1
|
Vanni E, Beauloye C, Horman S, Bertrand L. AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure. Essays Biochem 2024:EBC20240003. [PMID: 39319471 DOI: 10.1042/ebc20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Heart failure (HF) represents a multifaceted clinical syndrome characterized by the heart's inability to pump blood efficiently to meet the body's metabolic demands. Despite advances in medical management, HF remains a major cause of morbidity and mortality worldwide. In recent years, considerable attention has been directed toward understanding the molecular mechanisms underlying HF pathogenesis, with a particular focus on the role of AMP-activated protein kinase (AMPK) and protein O-GlcNAcylation. This review comprehensively examines the current understanding of AMPK and O-GlcNAcylation signalling pathways in HF, emphasizing their interplay and dysregulation. We delve into the intricate molecular mechanisms by which AMPK and O-GlcNAcylation contribute to cardiac energetics, metabolism, and remodelling, highlighting recent preclinical and clinical studies that have explored novel therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Ettore Vanni
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
2
|
Rehman IU, Park JS, Choe K, Park HY, Park TJ, Kim MO. Overview of a novel osmotin abolishes abnormal metabolic-associated adiponectin mechanism in Alzheimer's disease: Peripheral and CNS insights. Ageing Res Rev 2024; 100:102447. [PMID: 39111409 DOI: 10.1016/j.arr.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disease that affects millions of people worldwide. It is caused by abnormalities in cholinergic neurons, oxidative stress, and inflammatory cascades. The illness is accompanied by personality changes, memory issues, and dementia. Metabolic signaling pathways help with fundamental processes like DNA replication and RNA transcription. Being adaptable is essential for both surviving and treating illness. The body's metabolic signaling depends on adipokines, including adiponectin (APN) and other adipokines secreted by adipose tissues. Energy homeostasis is balanced by adipokines, and nutrients. Overconsumption of nutrients messes with irregular signaling of adipokines, such as APN in both peripheral and brain which leads to neurodegeneration, such as AD. Despite the failure of traditional treatments like memantine and cholinesterase inhibitors, natural plant bioactive substances like Osmotin (OSM) have been given a focus as potential therapeutics due to their antioxidant properties, better blood brain barrier (BBB) permeability, excellent cell viability, and especially nanoparticle approaches. The review highlights the published preclinical literature regarding the role of OSM in AD pathology while there is a need for more research to investigate the hidden therapeutic potential of OSM which may open a new gateway and further strengthen its healing role in the pathogenesis of neurodegeneration, especially AD.
Collapse
Affiliation(s)
- Inayat Ur Rehman
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands.
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Pediatrics, Maastricht University Medical Center (MUMC+), Maastricht 6202 AZ, the Netherlands.
| | - Tae Ju Park
- Haemato-oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, United Kingdom.
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Alz-Dementia Korea Co., Jinju 52828, Republic of Korea.
| |
Collapse
|
3
|
Lone AH, Tang J, Pignalosa A, Hsu HH, Abdul-Sater AA, Sweeney G. A novel blood-based bioassay to monitor adiponectin signaling. Int Immunopharmacol 2024; 132:111890. [PMID: 38547772 DOI: 10.1016/j.intimp.2024.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 05/01/2024]
Abstract
The diverse beneficial effects of adiponectin-receptor signaling, including its impact on the regulation of inflammatory processes in vivo, have resulted in development of adiponectin receptor agonists as a treatment for metabolic disorders. However, there are no established non-invasive bioassays for detection of adiponectin target engagement in humans or animal models. Here, we designed an assay using small amounts of blood to assess adiponectin action. Specifically, we tested effects of the small 10-amino acid peptide adiponectin receptor agonist, ALY688, in a sublethal LPS endotoxemia model in mice. LPS-induced pro-inflammatory cytokine levels in serum were significantly reduced in mice treated with ALY688, assessed via multiplex ELISA in flow cytometry. Furthermore, ALY688 alone significantly induced TGF-β release in serum 1 h after treatment and was elevated for up to 24 h. Additionally, using a flow-cytometry panel for detection of changes in circulating immune cell phenotypes, we observed a significant increase in absolute T cell counts in mice after ALY688 treatment. To assess changes in intracellular signaling effectors downstream of adiponectin, phospho-flow cytometry was conducted. There was a significant increase in phosphorylation of AMPK and p38-MAPK in mice after ALY688 treatment. We then used human donor immune cells (PBMCs) treated with ALY688 ex vivo and observed elevation of AMPK and p38-MAPK phosphorylation from baseline in response to ALY688. Together, these results indicate we can detect adiponectin action on immune cells in vivo by assessing adiponectin signaling pathway for AMPK and p38-MAPK, as well as pro-inflammatory cytokine levels. This new approach provides a blood-based bioassay for screening adiponectin action.
Collapse
Affiliation(s)
| | - Jialing Tang
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Henry H Hsu
- Allysta Pharmaceuticals Inc., Bellevue, WA, USA
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
4
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
5
|
Jussila A, Zhang B, Kirti S, Atit R. Tissue fibrosis associated depletion of lipid-filled cells. Exp Dermatol 2024; 33:e15054. [PMID: 38519432 PMCID: PMC10977660 DOI: 10.1111/exd.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
Fibrosis is primarily described as the deposition of excessive extracellular matrix, but in many tissues it also involves a loss of lipid or lipid-filled cells. Lipid-filled cells are critical to tissue function and integrity in many tissues including the skin and lungs. Thus, loss or depletion of lipid-filled cells during fibrogenesis, has implications for tissue function. In some contexts, lipid-filled cells can impact ECM composition and stability, highlighting their importance in fibrotic transformation. Recent papers in fibrosis address this newly recognized fibrotic lipodystrophy phenomenon. Even in disparate tissues, common mechanisms are emerging to explain fibrotic lipodystrophy. These findings have implications for fibrosis in tissues composed of fibroblast and lipid-filled cell populations such as skin, lung, and liver. In this review, we will discuss the roles of lipid-containing cells, their reduction/loss during fibrotic transformation, and the mechanisms of that loss in the skin and lungs.
