1
|
Volloch V, Rits-Volloch S. Alzheimer's Is a Multiform Disease of Sustained Neuronal Integrated Stress Response Driven by the C99 Fragment Generated Independently of AβPP; Proteolytic Production of Aβ Is Suppressed in AD-Affected Neurons: Evolution of a Theory. Int J Mol Sci 2025; 26:4252. [PMID: 40362488 PMCID: PMC12073115 DOI: 10.3390/ijms26094252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer's disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of the ACH2.0, Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ), accumulated to neuronal integrated stress response (ISR)-eliciting levels, triggers AD. The neuronal ISR, in turn, activates the AβPP-independent production of its C99 fragment that is processed into iAβ, which drives the disease. The second iteration of the ACH2.0 stemmed from the realization that AD is, in fact, a disease of the sustained neuronal ISR. It introduced two categories of AD-conventional and unconventional-differing mainly in the manner of their causation. The former is caused by the neuronal ISR triggered by AβPP-derived iAβ, whereas in the latter, the neuronal ISR is elicited by stressors distinct from AβPP-derived iAβ and arising from brain trauma, viral and bacterial infections, and various types of inflammation. Moreover, conventional AD always contains an unconventional component, and in both forms, the disease is driven by iAβ generated independently of AβPP. In its third, the current, iteration, the ACH2.0 posits that proteolytic production of Aβ is suppressed in AD-affected neurons and that the disease is driven by C99 generated independently of AβPP. Suppression of Aβ production in AD seems an oxymoron: Aβ is equated with AD, and the later is inconceivable without the former in an ingrained Amyloid Cascade Hypothesis (ACH)-based notion. But suppression of Aβ production in AD-affected neurons is where the logic leads, and to follow it we only need to overcome the inertia of the preexisting assumptions. Moreover, not only is the generation of Aβ suppressed, so is the production of all components of the AβPP proteolytic pathway. This assertion is not a quantum leap (unless overcoming the inertia counts as such): the global cellular protein synthesis is severely suppressed under the neuronal ISR conditions, and there is no reason for constituents of the AβPP proteolytic pathway to be exempted, and they, apparently, are not, as indicated by the empirical data. In contrast, tau protein translation persists in AD-affected neurons under ISR conditions because the human tau mRNA contains an internal ribosomal entry site in its 5'UTR. In current mouse models, iAβ derived from AβPP expressed exogenously from human transgenes elicits the neuronal ISR and thus suppresses its own production. Its levels cannot principally reach AD pathology-causing levels regardless of the number of transgenes or the types of FAD mutations that they (or additional transgenes) carry. Since the AβPP-independent C99 production pathway is inoperative in mice, the current transgenic models have no potential for developing the full spectrum of AD pathology. What they display are only effects of the AβPP-derived iAβ-elicited neuronal ISR. The paper describes strategies to construct adequate transgenic AD models. It also details the utilization of human neuronal cells as the only adequate model system currently available for conventional and unconventional AD. The final alteration of the ACH2.0, introduced in the present Perspective, is that AβPP, which supports neuronal functionality and viability, is, after all, potentially produced in AD-affected neurons, albeit not conventionally but in an ISR-driven and -compatible process. Thus, the present narrative begins with the "omnipotent" Aβ capable of both triggering and driving the disease and ends up with this peptide largely dislodged from its pedestal and retaining its central role in triggering the disease in only one, although prevalent (conventional), category of AD (and driving it in none). Among interesting inferences of the present Perspective is the determination that "sporadic AD" is not sporadic at all ("non-familial" would be a much better designation). The term has fatalistic connotations, implying that the disease can strike at random. This is patently not the case: The conventional disease affects a distinct subpopulation, and the basis for unconventional AD is well understood. Another conclusion is that, unless prevented, the occurrence of conventional AD is inevitable given a sufficiently long lifespan. This Perspective also defines therapeutic directions not to be taken as well as auspicious ways forward. The former category includes ACH-based drugs (those interfering with the proteolytic production of Aβ and/or depleting extracellular Aβ). They are legitimate (albeit inefficient) preventive agents for conventional AD. There is, however, a proverbial snowball's chance in hell of them being effective in symptomatic AD, lecanemab, donanemab, and any other "…mab" or "…stat" notwithstanding. They comprise Aβ-specific antibodies, inhibitors of beta- and gamma-secretase, and modulators of the latter. In the latter category, among ways to go are the following: (1) Depletion of iAβ, which, if sufficiently "deep", opens up a tantalizing possibility of once-in-a-lifetime preventive transient treatment for conventional AD and aging-associated cognitive decline, AACD. (2) Composite therapy comprising the degradation of C99/iAβ and concurrent inhibition of the neuronal ISR. A single transient treatment could be sufficient to arrest the progression of conventional AD and prevent its recurrence for life. Multiple recurrent treatments would achieve the same outcome in unconventional AD. Alternatively, the sustained reduction/removal of unconventional neuronal ISR-eliciting stressors through the elimination of their source would convert unconventional AD into conventional one, preventable/treatable by a single transient administration of the composite C99/iAβ depletion/ISR suppression therapy. Efficient and suitable ISR inhibitors are available, and it is explicitly clear where to look for C99/iAβ-specific targeted degradation agents-activators of BACE1 and, especially, BACE2. Directly acting C99/iAβ-specific degradation agents such as proteolysis-targeting chimeras (PROTACs) and molecular-glue degraders (MGDs) are also viable options. (3) A circumscribed shift (either upstream or downstream) of the position of transcription start site (TSS) of the human AβPP gene, or, alternatively, a gene editing-mediated excision or replacement of a small, defined segment of its portion encoding 5'-untranslated region of AβPP mRNA; targeting AβPP RNA with anti-antisense oligonucleotides is another possibility. If properly executed, these RNA-based strategies would not interfere with the protein-coding potential of AβPP mRNA, and each would be capable of both preventing and stopping the AβPP-independent generation of C99 and thus of either preventing AD or arresting the progression of the disease in its conventional and unconventional forms. The paper is interspersed with "validation" sections: every conceptually significant notion is either validated by the existing data or an experimental procedure validating it is proposed.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Hadzibegovic S, Bontempi B, Nicole O. Investigating the Impact of NMDA Receptor Organization and Biological Sex in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2025; 26:1737. [PMID: 40004200 PMCID: PMC11855313 DOI: 10.3390/ijms26041737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline, with women being disproportionately affected in both prevalence and severity. A key feature of AD is synaptic loss, particularly around amyloid-β (Aβ) aggregates, which correlates strongly with the severity of dementia. Oligomeric Aβ is believed to be the primary driver of synaptic dysfunction by impairing excitatory neurotransmission through interactions with synaptic receptors, including N-methyl-D-aspartate (NMDA) receptors. However, the influence of sex on these synaptic changes and NMDA receptor mislocalization in AD is not well understood. This study examined potential sex-specific differences in synaptotoxicity and the role of extrasynaptic GluN2B-containing NMDA receptors in AD pathogenesis using the APP/PS1 double transgenic mouse model. Although both male and female mice showed a similar amyloid burden and cognitive impairments, synaptic alterations were slightly less severe in females, suggesting subtle sex differences in synaptic pathology. Both sexes exhibited the mislocalization of GluN2B subunits to extrasynaptic areas, which was linked to reduced PSD-95 levels and the synaptic accumulation of Aβ1-42. Intrahippocampal injections of DL-TBOA confirmed the role of extrasynaptic GluN2B-containing NMDA receptors in memory dysfunction. These findings emphasize the importance of targeting synaptic receptor trafficking to address AD-related memory deficits, potentially offering a therapeutic approach for both sexes.
Collapse
Affiliation(s)
- Senka Hadzibegovic
- Neurocentre Magendie, INSERM U1215, 33077 Bordeaux, France;
- University of Bordeaux, 33077 Bordeaux, France;
| | - Bruno Bontempi
- University of Bordeaux, 33077 Bordeaux, France;
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, 33077 Bordeaux, France;
- Institut Interdisciplinaire de Neurosciences, CNRS, UMR 5297, 33077 Bordeaux, France
| |
Collapse
|
3
|
Volloch V, Rits-Volloch S. Production of Amyloid-β in the Aβ-Protein-Precursor Proteolytic Pathway Is Discontinued or Severely Suppressed in Alzheimer's Disease-Affected Neurons: Contesting the 'Obvious'. Genes (Basel) 2025; 16:46. [PMID: 39858593 PMCID: PMC11764795 DOI: 10.3390/genes16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer's disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer's research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease. This suppression, effectively self-suppression, occurs in the context of the global inhibition of the cellular cap-dependent protein synthesis as a consequence of the neuronal integrated stress response (ISR) elicited by AβPP-derived intraneuronal Aβ (iAβ; hence self-suppression) upon reaching certain levels. Concurrently with the suppression of the AβPP proteolytic pathway, the neuronal ISR activates in human neurons, but not in mouse neurons, the powerful AD-driving pathway generating the C99 fragment of AβPP independently of AβPP. The present study describes molecular mechanisms potentially involved in these phenomena, propounds novel approaches to generate transgenic animal models of AD, advocates for the utilization of human neuronal cells-based models of the disease, makes verifiable predictions, suggests experiments designed to validate the proposed concept, and considers its potential research and therapeutic implications. Remarkably, it opens up the possibility that the conventional production of AβPP, BACE enzymes, and γ-secretase components is also suppressed under the neuronal ISR conditions in AD-affected neurons, resulting in the dyshomeostasis of AβPP. It follows that whereas conventional AD is triggered by AβPP-derived iAβ accumulated to the ISR-eliciting levels, the disease, in its both conventional and unconventional (triggered by the neuronal ISR-eliciting stressors distinct from iAβ) forms, is driven not (or not only) by iAβ produced in the AβPP-independent pathway, as we proposed previously, but mainly, possibly exclusively, by the C99 fragment generated independently of AβPP and not cleaved at the γ-site due to the neuronal ISR-caused deficiency of γ-secretase (apparently, the AD-driving "substance X" predicted in our previous study), a paradigm consistent with a dictum by George Perry that Aβ is "central but not causative" in AD. The proposed therapeutic strategies would not only deplete the driver of the disease and abrogate the AβPP-independent production of C99 but also reverse the neuronal ISR and ameliorate the AβPP dyshomeostasis, a potentially significant contributor to AD pathology.