urine albumin and significantly increased after the transplantation (p < 0.001). CONCLUSION This study shows increased plasma C3a and C3dg in kidney transplant recipients, primarily with T cell mediated rejection. This finding suggests that consecutive measurements of C3a and C3dg in plasma could be applicable to monitor alloreactivity in kidney transplant recipients. Urine complement split products are unsuitable as rejection biomarkers since the permeability of the glomerular filtration barrier strongly influences them. Prospective longitudinal studies on plasma C3a and C3dg dynamics will be needed to validate present findings.
Collapse
Affiliation(s)
- Ann-Maria Gramkow
- Dept. of Nephrology, Odense University Hospital, Kløvervænget 6, 5000 Odense, Denmark; Dept. of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense, Denmark.
| | - Gustaf L Isaksson
- Dept. of Nephrology, Odense University Hospital, Kløvervænget 6, 5000 Odense, Denmark; Dept. of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense, Denmark.
| | - Yaseelan Palarasah
- Dept. of Molecular Medicine, Cancer and Inflammation, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense, Denmark.
| | - Boye L Jensen
- Dept. of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense, Denmark.
| | - Anne Alnor
- Dept. of Clinical Immunology and Biochemistry, Hospital Lillebælt, Beridderbakken 4, 7100 Vejle, Denmark; Dept. of Clinical Biochemistry, Odense University Hospital, J.B. Winsløwsvej 4, 5000 Odense, Denmark.
| | - Helle C Thiesson
- Dept. of Nephrology, Odense University Hospital, Kløvervænget 6, 5000 Odense, Denmark; Dept. of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense, Denmark.
| |
Collapse
|
10
|
Wu SCM, Zhu M, Chik SCC, Kwok M, Javed A, Law L, Chan S, Boheler KR, Liu YP, Chan GCF, Poon ENY. Adipose tissue-derived human mesenchymal stromal cells can better suppress complement lysis, engraft and inhibit acute graft-versus-host disease in mice. Stem Cell Res Ther 2023; 14:167. [PMID: 37357314 DOI: 10.1186/s13287-023-03380-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Transplantation of immunosuppressive human mesenchymal stromal cells (hMSCs) can protect against aGvHD post-HSCT; however, their efficacy is limited by poor engraftment and survival. Moreover, infused MSCs can be damaged by activated complement, yet strategies to minimise complement injury of hMSCs and improve their survival are limited. METHODS Human MSCs were derived from bone marrow (BM), adipose tissue (AT) and umbilical cord (UC). In vitro immunomodulatory potential was determined by co-culture experiments between hMSCs and immune cells implicated in aGvHD disease progression. BM-, AT- and UC-hMSCs were tested for their abilities to protect aGvHD in a mouse model of this disease. Survival and clinical symptoms were monitored, and target tissues of aGvHD were examined by histopathology and qPCR. Transplanted cell survival was evaluated by cell tracing and by qPCR. The transcriptome of BM-, AT- and UC-hMSCs was profiled by RNA-sequencing. Focused experiments were performed to compare the expression of complement inhibitors and the abilities of hMSCs to resist complement lysis. RESULTS Human MSCs derived from three tissues divergently protected against aGvHD in vivo. AT-hMSCs preferentially suppressed complement in vitro and in vivo, resisted complement lysis and survived better after transplantation when compared to BM- and UC-hMSCs. AT-hMSCs also prolonged survival and improved the symptoms and pathological features of aGvHD. We found that complement-decay accelerating factor (CD55), an inhibitor of complement, is elevated in AT-hMSCs and contributed to reduced complement activation. We further report that atorvastatin and erlotinib could upregulate CD55 and suppress complement in all three types of hMSCs. CONCLUSION CD55, by suppressing complement, contributes to the improved protection of AT-hMSCs against aGvHD. The use of AT-hMSCs or the upregulation of CD55 by small molecules thus represents promising new strategies to promote hMSC survival to improve the efficacy of transplantation therapy. As complement injury is a barrier to all types of hMSC therapy, our findings are of broad significance to enhance the use of hMSCs for the treatment of a wide range of disorders.
Collapse
Affiliation(s)
- Stanley Chun Ming Wu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Manyu Zhu
- Department of Orthopaedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stanley C C Chik
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Maxwell Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China
| | - Asif Javed
- School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Laalaa Law
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shing Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth R Boheler
- Division of Cardiology, Department of Medicine and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yin Ping Liu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- , Doctors' Office, 9/F, Tower B, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Hong Kong SAR, China.
| | - Ellen Ngar-Yun Poon
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China.
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Rm 226A, 2/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, China.
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
11
|
Gibson B, Connelly C, Moldakhmetova S, Sheerin NS. Complement activation and kidney transplantation; a complex relationship. Immunobiology 2023; 228:152396. [PMID: 37276614 DOI: 10.1016/j.imbio.2023.152396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Although kidney transplantation is the best treatment for end stage kidney disease, the benefits are limited by factors such as the short fall in donor numbers, the burden of immunosuppression and graft failure. Although there have been improvements in one-year outcomes, the annual rate of graft loss beyond the first year has not significantly improved, despite better therapies to control the alloimmune response. There is therefore a need to develop alternative strategies to limit kidney injury at all stages along the transplant pathway and so improve graft survival. Complement is primarily part of the innate immune system, but is also known to enhance the adaptive immune response. There is increasing evidence that complement activation occurs at many stages during transplantation and can have deleterious effects on graft outcome. Complement activation begins in the donor and occurs again on reperfusion following a period of ischemia. Complement can contribute to the development of the alloimmune response and may directly contribute to graft injury during acute and chronic allograft rejection. The complexity of the relationship between complement activation and allograft outcome is further increased by the capacity of the allograft to synthesise complement proteins, the contribution complement makes to interstitial fibrosis and complement's role in the development of recurrent disease. The better we understand the role played by complement in kidney transplant pathology the better placed we will be to intervene. This is particularly relevant with the rapid development of complement therapeutics which can now target different the different pathways of the complement system. Combining our basic understanding of complement biology with preclinical and observational data will allow the development and delivery of clinical trials which have best chance to identify any benefit of complement inhibition.
Collapse
Affiliation(s)
- B Gibson
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - C Connelly
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - S Moldakhmetova
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - N S Sheerin
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
12
|
West EE, Kemper C. Complosome - the intracellular complement system. Nat Rev Nephrol 2023:10.1038/s41581-023-00704-1. [PMID: 37055581 PMCID: PMC10100629 DOI: 10.1038/s41581-023-00704-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The complement system is a recognized pillar of host defence against infection and noxious self-derived antigens. Complement is traditionally known as a serum-effective system, whereby the liver expresses and secretes most complement components, which participate in the detection of bloodborne pathogens and drive an inflammatory reaction to safely remove the microbial or antigenic threat. However, perturbations in normal complement function can cause severe disease and, for reasons that are currently not fully understood, the kidney is particularly vulnerable to dysregulated complement activity. Novel insights into complement biology have identified cell-autonomous and intracellularly active complement - the complosome - as an unexpected central orchestrator of normal cell physiology. For example, the complosome controls mitochondrial activity, glycolysis, oxidative phosphorylation, cell survival and gene regulation in innate and adaptive immune cells, and in non-immune cells, such as fibroblasts and endothelial and epithelial cells. These unanticipated complosome contributions to basic cell physiological pathways make it a novel and central player in the control of cell homeostasis and effector responses. This discovery, together with the realization that an increasing number of human diseases involve complement perturbations, has renewed interest in the complement system and its therapeutic targeting. Here, we summarize the current knowledge about the complosome across healthy cells and tissues, highlight contributions from dysregulated complosome activities to human disease and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Erin E West
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA.
| |
Collapse
|
13
|
Liu A, Luo P, Huang H. New insight of complement system in the process of vascular calcification. J Cell Mol Med 2023; 27:1168-1178. [PMID: 37002701 PMCID: PMC10148053 DOI: 10.1111/jcmm.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
The complement system defences against pathogenic microbes and modulates immune homeostasis by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement system contributes to the pathogenesis of some autoimmune diseases and cardiovascular diseases (CVD). Vascular calcification is the pivotal pathological basis of CVD, and contributes to the high morbidity and mortality of CVD. Increasing evidences indicate that the complement system plays a key role in chronic kidney diseases, atherosclerosis, diabetes mellitus and aging-related diseases, which are closely related with vascular calcification. However, the effect of complement system on vascular calcification is still unclear. In this review, we summarize current evidences about the activation of complement system in vascular calcification. We also describe the complex network of complement system and vascular smooth muscle cells osteogenic transdifferentiation, systemic inflammation, endoplasmic reticulum stress, extracellular matrix remodelling, oxidative stress, apoptosis in vascular calcification. Hence, providing a better understanding of the potential relationship between complement system and vascular calcification, so as to provide a direction for slowing the progression of this burgeoning health concern.