Collapse
Affiliation(s)
- Anna Jussila
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Zhang
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sakin Kirti
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Radhika Atit
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Sung HK, Tang J, Jahng JWS, Song E, Chan YK, Lone AH, Peterson J, Abdul‐Sater A, Sweeney G. Ischemia-induced cardiac dysfunction is exacerbated in adiponectin-knockout mice due to impaired autophagy flux. Clin Transl Sci 2024; 17:e13758. [PMID: 38515365 PMCID: PMC10958170 DOI: 10.1111/cts.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Strategies to enhance autophagy flux have been suggested to improve outcomes in cardiac ischemic models. We explored the role of adiponectin in mediating cardiac autophagy under ischemic conditions induced by permanent coronary artery ligation. We studied the molecular mechanisms underlying adiponectin's cardio-protective effects in adiponectin knockout (Ad-KO) compared with wild-type (WT) mice subjected to ischemia by coronary artery ligation and H9c2 cardiomyocyte cell line exposed to hypoxia. Systemic infusion of a cathepsin-B activatable near-infrared probe as a biomarker for autophagy and detection via noninvasive three-dimensional fluorescence molecular tomography combined with computerized tomography to quantitate temporal changes, indicated increased activity in the myocardium of WT mice after myocardial infarction which was attenuated in Ad-KO. Seven days of ischemia increased myocardial adiponectin accumulation and elevated ULK1/AMPK phosphorylation and autophagy assessed by Western blotting for LC3 and p62, an outcome not observed in Ad-KO mice. Cell death, assessed by TUNEL analysis and the ratio of Bcl-2:Bax, plus cardiac dysfunction, measured using echocardiography with strain analysis, were exacerbated in Ad-KO mice. Using cellular models, we observed that adiponectin stimulated autophagy flux in isolated primary adult cardiomyocytes and increased basal and hypoxia-induced autophagy in H9c2 cells. Real-time temporal analysis of caspase-3/7 activation and caspase-3 Western blot indicated that adiponectin suppressed activation by hypoxia. Hypoxia-induced mitochondrial reactive oxygen species production and cell death were also attenuated by adiponectin. Importantly, the ability of adiponectin to reduce caspase-3/7 activation and cell death was not observed in autophagy-deficient cells generated by CRISPR-mediated deletion of Atg7. Collectively, our data indicate that adiponectin acts in an autophagy-dependent manner to attenuate cardiomyocyte caspase-3/7 activation and cell death in response to hypoxia in vitro and ischemia in mice.
Collapse
Affiliation(s)
| | - Jialing Tang
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | | - Erfei Song
- Department of BiologyYork UniversityTorontoOntarioCanada
| | - Yee Kwan Chan
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | | | | - Ali Abdul‐Sater
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Gary Sweeney
- Department of BiologyYork UniversityTorontoOntarioCanada
| |
Collapse
|
7
|
Cho S, Dadson K, Sung HK, Ayansola O, Mirzaesmaeili A, Noskovicova N, Zhao Y, Cheung K, Radisic M, Hinz B, Sater AAA, Hsu HH, Lopaschuk GD, Sweeney G. Cardioprotection by the adiponectin receptor agonist ALY688 in a preclinical mouse model of heart failure with reduced ejection fraction (HFrEF). Biomed Pharmacother 2024; 171:116119. [PMID: 38181714 DOI: 10.1016/j.biopha.2023.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
AIMS Adiponectin has been shown to mediate cardioprotective effects and levels are typically reduced in patients with cardiometabolic disease. Hence, there has been intense interest in developing adiponectin-based therapeutics. The aim of this translational research study was to examine the functional significance of targeting adiponectin signaling with the adiponectin receptor agonist ALY688 in a mouse model of heart failure with reduced ejection fraction (HFrEF), and the mechanisms of cardiac remodeling leading to cardioprotection. METHODS AND RESULTS Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricular pressure overload (PO), or sham surgery, with or without daily subcutaneous ALY688-SR administration. Temporal analysis of cardiac function was conducted via weekly echocardiography for 5 weeks and we observed that ALY688 attenuated the PO-induced dysfunction. ALY688 also reduced cardiac hypertrophic remodeling, assessed via LV mass, heart weight to body weight ratio, cardiomyocyte cross sectional area, ANP and BNP levels. ALY688 also attenuated PO-induced changes in myosin light and heavy chain expression. Collagen content and myofibroblast profile indicated that fibrosis was attenuated by ALY688 with TIMP1 and scleraxis/periostin identified as potential mechanistic contributors. ALY688 reduced PO-induced elevation in circulating cytokines including IL-5, IL-13 and IL-17, and the chemoattractants MCP-1, MIP-1β, MIP-1alpha and MIP-3α. Assessment of myocardial transcript levels indicated that ALY688 suppressed PO-induced elevations in IL-6, TLR-4 and IL-1β, collectively indicating anti-inflammatory effects. Targeted metabolomic profiling indicated that ALY688 increased fatty acid mobilization and oxidation, increased betaine and putrescine plus decreased sphingomyelin and lysophospholipids, a profile indicative of improved insulin sensitivity. CONCLUSION These results indicate that the adiponectin mimetic peptide ALY688 reduced PO-induced fibrosis, hypertrophy, inflammation and metabolic dysfunction and represents a promising therapeutic approach for treating HFrEF in a clinical setting.
Collapse
Affiliation(s)
- Sungji Cho
- Department of Biology, York University, Toronto, ON, Canada
| | - Keith Dadson
- Department of Biology, York University, Toronto, ON, Canada
| | | | | | - Ali Mirzaesmaeili
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Nina Noskovicova
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S3E2, Canada
| | - Yimu Zhao
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Krisco Cheung
- Department of Chemical Engineering and Applied Chemistry; University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Milica Radisic
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry; University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S3E2, Canada; Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Ali A Abdul Sater
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Henry H Hsu
- Allysta Pharmaceuticals Inc. Bellevue, WA, USA
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
8
|
Zanotto TM, Gonçalves AEDSS, Saad MJA. Pulmonary hypertension and insulin resistance: a mechanistic overview. Front Endocrinol (Lausanne) 2024; 14:1283233. [PMID: 38239990 PMCID: PMC10794542 DOI: 10.3389/fendo.2023.1283233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease, characterized by increased blood pressure levels in pulmonary circulation, leading to a restriction in the circulation flow and heart failure. Although the emergence of new PAH therapies has increased survival rates, this disease still has a high mortality and patients that receive diagnosis die within a few years. The pathogenesis of PAH involves multiple pathways, with a complex interaction of local and distant cytokines, hormones, growth factors, and transcription factors, leading to an inflammation that changes the vascular anatomy in PAH patients. These abnormalities involve more than just the lungs, but also other organs, and between these affected organs there are different metabolic dysfunctions implied. Recently, several publications demonstrated in PAH patients a disturbance in glucose metabolism, demonstrated by higher levels of glucose, insulin, and lipids in those patients. It is possible that a common molecular mechanism can have a significant role in this connection. In this regard, this narrative review intends to focus on the recent papers that mainly discuss the molecular determinants between insulin resistance (IR) associated PAH, which included obesity subclinical inflammation induced IR, PPAR gamma and Adiponectin, BMPR2, mitochondrial dysfunction and endoplasmic reticulum stress. Therefore, the following review will summarize some of the existing data for IR associated PAH, focusing on the better understanding of PAH molecular mechanisms, for the development of new translational therapies.