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Volloch V, Rits-Volloch S. Quintessential Synergy: Concurrent Transient Administration of Integrated Stress Response Inhibitors and BACE1 and/or BACE2 Activators as the Optimal Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2024; 25:9913. [PMID: 39337400 PMCID: PMC11432332 DOI: 10.3390/ijms25189913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The present study analyzes two potential therapeutic approaches for Alzheimer's disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAβ) via the activation of BACE1 (Beta-site Aβ-protein-precursor Cleaving Enzyme) and/or BACE2. Both approaches are rational. Both are promising. Both have substantial intrinsic limitations. However, when combined in a carefully orchestrated manner into a composite therapy they display a prototypical synergy and constitute the apparently optimal, potentially most effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Volloch V, Rits-Volloch S. ACH2.0/E, the Consolidated Theory of Conventional and Unconventional Alzheimer's Disease: Origins, Progression, and Therapeutic Strategies. Int J Mol Sci 2024; 25:6036. [PMID: 38892224 PMCID: PMC11172602 DOI: 10.3390/ijms25116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The centrality of amyloid-beta (Aβ) is an indisputable tenet of Alzheimer's disease (AD). It was initially indicated by the detection (1991) of a mutation within Aβ protein precursor (AβPP) segregating with the disease, which served as a basis for the long-standing Amyloid Cascade Hypothesis (ACH) theory of AD. In the intervening three decades, this notion was affirmed and substantiated by the discovery of numerous AD-causing and AD-protective mutations with all, without an exception, affecting the structure, production, and intraneuronal degradation of Aβ. The ACH postulated that the disease is caused and driven by extracellular Aβ. When it became clear that this is not the case, and the ACH was largely discredited, a new theory of AD, dubbed ACH2.0 to re-emphasize the centrality of Aβ, was formulated. In the ACH2.0, AD is caused by physiologically accumulated intraneuronal Aβ (iAβ) derived from AβPP. Upon reaching the critical threshold, it triggers activation of the autonomous AβPP-independent iAβ generation pathway; its output is retained intraneuronally and drives the AD pathology. The bridge between iAβ derived from AβPP and that generated independently of AβPP is the neuronal integrated stress response (ISR) elicited by the former. The ISR severely suppresses cellular protein synthesis; concurrently, it activates the production of a small subset of proteins, which apparently includes components necessary for operation of the AβPP-independent iAβ generation pathway that are absent under regular circumstances. The above sequence of events defines "conventional" AD, which is both caused and driven by differentially derived iAβ. Since the ISR can be elicited by a multitude of stressors, the logic of the ACH2.0 mandates that another class of AD, referred to as "unconventional", has to occur. Unconventional AD is defined as a disease where a stressor distinct from AβPP-derived iAβ elicits the neuronal ISR. Thus, the essence of both, conventional and unconventional, forms of AD is one and the same, namely autonomous, self-sustainable, AβPP-independent production of iAβ. What distinguishes them is the manner of activation of this pathway, i.e., the mode of causation of the disease. In unconventional AD, processes occurring at locations as distant from and seemingly as unrelated to the brain as, say, the knee can potentially trigger the disease. The present study asserts that these processes include traumatic brain injury (TBI), chronic traumatic encephalopathy, viral and bacterial infections, and a wide array of inflammatory conditions. It considers the pathways which are common to all these occurrences and culminate in the elicitation of the neuronal ISR, analyzes the dynamics of conventional versus unconventional AD, shows how the former can morph into the latter, explains how a single TBI can hasten the occurrence of AD and why it takes multiple TBIs to trigger the disease, and proposes the appropriate therapeutic strategies. It posits that yet another class of unconventional AD may occur where the autonomous AβPP-independent iAβ production pathway is initiated by an ISR-unrelated activator, and consolidates the above notions in a theory of AD, designated ACH2.0/E (for expanded ACH2.0), which incorporates the ACH2.0 as its special case and retains the centrality of iAβ produced independently of AβPP as the driving agent of the disease.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Volloch V, Rits-Volloch S. On the Inadequacy of the Current Transgenic Animal Models of Alzheimer's Disease: The Path Forward. Int J Mol Sci 2024; 25:2981. [PMID: 38474228 PMCID: PMC10932000 DOI: 10.3390/ijms25052981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
For at least two reasons, the current transgenic animal models of Alzheimer's disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD-the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-β (iAβ) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aβ is generated independently of Aβ protein precursor (AβPP) and is retained inside the neuron as iAβ. Within the framework of the ACH2.0, AβPP-derived iAβ accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AβPP-derived iAβ cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AβPP-independent iAβ generation pathway; the disease commences only when this pathway is operational. The iAβ produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer's disease but rather the effects of the neuronal ISR sustained by AβPP-derived iAβ, that this is due to the lack of the operational AβPP-independent iAβ production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AβPP-independent iAβ production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer's disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Tang J, Yousaf M, Wu YP, Li QQ, Xu YQ, Liu DM. Mechanisms and structure-activity relationships of polysaccharides in the intervention of Alzheimer's disease: A review. Int J Biol Macromol 2024; 254:127553. [PMID: 37865357 DOI: 10.1016/j.ijbiomac.2023.127553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease. Despite several decades of research, the development of effective treatments and responses for Alzheimer's disease remains elusive. The utilization of polysaccharides for Alzheimer's disease became more popular due to their beneficial characteristics, notably their multi-target activity and low toxicity. This review mainly focuses on the researches of recent 5 years in the regulation of AD by naturally derived polysaccharides, systematically lists the possible intervention pathways of polysaccharides from different mechanisms, and explores the structure-activity relationship between polysaccharide structural activities, so as to provide references for the intervention and treatment of AD by polysaccharides.
Collapse
Affiliation(s)
- Jun Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Muhammad Yousaf
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Ya-Ping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Qin-Qin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Yi-Qian Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
9
|
Volloch V, Rits-Volloch S. Next Generation Therapeutic Strategy for Treatment and Prevention of Alzheimer's Disease and Aging-Associated Cognitive Decline: Transient, Once-in-a-Lifetime-Only Depletion of Intraneuronal Aβ ( iAβ) by Its Targeted Degradation via Augmentation of Intra- iAβ-Cleaving Activities of BACE1 and/or BACE2. Int J Mol Sci 2023; 24:17586. [PMID: 38139415 PMCID: PMC10744314 DOI: 10.3390/ijms242417586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Although the long-standing Amyloid Cascade Hypothesis (ACH) has been largely discredited, its main attribute, the centrality of amyloid-beta (Aβ) in Alzheimer's disease (AD), remains the cornerstone of any potential interpretation of the disease: All known AD-causing mutations, without a single exception, affect, in one way or another, Aβ. The ACH2.0, a recently introduced theory of AD, preserves this attribute but otherwise differs fundamentally from the ACH. It posits that AD is a two-stage disorder where both stages are driven by intraneuronal (rather than extracellular) Aβ (iAβ) albeit of two distinctly different origins. The first asymptomatic stage is the decades-long accumulation of Aβ protein precursor (AβPP)-derived iAβ to the critical threshold. This triggers the activation of the self-sustaining AβPP-independent iAβ production pathway and the commencement of the second, symptomatic AD stage. Importantly, Aβ produced independently of AβPP is retained intraneuronally. It drives the AD pathology and perpetuates the operation of the pathway; continuous cycles of the iAβ-stimulated propagation of its own AβPP-independent production constitute an engine that drives AD, the AD Engine. It appears that the dynamics of AβPP-derived iAβ accumulation is the determining factor that either drives Aging-Associated Cognitive Decline (AACD) and triggers AD or confers the resistance to both. Within the ACH2.0 framework, the ACH-based drugs, designed to lower levels of extracellular Aβ, could be applicable in the prevention of AD and treatment of AACD because they reduce the rate of accumulation of AβPP-derived iAβ. The present study analyzes their utility and concludes that it is severely limited. Indeed, their short-term employment is ineffective, their long-term engagement is highly problematic, their implementation at the symptomatic stages of AD is futile, and their evaluation in conventional clinical trials for the prevention of AD is impractical at best, impossible at worst, and misleading in between. In contrast, the ACH2.0-guided Next Generation Therapeutic Strategy for the treatment and prevention of both AD and AACD, namely the depletion of iAβ via its transient, short-duration, targeted degradation by the novel ACH2.0-based drugs, has none of the shortcomings of the ACH-based drugs. It is potentially highly effective, easily evaluable in clinical trials, and opens up the possibility of once-in-a-lifetime-only therapeutic intervention for prevention and treatment of both conditions. It also identifies two plausible ACH2.0-based drugs: activators of physiologically occurring intra-iAβ-cleaving capabilities of BACE1 and/or BACE2.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
D’Alessio A. Unraveling the Cave: A Seventy-Year Journey into the Caveolar Network, Cellular Signaling, and Human Disease. Cells 2023; 12:2680. [PMID: 38067108 PMCID: PMC10705299 DOI: 10.3390/cells12232680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In the mid-1950s, a groundbreaking discovery revealed the fascinating presence of caveolae, referred to as flask-shaped invaginations of the plasma membrane, sparking renewed excitement in the field of cell biology. Caveolae are small, flask-shaped invaginations in the cell membrane that play crucial roles in diverse cellular processes, including endocytosis, lipid homeostasis, and signal transduction. The structural stability and functionality of these specialized membrane microdomains are attributed to the coordinated activity of scaffolding proteins, including caveolins and cavins. While caveolae and caveolins have been long appreciated for their integral roles in cellular physiology, the accumulating scientific evidence throughout the years reaffirms their association with a broad spectrum of human disorders. This review article aims to offer a thorough account of the historical advancements in caveolae research, spanning from their initial discovery to the recognition of caveolin family proteins and their intricate contributions to cellular functions. Furthermore, it will examine the consequences of a dysfunctional caveolar network in the development of human diseases.