Collapse
Affiliation(s)
- Aiting Liu
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases Sun Yat‐sen University Shenzhen China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicines Macau University of Science and Technology Macau China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases Sun Yat‐sen University Shenzhen China
| |
Collapse
|
14
|
Kale A, Rogers NM. No Time to Die-How Islets Meet Their Demise in Transplantation. Cells 2023; 12:cells12050796. [PMID: 36899932 PMCID: PMC10000424 DOI: 10.3390/cells12050796] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Islet transplantation represents an effective treatment for patients with type 1 diabetes mellitus (T1DM) and severe hypoglycaemia unawareness, capable of circumventing impaired counterregulatory pathways that no longer provide protection against low blood glucose levels. The additional beneficial effect of normalizing metabolic glycaemic control is the minimisation of further complications related to T1DM and insulin administration. However, patients require allogeneic islets from up to three donors, and the long-term insulin independence is inferior to that achieved with solid organ (whole pancreas) transplantation. This is likely due to the fragility of islets caused by the isolation process, innate immune responses following portal infusion, auto- and allo-immune-mediated destruction and β-cell exhaustion following transplantation. This review covers the specific challenges related to islet vulnerability and dysfunction that affect long-term cell survival following transplantation.
Collapse
Affiliation(s)
- Atharva Kale
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Renal and Transplant Unit, Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
15
|
Santarsiero D, Aiello S. The Complement System in Kidney Transplantation. Cells 2023; 12:cells12050791. [PMID: 36899927 PMCID: PMC10001167 DOI: 10.3390/cells12050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
Collapse
|
16
|
Huang RY, Tseng FY, You JJ, Van Dyke TE, Cheng CD, Sung CE, Weng PW, Shieh YS, Cheng WC. Targeting therapeutic agent against C3b/C4b, SB002, on the inflammation-induced bone loss in experimental periodontitis. J Clin Periodontol 2023; 50:657-670. [PMID: 36632003 DOI: 10.1111/jcpe.13772] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
AIMS To use experimental periodontitis models in rats to investigate the correlation between local expression of the complement components C3b and C4b in periodontal tissues and disease severity, and to assess the therapeutic effects of targeting C3b/C4b on inflammatory bone loss. MATERIALS AND METHODS The gingival expression of C3, C3b, and C4b in animal experimental periodontitis models were analysed immunohistochemically. The therapeutic effects of the C3b/C4b inhibitor (SB002) on ligation-induced experimental periodontitis was examined using biochemical, histological, and immunohistochemical analyses. RESULTS The gingival expression levels of C3, C3b, and C4b were positively correlated with the severity of periodontitis. Moreover, both single and multiple injections of the C3b/C4b inhibitor had preventive and therapeutic effects on alveolar bone loss in ligation-induced experimental periodontitis with no associated adverse consequences. CONCLUSIONS The association between C3b/C4b and periodontitis may provide a basis for the development of novel therapeutic strategies for periodontitis and other inflammatory diseases.
Collapse
Affiliation(s)
- Ren-Yeong Huang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.,Graduate Institutes of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Yi Tseng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.,Graduate Institutes of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | - Thomas E Van Dyke
- Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA.,Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Chia-Dan Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.,Graduate Institutes of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-En Sung
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Orthopaedics, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Shing Shieh
- Graduate Institutes of Dental Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chien Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.,Graduate Institutes of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
17
|
Thurman JM, Harrison RA. The susceptibility of the kidney to alternative pathway activation-A hypothesis. Immunol Rev 2023; 313:327-338. [PMID: 36369971 DOI: 10.1111/imr.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The glomerulus is often the prime target of dysregulated alternative pathway (AP) activation. In particular, AP activation is the key driver of two severe kidney diseases: atypical hemolytic uremic syndrome and C3 glomerulopathy. Both conditions are associated with a variety of predisposing molecular defects in AP regulation, such as genetic variants in complement regulators, autoantibodies targeting AP proteins, or autoantibodies that stabilize the AP convertases (C3- and C5-activating enzymes). It is noteworthy that these are systemic AP defects, yet in both diseases pathologic complement activation primarily affects the kidneys. In particular, AP activation is often limited to the glomerular capillaries. This tropism of AP-mediated inflammation for the glomerulus points to a unique interaction between AP proteins in plasma and this particular anatomic structure. In this review, we discuss the pre-clinical and clinical data linking the molecular causes of aberrant control of the AP with activation in the glomerulus, and the possible causes of this tropism. Based on these data, we propose a model for why the kidney is so uniquely and frequently targeted in patients with AP defects. Finally, we discuss possible strategies for preventing pathologic AP activation in the kidney.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
18
|
Schmidt CQ, Smith RJH. Protein therapeutics and their lessons: Expect the unexpected when inhibiting the multi-protein cascade of the complement system. Immunol Rev 2023; 313:376-401. [PMID: 36398537 PMCID: PMC9852015 DOI: 10.1111/imr.13164] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over a century after the discovery of the complement system, the first complement therapeutic was approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH). It was a long-acting monoclonal antibody (aka 5G1-1, 5G1.1, h5G1.1, and now known as eculizumab) that targets C5, specifically preventing the generation of C5a, a potent anaphylatoxin, and C5b, the first step in the eventual formation of membrane attack complex. The enormous clinical and financial success of eculizumab across four diseases (PNH, atypical hemolytic uremic syndrome (aHUS), myasthenia gravis (MG), and anti-aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorder (NMOSD)) has fueled a surge in complement therapeutics, especially targeting diseases with an underlying complement pathophysiology for which anti-C5 therapy is ineffective. Intensive research has also uncovered challenges that arise from C5 blockade. For example, PNH patients can still face extravascular hemolysis or pharmacodynamic breakthrough of complement suppression during complement-amplifying conditions. These "side" effects of a stoichiometric inhibitor like eculizumab were unexpected and are incompatible with some of our accepted knowledge of the complement cascade. And they are not unique to C5 inhibition. Indeed, "exceptions" to the rules of complement biology abound and have led to unprecedented and surprising insights. In this review, we will describe initial, present and future aspects of protein inhibitors of the complement cascade, highlighting unexpected findings that are redefining some of the mechanistic foundations upon which the complement cascade is organized.