Collapse
Affiliation(s)
- Tamires M. Zanotto
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Departament of Medical Clinics, Obesity and Comorbidities Research Centre (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Departament of Medical Clinics, Obesity and Comorbidities Research Centre (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
9
|
Li X, Fan H, Song X, Song B, Liu W, Dong R, Zhang H, Guo S, Liang H, Schrodi SJ, Fu X, Kaushal S, Ren Y, Zhang D. DNA methylome and transcriptome profiling reveal key electrophysiology and immune dysregulation in hypertrophic cardiomyopathy. Epigenetics 2023; 18:2195307. [PMID: 37005704 PMCID: PMC10072074 DOI: 10.1080/15592294.2023.2195307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/15/2023] [Indexed: 04/04/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease. However, a detailed DNA methylation (DNAme) landscape has not yet been elucidated. Our study combined DNAme and transcriptome profiles for HCM myocardium and identify aberrant DNAme associated with altered myocardial function in HCM. The transcription of methylation-related genes did not significantly differ between HCM and normal myocardium. Nevertheless, the former had an altered DNAme profile compared with the latter. The hypermethylated and hypomethylated sites in HCM tissues had chromosomal distributions and functional enrichment of correlated genes differing from those of their normal tissue counterparts. The GO analysis of network underlying the genes correlated with DNAme alteration and differentially expressed genes (DEGs) shows functional clusters centred on immune cell function and muscle system processes. In KEGG analysis, only the calcium signalling pathway was enriched either by the genes correlated with changes in DNAme or DEGs. The protein-protein interactions (PPI) underlying the genes altered at both the DNAme and transcriptional highlighted two important functional clusters. One of these was related to the immune response and had the estrogen receptor-encoding ESR1 gene as its node. The other cluster comprised cardiac electrophysiology-related genes. Intelliectin-1 (ITLN1), a component of the innate immune system, was transcriptionally downregulated in HCM and had a hypermethylated site within 1500 bp upstream of the ITLN1 transcription start site. Estimates of immune infiltration demonstrated a relative decline in immune cell population diversity in HCM. A combination of DNAme and transcriptome profiles may help identify and develop new therapeutic targets for HCM.
Collapse
Affiliation(s)
- Xiaoyan Li
- Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Hailang Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bangrong Song
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenxian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ran Dong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haikun Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Hao Liang
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Xuebin Fu
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- Department of Cardiovascular-Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sunjay Kaushal
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- Department of Cardiovascular-Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yanlong Ren
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
10
|
Al Zein M, Zein O, Diab R, Dimachkie L, Sahebkar A, Al-Asmakh M, Kobeissy F, Eid AH. Intermittent fasting favorably modulates adipokines and potentially attenuates atherosclerosis. Biochem Pharmacol 2023; 218:115876. [PMID: 37871879 DOI: 10.1016/j.bcp.2023.115876] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Adipose tissue is now recognized as an endocrine organ that secretes bioactive molecules called adipokines. These biomolecules regulate key physiological functions, including insulin sensitivity, energy metabolism, appetite regulation, endothelial function and immunity. Dysregulated secretion of adipokines is intimately associated with obesity, and translates into increased risk of obesity-related cardiovasculo-metabolic diseases. In particular, emerging evidence suggests that adipokine imbalance contributes to the pathogenesis of atherosclerosis. One of the promising diet regimens that is beneficial in the fight against obesity and cardiometabolic disorders is intermittent fasting (IF). Indeed, IF robustly suppresses inflammation, meditates weight loss and mitigates many aspects of the cardiometabolic syndrome. In this paper, we review the main adipokines and their role in atherosclerosis, which remains a major contributor to cardiovascular-associated morbidity and mortality. We further discuss how IF can be employed as an effective management modality for obesity-associated atherosclerosis. By exploring a plethora of the beneficial effects of IF, particularly on inflammatory markers, we present IF as a possible intervention to help prevent atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rawan Diab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
11
|
Chakraborty P, Po SS, Scherlag BJ, Dasari TW. The neurometabolic axis: A novel therapeutic target in heart failure. Life Sci 2023; 333:122122. [PMID: 37774940 DOI: 10.1016/j.lfs.2023.122122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Abnormal cardiac metabolism or cardiac metabolic remodeling is reported before the onset of heart failure with reduced ejection fraction (HFrEF) and is known to trigger and maintain the mechanical dysfunction and electrical, and structural abnormalities of the ventricle. A dysregulated cardiac autonomic tone characterized by sympathetic overdrive with blunted parasympathetic activation is another pathophysiological hallmark of HF. Emerging evidence suggests a link between autonomic nervous system activity and cardiac metabolism. Chronic β-adrenergic activation promotes maladaptive metabolic remodeling whereas cholinergic activation attenuates the metabolic aberrations through favorable modulation of key metabolic regulatory molecules. Restoration of sympathovagal balance by neuromodulation strategies is emerging as a novel nonpharmacological treatment strategy in HF. The current review attempts to evaluate the 'neuro-metabolic axis' in HFrEF and whether neuromodulation can mitigate the adverse metabolic remodeling in HFrEF.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sunny S Po
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Benjamin J Scherlag
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
Popov VS, Brodsky IB, Balatskaya MN, Balatskiy AV, Ozhimalov ID, Kulebyakina MA, Semina EV, Arbatskiy MS, Isakova VS, Klimovich PS, Sysoeva VY, Kalinina NI, Tkachuk VA, Rubina KA. T-Cadherin Deficiency Is Associated with Increased Blood Pressure after Physical Activity. Int J Mol Sci 2023; 24:14204. [PMID: 37762507 PMCID: PMC10531645 DOI: 10.3390/ijms241814204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
T-cadherin is a regulator of blood vessel remodeling and angiogenesis, involved in adiponectin-mediated protective effects in the cardiovascular system and in skeletal muscles. GWAS study has previously demonstrated a SNP in the Cdh13 gene to be associated with hypertension. However, the role of T-cadherin in regulating blood pressure has not been experimentally elucidated. Herein, we generated Cdh13∆Exon3 mice lacking exon 3 in the Cdh13 gene and described their phenotype. Cdh13∆Exon3 mice exhibited normal gross morphology, life expectancy, and breeding capacity. Meanwhile, their body weight was considerably lower than of WT mice. When running on a treadmill, the time spent running and the distance covered by Cdh13∆Exon3 mice was similar to that of WT. The resting blood pressure in Cdh13∆Exon3 mice was slightly higher than in WT, however, upon intensive physical training their systolic blood pressure was significantly elevated. While adiponectin content in the myocardium of Cdh13∆Exon3 and WT mice was within the same range, adiponectin plasma level was 4.37-fold higher in Cdh13∆Exon3 mice. Moreover, intensive physical training augmented the AMPK phosphorylation in the skeletal muscles and myocardium of Cdh13∆Exon3 mice as compared to WT. Our data highlight a critically important role of T-cadherin in regulation of blood pressure and stamina in mice, and may shed light on the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Vladimir S. Popov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Ilya B. Brodsky
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Maria N. Balatskaya
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Alexander V. Balatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Ilia D. Ozhimalov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Maria A. Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Ekaterina V. Semina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Mikhail S. Arbatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Viktoria S. Isakova
- V.I. Kulakov National Medical Center of Obstetrics Gynecology and Perinatology, Akademika Oparina Street, 4, 117198 Moscow, Russia
| | - Polina S. Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Veronika Y. Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Natalia I. Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Vsevolod A. Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| |
Collapse
|
13
|
Sabbar R, Kadhim SAA, Fawzi HA, Flayih A, Mohammad B, Swadi A. Metformin effects on cardiac parameters in non-diabetic Iraqi patients with heart failure and mid-range ejection fraction - a comparative two-arm parallel clinical study. J Med Life 2023; 16:1400-1406. [PMID: 38107711 PMCID: PMC10719796 DOI: 10.25122/jml-2023-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/20/2023] [Indexed: 12/19/2023] Open
Abstract
Heart failure (HF) remains a difficult challenge to the healthcare system, necessitating promoting interventions and multidrug management. Metformin, typically used to manage diabetes, has emerged as a promising intervention in the treatment of HF. This study aimed to assess the effect of adding metformin to the standard treatment of HF on cardiac parameters. This clinical study comprised 60 newly diagnosed HF patients randomly assigned to two groups: Group C received standard HF treatment, while Group M received standard HF treatment in addition to daily metformin (500 mg). After 3 months of treatment, group M showed a significantly higher ejection fraction (EF) compared to Group C (6.1% and 3.2%, respectively; p-value=0.023) and a reduction in the left ventricular end-diastolic pressure (LVEDD) (0.28, and 0.21 mm respectively; p-value=0.029). No significant differences were observed in the interventricular septal thickness (IVST) or left ventricular end-systolic pressure (LVESD). For cardiac markers, N-Terminal pro-BNP (NT-proBNP) showed the highest reduction in Group M compared to Group C (719.9 pg/ml and 271.9 pg/ml respectively; p-value=0.009). No significant changes were reported for soluble ST2. Metformin demonstrated cardiac protective effects by increasing EF and reducing NT-proBNP. Given its affordability and accessibility, metformin offers a valuable addition to the current HF treatment options. This positive effect may be attributed to mechanisms that enhance the impact of conventional HF treatments or vice versa.