Collapse
Affiliation(s)
- Alessio D’Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| |
Collapse
|
11
|
Volloch V, Rits-Volloch S. Principles of Design of Clinical Trials for Prevention and Treatment of Alzheimer's Disease and Aging-Associated Cognitive Decline in the ACH2.0 Perspective: Potential Outcomes, Challenges, and Solutions. J Alzheimers Dis Rep 2023; 7:921-955. [PMID: 37849639 PMCID: PMC10578334 DOI: 10.3233/adr-230037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 10/19/2023] Open
Abstract
With the Amyloid Cascade Hypothesis (ACH) largely discredited, the ACH2.0 theory of Alzheimer's disease (AD) has been recently introduced. Within the framework of the ACH2.0, AD is triggered by amyloid-β protein precursor (AβPP)-derived intraneuronal Aβ (iAβ) and is driven by iAβ produced in the AβPP-independent pathway and retained intraneuronally. In this paradigm, the depletion of extracellular Aβ or suppression of Aβ production by AβPP proteolysis, the two sources of AβPP-derived iAβ, would be futile in symptomatic AD, due to its reliance on iAβ generated independently of AβPP, but effective in preventing AD and treating Aging-Associated Cognitive Decline (AACD) driven, in the ACH2.0 framework, by AβPP-derived iAβ. The observed effect of lecanemab and donanemab, interpreted in the ACH2.0 perspective, supports this notion and mandates AD-preventive clinical trials. Such trials are currently in progress. They are likely, however, to fail or to yield deceptive results if conducted conventionally. The present study considers concepts of design of clinical trials of lecanemab, donanemab, or any other drug, targeting the influx of AβPP-derived iAβ, in prevention of AD and treatment of AACD. It analyzes possible outcomes and explains why selection of high-risk asymptomatic participants seems reasonable but is not. It argues that outcomes of such AD preventive trials could be grossly misleading, discusses inevitable potential problems, and proposes feasible solutions. It advocates the initial evaluation of this type of drugs in clinical trials for treatment of AACD. Whereas AD protective trials of these drugs are potentially of an impractical length, AACD clinical trials are expected to yield unequivocal results within a relatively short duration. Moreover, success of the latter, in addition to its intrinsic value, would constitute a proof of concept for the former. Furthermore, this study introduces concepts of the active versus passive iAβ depletion, contends that targeted degradation of iAβ is the best therapeutic strategy for both prevention and treatment of AD and AACD, proposes potential iAβ-degrading drugs, and describes their feasible and unambiguous evaluation in clinical trials.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0 for Alzheimer's Disease and Aging-Associated Cognitive Decline: From Molecular Basis to Effective Therapy. Int J Mol Sci 2023; 24:12246. [PMID: 37569624 PMCID: PMC10419172 DOI: 10.3390/ijms241512246] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
With the long-standing amyloid cascade hypothesis (ACH) largely discredited, there is an acute need for a new all-encompassing interpretation of Alzheimer's disease (AD). Whereas such a recently proposed theory of AD is designated ACH2.0, its commonality with the ACH is limited to the recognition of the centrality of amyloid-β (Aβ) in the disease, necessitated by the observation that all AD-causing mutations affect, in one way or another, Aβ. Yet, even this narrow commonality is superficial since AD-causing Aβ of the ACH differs distinctly from that specified in the ACH2.0: Whereas in the former, the disease is caused by secreted extracellular Aβ, in the latter, it is triggered by Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ) and driven by iAβ generated independently of AβPP. The ACH2.0 envisions AD as a two-stage disorder. The first, asymptomatic stage is a decades-long accumulation of AβPP-derived iAβ, which occurs via internalization of secreted Aβ and through intracellular retention of a fraction of Aβ produced by AβPP proteolysis. When AβPP-derived iAβ reaches critical levels, it activates a self-perpetuating AβPP-independent production of iAβ that drives the second, devastating AD stage, a cascade that includes tau pathology and culminates in neuronal loss. The present study analyzes the dynamics of iAβ accumulation in health and disease and concludes that it is the prime factor driving both AD and aging-associated cognitive decline (AACD). It discusses mechanisms potentially involved in AβPP-independent generation of iAβ, provides mechanistic interpretations for all principal aspects of AD and AACD including the protective effect of the Icelandic AβPP mutation, the early onset of FAD and the sequential manifestation of AD pathology in defined regions of the affected brain, and explains why current mouse AD models are neither adequate nor suitable. It posits that while drugs affecting the accumulation of AβPP-derived iAβ can be effective only protectively for AD, the targeted degradation of iAβ is the best therapeutic strategy for both prevention and effective treatment of AD and AACD. It also proposes potential iAβ-degrading drugs.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0: Generalization of the Concept. J Alzheimers Dis Rep 2023; 7:21-35. [PMID: 36777328 PMCID: PMC9912825 DOI: 10.3233/adr-220079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Recently, we proposed the Amyloid Cascade Hypothesis 2.0 (ACH2.0), a reformulation of the ACH. In the former, in contrast to the latter, Alzheimer's disease (AD) is driven by intraneuronal amyloid-β (iAβ) and occurs in two stages. In the first, relatively benign stage, Aβ protein precursor (AβPP)-derived iAβ activates, upon reaching a critical threshold, the AβPP-independent iAβ-generating pathway, triggering a devastating second stage resulting in neuronal death. While the ACH2.0 remains aligned with the ACH premise that Aβ is toxic, the toxicity is exerted because of intra- rather than extracellular Aβ. In this framework, a once-in-a-lifetime-only iAβ depletion treatment via transient activation of BACE1 and/or BACE2 (exploiting their Aβ-cleaving activities) or by any means appears to be the best therapeutic strategy for AD. Whereas the notion of differentially derived iAβ being the principal moving force at both AD stages is both plausible and elegant, a possibility remains that the second AD stage is enabled by an AβPP-derived iAβ-activated self-sustaining mechanism producing a yet undefined deleterious "substance X" (sX) which anchors the second AD stage. The present study generalizes the ACH2.0 by incorporating this possibility and shows that, in this scenario, the iAβ depletion therapy may be ineffective at symptomatic AD stages but fully retains its preventive potential for both AD and the aging-associated cognitive decline, which is defined in the ACH2.0 framework as the extended first stage of AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA,Correspondence to: Vladimir Volloch, Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA. and Sophia Rits-Volloch, Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA. E-mail:
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Tohumeken S, Deme P, Yoo SW, Gupta S, Rais R, Slusher BS, Haughey NJ. Neuronal deletion of nSMase2 reduces the production of Aβ and directly protects neurons. Neurobiol Dis 2023; 177:105987. [PMID: 36603748 DOI: 10.1016/j.nbd.2023.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023] Open
Abstract
Extracellular vesicles (EVs) have been proposed to regulate the deposition of Aβ. Multiple publications have shown that APP, amyloid processing enzymes and Aβ peptides are associated with EVs. However, very little Aβ is associated with EVs compared with the total amount Aβ present in human plasma, CSF, or supernatants from cultured neurons. The involvement of EVs has largely been inferred by pharmacological inhibition or whole body deletion of the sphingomyelin hydrolase neutral sphingomyelinase-2 (nSMase2) that is a key regulator for the biogenesis of at-least one population of EVs. Here we used a Cre-Lox system to selectively delete nSMase2 from pyramidal neurons in APP/PS1 mice (APP/PS1-SMPD3-Nex1) and found a ∼ 70% reduction in Aβ deposition at 6 months of age and ∼ 35% reduction at 12 months of age in both cortex and hippocampus. Brain ceramides were increased in APP/PS1 compared with Wt mice, but were similar to Wt in APP/PS1-SMPD3-Nex1 mice suggesting that elevated brain ceramides in this model involves neuronally expressed nSMase2. Reduced levels of PSD95 and deficits of long-term potentiation in APP/PS1 mice were normalized in APP/PS1-SMPD3-Nex1 mice. In contrast, elevated levels of IL-1β, IL-8 and TNFα in APP/PS1 mice were not normalized in APP/PS1-SMPD3-Nex1 mice compared with APP/PS1 mice. Mechanistic studies showed that the size of liquid ordered membrane microdomains was increased in APP/PS1 mice, as were the amounts of APP and BACE1 localized to these microdomains. Pharmacological inhibition of nSMase2 activity with PDDC reduced the size of the liquid ordered membrane microdomains, reduced the localization of APP with BACE1 and reduced the production of Aβ1-40 and Aβ1-42. Although inhibition of nSMase2 reduced the release and increased the size of EVs, very little Aβ was associated with EVs in all conditions tested. We also found that nSMase2 directly protected neurons from the toxic effects of oligomerized Aβ and preserved neural network connectivity despite considerable Aβ deposition. These data demonstrate that nSMase2 plays a role in the production of Aβ by stabilizing the interaction of APP with BACE1 in liquid ordered membrane microdomains, and directly protects neurons from the toxic effects of Aβ. The effects of inhibiting nSMase2 on EV biogenesis may be independent from effects on Aβ production and neuronal protection.
Collapse
Affiliation(s)
- Sehmus Tohumeken
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America
| | - Pragney Deme
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America
| | - Seung Wan Yoo
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America
| | - Sujasha Gupta
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America
| | - Rana Rais
- The Johns Hopkins University School of Medicine, Departments of Psychiatry, United States of America
| | - Barbara S Slusher
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America; The Johns Hopkins University School of Medicine, Departments of Johns Hopkins Drug Discovery, United States of America; The Johns Hopkins University School of Medicine, Departments of Psychiatry, United States of America; The Johns Hopkins University School of Medicine, Departments of Pharmacology and Molecular Sciences, United States of America; The Johns Hopkins University School of Medicine, Departments of Department of Oncology, United States of America; The Johns Hopkins University School of Medicine, Departments of Department of Neuroscience, United States of America; The Johns Hopkins University School of Medicine, Departments of Department of Medicine, Baltimore, MD, United States of America
| | - Norman J Haughey
- The Johns Hopkins University School of Medicine, Departments of Neurology, United States of America; The Johns Hopkins University School of Medicine, Departments of Johns Hopkins Drug Discovery, United States of America.
| |
Collapse
|
16
|
Rosenberry TL, Zhou HX, Stagg SM, Paravastu AK. Oligomer Formation by Amyloid-β42 in a Membrane-Mimicking Environment in Alzheimer's Disease. Molecules 2022; 27:8804. [PMID: 36557940 PMCID: PMC9781152 DOI: 10.3390/molecules27248804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
The brains of Alzheimer's disease (AD) patients contain numerous amyloid plaques that are diagnostic of the disease. The plaques are primarily composed of the amyloidogenic peptides proteins Aβ40 and Aβ42, which are derived by the processing of the amyloid pre-cursor protein (APP) by two proteases called β-secretase and γ-secretase. Aβ42 differs from Aβ40 in having two additional hydrophobic amino acids, ILE and ALA, at the C-terminus. A small percentage of AD is autosomal dominant (ADAD) and linked either to the genes for the presenilins, which are part of γ-secretase, or APP. Because ADAD shares most pathogenic features with widespread late-onset AD, Aβ peptides have become the focus of AD research. Fibrils formed by the aggregation of these peptides are the major component of plaques and were initially targeted in AD therapy. However, the fact that the abundance of plaques does not correlate well with cognitive decline in AD patients has led investigators to examine smaller Aβ aggregates called oligomers. The low levels and heterogeneity of Aβ oligomers have made the determination of their structures difficult, but recent structure determinations of oligomers either formed or initiated in detergents have been achieved. We report here on the structures of these oligomers and suggest how they may be involved in AD.
Collapse
Affiliation(s)
- Terrone L. Rosenberry
- The Departments of Neuroscience and Pharmacology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Huan-Xiang Zhou
- Departments of Chemistry and Physics, University of Illinois Chicago, Chicago, IL 60608, USA
| | - Scott M. Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Anant K. Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA
| |
Collapse
|
17
|
Kwak M, Southard KM, Kim WR, Lin A, Kim NH, Gopalappa R, Lee HJ, An M, Choi SH, Jung Y, Noh K, Farlow J, Georgakopoulos A, Robakis NK, Kang MK, Kutys ML, Seo D, Kim HH, Kim YH, Cheon J, Gartner ZJ, Jun YW. Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling. Nat Cell Biol 2022; 24:1739-1753. [PMID: 36456828 PMCID: PMC10665132 DOI: 10.1038/s41556-022-01031-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
Adherens junctions (AJs) create spatially, chemically and mechanically discrete microdomains at cellular interfaces. Here, using a mechanogenetic platform that generates artificial AJs with controlled protein localization, clustering and mechanical loading, we find that AJs also organize proteolytic hotspots for γ-secretase with a spatially regulated substrate selectivity that is critical in the processing of Notch and other transmembrane proteins. Membrane microdomains outside of AJs exclusively organize Notch ligand-receptor engagement (LRE microdomains) to initiate receptor activation. Conversely, membrane microdomains within AJs exclusively serve to coordinate regulated intramembrane proteolysis (RIP microdomains). They do so by concentrating γ-secretase and primed receptors while excluding full-length Notch. AJs induce these functionally distinct microdomains by means of lipid-dependent γ-secretase recruitment and size-dependent protein segregation. By excluding full-length Notch from RIP microdomains, AJs prevent inappropriate enzyme-substrate interactions and suppress spurious Notch activation. Ligand-induced ectodomain shedding eliminates size-dependent segregation, releasing Notch to translocate into AJs for processing by γ-secretase. This mechanism directs radial differentiation of ventricular zone-neural progenitor cells in vivo and more broadly regulates the proteolysis of other large cell-surface receptors such as amyloid precursor protein. These findings suggest an unprecedented role of AJs in creating size-selective spatial switches that choreograph γ-secretase processing of multiple transmembrane proteins regulating development, homeostasis and disease.