Collapse
Affiliation(s)
- Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Richard J. H. Smith
- Departments of Internal Medicine and Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Zarantonello A, Revel M, Grunenwald A, Roumenina LT. C3-dependent effector functions of complement. Immunol Rev 2023; 313:120-138. [PMID: 36271889 PMCID: PMC10092904 DOI: 10.1111/imr.13147] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is the central effector molecule of the complement system, mediating its multiple functions through different binding sites and their corresponding receptors. We will introduce the C3 forms (native C3, C3 [H2 O], and intracellular C3), the C3 fragments C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the important role that C3 plays in human biological processes, we will give an overview of the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will present a structural description of C3 activation and of the C3 fragments generated by complement regulation. We will proceed by describing the C3a interaction with the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and C3dg/C3d) with complement receptors, divided into two groups: receptors bearing complement regulatory functions and the effector receptors without complement regulatory activity. We outline the molecular architecture of the receptors, their binding sites on the C3 activation fragments, the cells expressing them, the diversity of their functions, and recent advances. With this review, we aim to give an up-to-date analysis of the processes triggered by C3 activation fragments on different cell types in health and disease contexts.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
20
|
Harrison RA, Harris CL, Thurman JM. The complement alternative pathway in health and disease-activation or amplification? Immunol Rev 2023; 313:6-14. [PMID: 36424888 DOI: 10.1111/imr.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Joshua M Thurman
- University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
21
|
Nauser CL, Sacks SH. Local complement synthesis-A process with near and far consequences for ischemia reperfusion injury and transplantation. Immunol Rev 2023; 313:320-326. [PMID: 36200881 DOI: 10.1111/imr.13144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The model of the solid organ as a target for circulating complement deposited at the site of injury, for many years concealed the broader influence of complement in organ transplantation. The study of locally synthesized complement especially in transplantation cast new light on complement's wider participation in ischaemia-reperfusion injury, the presentation of donor antigen and finally rejection. The lack of clarity, however, has persisted as to which complement activation pathways are involved and how they are triggered, and above all whether the distinction is relevant. In transplantation, the need for clarity is heightened by the quest for precision therapies in patients who are already receiving potent immunosuppressives, and because of the opportunity for well-timed intervention. This review will present new evidence for the emerging role of the lectin pathway, weighed alongside the longer established role of the alternative pathway as an amplifier of the complement system, and against contributions from the classical pathway. It is hoped this understanding will contribute to the debate on precisely targeted versus broadly acting therapeutic innovation within the aim to achieve safe long term graft acceptance.
Collapse
|
22
|
Novel Complement C5 Small-interfering RNA Lipid Nanoparticle Prolongs Graft Survival in a Hypersensitized Rat Kidney Transplant Model. Transplantation 2022; 106:2338-2347. [PMID: 35749284 DOI: 10.1097/tp.0000000000004207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prophylaxis of antibody-mediated rejection (AMR) caused by donor-specific antibodies remains challenging. Given the critical roles of complement activity in antibody-mediated graft injury, we developed a lipid nanoparticle (LNP) formulation of small-interfering RNA against complement C5 (C5 siRNA-LNP) and investigated whether C5 siRNA-LNP could downregulate the complement activity and act as an effective treatment for AMR. METHODS Lewis recipient rats were sensitized by skin grafting from Brown Norway donor rats. Kidney transplantation was performed at 4 wk post-skin grafting.C5 siRNA- or control siRNA-LNP was administered intravenously, and the weekly injections were continued until the study's conclusion. Cyclosporin (CsA) and/or deoxyspergualin (DSG) were used as adjunctive immunosuppressants. Complement activity was evaluated using hemolysis assays. The deposition of C5b9 in the grafts was evaluated using immunohistochemical analysis on day 7 posttransplantation. RESULTS C5 siRNA-LNP completely suppressed C5 expression and complement activity (hemolytic activity ≤ 20%) 7 d postadministration. C5 siRNA-LNP in combination with CsA and DSG (median survival time: 56.0 d) prolonged graft survival compared with control siRNA-LNP in combination with CsA and DSG (median survival time: 21.0 d; P = 0.0012; log-rank test). Immunohistochemical analysis of the grafts revealed that downregulation of C5 expression was associated with a reduction in C5b9-positive area ( P = 0.0141, Steel-Dwass test). CONCLUSIONS C5 siRNA-LNP combined with immunosuppressants CsA and DSG downregulated C5 activity and significantly prolonged graft survival compared with control siRNA-LNP with CsA and DSG. Downregulation of C5 expression using C5 siRNA-LNP may be an effective therapeutic approach for AMR.
Collapse
|
23
|
Delaura IF, Gao Q, Anwar IJ, Abraham N, Kahan R, Hartwig MG, Barbas AS. Complement-targeting therapeutics for ischemia-reperfusion injury in transplantation and the potential for ex vivo delivery. Front Immunol 2022; 13:1000172. [PMID: 36341433 PMCID: PMC9626853 DOI: 10.3389/fimmu.2022.1000172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 01/21/2023] Open
Abstract
Organ shortages and an expanding waitlist have led to increased utilization of marginal organs. All donor organs are subject to varying degrees of IRI during the transplant process. Extended criteria organs, including those from older donors and organs donated after circulatory death are especially vulnerable to ischemia-reperfusion injury (IRI). Involvement of the complement cascade in mediating IRI has been studied extensively. Complement plays a vital role in the propagation of IRI and subsequent recruitment of the adaptive immune elements. Complement inhibition at various points of the pathway has been shown to mitigate IRI and minimize future immune-mediated injury in preclinical models. The recent introduction of ex vivo machine perfusion platforms provides an ideal window for therapeutic interventions. Here we review the role of complement in IRI by organ system and highlight potential therapeutic targets for intervention during ex vivo machine preservation of donor organs.
Collapse
Affiliation(s)
- Isabel F. Delaura
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Imran J. Anwar
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Nader Abraham
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Riley Kahan
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Matthew G. Hartwig
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, United States
| | - Andrew S. Barbas
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
24
|
Anwar IJ, DeLaura I, Ladowski J, Gao Q, Knechtle SJ, Kwun J. Complement-targeted therapies in kidney transplantation-insights from preclinical studies. Front Immunol 2022; 13:984090. [PMID: 36311730 PMCID: PMC9606228 DOI: 10.3389/fimmu.2022.984090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Aberrant activation of the complement system contributes to solid-organ graft dysfunction and failure. In kidney transplantation, the complement system is implicated in the pathogenesis of antibody- and cell-mediated rejection, ischemia-reperfusion injury, and vascular injury. This has led to the evaluation of select complement inhibitors (e.g., C1 and C5 inhibitors) in clinical trials with mixed results. However, the complement system is highly complex: it is composed of more than 50 fluid-phase and surface-bound elements, including several complement-activated receptors-all potential therapeutic targets in kidney transplantation. Generation of targeted pharmaceuticals and use of gene editing tools have led to an improved understanding of the intricacies of the complement system in allo- and xeno-transplantation. This review summarizes our current knowledge of the role of the complement system as it relates to rejection in kidney transplantation, specifically reviewing evidence gained from pre-clinical models (rodent and nonhuman primate) that may potentially be translated to clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
25
|
Fakhouri F, Schwotzer N, Golshayan D, Frémeaux-Bacchi V. The Rational Use of Complement Inhibitors in Kidney Diseases. Kidney Int Rep 2022; 7:1165-1178. [PMID: 35685323 PMCID: PMC9171628 DOI: 10.1016/j.ekir.2022.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
The development of complement inhibitors represented one of the major breakthroughs in clinical nephrology in the last decade. Complement inhibition has dramatically transformed the outcome of one of the most severe kidney diseases, the atypical hemolytic uremic syndrome (aHUS), a prototypic complement-mediated disorder. The availability of complement inhibitors has also opened new promising perspectives for the management of several other kidney diseases in which complement activation is involved to a variable extent. With the rapidly growing number of complement inhibitors tested in a rapidly increasing number of indications, a rational use of this innovative and expensive new therapeutic class has become crucial. The present review aims to summarize what we know, and what we still ignore, regarding complement activation and therapeutic inhibition in kidney diseases. It also provides some clues and elements of thoughts for a rational approach of complement modulation in kidney diseases.