Collapse
Affiliation(s)
- Reeman Sabbar
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Sinaa Abdul Amir Kadhim
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | | | - Ali Flayih
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Bassim Mohammad
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Asma Swadi
- Department of Pharmacology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| |
Collapse
|
14
|
Deliktas O, Gedik ME, Koc I, Gunaydin G, Kiratli H. Modulation of AMPK Significantly Alters Uveal Melanoma Tumor Cell Viability. Ophthalmic Res 2023; 66:1230-1244. [PMID: 37647867 PMCID: PMC10614466 DOI: 10.1159/000533806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Uveal melanoma (UM) responds poorly to targeted therapies or immune checkpoint inhibitors. Adenosine monophosphate-activated protein kinase (AMPK) is a pivotal serine/threonine protein kinase that coordinates vital processes such as cell growth. Targeting AMPK pathway, which represents a critical mechanism mediating the survival of UM cells, may prove to be a novel treatment strategy for UM. We aimed to demonstrate the effects of AMPK modulation on UM cells. METHODS In silico analyses were performed to compare UM and normal melanocyte cells via Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA). The effects of AMPK modulation on cell viability and proliferation in UM cell lines with different molecular profiles (i.e., 92-1, MP46, OMM2.5, and Mel270) were investigated via XTT cell viability and proliferation assays after treating the cells with varying concentrations of A-769662 (AMPK activator) or dorsomorphin (AMPK inhibitor). RESULTS KEGG/GSEA studies demonstrated that genes implicated in the AMPK signaling pathway were differentially regulated in UM. Gene sets comprising genes involved in AMPK signaling and genes involved in energy-dependent regulation of mammalian target of rapamycin by liver kinase B1-AMPK were downregulated in UM. We observed gradual decreases in the numbers of viable UM cells as the concentration of A-769662 treatment increased. All UM cells demonstrated statistically significant decreases in cell viability when treated with 200 µm A-769662. Moreover, the effects of AMPK inhibition on UM cells were potent, since low doses of dorsomorphin treatment resulted in significant decreases in viabilities of UM cells. The half maximal inhibitory concentration (IC50) values confirmed the potency of dorsomorphin treatment against UM in vitro. CONCLUSION AMPK may act like a friend or a foe in cancer depending on the context. As such, the current study contributes to the literature in determining the effects of therapeutic strategies targeting AMPK in several UM cells. We propose a new perspective in the treatment of UM. Targeting AMPK pathway may open up new avenues in developing novel therapeutic approaches to improve overall survival in UM.
Collapse
Affiliation(s)
- Ozge Deliktas
- Department of Ophthalmology, Hacettepe University Medical School, Ankara, Turkey
- Department of Ophthalmology, Bursa City Hospital, Nilufer, Turkey
| | - M. Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Irem Koc
- Department of Ophthalmology, Hacettepe University Medical School, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hayyam Kiratli
- Department of Ophthalmology, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
15
|
Michel LYM. Extracellular Vesicles in Adipose Tissue Communication with the Healthy and Pathological Heart. Int J Mol Sci 2023; 24:ijms24097745. [PMID: 37175451 PMCID: PMC10177965 DOI: 10.3390/ijms24097745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
Adipose tissue and its diverse cell types constitute one of the largest endocrine organs. With multiple depot locations, adipose tissue plays an important regulatory role through paracrine and endocrine communication, particularly through the secretion of a wide range of bioactive molecules, such as nucleic acids, proteins, lipids or adipocytokines. Over the past several years, research has uncovered a myriad of interorgan communication signals mediated by small lipid-derived nanovesicles known as extracellular vesicles (EVs), in which secreted bioactive molecules are stably transported as cargo molecules and delivered to adjacent cells or remote organs. EVs constitute an essential part of the human adipose secretome, and there is a growing body of evidence showing the crucial implications of adipose-derived EVs in the regulation of heart function and its adaptative capacity. The adipose tissue modifications and dysfunction observed in obesity and aging tremendously affect the adipose-EV secretome, with important consequences for the myocardium. The present review presents a comprehensive analysis of the findings in this novel area of research, reports the key roles played by adipose-derived EVs in interorgan cross-talk with the heart and discusses their implications in physiological and pathological conditions affecting adipose tissue and/or the heart (pressure overload, ischemia, diabetic cardiomyopathy, etc.).
Collapse
Affiliation(s)
- Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 57 Avenue Hippocrate, 1200 Brussels, Belgium
| |
Collapse
|
16
|
Joki Y, Konishi H, Takasu K, Minamino T. Tofogliflozin, a sodium-glucose cotransporter 2 inhibitor, improves pulmonary vascular remodeling due to left heart disease in mice. J Cardiol 2023; 81:347-355. [PMID: 36244565 DOI: 10.1016/j.jjcc.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Group 2 pulmonary hypertension (PH) represents PH caused by left heart disease (PH-LHD). LHD induces left-sided filling and PH, finally leading to pulmonary vascular remodeling. Tofogliflozin (TOFO) is a sodium-glucose cotransporter 2 (SGLT2) inhibitor used in the treatment of diabetes. Recent studies have shown that SGLT2 inhibitors have beneficial effects on heart failure, but the effects of SGLT2 inhibitors on PH-LHD remain unclear. We hypothesized that TOFO has protective effects against pulmonary vascular remodeling in PH-LHD mice. METHODS We generated two murine models of PH-LHD: a transverse aortic constriction (TAC) model; and a high-fat diet (HFD) model. C57BL/6J mice were subjected to TAC and treated with TOFO (3 mg/kg/day) for 3 weeks. AKR/J mice were fed HFD and treated with TOFO (3 mg/kg/day) for 20 weeks. We then measured physical data and right ventricular systolic pressure (RVSP) and performed cardiography. Human pulmonary artery smooth muscle cells (PASMCs) were cultured and treated with TOFO. RESULTS Mice treated with TOFO demonstrated increased urine glucose levels. TAC induced left ventricular hypertrophy and increased RVSP. TOFO treatment improved RVSP. HFD increased body weight (BW) and RVSP compared with the normal chow group. TOFO treatment ameliorated increases in BW and RVSP induced by HFD. Moreover, PASMCs treated with TOFO showed suppressed migration. CONCLUSIONS TOFO treatment ameliorated right heart overload and pulmonary vascular remodeling for PH-LHD models, suggesting that SGLT2 inhibitors are effective for treating PH-LHD.