Collapse
Affiliation(s)
- Minsuk Kwak
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
| | - Kaden M Southard
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Woon Ryoung Kim
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Annie Lin
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Nam Hyeong Kim
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Imnewrun Inc., Suwon, Republic of Korea
| | - Ramu Gopalappa
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Minji An
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Seo Hyun Choi
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yunmin Jung
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Kunwoo Noh
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Justin Farlow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Anastasios Georgakopoulos
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min K Kang
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew L Kutys
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Daeha Seo
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
| | - Hyongbum Henry Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Imnewrun Inc., Suwon, Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Young-Wook Jun
- Department of Otolaryngology, University of California, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012092. [PMID: 36292947 PMCID: PMC9603563 DOI: 10.3390/ijms232012092] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.
Collapse
|
19
|
Krasnobaev VD, Galimzyanov TR, Akimov SA, Batishchev OV. Lysolipids regulate raft size distribution. Front Mol Biosci 2022; 9:1021321. [PMID: 36275621 PMCID: PMC9581197 DOI: 10.3389/fmolb.2022.1021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The lipid matrix of cellular membranes, directly and indirectly, regulates many vital functions of the cell. The diversity of lipids in membranes leads to the formation of ordered domains called rafts, which play a crucial role in signal transduction, protein sorting and other cellular processes. Rafts are believed to impact the development of different neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s ones, amyotrophic lateral sclerosis, some types of cancer, etc. These diseases correlate with the change in the membrane lipid composition resulting from an oxidative stress, age-related processes, dysfunction of proteins, and many others. In particular, a lot of studies report a significant rise in the level of lysolipids. Physicochemical properties of rafts are determined by membrane composition, in particular, by the content of lysolipids. Lysolipids may thus regulate raft-involving processes. However, the exact mechanism of such regulation is unknown. Although studying rafts in vivo still seems to be rather complicated, liquid-ordered domains are well observed in model systems. In the present study, we used atomic force microscopy (AFM) to examine how lysophospholipids influence the liquid-ordered domains in model ternary membranes. We demonstrated that even a small amount of lysolipids in a membrane significantly impacts domain size depending on the saturation of the lysolipid hydrocarbon tails and the amount of cholesterol. The mixture with the bigger relative fraction of cholesterol was more susceptible to the action of lysolipids. This data helped us to generalize our previous theoretical model of the domain size regulation by lipids with particular molecular shape expanding it to the case of lysolipids and dioleoylglycerol.
Collapse
Affiliation(s)
- Vladimir D. Krasnobaev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Timur R. Galimzyanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Oleg V. Batishchev,
| |
Collapse
|
20
|
Rudajev V, Novotny J. Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer’s disease. Front Mol Neurosci 2022; 15:937056. [PMID: 36090253 PMCID: PMC9453481 DOI: 10.3389/fnmol.2022.937056] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that is one of the most devastating and widespread diseases worldwide, mainly affecting the aging population. One of the key factors contributing to AD-related neurotoxicity is the production and aggregation of amyloid β (Aβ). Many studies have shown the ability of Aβ to bind to the cell membrane and disrupt its structure, leading to cell death. Because amyloid damage affects different parts of the brain differently, it seems likely that not only Aβ but also the nature of the membrane interface with which the amyloid interacts, helps determine the final neurotoxic effect. Because cholesterol is the dominant component of the plasma membrane, it plays an important role in Aβ-induced toxicity. Elevated cholesterol levels and their regulation by statins have been shown to be important factors influencing the progression of neurodegeneration. However, data from many studies have shown that cholesterol has both neuroprotective and aggravating effects in relation to the development of AD. In this review, we attempt to summarize recent findings on the role of cholesterol in Aβ toxicity mediated by membrane binding in the pathogenesis of AD and to consider it in the broader context of the lipid composition of cell membranes.
Collapse
|
21
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0: On the Possibility of Once-in-a-Lifetime-Only Treatment for Prevention of Alzheimer’s Disease and for Its Potential Cure at Symptomatic Stages. J Alzheimers Dis Rep 2022; 6:369-399. [PMID: 36072366 PMCID: PMC9397896 DOI: 10.3233/adr-220031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
We posit that Alzheimer’s disease (AD) is driven by amyloid-β (Aβ) generated in the amyloid-β protein precursor (AβPP) independent pathway activated by AβPP-derived Aβ accumulated intraneuronally in a life-long process. This interpretation constitutes the Amyloid Cascade Hypothesis 2.0 (ACH2.0). It defines a tandem intraneuronal-Aβ (iAβ)-anchored cascade occurrence: intraneuronally-accumulated, AβPP-derived iAβ triggers relatively benign cascade that activates the AβPP-independent iAβ-generating pathway, which, in turn, initiates the second, devastating cascade that includes tau pathology and leads to neuronal loss. The entire output of the AβPP-independent iAβ-generating pathway is retained intraneuronally and perpetuates the pathway’s operation. This process constitutes a self-propagating, autonomous engine that drives AD and ultimately kills its host cells. Once activated, the AD Engine is self-reliant and independent from Aβ production in the AβPP proteolytic pathway; operation of the former renders the latter irrelevant to the progression of AD and brands its manipulation for therapeutic purposes, such as BACE (beta-site AβPP-cleaving enzyme) inhibition, as futile. In the proposed AD paradigm, the only valid direct therapeutic strategy is targeting the engine’s components, and the most effective feasible approach appears to be the activation of BACE1 and/or of its homolog BACE2, with the aim of exploiting their Aβ-cleaving activities. Such treatment would collapse the iAβ population and ‘reset’ its levels below those required for the operation of the AD Engine. Any sufficiently selective iAβ-depleting treatment would be equally effective. Remarkably, this approach opens the possibility of a short-duration, once-in-a-lifetime-only or very infrequent, preventive or curative therapy for AD; this therapy would be also effective for prevention and treatment of the ‘common’ pervasive aging-associated cognitive decline. The ACH2.0 clarifies all ACH-unresolved inconsistencies, explains the widespread ‘resilience to AD’ phenomenon, predicts occurrences of a category of AD-afflicted individuals without excessive Aβ plaque load and of a novel type of familial insusceptibility to AD; it also predicts the lifespan-dependent inevitability of AD in humans if untreated preventively. The article details strategy and methodology to generate an adequate AD model and validate the hypothesis; the proposed AD model may also serve as a research and drug development platform.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Tian Y, Liu J, Yang F, Lian C, Zhang H, Viles JH, Li Z. Therapeutic potential for amyloid surface inhibitor: only amyloid-β oligomers formed by secondary nucleation disrupt lipid membrane integrity. FEBS J 2022; 289:6767-6781. [PMID: 35670622 DOI: 10.1111/febs.16550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023]
Abstract
Inhibition of amyloid-β peptide (Aβ) aggregation is a promising therapeutic strategy for Alzheimer's disease (AD), as Aβ aggregation is generally believed to trigger AD pathology. Pre-fibril Aβ-oligomers induce membrane disruption and are crucial to neurotoxicity. We have previously designed a short peptide called cyclic helical amyloid surface inhibitor (cHASI) that can selectively bind to the Aβ fibril surface. Here, we use cHASI to efficiently inhibit the surface-catalysed secondary nucleation process of Aβ in a lipid membrane environment. By incubating Aβ monomers with lipid vesicles, we show that during the assembly of Aβ into amyloid fibrils, oligomers are formed that markedly disrupt the lipid bilayer. Remarkably, when Aβ monomers are incubated with cHASI, although Aβ forms amyloid fibrils via primary nucleation and elongation, this pathway to fibrils does not damage the lipid bilayer. This indicates that only oligomers produced during secondary surface nucleation disrupt membrane integrity. The protective effect of cHASI is confirmed by cytotoxicity assays. Our study highlights the therapeutic potential for inhibiting the secondary nucleation process in Aβ aggregation, rather than inhibiting all pathways to fibril formation.
Collapse
Affiliation(s)
- Yao Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, China
| | - Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, China
| | - Huawei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - John H Viles
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China
| |
Collapse
|
23
|
Kawarabayashi T, Nakamura T, Sato K, Seino Y, Ichii S, Nakahata N, Takatama M, Westaway D, George-Hyslop PS, Shoji M. Lipid Rafts Act as a Common Platform for Amyloid-β Oligomer-Induced Alzheimer’s Disease Pathology. J Alzheimers Dis 2022; 87:1189-1203. [DOI: 10.3233/jad-215662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Amyloid-β (Aβ) oligomers induce the overproduction of phosphorylated tau and neurodegeneration. These cascades gradually cause cognitive impairment in Alzheimer’s disease (AD). While each pathological event in AD has been studied in detail separately, the spatial and temporal relationships between pathological events in AD remain unclear. Objective: We demonstrated that lipid rafts function as a common platform for the pathological cascades of AD. Methods: Cellular and synaptosomal lipid rafts were prepared from the brains of Aβ amyloid model mice (Tg2576 mice) and double transgenic mice (Tg2576 x TgTauP301L mice) and longitudinally analyzed. Results: Aβ dimers, the cellular prion protein (PrPc), and Aβ dimer/PrPc complexes were detected in the lipid rafts. The levels of Fyn, the phosphorylated NR2B subunit of the N-methyl-D-aspartate receptor, glycogen synthase kinase 3β, total tau, phosphorylated tau, and tau oligomers increased with Aβ dimer accumulation in both the cellular and synaptosomal lipid rafts. Increases in the levels of these molecules were first seen at 6 months of age and corresponded with the early stages of Aβ accumulation in the amyloid model mice. Conclusion: Lipid rafts act as a common platform for the progression of AD pathology. The findings of this study suggest a novel therapeutic approach to AD, involving the modification of lipid raft components and the inhibition of their roles in the sequential pathological events of AD.
Collapse
Affiliation(s)
- Takeshi Kawarabayashi
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takumi Nakamura
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kaoru Sato
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yusuke Seino
- Department of Neurology, Hirosaki National Hospital, Hirosaki, Aomori, Japan
| | - Sadanobu Ichii
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Naoko Nakahata
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Speech and Hearing, Hirosaki University of Health and Welfare/JuniorCollege, Hirosaki, Aomori, Japan
| | - Masamitsu Takatama
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Peter St. George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mikio Shoji
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
24
|
Capone R, Tiwari A, Hadziselimovic A, Peskova Y, Hutchison JM, Sanders CR, Kenworthy AK. The C99 domain of the amyloid precursor protein resides in the disordered membrane phase. J Biol Chem 2021; 296:100652. [PMID: 33839158 PMCID: PMC8113881 DOI: 10.1016/j.jbc.2021.100652] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Processing of the amyloid precursor protein (APP) via the amyloidogenic pathway is associated with the etiology of Alzheimer's disease. The cleavage of APP by β-secretase to generate the transmembrane 99-residue C-terminal fragment (C99) and subsequent processing of C99 by γ-secretase to yield amyloid-β (Aβ) peptides are essential steps in this pathway. Biochemical evidence suggests that amyloidogenic processing of C99 occurs in cholesterol- and sphingolipid-enriched liquid-ordered phase membrane rafts. However, direct evidence that C99 preferentially associates with these rafts has remained elusive. Here, we tested this by quantifying the affinity of C99-GFP for raft domains in cell-derived giant plasma membrane vesicles (GPMVs). We found that C99 was essentially excluded from ordered domains in vesicles from HeLa cells, undifferentiated SH-SY5Y cells, or SH-SY5Y-derived neurons; instead, ∼90% of C99 partitioned into disordered domains. The strong association of C99 with disordered domains occurred independently of its cholesterol-binding activity or homodimerization, or of the presence of the familial Alzheimer disease Arctic mutation (APP E693G). Finally, through biochemical studies we confirmed previous results, which showed that C99 is processed in the plasma membrane by α-secretase, in addition to the well-known γ-secretase. These findings suggest that C99 itself lacks an intrinsic affinity for raft domains, implying that either i) amyloidogenic processing of the protein occurs in disordered regions of the membrane, ii) processing involves a marginal subpopulation of C99 found in rafts, or iii) as-yet-unidentified protein-protein interactions with C99 in living cells drive this protein into membrane rafts to promote its cleavage therein.