Collapse
Affiliation(s)
- Fadi Fakhouri
- Service de Néphrologie et d'hypertension, Département de Médecine, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Nora Schwotzer
- Service de Néphrologie et d'hypertension, Département de Médecine, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Déla Golshayan
- Centre de Transplantation d'organes, Département de Médecine, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Immunologie, Paris University, Paris, France
| |
Collapse
|
26
|
Miyagawa S, Maeda A, Toyama C, Kogata S, Okamatsu C, Yamamoto R, Masahata K, Kamiyama M, Eguchi H, Watanabe M, Nagashima H, Ikawa M, Matsunami K, Okuyama H. Aspects of the Complement System in New Era of Xenotransplantation. Front Immunol 2022; 13:860165. [PMID: 35493484 PMCID: PMC9046582 DOI: 10.3389/fimmu.2022.860165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 01/16/2023] Open
Abstract
After producing triple (Gal, H-D and Sda)-KO pigs, hyperacute rejection appeared to no longer be a problem. However, the origin of xeno-rejection continues to be a controversial topic, including small amounts of antibodies and subsequent activation of the graft endothelium, the complement recognition system and the coagulation systems. The complement is activated via the classical pathway by non-Gal/H-D/Sda antigens and by ischemia-reperfusion injury (IRI), via the alternative pathway, especially on islets, and via the lectin pathway. The complement system therefore is still an important recognition and effector mechanism in xeno-rejection. All complement regulatory proteins (CRPs) regulate complement activation in different manners. Therefore, to effectively protect xenografts against xeno-rejection, it would appear reasonable to employ not only one but several CRPs including anti-complement drugs. The further assessment of antigens continues to be an important issue in the area of clinical xenotransplantation. The above conclusions suggest that the expression of sufficient levels of human CRPs on Triple-KO grafts is necessary. Moreover, multilateral inhibition on local complement activation in the graft, together with the control of signals between macrophages and lymphocytes is required.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- *Correspondence: Shuji Miyagawa,
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahito Watanabe
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
27
|
Yan LL, Ye LP, Chen YH, He SQ, Zhang CY, Mao XL, Li SW. The Influence of Microenvironment on Survival of Intraportal Transplanted Islets. Front Immunol 2022; 13:849580. [PMID: 35418988 PMCID: PMC8995531 DOI: 10.3389/fimmu.2022.849580] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Clinical islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still uncommon because transplanted islets are damaged by multiple challenges, including instant blood mediated inflammatory reaction (IBMIR), inflammatory cytokines, hypoxia/reperfusion injury, and immune rejection. The transplantation microenvironment plays a vital role especially in intraportal islet transplantation. The identification and targeting of pathways that function as "master regulators" during deleterious inflammatory events after transplantation, and the induction of immune tolerance, are necessary to improve the survival of transplanted islets. In this article, we attempt to provide an overview of the influence of microenvironment on the survival of transplanted islets, as well as possible therapeutic targets.
Collapse
Affiliation(s)
- Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Sai-qin He
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Chen-yang Zhang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
28
|
Kiss MG, Binder CJ. The multifaceted impact of complement on atherosclerosis. Atherosclerosis 2022; 351:29-40. [DOI: 10.1016/j.atherosclerosis.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
29
|
Toyama C, Maeda A, Kogata S, Takase K, Kodama T, Masahata K, Ueno T, Kamiyama M, Tazuke Y, Eguchi H, Matsunami K, Miyagawa S, Okuyama H. Effect of a C5a receptor antagonist on macrophage function in an intestinal transplant rat model. Transpl Immunol 2022; 72:101559. [DOI: 10.1016/j.trim.2022.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022]
|
30
|
Kamel MH, Jaberi A, Gordon CE, Beck LH, Francis J. The Complement System in the Modern Era of Kidney Transplantation: Mechanisms of Injury and Targeted Therapies. Semin Nephrol 2022; 42:14-28. [DOI: 10.1016/j.semnephrol.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Eerhart MJ, Reyes JA, Blanton CL, Danobeitia JS, Chlebeck PJ, Zitur LJ, Springer M, Polyak E, Coonen J, Capuano S, D’Alessandro AM, Torrealba J, van Amersfoort E, Ponstein Y, Van Kooten C, Burlingham W, Sullivan J, Pozniak M, Zhong W, Yankol Y, Fernandez LA. Complement Blockade in Recipients Prevents Delayed Graft Function and Delays Antibody-mediated Rejection in a Nonhuman Primate Model of Kidney Transplantation. Transplantation 2022; 106:60-71. [PMID: 34905763 PMCID: PMC8674492 DOI: 10.1097/tp.0000000000003754] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Complement activation in kidney transplantation is implicated in the pathogenesis of delayed graft function (DGF). This study evaluated the therapeutic efficacy of high-dose recombinant human C1 esterase inhibitor (rhC1INH) to prevent DGF in a nonhuman primate model of kidney transplantation after brain death and prolonged cold ischemia. METHODS Brain death donors underwent 20 h of conventional management. Procured kidneys were stored on ice for 44-48 h, then transplanted into ABO-compatible major histocompatibility complex-mismatched recipients. Recipients were treated with vehicle (n = 5) or rhC1INH 500 U/kg plus heparin 40 U/kg (n = 8) before reperfusion, 12 h, and 24 h posttransplant. Recipients were followed up for 120 d. RESULTS Of vehicle-treated recipients, 80% (4 of 5) developed DGF versus 12.5% (1 of 8) rhC1INH-treated recipients (P = 0.015). rhC1INH-treated recipients had faster creatinine recovery, superior urinary output, and reduced urinary neutrophil gelatinase-associated lipocalin and tissue inhibitor of metalloproteinases 2-insulin-like growth factor-binding protein 7 throughout the first week, indicating reduced allograft injury. Treated recipients presented lower postreperfusion plasma interleukin (IL)-6, IL-8, tumor necrosis factor-alpha, and IL-18, lower day 4 monocyte chemoattractant protein 1, and trended toward lower C5. Treated recipients exhibited less C3b/C5b-9 deposition on day 7 biopsies. rhC1INH-treated animals also trended toward prolonged mediated rejection-free survival. CONCLUSIONS Our results recommend high-dose C1INH complement blockade in transplant recipients as an effective strategy to reduce kidney injury and inflammation, prevent DGF, delay antibody-mediated rejection development, and improve transplant outcomes.
Collapse
Affiliation(s)
- Michael J. Eerhart
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jose A. Reyes
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Surgery, New York Medical College at Metropolitan Hospital Center, New York, NY, United States
| | - Casi L. Blanton
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Juan S. Danobeitia
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Peter J. Chlebeck
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Laura J. Zitur
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Megan Springer
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Erzsebet Polyak
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Anthony M. D’Alessandro
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jose Torrealba
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Cees Van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - William Burlingham
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jeremy Sullivan
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Myron Pozniak
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Yucel Yankol
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Luis A. Fernandez
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
32
|
Silva RCMC, Panis C, Pires BRB. Lessons from transmissible cancers for immunotherapy and transplant. Immunol Med 2021; 45:146-161. [PMID: 34962854 DOI: 10.1080/25785826.2021.2018783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The emergence of horizontal transmission of cancer between vertebrates is an issue that interests scientists and medical society. Transmission requires: (i) a mechanism by which cancer cells can transfer to another organism and (ii) a repressed immune response on the part of the recipient. Transmissible tumors are unique models to comprehend the responses and mechanisms mediated by the major histocompatibility complex (MHC), which can be transposed for transplant biology. Here, we discuss the mechanisms involved in immune-mediated tissue rejection, making a parallel with transmissible cancers. We also discuss cellular and molecular mechanisms involved in cancer immunotherapy and anti-rejection therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | | |
Collapse
|
33
|
Reuter S, Kentrup D, Grabner A, Köhler G, Buscher K, Edemir B. C4d Deposition after Allogeneic Renal Transplantation in Rats Is Involved in Initial Apoptotic Cell Clearance. Cells 2021; 10:3499. [PMID: 34944007 PMCID: PMC8700759 DOI: 10.3390/cells10123499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
In the context of transplantation, complement activation is associated with poor prognosis and outcome. While complement activation in antibody-mediated rejection is well-known, less is known about complement activation in acute T cell-mediated rejection (TCMR). There is increasing evidence that complement contributes to the clearance of apoptotic debris and tissue repair. In this regard, we have analysed published human kidney biopsy transcriptome data clearly showing upregulated expression of complement factors in TCMR. To clarify whether and how the complement system is activated early during acute TCMR, experimental syngeneic and allogeneic renal transplantations were performed. Using an allogeneic rat renal transplant model, we also observed upregulation of complement factors in TCMR in contrast to healthy kidneys and isograft controls. While staining for C4d was positive, staining with a C3d antibody showed no C3d deposition. FACS analysis of blood showed the absence of alloantibodies that could have explained the C4d deposition. Gene expression pathway analysis showed upregulation of pro-apoptotic factors in TCMR, and apoptotic endothelial cells were detected by ultrastructural analysis. Monocytes/macrophages were found to bind to and phagocytise these apoptotic cells. Therefore, we conclude that early C4d deposition in TCMR may be relevant to the clearance of apoptotic cells.