Collapse
Affiliation(s)
- Yusuke Joki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hakuoh Konishi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Kiyoshi Takasu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Kim JW, Kim JM, Choi ME, Jeon EJ, Park JM, Kim YM, Choi JS. Adiponectin is associated with inflammaging and age-related salivary gland lipid accumulation. Aging (Albany NY) 2023; 15:1840-1858. [PMID: 36988495 PMCID: PMC10085617 DOI: 10.18632/aging.204618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Dry mouth is frequently observed in the elderly, and enhanced lipid accumulation plays a critical role in cellular senescence in the salivary gland (SG). We investigated the mechanisms that mediate lipogenesis-associated SG senescence. Adult (28.6 ± 6.6 y.o. and 43.3 ± 1.5 y.o.) and aged (82.0 ± 4.3 y.o. and 88.0 ± 4.3 y.o.) human parotid and submandibular glands were compared with respect to histologic findings, 8-OHdG (8-hydroxy 2 deoxyguanosine) expression patterns, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) and SA-β-gal (senescence-associated β-galactosidase) assay results. Also, microarray analysis was performed on RNA extracted from adult and aged SG to identify DEGs (differentially expressed genes). The effects of silencing ADIPOQ (Adiponectin) were evaluated by quantifying cell proliferation, immunohistochemical staining for cellular senescence and inflammation-associated proteins, SA-β-gal assays, RT-PCR, and western blot. Histological findings demonstrated the presence of more lipocytes, chronic inflammation, fibrosis, and lymphocytic infiltration in old SG. In addition, old tissues demonstrated higher expressions of SA-β-gal, more apoptotic cells in TUNEL assays, and higher oxidative stress by 8-OHdG immunostaining. Microarray analysis showed lipogenesis was significantly upregulated in old tissues. Silencing of ADIPOQ (a lipogenesis-related gene) reduced inflammation and SA-β-gal levels and increased cell proliferation and the expressions of amylase and aquaporin 5 in human SG epithelial cells. The study shows ADIPOQ is a potential target molecule for the modulation of lipogenesis associated with SG senescence.
Collapse
|
18
|
Gurevitz C, Assali A, Mohsan J, Gmach SF, Beigel R, Ovdat T, Zwas DR, Kornowski R, Orvin K, Eisen A. The obesity paradox in patients with acute coronary syndromes over 2 decades - the ACSIS registry 2000-2018. Int J Cardiol 2023; 380:48-55. [PMID: 36940822 DOI: 10.1016/j.ijcard.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Obesity is a worldwide epidemic which is associated with major cardiovascular (CV) risk factors. Nevertheless, substantial distant data, mostly published more than a decade ago, have demonstrated an obesity paradox, where obese patients generally have a better short- and long-term prognosis than do their leaner counterparts with the same CV profile. Nonetheless, it is not fully elucidated whether the obesity paradox is still relevant in the contemporary cardiology era among patients with acute coronary syndrome (ACS). We aimed to examine temporal trends in the clinical outcomes of ACS patients by their BMI status. METHODS Data from the ACSIS registry including all patients with calculated BMI data between the years 2002-2018. Patients were stratified by BMI groups to underweight, normal, overweight and obese. Clinical endpoints included 30d major cardiovascular events (MACE), and 1-year mortality. Temporal trends were examined in the late (2010-2018) vs. the early period (2002-2008). Multivariable models examined factors associated with clinical outcomes by BMI status. RESULTS Among the 13,816 patients from the ACSIS registry with available BMI data, 104 were underweight, 3921 were normal weight, 6224 were overweight and 3567 were obese. 1-year mortality was highest among underweight patients (24.8%), as compared to normal weight patients (10.7%) and lowest among overweight and obese patients (7.1% and 7.5% respectively; p for trend <0.001). 30-day MACE rates followed a similar pattern (24.3% for underweight, 13.6% for normal weight, 11.6% for overweight, and 11.7% for obese; p for trend<0.001). Comparing the 2 time-periods, 30-day MACE was significantly lower in the late period in all BMI groups, but unchanged in patients who were underweight. Similarly, 1-year mortality has decreased in normal weight and obese patients but remained similarly high in underweight patients. CONCLUSIONS In ACS patients, during 2-decades, 30-day MACE and 1-year mortality were lower among overweight and obese patients compared to underweight and even normal weight patients. Temporal trends revealed that 30-day MACE and 1-year mortality have decreased among all BMI groups other than the underweight ACS patients, among whom the adverse CV rates were consistently high. Our findings suggest that the obesity paradox is still relevant in ACS patients in the current cardiology era.
Collapse
Affiliation(s)
- Chen Gurevitz
- Cardiology division, Rabin Medical Center, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Aseel Assali
- Internal medicine division, Sourasky Medical Center, Tel-Aviv, Israel
| | - Jamil Mohsan
- Cardiology department, Hillel Yaffe Medical Center, Hadera, Israel
| | | | - Roy Beigel
- Cardiology department, Sheba Medical Center, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ovdat
- Cardiology department, Sheba Medical Center, Ramat-Gan, Israel
| | - Donna R Zwas
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
| | - Ran Kornowski
- Cardiology division, Rabin Medical Center, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Katia Orvin
- Cardiology division, Rabin Medical Center, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Eisen
- Cardiology division, Rabin Medical Center, Petah-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Deng J, Yan F, Tian J, Qiao A, Yan D. Potential clinical biomarkers and perspectives in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15:35. [PMID: 36871006 PMCID: PMC9985231 DOI: 10.1186/s13098-023-00998-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a serious cardiovascular complication and the leading cause of death in diabetic patients. Patients typically do not experience any symptoms and have normal systolic and diastolic cardiac functions in the early stages of DCM. Because the majority of cardiac tissue has already been destroyed by the time DCM is detected, research must be conducted on biomarkers for early DCM, early diagnosis of DCM patients, and early symptomatic management to minimize mortality rates among DCM patients. Most of the existing implemented clinical markers are not very specific for DCM, especially in the early stages of DCM. Recent studies have shown that a number of new novel markers, such as galactin-3 (Gal-3), adiponectin (APN), and irisin, have significant changes in the clinical course of the various stages of DCM, suggesting that we may have a positive effect on the identification of DCM. As a summary of the current state of knowledge regarding DCM biomarkers, this review aims to inspire new ideas for identifying clinical markers and related pathophysiologic mechanisms that could be used in the early diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Jianxin Deng
- Department of Endocrinology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, No. 3002, Sungang West Road, Futian District, Shenzhen, 518035, Guangdong Province, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, 611137, Sichuan Province, China
| | - Jinglun Tian
- Department of Geriatrics, the Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, 611130, China
| | - Aijun Qiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, Guangdong Province, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, No. 3002, Sungang West Road, Futian District, Shenzhen, 518035, Guangdong Province, China.