Collapse
Affiliation(s)
- Ricardo Capone
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Yelena Peskova
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
| | - James M Hutchison
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
25
|
Li Z, Moniruzzaman M, Dastgheyb RM, Yoo S, Wang M, Hao H, Liu J, Casaccia P, Nogueras‐Ortiz C, Kapogiannis D, Slusher BS, Haughey NJ. Astrocytes deliver CK1 to neurons via extracellular vesicles in response to inflammation promoting the translation and amyloidogenic processing of APP. J Extracell Vesicles 2020; 10:e12035. [PMID: 33408815 PMCID: PMC7775567 DOI: 10.1002/jev2.12035] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is thought to contribute to the early pathogenesis of Alzheimer's disease (AD). However, the precise mechanism by which inflammatory cytokines promote the formation and deposition of Aβ remains unclear. Available data suggest that applications of inflammatory cytokines onto isolated neurons do not promote the formation of Aβ, suggesting an indirect mechanism of action. Based on evidence astrocyte derived extracellular vesicles (astrocyte derived EVs) regulate neuronal functions, and data that inflammatory cytokines can modify the molecular cargo of astrocyte derived EVs, we sought to determine if IL-1β promotes the formation of Aβ indirectly through actions of astrocyte derived EVs on neurons. The production of Aβ was increased when neurons were exposed to astrocyte derived EVs shed in response to IL-1β (astrocyte derived EV-IL-1β). The mechanism for this effect involved an enrichment of Casein kinase 1 (CK1) in astrocyte derived EV-IL-1β. This astrocyte derived CK1 was delivered to neurons where it formed a complex with neuronal APC and GSK3 to inhibit the β-catenin degradation. Stabilized β-catenin translocated to the nucleus and bound to Hnrnpc gene at promoter regions. An increased cellular concentration of hnRNP C promoted the translation of APP by outcompeting the translational repressor fragile X mental retardation protein (FMRP) bound to APP mRNA. An increased amount of APP protein became co-localized with BACE1 in enlarged membrane microdomains concurrent with increased production of Aβ. These findings identify a mechanism whereby inflammation promotes the formation of Aβ through the actions of astrocyte derived EV-IL-1β on neurons.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mohammed Moniruzzaman
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Raha M. Dastgheyb
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Seung‐Wan Yoo
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Meina Wang
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hongbo Hao
- Advanced Science Research Center at the Graduate Center, Neuroscience InitiativeCity University of New YorkNew YorkNew YorkUSA
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience InitiativeCity University of New YorkNew YorkNew YorkUSA
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience InitiativeCity University of New YorkNew YorkNew YorkUSA
| | | | | | - Barbara S. Slusher
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Drug DiscoveryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Norman J. Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
26
|
Grimm MOW, Blümel T, Lauer AA, Janitschke D, Stahlmann C, Mett J, Haupenthal VJ, Miederer AM, Niemeyer BA, Grimm HS, Hartmann T. The impact of capsaicinoids on APP processing in Alzheimer's disease in SH-SY5Y cells. Sci Rep 2020; 10:9164. [PMID: 32514053 PMCID: PMC7280252 DOI: 10.1038/s41598-020-66009-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Abstract
The vanilloid capsaicin is a widely consumed spice, known for its burning and "hot" sensation through activation of TRPV1 ion-channels, but also known to decrease oxidative stress, inflammation and influence tau-pathology. Beside these positive effects, little is known about its effects on amyloid-precursor-protein (APP) processing leading to amyloid-β (Aβ), the major component of senile plaques. Treatment of neuroblastoma cells with capsaicinoids (24 hours, 10 µM) resulted in enhanced Aβ-production and reduced Aβ-degradation, leading to increased Aβ-levels. In detailed analysis of the amyloidogenic-pathway, both BACE1 gene-expression as well as protein-levels were found to be elevated, leading to increased β-secretase-activity. Additionally, γ-secretase gene-expression as well as activity was enhanced, accompanied by a shift of presenilin from non-raft to raft membrane-domains where amyloidogenic processing takes place. Furthermore, impaired Aβ-degradation in presence of capsaicinoids is dependent on the insulin-degrading-enzyme, one of the major Aβ-degrading-enzymes. Regarding Aβ-homeostasis, no differences were found between the major capsaicinoids, capsaicin and dihydrocapsaicin, and a mixture of naturally derived capsaicinoids; effects on Ca2+-homeostasis were ruled out. Our results show that in respect to Alzheimer's disease, besides the known positive effects of capsaicinoids, pro-amyloidogenic properties also exist, enhancing Aβ-levels, likely restricting the potential use of capsaicinoids as therapeutic substances in Alzheimer's disease.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Experimental Neurology, Saarland University, Homburg, Saar, Germany.
- Neurodegeneration and Neurobiology, Saarland University, Homburg, Saar, Germany.
| | - Tamara Blümel
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | - Anna A Lauer
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | | | | | - Janine Mett
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
- Biosciences Zoology/Physiology-Neurobiology, Faculty NT - Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | | | | | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, Saarland University, Homburg, Saar, Germany
| | - Heike S Grimm
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
- Neurodegeneration and Neurobiology, Saarland University, Homburg, Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg, Saar, Germany
| |
Collapse
|
27
|
Angelopoulou E, Paudel YN, Shaikh MF, Piperi C. Flotillin: A Promising Biomarker for Alzheimer's Disease. J Pers Med 2020; 10:jpm10020020. [PMID: 32225073 PMCID: PMC7354424 DOI: 10.3390/jpm10020020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of beta amyloid (Aβ) in extracellular senile plaques and intracellular neurofibrillary tangles (NFTs) mainly consisting of tau protein. Although the exact etiology of the disease remains elusive, accumulating evidence highlights the key role of lipid rafts, as well as the endocytic pathways in amyloidogenic amyloid precursor protein (APP) processing and AD pathogenesis. The combination of reduced Aβ42 levels and increased phosphorylated tau protein levels in the cerebrospinal fluid (CSF) is the most well established biomarker, along with Pittsburgh compound B and positron emission tomography (PiB-PET) for amyloid imaging. However, their invasive nature, the cost, and their availability often limit their use. In this context, an easily detectable marker for AD diagnosis even at preclinical stages is highly needed. Flotillins, being hydrophobic proteins located in lipid rafts of intra- and extracellular vesicles, are mainly involved in signal transduction and membrane–protein interactions. Accumulating evidence highlights the emerging implication of flotillins in AD pathogenesis, by affecting APP endocytosis and processing, Ca2+ homeostasis, mitochondrial dysfunction, neuronal apoptosis, Aβ-induced neurotoxicity, and prion-like spreading of Aβ. Importantly, there is also clinical evidence supporting their potential use as biomarker candidates for AD, due to reduced serum and CSF levels that correlate with amyloid burden in AD patients compared with controls. This review focuses on the emerging preclinical and clinical evidence on the role of flotillins in AD pathogenesis, further addressing their potential usage as disease biomarkers.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
- Correspondence: (M.F.S.); (C.P.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence: (M.F.S.); (C.P.)