Collapse
Affiliation(s)
- Stefan Reuter
- Department of Internal Medicine D, Experimental Nephrology, University Clinics Münster, 48143 Münster, Germany; (S.R.); (D.K.); (A.G.); (K.B.)
| | - Dominik Kentrup
- Department of Internal Medicine D, Experimental Nephrology, University Clinics Münster, 48143 Münster, Germany; (S.R.); (D.K.); (A.G.); (K.B.)
- Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alexander Grabner
- Department of Internal Medicine D, Experimental Nephrology, University Clinics Münster, 48143 Münster, Germany; (S.R.); (D.K.); (A.G.); (K.B.)
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gabriele Köhler
- Gerhard Domagk Institute of Pathology, University Clinics Münster, 48143 Münster, Germany;
| | - Konrad Buscher
- Department of Internal Medicine D, Experimental Nephrology, University Clinics Münster, 48143 Münster, Germany; (S.R.); (D.K.); (A.G.); (K.B.)
| | - Bayram Edemir
- Department of Internal Medicine D, Experimental Nephrology, University Clinics Münster, 48143 Münster, Germany; (S.R.); (D.K.); (A.G.); (K.B.)
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
34
|
Deravi N, Ahsan E, Fathi M, Hosseini P, Yaghoobpoor S, Lotfi R, Pourbagheri-Sigaroodi A, Bashash D. Complement inhibition: A possible therapeutic approach in the fight against Covid-19. Rev Med Virol 2021; 32:e2316. [PMID: 34873779 DOI: 10.1002/rmv.2316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 01/08/2023]
Abstract
The complement system, as a vital part of innate immunity, has an important role in the clearance of pathogens; however, unregulated activation of this system probably has a key role in the pathogenesis of acute lung injury, which is induced by highly pathogenic viruses (i.e. influenza A viruses and severe acute respiratory syndrome [SARS] coronavirus). The novel coronavirus SARS-CoV-2, which is the causal agent for the ongoing global pandemic of the coronavirus disease 2019 (Covid-19), has recently been spread to almost all countries around the world. Although most people are immunocompetent to SARS-CoV-2, a small group develops hyper-inflammation that leads to complications like acute respiratory distress syndrome, disseminated intravascular coagulation, and multi-organ failure. Emerging evidence demonstrates that the complement system exerts a crucial role in this inflammatory reaction. Additionally, patients with the severe form of Covid-19 show over-activation of the complement in their skin, sera, and lungs. This study aims to summarise current knowledge concerning the interaction of SARS-CoV-2 with the complement system and to critically appraise complement inhibition as a potential new approach for Covid-19 treatment.
Collapse
Affiliation(s)
- Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Ahsan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Freiwald T, Afzali B. Renal diseases and the role of complement: Linking complement to immune effector pathways and therapeutics. Adv Immunol 2021; 152:1-81. [PMID: 34844708 PMCID: PMC8905641 DOI: 10.1016/bs.ai.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complement system is an ancient and phylogenetically conserved key danger sensing system that is critical for host defense against pathogens. Activation of the complement system is a vital component of innate immunity required for the detection and removal of pathogens. It is also a central orchestrator of adaptive immune responses and a constituent of normal tissue homeostasis. Once complement activation occurs, this system deposits indiscriminately on any cell surface in the vicinity and has the potential to cause unwanted and excessive tissue injury. Deposition of complement components is recognized as a hallmark of a variety of kidney diseases, where it is indeed associated with damage to the self. The provenance and the pathophysiological role(s) played by complement in each kidney disease is not fully understood. However, in recent years there has been a renaissance in the study of complement, with greater appreciation of its intracellular roles as a cell-intrinsic system and its interplay with immune effector pathways. This has been paired with a profusion of novel therapeutic agents antagonizing complement components, including approved inhibitors against complement components (C)1, C3, C5 and C5aR1. A number of clinical trials have investigated the use of these more targeted approaches for the management of kidney diseases. In this review we present and summarize the evidence for the roles of complement in kidney diseases and discuss the available clinical evidence for complement inhibition.
Collapse
Affiliation(s)
- Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, United States; Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Behdad Afzali
- Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
36
|
A study of the mechanisms responsible for the action of new immunosuppressants and their effects on rat small intestinal transplantation. Transpl Immunol 2021; 70:101497. [PMID: 34785307 DOI: 10.1016/j.trim.2021.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
In a series of studies, using an identical rat intestinal transplantation model, we evaluated the effects of several drugs. FK-506 caused a significant attenuation in the proliferation of allogeneic CD4+ T cells and IFN-γ secreting effector functions. FYT720 resulted in a marked reduction in the numbers of lymphocytes, associated with a reduction of T cell recruitment, in grafts. An anti-MAdCAM antibody was next reported to significantly down-regulate CD4+ T cell infiltration in intestinal grafts by blocking the adhesion molecule, and could be useful as an induction therapy. Concerning TAK-779, this CCR5 and CXCR3 antagonist diminished the number of graft-infiltrating cells by suppressing the expression of their receptors in the graft. As a result, it reduced the total number of recipient T cells involved in graft rejection. As the next step, we focused on the participation of monocytes/ macrophages in this field. PQA-18 has been the focus of a novel immunosuppressant that attenuates not only the production of various cytokines, such as IL-2 & TNF-α, on T cells, but the differentiation of macrophages by inhibiting PAK2 as well. In this report, we summarize our previous studies not only regarding the above drugs, but on an anti-complement drug and a JAK inhibitor as well.
Collapse
|
37
|
Witczak BJ, Pischke SE, Reisæter AV, Midtvedt K, Ludviksen JK, Heldal K, Jenssen T, Hartmann A, Åsberg A, Mollnes TE. Elevated Terminal C5b-9 Complement Complex 10 Weeks Post Kidney Transplantation Was Associated With Reduced Long-Term Patient and Kidney Graft Survival. Front Immunol 2021; 12:738927. [PMID: 34759922 PMCID: PMC8573334 DOI: 10.3389/fimmu.2021.738927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Background The major reason for graft loss is chronic tissue damage, as interstitial fibrosis and tubular atrophy (IF/TA), where complement activation may serve as a mediator. The association of complement activation in a stable phase early after kidney transplantation with long-term outcomes is unexplored. Methods We examined plasma terminal C5b-9 complement complex (TCC) 10 weeks posttransplant in 900 patients receiving a kidney between 2007 and 2012. Clinical outcomes were assessed after a median observation time of 9.3 years [interquartile range (IQR) 7.5–10.6]. Results Elevated TCC plasma values (≥0.7 CAU/ml) were present in 138 patients (15.3%) and associated with a lower 10-year patient survival rate (65.7% vs. 75.5%, P < 0.003). Similarly, 10-year graft survival was lower with elevated TCC; 56.9% vs. 67.3% (P < 0.002). Graft survival was also lower when censored for death; 81.5% vs. 87.3% (P = 0.04). In multivariable Cox analyses, impaired patient survival was significantly associated with elevated TCC [hazard ratio (HR) 1.40 (1.02–1.91), P = 0.04] along with male sex, recipient and donor age, smoking, diabetes, and overall survival more than 1 year in renal replacement therapy prior to engraftment. Likewise, elevated TCC was independently associated with graft loss [HR 1.40 (1.06–1.85), P = 0.02] along with the same covariates. Finally, elevated TCC was in addition independently associated with death-censored graft loss [HR 1.69 (1.06–2.71), P = 0.03] as were also HLA-DR mismatches and higher immunological risk. Conclusions Early complement activation, assessed by plasma TCC, was associated with impaired long-term patient and graft survival.