| |
Collapse
|
20
|
Martínez-Huenchullán SF, Fox SL, Tam CS, Maharjan BR, Olaya-Agudo LF, Ehrenfeld P, Williams PF, Mclennan SV, Twigg SM. Constant-moderate versus high-intensity interval training on heart adiponectin levels in high-fat fed mice: a preventive and treatment approach. Arch Physiol Biochem 2023; 129:41-45. [PMID: 32715774 DOI: 10.1080/13813455.2020.1797098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Research has described that adiponectin plays a key role in cardiomyocytes metabolism, however, the effects of exercise during obesity on cardiac adiponectin levels is unclear. OBJECTIVE To investigate the effects of constant-moderate endurance (END) and high-intensity interval training (HIIT), on heart adiponectin levels in mice. MATERIAL AND METHODS Two experiments were conducted: (1) preventive (EX1): 10 week-old male mice were fed standard (CHOW) or high-fat diet (HFD;45% fat) and simultaneously trained with END and HIIT for 10 weeks; (2) Treatment (EX2): after 10 weeks of dietary intervention, another cohort of 10 week-old mice were trained by both programmes for 10 weeks. RESULTS In EX1, END and HIIT decreased low-molecular weight adiponectin (∼0.5-fold; p < 0.05) and increased GLUT4 levels (∼2-fold; p < .05). In EX2, HFD significantly decreased high-molecular weight adiponectin (∼0.7-fold; p < .05), and END reversed this change.Discussion and conclusion: HFD and exercise influence heart adiponectin isoforms and therefore might impact cardiomyocyte metabolism.
Collapse
Affiliation(s)
- Sergio F Martínez-Huenchullán
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Sarah L Fox
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Charmaine S Tam
- Northern Clinical School and Centre for Translational Data Science, University of Sydney, Sydney, Australia
| | - Babu Raja Maharjan
- Department of Biochemistry, School of Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Luisa F Olaya-Agudo
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology. Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Valdivia, Chile
| | - Paul F Williams
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Susan V Mclennan
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- New South Wales Health Pathology, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
21
|
Resveratrol protects osteocytes against oxidative stress in ovariectomized rats through AMPK/JNK1-dependent pathway leading to promotion of autophagy and inhibition of apoptosis. Cell Death Dis 2023; 9:16. [PMID: 36681672 PMCID: PMC9867734 DOI: 10.1038/s41420-023-01331-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
A large number of studies in recent years indicate that osteocytes are the orchestrators of bone remodeling by regulating both osteoblast and osteoclast activities. Oxidative stress-induced osteocyte apoptosis plays critical roles in the pathological processes of postmenopausal osteoporosis. Resveratrol is a natural polyphenolic compound that ameliorates postmenopausal osteoporosis. However, whether resveratrol regulates osteocyte apoptosis via autophagy remains largely unknown. The effects of resveratrol on regulating osteocyte apoptosis and autophagy were analyzed both in vivo and in vitro. In vitro, cultured MLO-Y4 cells were exposed to H2O2 with or without resveratrol. In vivo, an ovariectomy-induced osteoporosis model was constructed in rats with or without daily intraperitoneal injection of 10 mg/kg body weight resveratrol. It was found that resveratrol attenuated H2O2-induced apoptosis through activating autophagy in cultured MLO-Y4 cells, which was mediated by the dissociation of Beclin-1/Bcl-2 complex in AMPK/JNK1-dependent pathway, ultimately regulating osteocytes function. Furthermore, it was shown that resveratrol treatment reduced osteocytes oxidative stress, inhibited osteocytes apoptosis and promoted autophagy in ovariectomized rats. Our study suggests that resveratrol protects against oxidative stress by restoring osteocytes autophagy and alleviating apoptosis via AMPK/JNK1 activation, therefore dissociating Bcl-2 from Beclin-1.
Collapse
|
22
|
Yao Y, Xue J, Li B. Obesity and sudden cardiac death: Prevalence, pathogenesis, prevention and intervention. Front Cell Dev Biol 2022; 10:1044923. [PMID: 36531958 PMCID: PMC9757164 DOI: 10.3389/fcell.2022.1044923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2024] Open
Abstract
Obesity and sudden cardiac death (SCD) share common risk factors. Obesity, in and of itself, can result in the development of SCD. Numerous epidemiologic and clinical studies have demonstrated the close relationships between obesity and SCD, however, the underlying mechanisms remain incompletely understood. Various evidences support the significance of excess adiposity in determining the risk of SCD, including anatomical remodeling, electrical remodeling, metabolic dysfunction, autonomic imbalance. Weight reduction has improved obesity related comorbidities, and reversed abnormal cardiac remodeling. Indeed, it is still unknown whether weight loss contributes to decreased risk of SCD. Further high-quality, prospective trials are needed to strengthen our understanding on weight management and SCD.
Collapse
Affiliation(s)
- Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
23
|
Alonso-Villa E, Bonet F, Hernandez-Torres F, Campuzano Ó, Sarquella-Brugada G, Quezada-Feijoo M, Ramos M, Mangas A, Toro R. The Role of MicroRNAs in Dilated Cardiomyopathy: New Insights for an Old Entity. Int J Mol Sci 2022; 23:ijms232113573. [PMID: 36362356 PMCID: PMC9659086 DOI: 10.3390/ijms232113573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and systolic dysfunction. In most cases, DCM is progressive, leading to heart failure (HF) and death. This cardiomyopathy has been considered a common and final phenotype of several entities. DCM occurs when cellular pathways fail to maintain the pumping function. The etiology of this disease encompasses several factors, such as ischemia, infection, autoimmunity, drugs or genetic susceptibility. Although the prognosis has improved in the last few years due to red flag clinical follow-up, early familial diagnosis and ongoing optimization of treatment, due to its heterogeneity, there are no targeted therapies available for DCM based on each etiology. Therefore, a better understanding of the mechanisms underlying the pathophysiology of DCM will provide novel therapeutic strategies against this cardiac disease and their different triggers. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play key roles in post-transcriptional gene silencing by targeting mRNAs for translational repression or, to a lesser extent, degradation. A growing number of studies have demonstrated critical functions of miRNAs in cardiovascular diseases (CVDs), including DCM, by regulating mechanisms that contribute to the progression of the disease. Herein, we summarize the role of miRNAs in inflammation, endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial dysfunction, autophagy, cardiomyocyte apoptosis and fibrosis, exclusively in the context of DCM.
Collapse
Affiliation(s)
- Elena Alonso-Villa
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Correspondence: (E.A.-V.); (R.T.)