| |
Collapse
|
28
|
Matsuzaki K. Aβ-ganglioside interactions in the pathogenesis of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183233. [PMID: 32142821 DOI: 10.1016/j.bbamem.2020.183233] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/20/2023]
Abstract
It is widely accepted that the abnormal self-association of amyloid β-protein (Aβ) is central to the pathogenesis of Alzheimer's disease, the most common form of dementia. Accumulating evidence, both in vivo and in vitro, suggests that the binding of Aβ to gangliosides, especially monosialoganglioside GM1, plays an important role in the aggregation of Aβ. This review summarizes the molecular details of the binding of Aβ to ganglioside-containing membranes and subsequent structural changes, as revealed by liposomal and cellular studies. Furthermore, mechanisms of cytotoxicity by aggregated Aβ are also discussed.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
29
|
Volloch V, Olsen B, Rits S. Alzheimer's Disease is Driven by Intraneuronally Retained Beta-Amyloid Produced in the AD-Specific, βAPP-Independent Pathway: Current Perspective and Experimental Models for Tomorrow. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2020; 2:90-114. [PMID: 32617536 PMCID: PMC7331974 DOI: 10.33597/aimm.02-1007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A view of the origin and progression of Alzheimer's disease, AD, prevailing until now and formalized as the Amyloid Cascade Hypothesis theory, maintains that the disease is initiated by overproduction of beta-amyloid, Aβ, which is generated solely by the Aβ precursor protein, βAPP, proteolytic pathway and secreted from the cell. Consequent extracellular accumulation of Aβ triggers a cascade of molecular and cellular events leading to neurodegeneration that starts early in life, progresses as one prolonged process, builds up for decades, and culminates in symptomatic manifestations of the disease late in life. In this paradigm, a time window for commencement of therapeutic intervention is small and accessible only early in life. The outlook introduced in the present study is fundamentally different. It posits that the βAPP proteolytic/secretory pathway of Aβ production causes AD in humans no more than it does in either short- or long-lived non-human mammals that share this pathway with humans, accumulate beta-amyloid as they age, but do not develop the disease. Alzheimer's disease, according to this outlook, is driven by an additional powerful AD-specific pathway of Aβ production that operates in affected humans, is completely independent of the βAPP precursor, and is not available in non-human mammals. The role of the βAPP proteolytic pathway in the disease in humans is activation of this additional AD-specific Aβ production pathway. This occurs through accumulation of intracellular Aβ, primarily via ApoE-assisted cellular uptake of secreted beta-amyloid, but also through retention of a fraction of Aβ produced in the βAPP proteolytic pathway. With time, accumulated intracellular Aβ triggers mitochondrial dysfunction. In turn, cellular stresses associated with mitochondrial dysfunction, including ER stress, activate a second, AD-specific, Aβ production pathway: Asymmetric RNA-dependent βAPP mRNA amplification; animal βAPP mRNA is ineligible for this process. In this pathway, every conventionally produced βAPP mRNA molecule serves potentially as a template for production of severely 5'-truncated mRNA encoding not the βAPP but its C99 fragment (hence "asymmetric"), the immediate precursor of Aβ. Thus produced, N-terminal signal peptide-lacking C99 is processed not in the secretory pathway on the plasma membrane, but at the intracellular membrane sites, apparently in a neuron-specific manner. The resulting Aβ is, therefore, not secreted but is retained intraneuronally and accumulates rapidly within the cell. Increased levels of intracellular Aβ augment mitochondrial dysfunction, which, in turn, sustains the activity of the βAPP mRNA amplification pathway. These self-propagating mutual Aβ overproduction/mitochondrial dysfunction feedback cycles constitute a formidable two-stroke engine, an engine that drives Alzheimer's disease. The present outlook envisions Alzheimer's disorder as a two-stage disease. The first stage is a slow process of intracellular beta-amyloid accumulation. It results neither in significant neurodegenerative damage, nor in manifestation of the disease. The second stage commences with the activation of the βAPP mRNA amplification pathway shortly before symptomatic onset of the disease, sharply increases the rate of Aβ generation and the extent of its intraneuronal accumulation, produces significant damages, triggers AD symptoms, and is fast. In this paradigm, the time window of therapeutic intervention is wide open, and preventive treatment can be initiated any time, even late in life, prior to commencement of the second stage of the disease. Moreover, there are good reasons to believe that with a drug blocking the βAPP mRNA amplification pathway, it would be possible not only to preempt the disease but also to stop and to reverse it even when early AD symptoms have already manifested. There are numerous experimental models of AD, all based on a notion of the exceptionality of βAPP proteolytic/secretory pathway in Aβ production in the disease. However, with no drug even remotely effective in Alzheimer's disease, a long list of candidate drugs that succeeded remarkably in animal models, yet failed utterly in human clinical trials of potential AD drugs, attests to the inadequacy of currently employed AD models. The concept of a renewable supply of beta-amyloid, produced in the βAPP mRNA amplification pathway and retained intraneuronally in Alzheimer's disease, explains spectacular failures of both BACE inhibition and Aβ-immunotherapy in human clinical trials. This concept also forms the basis of a new generation of animal and cell-based experimental models of AD, described in the present study. These models incorporate Aβ- or C99-encoding mRNA amplification pathways of Aβ production, as well as intracellular retention of their product, and can support not only further investigation of molecular mechanisms of AD but also screening for and testing of candidate drugs aimed at therapeutic targets suggested by the present study.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
30
|
Icariin Ameliorates Amyloid Pathologies by Maintaining Homeostasis of Autophagic Systems in Aβ1–42-Injected Rats. Neurochem Res 2019; 44:2708-2722. [DOI: 10.1007/s11064-019-02889-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
31
|
Kim J, Funayama S, Izuo N, Shimizu T. Dietary supplementation of a high-temperature-processed green tea extract attenuates cognitive impairment in PS2 and Tg2576 mice. Biosci Biotechnol Biochem 2019; 83:2364-2371. [PMID: 31462168 DOI: 10.1080/09168451.2019.1659721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Green tea intake is generally recognized as an effective supplement that promotes mental clarity and cognitive function. These health benefits of green tea have been attributed mainly to its effective component, epigallocatechin gallate (EGCG). Because various catechin derivatives potently enhance these health benefits, we manipulated the extraction process with a high-temperature intervention. High-temperature-processed green tea extract (HTP-GTE) showed an elevated proportion of gallocatechin gallate (GCG) content. To investigate the preventive effects of HTP-GTE on cognitive decline, we found its neuroprotective effects against amyloid β (Aβ)-induced neurotoxicity in neurons and clarified that GCG significantly inhibited Aβ aggregation in vitro. Moreover, we showed that HTP-GTE intake attenuated several cognitive-decline phenotypes in a model mouse of Alzheimer's disease. These beneficial effects of HTP-GTE against cognitive decline were due to the distinctive composition of the extract and suggest the possibility that HTP-GTE supplementation could attenuate cognitive decline of Alzheimer's disease.
Collapse
Affiliation(s)
- Juewon Kim
- Department of Endocrinolog, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Japan.,Vital Beautie Research Division, Amorepacific R&D Center, Gyeonggi-do, Republic of Korea
| | - Shinichiro Funayama
- Department of Endocrinolog, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naotaka Izuo
- Department of Endocrinolog, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takahiko Shimizu
- Department of Endocrinolog, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Japan.,Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
32
|
Fabiani C, Antollini SS. Alzheimer's Disease as a Membrane Disorder: Spatial Cross-Talk Among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Front Cell Neurosci 2019; 13:309. [PMID: 31379503 PMCID: PMC6657435 DOI: 10.3389/fncel.2019.00309] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes show lateral and transverse asymmetric lipid distribution. Cholesterol (Chol) localizes in both hemilayers, but in the external one it is mostly condensed in lipid-ordered microdomains (raft domains), together with saturated phosphatidyl lipids and sphingolipids (including sphingomyelin and glycosphingolipids). Membrane asymmetries induce special membrane biophysical properties and behave as signals for several physiological and/or pathological processes. Alzheimer’s disease (AD) is associated with a perturbation in different membrane properties. Amyloid-β (Aβ) plaques and neurofibrillary tangles of tau protein together with neuroinflammation and neurodegeneration are the most characteristic cellular changes observed in this disease. The extracellular presence of Aβ peptides forming senile plaques, together with soluble oligomeric species of Aβ, are considered the major cause of the synaptic dysfunction of AD. The association between Aβ peptide and membrane lipids has been extensively studied. It has been postulated that Chol content and Chol distribution condition Aβ production and posterior accumulation in membranes and, hence, cell dysfunction. Several lines of evidence suggest that Aβ partitions in the cell membrane accumulate mostly in raft domains, the site where the cleavage of the precursor AβPP by β- and γ- secretase is also thought to occur. The main consequence of the pathogenesis of AD is the disruption of the cholinergic pathways in the cerebral cortex and in the basal forebrain. In parallel, the nicotinic acetylcholine receptor has been extensively linked to membrane properties. Since its transmembrane domain exhibits extensive contacts with the surrounding lipids, the acetylcholine receptor function is conditioned by its lipid microenvironment. The nicotinic acetylcholine receptor is present in high-density clusters in the cell membrane where it localizes mainly in lipid-ordered domains. Perturbations of sphingomyelin or cholesterol composition alter acetylcholine receptor location. Therefore, Aβ processing, Aβ partitioning, and acetylcholine receptor location and function can be manipulated by changes in membrane lipid biophysics. Understanding these mechanisms should provide insights into new therapeutic strategies for prevention and/or treatment of AD. Here, we discuss the implications of lipid-protein interactions at the cell membrane level in AD.
Collapse
Affiliation(s)
- Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
33
|
Banerjee V, Oren O, Dagan B, Taube R, Engel S, Papo N. An Engineered Variant of the B1 Domain of Protein G Suppresses the Aggregation and Toxicity of Intra- and Extracellular Aβ42. ACS Chem Neurosci 2019; 10:1488-1496. [PMID: 30428260 DOI: 10.1021/acschemneuro.8b00491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Intra- and extraneuronal deposition of amyloid β (Aβ) peptides have been linked to Alzheimer's disease (AD). While both intra- and extraneuronal Aβ deposits affect neuronal cell viability, the molecular mechanism by which these Aβ structures, especially when intraneuronal, do so is still not entirely understood. This makes the development of inhibitors challenging. To prevent the formation of toxic Aβ structural assemblies so as to prevent neuronal cell death associated with AD, we used a combination of computational and combinatorial-directed evolution approaches to develop a variant of the HTB1 protein (HTB1M2). HTB1M2 inhibits in vitro self-assembly of Aβ42 peptide and shifts the Aβ42 aggregation pathway to the formation of oligomers that are nontoxic to neuroblastoma SH-SY5Y cells overexpressing or treated with Aβ42 peptide. This makes HTB1M2 a potential therapeutic lead in the development of AD-targeted drugs and a tool for elucidating conformational changes in the Aβ42 peptide.
Collapse
Affiliation(s)
- Victor Banerjee
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Ofek Oren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Bar Dagan
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Stanislav Engel
- The National Institute for Biotechnology in the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
34
|
Volloch V, Rits-Volloch S. News from Mars: Two-Tier Paradox, Intracellular PCR, Chimeric Junction Shift, Dark Matter mRNA and Other Remarkable Features of Mammalian RNA-Dependent mRNA Amplification. Implications for Alzheimer's Disease, RNA-Based Vaccines and mRNA Therapeutics. ACTA ACUST UNITED AC 2019; 2:131-173. [PMID: 33942036 DOI: 10.33597/aimm.02-1009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular Biology, a branch of science established to examine the flow of information from "letters" encrypted into DNA structure to functional proteins, was initially defined by a concept of DNA-to-RNA-to-Protein information movement, a notion termed the Central Dogma of Molecular Biology. RNA-dependent mRNA amplification, a novel mode of eukaryotic protein-encoding RNA-to-RNA-to-Protein genomic information transfer, constitutes the extension of the Central Dogma in the context of mammalian cells. It was shown to occur in cellular circumstances requiring exceptionally high levels of production of specific polypeptides, e.g. globin chains during erythroid differentiation or defined secreted proteins in the context of extracellular matrix deposition. Its potency is reflected in the observed cellular levels of the resulting amplified mRNA product: At the peak of the erythroid differentiation, for example, the amount of globin mRNA produced in the amplification pathway is about 1500-fold higher than the amount of its conventionally generated counterpart in the same cells. The cellular enzymatic machinery at the core of this process, RNA-dependent RNA polymerase activity (RdRp), albeit in a non-conventional form, was shown to be constitutively and ubiquitously present, and RNA-dependent RNA synthesis (RdRs) appeared to regularly occur, in mammalian cells. Under most circumstances, the mammalian RdRp activity produces only short antisense RNA transcripts. Generation of complete antisense RNA transcripts and amplification of mRNA molecules require the activation of inducible components of the mammalian RdRp complex. The mechanism of such activation is not clear. The present article suggests that it is triggered by a variety of cellular stresses and occurs in the context of stress responses in general and within the framework of the integrated stress response (ISR) in particular. In this process, various cellular stresses activate, in a stress type-specific manner, defined members of the mammalian translation initiation factor 2α, eIF2α, kinase family: PKR, GCN2, PERK and HRI. Any of these kinases, in an activated form, phosphorylates eIF2α. This results in suppression of global cellular protein synthesis but also in