Collapse
Affiliation(s)
| | - Søren E Pischke
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Anaesthesiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Anna V Reisæter
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Norwegian Renal Registry, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | - Kristian Heldal
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Trond Jenssen
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Hartmann
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Norwegian Renal Registry, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Faculty of Health Sciences, KG Jebsen Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
38
|
Howard MC, Nauser CL, Farrar CA, Sacks SH. Complement in ischaemia-reperfusion injury and transplantation. Semin Immunopathol 2021; 43:789-797. [PMID: 34757496 PMCID: PMC8579729 DOI: 10.1007/s00281-021-00896-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023]
Abstract
Until recently, the only known condition in which complement could mediate transplant injury was the rare occurrence of antibody-mediated rejection, in which the original concept of antibody immunity against the transplant was supported by complementary proteins present in the serum. This has changed within the last two decades because of evidence that the processes of ischaemia–reperfusion injury followed by T cell–mediated rejection are also critically dependent on components generated by the complement system. We now have a clearer understanding of the complement triggers and effectors that mediate injury, and a detailed map of their local sites of production and activation in the kidney. This is providing helpful guidelines as to how these harmful processes that restrict transplant outcomes can be targeted for therapeutic benefit. Here we review some of the recent advances highlighting relevant therapeutic targets.
Collapse
Affiliation(s)
- Mark C Howard
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, 5thFloor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Christopher L Nauser
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, 5thFloor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Conrad A Farrar
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, 5thFloor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Steven H Sacks
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, 5thFloor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
39
|
Poppelaars F, Faria B, Schwaeble W, Daha MR. The Contribution of Complement to the Pathogenesis of IgA Nephropathy: Are Complement-Targeted Therapies Moving from Rare Disorders to More Common Diseases? J Clin Med 2021; 10:4715. [PMID: 34682837 PMCID: PMC8539100 DOI: 10.3390/jcm10204715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
Primary IgA nephropathy (IgAN) is a leading cause of chronic kidney disease and kidney failure for which there is no disease-specific treatment. However, this could change, since novel therapeutic approaches are currently being assessed in clinical trials, including complement-targeting therapies. An improved understanding of the role of the lectin and the alternative pathway of complement in the pathophysiology of IgAN has led to the development of these treatment strategies. Recently, in a phase 2 trial, treatment with a blocking antibody against mannose-binding protein-associated serine protease 2 (MASP-2, a crucial enzyme of the lectin pathway) was suggested to have a potential benefit for IgAN. Now in a phase 3 study, this MASP-2 inhibitor for the treatment of IgAN could mark the start of a new era of complement therapeutics where common diseases can be treated with these drugs. The clinical development of complement inhibitors requires a better understanding by physicians of the biology of complement, the pathogenic role of complement in IgAN, and complement-targeted therapies. The purpose of this review is to provide an overview of the role of complement in IgAN, including the recent discovery of new mechanisms of complement activation and opportunities for complement inhibitors as the treatment of IgAN.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
| | - Bernardo Faria
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Wilhelm Schwaeble
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Mohamed R. Daha
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
- Department of Nephrology, Leiden University Medical Center, University of Leiden, 2300 RC Leiden, The Netherlands
| |
Collapse
|
40
|
Abstract
The complement cascade is an evolutionary ancient innate immune defense system, playing a major role in the defense against infections. Its function in maintaining host homeostasis on activated cells has been emphasized by the crucial role of its overactivation in ever growing number of diseases, such as atypical hemolytic uremic syndrome (aHUS), autoimmune diseases as systemic lupus erythematosus (SLE), C3 glomerulopathies (C3GN), age-related macular degeneration (AMD), graft rejection, Alzheimer disease, and cancer, to name just a few. The last decade of research on complement has extended its implication in many pathological processes, offering new insights to potential therapeutic targets and asserting the necessity of reliable, sensitive, specific, accurate, and reproducible biomarkers to decipher complement role in pathology. We need to evaluate accurately which pathway or role should be targeted pharmacologically, and optimize treatment efficacy versus toxicity. This chapter is an introduction to the role of complement in human diseases and the use of complement-related biomarkers in the clinical practice. It is a part of a book intending to give reliable and standardized methods to evaluate complement according to nowadays needs and knowledge.
Collapse
|
41
|
The Influence of Donor and Recipient Complement C3 Polymorphisms on Liver Transplant Outcome. Int J Hepatol 2021; 2021:6636456. [PMID: 34123432 PMCID: PMC8168477 DOI: 10.1155/2021/6636456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
Despite early reports of an impact of complement C3 polymorphism on liver transplant patient and graft survival, subsequent evidence has been conflicting. Our aim was to clarify the contributions of donor and recipient C3 genotype, separately and together, on patient and graft outcomes and acute rejection incidence in liver transplant recipients. Eight donor/recipient groups were analyzed according to their genotype and presence or absence of C3 F allele (FFFS, FFSS, FSFF, FSFS, FSSS, SSFF, SSFS, and SSSS) and correlated with clinical outcomes of patient survival, graft survival, and rejection. The further impact of brain death vs. circulatory death during liver donation was also considered. Over a median 5.3 y follow-up of 506 patients with clinical information and matching donor and recipient tissue, five-year patient and graft survival (95% confidence interval) were 90(81-91)% and 77(73-85)%, respectively, and 72(69-94)% were rejection-free. Early disadvantages to patient survival were associated with donor C3 F variant, especially in brain-death donors. Recipient C3 genotype was an independent determinant of graft survival by Cox proportional hazards analysis (hazard ratio 0.26, P = 0.04), and the C3 F donor variant was again associated with worse liver graft survival, particularly in brain-death donors. C3 genotype did not independently determine rejection incidence, but a greater proportion of recipient C3 F carriers were rejection-free in the circulatory death, but not the brain-death cohort. Cox proportional hazards analysis revealed significant effects of acute rejection on patient survival (hazard ratio 0.24, P = 0.018), of retransplantation on rejection risk (hazard ratio 6.3, P = 0.009), and of donor type (circulatory-death vs. brain-death) on rejection incidence (hazard ratio 4.9, P = 0.005). We conclude that both donor and recipient complement C3 genotype may influence patient and graft outcomes after liver transplantation but that the type of liver donor is additionally influential, possibly via the inflammatory environment of the transplant.
Collapse
|
42
|
Kielar M, Gala-Błądzińska A, Dumnicka P, Ceranowicz P, Kapusta M, Naumnik B, Kubiak G, Kuźniewski M, Kuśnierz-Cabala B. Complement Components in the Diagnosis and Treatment after Kidney Transplantation-Is There a Missing Link? Biomolecules 2021; 11:biom11060773. [PMID: 34064132 PMCID: PMC8224281 DOI: 10.3390/biom11060773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Currently, kidney transplantation is widely accepted as the renal replacement therapy allowing for the best quality of life and longest survival of patients developing end-stage renal disease. However, chronic transplant rejection, recurrence of previous kidney disease or newly acquired conditions, or immunosuppressive drug toxicity often lead to a deterioration of kidney allograft function over time. Complement components play an important role in the pathogenesis of kidney allograft impairment. Most studies on the role of complement in kidney graft function focus on humoral rejection; however, complement has also been associated with cell mediated rejection, post-transplant thrombotic microangiopathy, the recurrence of several glomerulopathies in the transplanted kidney, and transplant tolerance. Better understanding of the complement involvement in the transplanted kidney damage has led to the development of novel therapies that inhibit complement components and improve graft survival. The analysis of functional complotypes, based on the genotype of both graft recipient and donor, may become a valuable tool for assessing the risk of acute transplant rejection. The review summarizes current knowledge on the pathomechanisms of complement activation following kidney transplantation and the resulting diagnostic and therapeutic possibilities.