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Óscar Campuzano
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, School of Medicine, University of Cadiz, 11009 Cadiz, Spain
| | - Rocío Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Correspondence: (E.A.-V.); (R.T.)
| |
Collapse
|
24
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Wen S, Unuma K, Funakoshi T, Aki T, Uemura K. Contraction Band Necrosis with Dephosphorylated Connexin 43 in Rat Myocardium after Daily Cocaine Administration. Int J Mol Sci 2022; 23:ijms231911978. [PMID: 36233284 PMCID: PMC9570416 DOI: 10.3390/ijms231911978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
Contraction band necrosis (CBN) is a common abnormality found in the myocardium of cocaine abusers, but is rarely reported in experimental models of cocaine abuse. Connexin 43 (Cx43) is essential for cardiac intercellular communication and the propagation of CBN. Under stress or injury, cardiac Cx43 is dephosphorylated, which is related to cardiomyocyte dysfunction and pathogenesis, whereas adiponectin exerts beneficial effects in the myocardium. In this study, we explore the effects of cocaine on cardiac Cx43 in vivo. Rats were administered cocaine via the tail vein at 20 mg/kg/day for 14 days, and showed widespread CBN, microfocal myocarditis and myocardial fibrosis, corresponding to a dysfunction of cardiac mitochondria under increased oxidative stress. The increase in dephosphorylated cardiac Cx43 and its negative correlation with the myocardial distribution of CBN after cocaine administration were determined. In addition, apoptosis and necroptosis, as well as increased adiponectin levels, were observed in the myocardium after cocaine exposure. Accordingly, we found altered profiles of cardiac Cx43, CBN and its negative correlation with dephosphorylated cardiac Cx43, and the possible involvement of adiponectin in the myocardium after 14 days of cocaine administration. The latter might play a protective role in the cardiotoxicity of cocaine. The current findings would be beneficial for establishing novel therapeutic strategies in cocaine-induced cardiac consequences.
Collapse
|
26
|
Abstract
It is important to understand how different human organs coordinate and interact with each other. Since obesity and cardiac disease frequently coincide, the crosstalk between adipose tissues and heart has drawn attention. We appreciate that specific peptides/proteins, lipids, nucleic acids, and even organelles shuttle between the adipose tissues and heart. These bioactive components can profoundly affect the metabolism of cells in distal organs, including heart. Importantly, this process can be dysregulated under pathophysiological conditions. This also opens the door to efforts targeting these mediators as potential therapeutic strategies to treat patients who manifest diabetes and cardiovascular disease. Here, we summarize the recent progress toward a better understanding of how the adipose tissues and heart interact with each other.
Collapse
|
27
|
Han X, Zhang Y, Zhang X, Ji H, Wang W, Qiao O, Li X, Wang J, Liu C, Huang L, Gao W. Targeting adipokines: A new strategy for the treatment of myocardial fibrosis. Pharmacol Res 2022; 181:106257. [DOI: 10.1016/j.phrs.2022.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
|
28
|
Remodeling and Fibrosis of the Cardiac Muscle in the Course of Obesity-Pathogenesis and Involvement of the Extracellular Matrix. Int J Mol Sci 2022; 23:ijms23084195. [PMID: 35457013 PMCID: PMC9032681 DOI: 10.3390/ijms23084195] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity is a growing epidemiological problem, as two-thirds of the adult population are carrying excess weight. It is a risk factor for the development of cardiovascular diseases (hypertension, ischemic heart disease, myocardial infarct, and atrial fibrillation). It has also been shown that chronic obesity in people may be a cause for the development of heart failure with preserved ejection fraction (HFpEF), whose components include cellular hypertrophy, left ventricular diastolic dysfunction, and increased extracellular collagen deposition. Several animal models with induced obesity, via the administration of a high-fat diet, also developed increased heart fibrosis as a result of extracellular collagen accumulation. Excessive collagen deposition in the extracellular matrix (ECM) in the course of obesity may increase the stiffness of the myocardium and thereby deteriorate the heart diastolic function and facilitate the occurrence of HFpEF. In this review, we include a rationale for that process, including a discussion about possible putative factors (such as increased renin–angiotensin–aldosterone activity, sympathetic overdrive, hemodynamic alterations, hypoadiponectinemia, hyperleptinemia, and concomitant heart diseases). To address the topic clearly, we include a description of the fundamentals of ECM turnover, as well as a summary of studies assessing collagen deposition in obese individuals.
Collapse
|
29
|
Maldonado M, Chen J, Duan H, Zhou S, Yang L, Raja MA, Huang T, Jiang G, Zhong Y. Effects of caloric overload before caloric restriction in the murine heart. Aging (Albany NY) 2022; 14:2695-2719. [PMID: 35347086 PMCID: PMC9004582 DOI: 10.18632/aging.203967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/10/2022] [Indexed: 02/05/2023]
Abstract
The beneficial effects of caloric restriction (CR) against cardiac aging and for prevention of cardiovascular diseases are numerous. However, to our knowledge, there is no scientific evidence about how a high-calorie diet (HCD) background influences the mechanisms underlying CR in whole heart tissue (WHT) in experimental murine models. In the current study, CR-treated mice with different alimentary backgrounds were subjected to transthoracic echocardiographic measurements. WHT was then analyzed to determine cardiac energetics, telomerase activity, the expression of energy-sensing networks, tissue-specific adiponectin, and cardiac precursor/cardiac stem cell markers. Animals with a balanced diet consumption before CR presented marked cardiac remodeling with improved ejection fraction (EF) and fractional shortening (FS), enhanced OXPHOS complex I, III, and IV, and CKMT2 enzymatic activity. Mice fed an HCD before CR presented moderate changes in cardiac geometry with diminished EF and FS values, but improved OXPHOS complex IV and CKMT2 activity. Differences in cardiac remodeling, left ventricular systolic/diastolic performance, and mitochondrial energetics, found in the CR-treated mice with contrasting alimentary backgrounds, were corroborated by inconsistencies in the expression of mitochondrial-biogenesis-related markers and associated regulatory networks. In particular, disruption of eNOS and AMPK -PGC-1α-mTOR-related axes. The impact of a past habit of caloric overload on the effects of CR in the WHT is a scarcely explored subject that requires deeper study in combination with analyses of other tissues and organs at higher levels of organization within the organ system. Such research will eventually lead to the development of preventative and therapeutic strategies to promote health and longevity.
Collapse
Affiliation(s)
- Martin Maldonado
- Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Jianying Chen
- Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Huiqin Duan
- Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Shuling Zhou
- Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Lujun Yang
- Translational Medical Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Mazhar Ali Raja
- Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Tianhua Huang
- Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Gu Jiang
- Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| | - Ying Zhong
- Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, China
| |
Collapse
|
30
|
Docosahexaenoic Acid-Enhanced Autophagic Flux Improves Cardiac Dysfunction after Myocardial Infarction by Targeting the AMPK/mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1509421. [PMID: 35265261 PMCID: PMC8898772 DOI: 10.1155/2022/1509421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
Background and Purpose. Docosahexaenoic acid (DHA) is a type of polyunsaturated fatty acid enriched in cod liver oil and seaweed. It is necessary for the human body and has important functions, such as antioxidation and antiatherosclerosis activities. Long-term oral administration of DHA or the use of DHA at the initial stage of ischemia can increase the level of autophagy and exert a protective effect on neurological functions related to cerebral infarction. However, the effect of DHA on myocardial injury and cardiac insufficiency after myocardial infarction (MI) is unknown. This study was aimed at exploring whether DHA plays a protective role in AMI and its specific molecular mechanism. Experimental Method. In vitro cardiomyocyte hypoxia and in vivo MI injury models were used to determine the role of DHA in MI. Hypoxic injury induced damage in cultured neonatal mouse cardiomyocytes (NMCs). The C57BL/6J mouse MI model was established by permanent ligation of the left anterior descending branch. Main Results. DHA improved the cardiomyocyte viability of NMCs induced by hypoxia injury and reduced cell necrosis. DHA reduced infarct size, improved heart function, and reduced the degree of myocardial fibrosis in mice after MI. In addition, DHA enhanced autophagy flux and reduced apoptosis in vitro and in vivo. In addition, we found that chloroquine, an autophagy inhibitor, blocked the protective effect of DHA on cardiomyocyte apoptosis and cardiac dysfunction, indicating that DHA exerts cardioprotective effects in part by promoting autophagy flux. We also observed that DHA enhanced autophagy flux by activating the AMPK/mTOR signaling pathway. Conclusions and Significance. In conclusion, our findings indicate for the first time that DHA improves MI-induced cardiac dysfunction by promoting AMPK/mTOR-mediated autophagic flux.