activation of expression of select group of transcription factors including ATF4, ATF5 and CHOP. These transcription factors either function as inducible components of the RdRp complex or enable their expression. The assembly of the competent RdRp complex activates mammalian RNA-dependent mRNA amplification, which appears to be a two-tier process. Tier One is a "chimeric" pathway, named so because it results in an amplified chimeric mRNA molecule containing a fragment of the antisense RNA strand at its 5' terminus. Tier Two further amplifies one of the two RNA end products of the chimeric pathway and constitutes the physiologically occurring intracellular polymerase chain reaction, iPCR. Depending on the structure of the initial mRNA amplification progenitor, the chimeric pathway, Tier One, may result in multiple outcomes including chimeric mRNA that produces either a polypeptide identical to the original, conventional mRNA progenitor-encoded protein or only its C-terminal fragment, CTF. The chimeric RNA end product of Tier One may also produce a polypeptide that is non-contiguously encoded in the genome, activate translation from an open reading frame, which is "silent" in a conventionally transcribed mRNA, or initiate an abortive translation. In sharp contrast, regardless of the outcome of Tier One, the mRNA end product of Tier Two of mammalian mRNA amplification, the iPCR pathway, always produces a polypeptide identical to a conventional mRNA progenitor-encoded protein. This discordance is referred to as the Two-Tier Paradox and discussed in detail in the present article. On the other hand, both Tiers are similar in that they result in heavily modified mRNA molecules resistant to reverse transcription, undetectable by reverse transcription-based methods of sequencing and therefore constituting a proverbial "Dark Matter" mRNA, despite being highly ubiquitous. It appears that in addition to their other functions, the modifications of the amplified mRNA render it compatible, unlike the bulk of cellular mRNA, with phosphorylated eIF2α in translation, implying that in addition to being extraordinarily abundant due to the method of its generation, amplified mRNA is also preferentially translated under the ISR conditions, thus augmenting the efficiency of the amplification process. The vital importance of powerful mechanisms of amplification of protein-encoding genomic information in normal physiology is self-evident. Their malfunctions or misuse appear to be associated with two types of abnormalities, the deficiency of a protein normally produced by these mechanisms and the mRNA amplification-mediated overproduction of a protein normally not generated by such a process. Certain classes of beta-thalassemia exemplify the first type, whereas the second type is represented by overproduction of beta-amyloid in Alzheimer's disease. Moreover, the proposed mechanism of Alzheimer's disease allows a crucial and verifiable prediction, namely that the disease-causing intraneuronally retained variant of beta-amyloid differs from that produced conventionally by βAPP proteolysis in that it contains the additional methionine or acetylated methionine at its N-terminus. Because of its extraordinary evidential value as a natural reporter of the mRNA amplification pathway, this feature, if proven, would, arguably, constitute the proverbial Holy Grail not only for Alzheimer's disease but also for the mammalian RNA-dependent mRNA amplification field in general. Both examples are discussed in detail in the present article, which summarizes and systematizes our current understanding of the field and describes two categories of reporter constructs, one for the chimeric Tier of mRNA amplification, another for the iPCR pathway; both reporter types are essential for elucidating underlying molecular mechanisms. It also suggests, in light of the recently demonstrated feasibility of RNA-based vaccines, that the targeted intracellular amplification of exogenously introduced amplification-eligible antigen-encoding mRNAs via the induced or naturally occurring RNA-dependent mRNA amplification pathway could be of substantial benefit in triggering a fast and potent immune response and instrumental in the development of future vaccines. Similar approaches can also be effective in achieving efficient and sustained expression of exogenous mRNA in mRNA therapeutics.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children's Hospital, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
35
|
Volloch V, Olsen B, Rits S. Alzheimer's Disease Prevention and Treatment: Case for Optimism. ACTA ACUST UNITED AC 2019; 2:115-130. [PMID: 33043322 DOI: 10.33597/aimm.02-1008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A paradigm shift is under way in the Alzheimer's field. A view of Alzheimer's disease, AD, prevailing until now, the old paradigm, maintains that it is initiated and driven by the overproduction and extracellular accumulation of beta-amyloid, Aβ; a peptide assumed to be derived, both in health and disease, solely by proteolysis of its large precursor, βAPP. In AD, according to this view, Aβ overproduction-associated neurodegeneration begins early, accumulates throughout the lifespan, and manifests symptomatically late in life. A number of drugs, designed within the framework of exceptionality of the βAPP proteolytic/secretory pathway in Aβ production in Alzheimer's disease, achieved spectacular successes in treatment, even the reversal, of AD symptoms in animal models. Without exception, they all exhibited equally spectacular failures in human clinical trials. This paradigm provides few causes for optimism with regard to prevention and treatment of AD. In its context, the disease is considered untreatable in the symptomatic phase; even prodromal cases are assumed too advanced for treatment because Aβ-triggered damages have been accumulating for preceding decades, presumably starting in the early twenties and, to be effective, this is when therapeutic intervention should commence and continue for life. The new paradigm does not dispute the seminal role of Aβ in AD but posits that beta-amyloid produced in the βAPP proteolytic/secretory pathway causes AD in humans no more than it does in non-human mammals that share this pathway with humans, accumulate Aβ as they age, but do not develop the disease. Alzheimer's disease, according to this outlook, is driven by the AD-specific pathway of Aβ production, independent of βAPP and absent in animals. Its activation, late in life, occurs through accumulation, via both cellular uptake of secreted Aβ and neuronal retention of a fraction of beta-amyloid produced in the βAPP proteolytic pathway, of intraneuronal Aβ, which triggers mitochondrial dysfunction. Cellular stresses associated with mitochondrial dysfunction, or, probably, the integrated stress response, ISR, elicited by it, activate an AD-specific Aβ production pathway. In it, every conventionally produced βAPP mRNA molecule potentially serves repeatedly as a template for production of severely 5'-truncated mRNA encoding C99 fragment of βAPP, the immediate precursor of Aβ that is processed in a non-secretory pathway, apparently in a neuron-specific manner. The resulting intraneuronally retained Aβ augments mitochondrial dysfunction, which, in turn, sustains the activity of the βAPP mRNA amplification pathway. These self-propagating Aβ overproduction/mitochondrial dysfunction mutual feedback cycles constitute the engine that drives AD and ultimately triggers neuronal death. In this paradigm, preventive treatment can be initiated any time prior to commencement of βAPP mRNA amplification. Moreover, there are good reasons to believe that with a drug blocking the amplification pathway, it would be possible not only to preempt the disease but also stop and reverse it even when early AD symptoms are already manifested. Thus, the new paradigm introduces a novel theory of Alzheimer's disease. It explains the observed discordances, determines defined therapeutic targets, provides blueprints for a new generation of conceptually distinct AD models and specifies design of a reporter for the mRNA amplification pathway. Most importantly, it offers detailed guidance and tangible hope for prevention of the disease and its treatment at the early symptomatic stages.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children's Hospital, Boston, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
36
|
Lipidomic alterations in lipoproteins of patients with mild cognitive impairment and Alzheimer’s disease by asymmetrical flow field-flow fractionation and nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2018; 1568:91-100. [DOI: 10.1016/j.chroma.2018.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 12/29/2022]
|
37
|
Miya Shaik M, Tamargo IA, Abubakar MB, Kamal MA, Greig NH, Gan SH. The Role of microRNAs in Alzheimer's Disease and Their Therapeutic Potentials. Genes (Basel) 2018; 9:genes9040174. [PMID: 29561798 PMCID: PMC5924516 DOI: 10.3390/genes9040174] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that post-transcriptionally regulate gene expression by base pairing with mRNA targets. Altered miRNA expression profiles have been observed in several diseases, including neurodegeneration. Multiple studies have reported altered expressions of miRNAs in the brains of individuals with Alzheimer’s disease (AD) as compared to those of healthy elderly adults. Some of the miRNAs found to be dysregulated in AD have been reported to correlate with neuropathological changes, including plaque and tangle accumulation, as well as altered expressions of species that are known to be involved in AD pathology. To examine the potentially pathogenic functions of several dysregulated miRNAs in AD, we review the current literature with a focus on the activities of ten miRNAs in biological pathways involved in AD pathogenesis. Comprehensive understandings of the expression profiles and activities of these miRNAs will illuminate their roles as potential therapeutic targets in AD brain and may lead to the discovery of breakthrough treatment strategies for AD.
Collapse
Affiliation(s)
- Munvar Miya Shaik
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia.
| | - Ian A Tamargo
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Murtala B Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2254 Sokoto, Nigeria.
| | - Mohammad A Kamal
- Metabolomics and Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
38
|
Ariga T. The Pathogenic Role of Ganglioside Metabolism in Alzheimer's Disease-Cholinergic Neuron-Specific Gangliosides and Neurogenesis. Mol Neurobiol 2018; 54:623-638. [PMID: 26748510 DOI: 10.1007/s12035-015-9641-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia with clinical symptoms that include deficits in memory, judgment, thinking, and behavior. Gangliosides are present on the outer surface of plasma membranes and are especially abundant in the nervous tissues of vertebrates. Ganglioside metabolism, especially the cholinergic neuron-specific gangliosides, GQ1bα and GT1aα, is altered in mouse model of AD and patients with AD. Thus, alterations in ganglioside metabolism may participate in several events related to the pathogenesis of AD. Increased expressions of GT1aα may reflect cholinergic neurogenesis. Most changes in ganglioside metabolism occur in the specific brain areas and their lipid rafts. Targeting ganglioside metabolism in lipid rafts may represent an underexploited opportunity to design novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Institute of Neuroscience, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, 101-8308, Japan.
| |
Collapse
|
39
|
Wang C, Shou Y, Pan J, Du Y, Liu C, Wang H. The relationship between cholesterol level and Alzheimer’s disease-associated APP proteolysis/Aβ metabolism. Nutr Neurosci 2018; 22:453-463. [DOI: 10.1080/1028415x.2017.1416942] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chaoqun Wang
- School of Medicine, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Yikai Shou
- School of Medicine, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Jie Pan
- Department of Endocrinology and Metabolism, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yue Du
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Cuiqing Liu
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Huanhuan Wang
- School of Medicine, Hangzhou Normal University, Hangzhou, People’s Republic of China
| |
Collapse
|
40
|
Role of membrane GM1 on early neuronal membrane actions of Aβ during onset of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3105-3116. [DOI: 10.1016/j.bbadis.2017.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022]
|
41
|
HIV-1 counteracts an innate restriction by amyloid precursor protein resulting in neurodegeneration. Nat Commun 2017; 8:1522. [PMID: 29142315 PMCID: PMC5688069 DOI: 10.1038/s41467-017-01795-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
While beta-amyloid (Aβ), a classic hallmark of Alzheimer's disease (AD) and dementia, has long been known to be elevated in the human immunodeficiency virus type 1 (HIV-1)-infected brain, why and how Aβ is produced, along with its contribution to HIV-associated neurocognitive disorder (HAND) remains ill-defined. Here, we reveal that the membrane-associated amyloid precursor protein (APP) is highly expressed in macrophages and microglia, and acts as an innate restriction against HIV-1. APP binds the HIV-1 Gag polyprotein, retains it in lipid rafts and blocks HIV-1 virion production and spread. To escape this restriction, Gag promotes secretase-dependent cleavage of APP, resulting in the overproduction of toxic Aβ isoforms. This Gag-mediated Aβ production results in increased degeneration of primary cortical neurons, and can be prevented by γ-secretase inhibitor treatment. Interfering with HIV-1's evasion of APP-mediated restriction also suppresses HIV-1 spread, offering a potential strategy to both treat infection and prevent HAND.
Collapse
|
42
|
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention. J Lipid Res 2017; 58:2083-2101. [PMID: 28528321 PMCID: PMC5665674 DOI: 10.1194/jlr.r076331] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Daniel M Michaelson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Hartmann
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
43
|
d'Uscio LV, He T, Katusic ZS. Expression and Processing of Amyloid Precursor Protein in Vascular Endothelium. Physiology (Bethesda) 2017; 32:20-32. [PMID: 27927802 DOI: 10.1152/physiol.00021.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is evolutionary conserved protein expressed in endothelial cells of cerebral and peripheral arteries. In this review, we discuss mechanisms responsible for expression and proteolytic cleavage of APP in endothelial cells. We focus on physiological and pathological implications of APP expression in vascular endothelium.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tongrong He
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
44
|
Tau Spread, Apolipoprotein E, Inflammation, and More: Rapidly Evolving Basic Science in Alzheimer Disease. Neurol Clin 2017; 35:175-190. [PMID: 28410655 DOI: 10.1016/j.ncl.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To date, Alzheimer disease drug candidates have produced negative results in human trials, and progress in moving new targets out of the laboratory and into trials has been slow. However, based on 3 decades of previous work, there is reason to hope that amyloid-based and other novel therapies will move at a faster pace toward successful clinical trials. This article highlights selected preclinical research topics that are rapidly advancing in the laboratory.