Collapse
Affiliation(s)
- Małgorzata Kielar
- St. Louis Regional Children’s Hospital, Medical Diagnostic Laboratory with a Bacteriology Laboratory, Strzelecka 2 St., 31-503 Kraków, Poland;
| | - Agnieszka Gala-Błądzińska
- Medical College of Rzeszów University, Institute of Medical Sciences, Kopisto 2A Avn., 35-310 Rzeszów, Poland;
| | - Paulina Dumnicka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medical Diagnostics, Medyczna 9 St., 30-688 Kraków, Poland;
| | - Piotr Ceranowicz
- Jagiellonian University Medical College, Faculty of Medicine, Department of Physiology, Grzegórzecka 16 St., 31-531 Kraków, Poland;
| | - Maria Kapusta
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Clinical Biochemistry, Department of Diagnostics, Kopernika 15A St., 31-501 Kraków, Poland;
| | - Beata Naumnik
- Medical University of Białystok, Faculty of Medicine, 1st Department of Nephrology and Transplantation with Dialysis Unit, Żurawia 14 St., 15-540 Białystok, Poland;
| | - Grzegorz Kubiak
- Catholic University of Leuven, Department of Cardiovascular Diseases, 3000 Leuven, Belgium;
| | - Marek Kuźniewski
- Jagiellonian University Medical College, Faculty of Medicine, Chair and Department of Nephrology, Jakubowskiego 2 St., 30-688 Kraków, Poland;
| | - Beata Kuśnierz-Cabala
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Clinical Biochemistry, Department of Diagnostics, Kopernika 15A St., 31-501 Kraków, Poland;
- Correspondence: ; Tel.: +48-12-424-83-65
| |
Collapse
|
43
|
Lo S, Jiang L, Stacks S, Lin H, Parajuli N. Aberrant activation of the complement system in renal grafts is mediated by cold storage. Am J Physiol Renal Physiol 2021; 320:F1174-F1190. [PMID: 33998295 DOI: 10.1152/ajprenal.00670.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aberrant complement activation leads to tissue damage during kidney transplantation, and it is recognized as an important target for therapeutic intervention. However, it is not clear whether cold storage (CS) triggers the complement pathway in transplanted kidneys. The goal of the present study was to determine the impact of CS on complement activation in renal transplants. Male Lewis and Fischer rats were used, and donor rat kidneys were exposed to 4 h or 18 h of CS followed by transplantation (CS + transplant). To study CS-induced effects, a group with no CS was included in which the kidney was removed and transplanted back to the same rat [autotransplantation (ATx)]. Complement proteins (C3 and C5b-9) were evaluated with Western blot analysis (reducing and nonreducing conditions) and immunostaining. Western blot analysis of renal extracts or serum indicated that the levels of C3 and C5b-9 increased after CS + transplant compared with ATx. Quite strikingly, intracellular C3 was profoundly elevated within renal tubules after CS + transplant but was absent in sham or ATx groups, which showed only extratubular C3. Similarly, C5b-9 immunofluorescence staining of renal sections showed an increase in C5b-9 deposits in kidneys after CS + transplant. Real-time PCR (SYBR green) showed increased expression of CD11b and CD11c, components of complement receptors 3 and 4, respectively, as well as inflammatory markers such as TNF-α. In addition, recombinant TNF-α significantly increased C3 levels in renal cells. Collectively, these results demonstrate that CS mediates aberrant activation of the complement system in renal grafts following transplantation.NEW & NOTEWORTHY This study highlights cold storage-mediated aberrant activation of complement components in renal allografts following transplantation. Specifically, the results demonstrate, for the first time, that cold storage functions in exacerbation of C5b-9, a terminal cytolytic membrane attack complex, in renal grafts following transplantation. In addition, the results indicated that cold storage induces local C3 biogenesis in renal proximal cells/tubules and that TNF-α promotes C3 biogenesis and activation in renal proximal tubular cells.
Collapse
Affiliation(s)
- Sorena Lo
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Li Jiang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Savannah Stacks
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Haixia Lin
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
44
|
Howard MC, Nauser CL, Vizitiu DA, Sacks SH. Fucose as a new therapeutic target in renal transplantation. Pediatr Nephrol 2021; 36:1065-1073. [PMID: 32472330 PMCID: PMC8009799 DOI: 10.1007/s00467-020-04588-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022]
Abstract
Ischaemia/reperfusion injury (IRI) is an inevitable and damaging consequence of the process of kidney transplantation, ultimately leading to delayed graft function and increased risk of graft loss. A key driver of this adverse reaction in kidneys is activation of the complement system, an important part of the innate immune system. This activation causes deposition of complement C3 on renal tubules as well as infiltration of immune cells and ultimately damage to the tubules resulting in reduced kidney function. Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway of complement. CL-11 binds to a ligand that is exposed on the renal tubules by the stress caused by IRI, and through attached proteases, CL-11 activates complement and this contributes to the consequences outlined above. Recent work in our lab has shown that this damage-associated ligand contains a fucose residue that aids CL-11 binding and promotes complement activation. In this review, we will discuss the clinical context of renal transplantation, the relevance of the complement system in IRI, and outline the evidence for the role of CL-11 binding to a fucosylated ligand in IRI as well as its downstream effects. Finally, we will detail the simple but elegant theory that increasing the level of free fucose in the kidney acts as a decoy molecule, greatly reducing the clinical consequences of IRI mediated by CL-11.
Collapse
Affiliation(s)
- Mark C Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Christopher L Nauser
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Steven H Sacks
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW To discuss the crosstalk between the complement system and hemostatic factors (coagulation cascade, platelet, endothelium, and Von Willebrand Factor), and the consequences of this interaction under physiologic and pathologic conditions. RECENT FINDINGS The complement and coagulation systems are comprised of serine proteases and are genetically related. In addition to the common ancestral genes, the complement system and hemostasis interact directly, through protein-protein interactions, and indirectly, on the surface of platelets and endothelial cells. The close interaction between the complement system and hemostatic factors is manifested both in physiologic and pathologic conditions, such as in the inflammatory response to thrombosis, thrombosis at the inflamed area, and thrombotic complications of complement disorders. SUMMARY The interaction between the complement system and hemostasis is vital for homeostasis and the protective response of the host to tissue injury, but also results in the pathogenesis of several thrombotic and inflammatory disorders.
Collapse
|
46
|
Heat-Inactivation of Human Serum Destroys C1 Inhibitor, Pro-motes Immune Complex Formation, and Improves Human T Cell Function. Int J Mol Sci 2021; 22:ijms22052646. [PMID: 33808005 PMCID: PMC7961502 DOI: 10.3390/ijms22052646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
Heat-inactivation of sera is used to reduce possible disturbing effects of complement factors in cell-culture experiments, but it is controversially discussed whether this procedure is appropriate or could be neglected. Here, we report a strong impact of heat-inactivation of human sera on the activation and effector functions of human CD4+ T cells. While T cells cultured with native sera were characterized by a higher proliferation rate and higher expression of CD28, heat-inactivated sera shaped T cells towards on-blast formation, higher cytokine secretion (interferon γ, tumor necrosis factor, and interleukin-17), stronger CD69 and PD-1 expression, and increased metabolic activity. Heat-inactivated sera contained reduced amounts of complement factors and regulators like C1 inhibitor, but increased concentrations of circulating immune complexes. Substitution of C1 inhibitor reduced the beneficial effect of heat-inactivation in terms of cytokine release, whereas surface-molecule expression was affected by the addition of complex forming anti-C1q antibody. Our data clearly demonstrate a beneficial effect of heat-inactivation of human sera for T cell experiments but indicate that beside complement regulators and immune complexes other components might be relevant. Beyond that, this study further underpins the strong impact of the complement system on T cell function.
Collapse
|
47
|
Kassimatis T, Greenlaw R, Hunter JP, Douiri A, Flach C, Rebollo-Mesa I, Nichols LL, Qasem A, Danzi G, Olsburgh J, Drage M, Friend PJ, Neri F, Karegli J, Horsfield C, Smith RA, Sacks SH. Ex vivo delivery of Mirococept: A dose-finding study in pig kidney after showing a low dose is insufficient to reduce delayed graft function in human kidney. Am J Transplant 2021; 21:1012-1026. [PMID: 33225626 DOI: 10.1111/ajt.16265] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 01/25/2023]
Abstract
The complement system plays a pivotal role in the pathogenesis of ischemia-reperfusion injury in solid organ transplantation. Mirococept is a potent membrane-localizing complement inhibitor that can be administered ex vivo to the donor kidney prior to transplantation. To evaluate the efficacy of Mirococept in reducing delayed graft function (DGF) in deceased donor renal transplantation, we undertook the efficacy of mirococept (APT070) for preventing ischaemia-reperfusion injury in the kidney allograft (EMPIRIKAL) trial (ISRCTN49958194). A dose range of 5-25 mg would be tested, starting with 10 mg in cohort 1. No significant difference between Mirococept at 10 mg and control was detected; hence the study was stopped to enable a further dose saturation study in a porcine kidney model. The optimal dose of Mirococept in pig kidney was 80 mg. This dose did not induce any additional histological damage compared to controls or after a subsequent 3 hours of normothermic machine perfusion. The amount of unbound Mirococept postperfusion was found to be within the systemic dose range considered safe in the Phase I trial. The ex vivo administration of Mirococept is a safe and feasible approach to treat DGF in deceased donor kidney transplantation. The porcine kidney study identified an optimal dose of 80 mg (equivalent to 120 mg in human kidney) that provides a basis for further clinical development.