Collapse
|
45
|
Endogenous Brain Lipids Inhibit Prion Amyloid Formation In Vitro. J Virol 2017; 91:JVI.02162-16. [PMID: 28202758 DOI: 10.1128/jvi.02162-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 01/22/2023] Open
Abstract
The normal cellular prion protein (PrPC) resides in detergent-resistant outer membrane lipid rafts in which conversion to the pathogenic misfolded form is believed to occur. Once misfolding occurs, the pathogenic isoform polymerizes into highly stable amyloid fibrils. In vitro assays have demonstrated an intimate association between prion conversion and lipids, specifically phosphatidylethanolamine, which is a critical cofactor in the formation of synthetic infectious prions. In the current work, we demonstrate an alternative inhibitory function of lipids in the prion conversion process as assessed in vitro by real-time quaking-induced conversion (RT-QuIC). Using an alcohol-based extraction technique, we removed the lipid content from chronic wasting disease (CWD)-infected white-tailed deer brain homogenates and found that lipid extraction enabled RT-QuIC detection of CWD prions in a 2-log10-greater concentration of brain sample. Conversely, addition of brain-derived lipid extracts to CWD prion brain or lymph node samples inhibited amyloid formation in a dose-dependent manner. Subsequent lipid analysis demonstrated that this inhibitory function was restricted to the polar lipid fraction in brain. We further investigated three phospholipids commonly found in lipid membranes, phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol, and found all three similarly inhibited RT-QuIC. These results demonstrating polar-lipid, and specifically phospholipid, inhibition of prion-seeded amyloid formation highlight the diverse roles lipid constituents may play in the prion conversion process.IMPORTANCE Prion conversion is likely influenced by lipid interactions, given the location of normal prion protein (PrPC) in lipid rafts and lipid cofactors generating infectious prions in in vitro models. Here, we use real-time quaking-induced conversion (RT-QuIC) to demonstrate that endogenous brain polar lipids can inhibit prion-seeded amyloid formation, suggesting that prion conversion is guided by an environment of proconversion and anticonversion lipids. These experiments also highlight the applicability of RT-QuIC to identify potential therapeutic inhibitors of prion conversion.
Collapse
|
46
|
Chang TY, Yamauchi Y, Hasan MT, Chang C. Cellular cholesterol homeostasis and Alzheimer's disease. J Lipid Res 2017; 58:2239-2254. [PMID: 28298292 DOI: 10.1194/jlr.r075630] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/14/2017] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in older adults. Currently, there is no cure for AD. The hallmark of AD is the accumulation of extracellular amyloid plaques composed of amyloid-β (Aβ) peptides (especially Aβ1-42) and neurofibrillary tangles, composed of hyperphosphorylated tau and accompanied by chronic neuroinflammation. Aβ peptides are derived from the amyloid precursor protein (APP). The oligomeric form of Aβ peptides is probably the most neurotoxic species; its accumulation eventually forms the insoluble and aggregated amyloid plaques. ApoE is the major apolipoprotein of the lipoprotein(s) present in the CNS. ApoE has three alleles, of which the Apoe4 allele constitutes the major risk factor for late-onset AD. Here we describe the complex relationship between ApoE4, oligomeric Aβ peptides, and cholesterol homeostasis. The review consists of four parts: 1) key elements involved in cellular cholesterol metabolism and regulation; 2) key elements involved in intracellular cholesterol trafficking; 3) links between ApoE4, Aβ peptides, and disturbance of cholesterol homeostasis in the CNS; 4) potential lipid-based therapeutic targets to treat AD. At the end, we recommend several research topics that we believe would help in better understanding the connection between cholesterol and AD for further investigations.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Yoshio Yamauchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Mazahir T Hasan
- Laboratory of Memory Circuits, Achucarro Basque Center for Neuroscience, Zamudio, Spain
| | - Catherine Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
47
|
Grimm MOW, Mett J, Grimm HS, Hartmann T. APP Function and Lipids: A Bidirectional Link. Front Mol Neurosci 2017; 10:63. [PMID: 28344547 PMCID: PMC5344993 DOI: 10.3389/fnmol.2017.00063] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Extracellular neuritic plaques, composed of aggregated amyloid-β (Aβ) peptides, are one of the major histopathological hallmarks of Alzheimer's disease (AD), a progressive, irreversible neurodegenerative disorder and the most common cause of dementia in the elderly. One of the most prominent risk factor for sporadic AD, carrying one or two aberrant copies of the apolipoprotein E (ApoE) ε4 alleles, closely links AD to lipids. Further, several lipid classes and fatty acids have been reported to be changed in the brain of AD-affected individuals. Interestingly, the observed lipid changes in the brain seem not only to be a consequence of the disease but also modulate Aβ generation. In line with these observations, protective lipids being able to decrease Aβ generation and also potential negative lipids in respect to AD were identified. Mechanistically, Aβ peptides are generated by sequential proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. The α-secretase appears to compete with β-secretase for the initial cleavage of APP, preventing Aβ production. All APP-cleaving secretases as well as APP are transmembrane proteins, further illustrating the impact of lipids on Aβ generation. Beside the pathological impact of Aβ, accumulating evidence suggests that Aβ and the APP intracellular domain (AICD) play an important role in regulating lipid homeostasis, either by direct effects or by affecting gene expression or protein stability of enzymes involved in the de novo synthesis of different lipid classes. This review summarizes the current literature addressing the complex bidirectional link between lipids and AD and APP processing including lipid alterations found in AD post mortem brains, lipids that alter APP processing and the physiological functions of Aβ and AICD in the regulation of several lipid metabolism pathways.
Collapse
Affiliation(s)
- Marcus O. W. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| | - Janine Mett
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Heike S. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| |
Collapse
|
48
|
Kim Y, Kim C, Jang HY, Mook-Jung I. Inhibition of Cholesterol Biosynthesis Reduces γ-Secretase Activity and Amyloid-β Generation. J Alzheimers Dis 2016; 51:1057-68. [PMID: 26923021 DOI: 10.3233/jad-150982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Amyloid-β (Aβ) is one of major molecules contributing to the pathogenesis of Alzheimer's disease (AD). Aβ is derived from amyloid-β protein precursor (AβPP) through sequential cleavages by β- and γ-secretases. Regulation of these components is thought to be an important factor in Aβ generation during the pathogenesis of AD. AβPP, β-secretase, and γ-secretase reside in lipid rafts, where cholesterol regulates the integrity and flexibility of membrane proteins and Aβ is generated. However, the relationship between cholesterol and Aβ generation is controversial. In this study, we aimed to elucidate the direct effects of cholesterol depletion on AβPP processing using AY9944, which blocks the last step of cholesterol biosynthesis and thus minimizes the unknown side effects of upstream inhibitors, such as HMG-CoA reductase inhibitors. Treatment with AY9944 decreased γ-secretase activity and Aβ generation. These results suggested that changes in membrane composition by lowering cholesterol with AY9944 affected γ-secretase activity and Aβ generation, which is associated with AD pathogenesis.
Collapse
|
49
|
Panahi A, Bandara A, Pantelopulos GA, Dominguez L, Straub JE. Specific Binding of Cholesterol to C99 Domain of Amyloid Precursor Protein Depends Critically on Charge State of Protein. J Phys Chem Lett 2016; 7:3535-41. [PMID: 27525349 PMCID: PMC5293176 DOI: 10.1021/acs.jpclett.6b01624] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent NMR chemical shift measurements of the 99 residue C-terminal fragment of amyloid precursor protein (APP-C99) in the presence of cholesterol provide evidence of binary complex formation between C99 and cholesterol in membrane mimetic environments. It has also been observed that the production of Aβ protein is enhanced under conditions of high cholesterol concentration. In this study, we investigated the impact of the charge state of C99 on the structure and stability of the C99-cholesterol complex. We observed that the binding of C99 to cholesterol depends critically on the charge state of Glu 693 (E22) and Asp 694 (D23). Evaluation of the pKa values of the Asp and Glu side chains suggests that these residues may be predominantly neutral in existing experimental observations of a stable C99-cholesterol complex at lower pH (characteristic of the endosomal environment), while binding is destabilized near neutral pH (characteristic of the cytoplasm). These observations suggest that specific binding of cholesterol to C99 is a sensitive function of the pH encountered in vivo, with key E22 and D23 residues serving as a "pH switch" controlling C99-cholesterol binding.
Collapse
Affiliation(s)
- Afra Panahi
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
| | - Asanga Bandara
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
| | - George A. Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
| | - Laura Dominguez
- Biophysical Chemistry Laboratory, Physical Chemistry Department, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - John E. Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
- Corresponding Author:
| |
Collapse
|
50
|
Pérez-Cañamás A, Sarroca S, Melero-Jerez C, Porquet D, Sansa J, Knafo S, Esteban JA, Sanfeliu C, Ledesma MD. A diet enriched with plant sterols prevents the memory impairment induced by cholesterol loss in senescence-accelerated mice. Neurobiol Aging 2016; 48:1-12. [PMID: 27622776 DOI: 10.1016/j.neurobiolaging.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/07/2016] [Accepted: 08/09/2016] [Indexed: 01/02/2023]
Abstract
Cholesterol reduction at the neuronal plasma membrane has been related to age-dependent cognitive decline. We have used senescent-accelerated mice strain 8 (SAMP8), an animal model for aging, to examine the association between cholesterol loss and cognitive impairment and to test strategies to revert this process. We show that the hippocampus of SAMP8 mice presents reduced cholesterol levels and enhanced amount of its degrading enzyme Cyp46A1 (Cyp46) already at 6 months of age. Cholesterol loss accounts for the impaired long-term potentiation in these mice. Plant sterol (PSE)-enriched diet prevents long-term potentiation impairment and cognitive deficits in SAMP8 mice without altering cholesterol levels. PSE diet also reduces the abnormally high amyloid peptide levels in SAMP8 mice brains and restores membrane compartmentalization of presenilin1, the catalytic component of the amyloidogenic γ-secretase. These results highlight the influence of cholesterol loss in age-related cognitive decline and provide with a noninvasive strategy to counteract it. Our results suggest that PSE overtake cholesterol functions in the brain contributing to reduce deleterious consequences of cholesterol loss during aging.
Collapse
Affiliation(s)
| | - Sara Sarroca
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Barcelona, Spain
| | | | - David Porquet
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Barcelona, Spain
| | - Joan Sansa
- Departament de Psicologia Bàsica, Universitat de Barcelona, Barcelona, Spain
| | - Shira Knafo
- Centro Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain; Unidad de Biofísica CSIC-UPV/EHU, Campus Universidad del País Vasco, Leioa, Spain; IkerBasque, Basque Foundation for Science, Basque Country, Spain
| | - Jose A Esteban
- Centro Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | | |
Collapse
|