Collapse
Affiliation(s)
- Theodoros Kassimatis
- Renal Unit, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.,School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Roseanna Greenlaw
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - James P Hunter
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Abdel Douiri
- School of Population Health and Environmental Studies, King's College London, London, UK
| | - Clare Flach
- School of Population Health and Environmental Studies, King's College London, London, UK
| | - Irene Rebollo-Mesa
- School of Immunology and Microbial Sciences, King's College London, London, UK.,UCB Biopharma, Brussels, Belgium
| | - Laura L Nichols
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anass Qasem
- Renal Unit, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Guilherme Danzi
- School of Immunology and Microbial Sciences, King's College London, London, UK.,Department of Nephrology, Clinic Hospital, Federal University of Pernambuco, Recife, Brazil
| | - Jonathon Olsburgh
- Department of Transplantation, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Martin Drage
- Department of Transplantation, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Peter J Friend
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Flavia Neri
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Julieta Karegli
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Catherine Horsfield
- Department of Histopathology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Richard A Smith
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Steven H Sacks
- School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
48
|
Detsika MG, Goudevenou K, Geurts AM, Gakiopoulou H, Grapsa E, Lianos EA. Generation of a novel decay accelerating factor (DAF) knock-out rat model using clustered regularly-interspaced short palindromic repeats, (CRISPR)/associated protein 9 (Cas9), genome editing. Transgenic Res 2021; 30:11-21. [PMID: 33387103 DOI: 10.1007/s11248-020-00222-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
Decay accelerating factor (DAF), a key complement activation control protein, is a 70 kDa membrane bound glycoprotein which controls extent of formation of the C3 and C5 convertases by accelerating their decay. Using clustered regularly-interspaced short palindromic repeats, (CRISPR)/associated protein 9 (Cas9) genome editing we generated a novel DAF deficient (Daf-/-) rat model. The present study describes the renal and extrarenal phenotype of this model and assesses renal response to complement-dependent injury induced by administration of a complement-fixing antibody (anti-Fx1A) against the glomerular epithelial cell (podocyte). Rats generated were healthy, viable and able to reproduce normally. Complete absence of DAF was documented in renal as well as extra-renal tissues at both protein and mRNA level compared to Daf+/+ rats. Renal histology in Daf-/- rats showed no differences regarding glomerular or tubulointerstitial pathology compared to Daf+/+ rats. Moreover, there was no difference in urine protein excretion (ratio of urine albumin to creatinine) or in serum creatinine and urea levels. In Daf-/- rats, proteinuria was significantly increased following binding of anti-Fx1A antibody to podocytes while increased C3b deposition was observed. The DAF knock-out rat model developed validates the role of this complement cascade regulator in immune-mediated podocyte injury. Given the increasing role of dysregulated complement activation in various forms of kidney disease and the fact that the rat is the preferred animal for renal pathophysiology studies, the rat DAF deficient model may serve as a useful tool to study the role of this complement activation regulator in complement-dependent forms of kidney injury.
Collapse
Affiliation(s)
- Maria G Detsika
- 1st Department of Critical Care Medicine and Pulmonary Services, School of Medicine, Evangelismos Hospital, G.P. Livanos and M. Simou Laboratories, National and Kapodistrian University of Athens, 3 Ploutarchou Street, 10675, Athens, Greece.
| | - K Goudevenou
- 1st Department of Critical Care Medicine and Pulmonary Services, School of Medicine, Evangelismos Hospital, G.P. Livanos and M. Simou Laboratories, National and Kapodistrian University of Athens, 3 Ploutarchou Street, 10675, Athens, Greece
| | - A M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - H Gakiopoulou
- Department of Pathology, University of Athens School of Medicine, Athens, Greece
| | - E Grapsa
- Department of Nephrology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias A Lianos
- Veterans Affairs Medical Center and Virginia Tech. Carilion School of Medicine, 1970 Roanoke Blvd., Salem, VA, 24153, USA
| |
Collapse
|
49
|
Shiga Toxin 2a Binds to Complement Components C3b and C5 and Upregulates Their Gene Expression in Human Cell Lines. Toxins (Basel) 2020; 13:toxins13010008. [PMID: 33374102 PMCID: PMC7824702 DOI: 10.3390/toxins13010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) infections can cause EHEC-associated hemolytic uremic syndrome (eHUS) via its main virulent factor, Shiga toxins (Stxs). Complement has been reported to be involved in the progression of eHUS. The aim of this study was to investigate the interactions of the most effective subtype of the toxin, Stx2a, with pivotal complement proteins C3b and C5. The study further examined the effect of Stx2a stimulation on the transcription and synthesis of these complement proteins in human target cell lines. Binding of Stx2a to C3b and C5 was evaluated by ELISA. Kidney and gut cell lines (HK-2 and HCT-8) were stimulated with varied concentrations of Stx2a. Subsequent evaluation of complement gene transcription was studied by real-time PCR (qPCR), and ELISAs and Western blots were performed to examine protein synthesis of C3 and C5 in supernatants and lysates of stimulated HK-2 cells. Stx2a showed a specific binding to C3b and C5. Gene transcription of C3 and C5 was upregulated with increasing concentrations of Stx2a in both cell lines, but protein synthesis was not. This study demonstrates the binding of Stx2a to complement proteins C3b and C5, which could potentially be involved in regulating complement during eHUS infection, supporting further investigations into elucidating the role of complement in eHUS pathogenesis.
Collapse
|
50
|
Fernández AR, Sánchez-Tarjuelo R, Cravedi P, Ochando J, López-Hoyos M. Review: Ischemia Reperfusion Injury-A Translational Perspective in Organ Transplantation. Int J Mol Sci 2020; 21:ijms21228549. [PMID: 33202744 PMCID: PMC7696417 DOI: 10.3390/ijms21228549] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Thanks to the development of new, more potent and selective immunosuppressive drugs together with advances in surgical techniques, organ transplantation has emerged from an experimental surgery over fifty years ago to being the treatment of choice for many end-stage organ diseases, with over 139,000 organ transplants performed worldwide in 2019. Inherent to the transplantation procedure is the fact that the donor organ is subjected to blood flow cessation and ischemia during harvesting, which is followed by preservation and reperfusion of the organ once transplanted into the recipient. Consequently, ischemia/reperfusion induces a significant injury to the graft with activation of the immune response in the recipient and deleterious effect on the graft. The purpose of this review is to discuss and shed new light on the pathways involved in ischemia/reperfusion injury (IRI) that act at different stages during the donation process, surgery, and immediate post-transplant period. Here, we present strategies that combine various treatments targeted at different mechanistic pathways during several time points to prevent graft loss secondary to the inflammation caused by IRI.
Collapse
Affiliation(s)
- André Renaldo Fernández
- Immunology, Universitary Hospital Marqués de Valdecilla- Research Institute IDIVAL Santander, 390008 Santander, Spain;
| | - Rodrigo Sánchez-Tarjuelo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.S.-T.); (J.O.)
- Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Paolo Cravedi
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.S.-T.); (J.O.)
- Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Marcos López-Hoyos
- Immunology, Universitary Hospital Marqués de Valdecilla- Research Institute IDIVAL Santander, 390008 Santander, Spain;
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-942-292759
| |
Collapse
|