Collapse
|
31
|
Heidary Moghaddam R, Samimi Z, Asgary S, Mohammadi P, Hozeifi S, Hoseinzadeh-Chahkandak F, Xu S, Farzaei MH. Natural AMPK Activators in Cardiovascular Disease Prevention. Front Pharmacol 2022; 12:738420. [PMID: 35046800 PMCID: PMC8762275 DOI: 10.3389/fphar.2021.738420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVD), as a life-threatening global disease, is receiving worldwide attention. Seeking novel therapeutic strategies and agents is of utmost importance to curb CVD. AMP-activated protein kinase (AMPK) activators derived from natural products are promising agents for cardiovascular drug development owning to regulatory effects on physiological processes and diverse cardiometabolic disorders. In the past decade, different therapeutic agents from natural products and herbal medicines have been explored as good templates of AMPK activators. Hereby, we overviewed the role of AMPK signaling in the cardiovascular system, as well as evidence implicating AMPK activators as potential therapeutic tools. In the present review, efforts have been made to compile and update relevant information from both preclinical and clinical studies, which investigated the role of natural products as AMPK activators in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Reza Heidary Moghaddam
- Clinical Research Development Center, Imam Ali and Taleghani Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute,.Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Hozeifi
- School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Suowen Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
32
|
The Roles and Associated Mechanisms of Adipokines in Development of Metabolic Syndrome. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020334. [PMID: 35056647 PMCID: PMC8781412 DOI: 10.3390/molecules27020334] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome is a cluster of metabolic indicators that increase the risk of diabetes and cardiovascular diseases. Visceral obesity and factors derived from altered adipose tissue, adipokines, play critical roles in the development of metabolic syndrome. Although the adipokines leptin and adiponectin improve insulin sensitivity, others contribute to the development of glucose intolerance, including visfatin, fetuin-A, resistin, and plasminogen activator inhibitor-1 (PAI-1). Leptin and adiponectin increase fatty acid oxidation, prevent foam cell formation, and improve lipid metabolism, while visfatin, fetuin-A, PAI-1, and resistin have pro-atherogenic properties. In this review, we briefly summarize the role of various adipokines in the development of metabolic syndrome, focusing on glucose homeostasis and lipid metabolism.
Collapse
|
33
|
Tarkhnishvili A, Koentges C, Pfeil K, Gollmer J, Byrne NJ, Vosko I, Lueg J, Vogelbacher L, Birkle S, Tang S, Bon-Nawul Mwinyella T, Hoffmann MM, Odening KE, Michel NA, Wolf D, Stachon P, Hilgendorf I, Wallner M, Ljubojevic-Holzer S, von Lewinski D, Rainer P, Sedej S, Sourij H, Bode C, Zirlik A, Bugger H. Effects of Short Term Adiponectin Receptor Agonism on Cardiac Function and Energetics in Diabetic db/db Mice. J Lipid Atheroscler 2022; 11:161-177. [PMID: 35656151 PMCID: PMC9133777 DOI: 10.12997/jla.2022.11.2.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Impaired cardiac efficiency is a hallmark of diabetic cardiomyopathy in models of type 2 diabetes. Adiponectin receptor 1 (AdipoR1) deficiency impairs cardiac efficiency in non-diabetic mice, suggesting that hypoadiponectinemia in type 2 diabetes may contribute to impaired cardiac efficiency due to compromised AdipoR1 signaling. Thus, we investigated whether targeting cardiac adiponectin receptors may improve cardiac function and energetics, and attenuate diabetic cardiomyopathy in type 2 diabetic mice. Methods A non-selective adiponectin receptor agonist, AdipoRon, and vehicle were injected intraperitoneally into Eight-week-old db/db or C57BLKS/J mice for 10 days. Cardiac morphology and function were evaluated by echocardiography and working heart perfusions. Results Based on echocardiography, AdipoRon treatment did not alter ejection fraction, left ventricular diameters or left ventricular wall thickness in db/db mice compared to vehicle-treated mice. In isolated working hearts, an impairment in cardiac output and efficiency in db/db mice was not improved by AdipoRon. Mitochondrial respiratory capacity, respiration in the presence of oligomycin, and 4-hydroxynonenal levels were similar among all groups. However, AdipoRon induced a marked shift in the substrate oxidation pattern in db/db mice towards increased reliance on glucose utilization. In parallel, the diabetes-associated increase in serum triglyceride levels in vehicle-treated db/db mice was blunted by AdipoRon treatment, while an increase in myocardial triglycerides in vehicle-treated db/db mice was not altered by AdipoRon treatment. Conclusion AdipoRon treatment shifts myocardial substrate preference towards increased glucose utilization, likely by decreasing fatty acid delivery to the heart, but was not sufficient to improve cardiac output and efficiency in db/db mice.
Collapse
Affiliation(s)
| | - Christoph Koentges
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Katharina Pfeil
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Gollmer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nikole J Byrne
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Ivan Vosko
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia Lueg
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Laura Vogelbacher
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Stephan Birkle
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Sibai Tang
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | | | - Michael M Hoffmann
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Center – University of Freiburg, Germany
| | - Katja E Odening
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Nathaly Anto Michel
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dennis Wolf
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Wallner
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Senka Ljubojevic-Holzer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Christoph Bode
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Bugger
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
de Alencar AKN, Wang H, de Oliveira GMM, Sun X, Zapata-Sudo G, Groban L. Crossroads between Estrogen Loss, Obesity, and Heart Failure with Preserved Ejection Fraction. Arq Bras Cardiol 2021; 117:1191-1201. [PMID: 34644788 PMCID: PMC8757160 DOI: 10.36660/abc.20200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/16/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity and heart failure with preserved ejection fraction (HFpEF) increases significantly in postmenopausal women. Although obesity is a risk factor for left ventricular diastolic dysfunction (LVDD), the mechanisms that link the cessation of ovarian hormone production, and particularly estrogens, to the development of obesity, LVDD, and HFpEF in aging females are unclear. Clinical, and epidemiologic studies show that postmenopausal women with abdominal obesity (defined by waist circumference) are at greater risk for developing HFpEF than men or women without abdominal obesity. The study presents a review of clinical data that support a mechanistic link between estrogen loss plus obesity and left ventricular remodeling with LVDD. It also seeks to discuss potential cell and molecular mechanisms for estrogen-mediated protection against adverse adipocyte cell types, tissue depots, function, and metabolism that may contribute to LVDD and HFpEF.
Collapse
Affiliation(s)
| | - Hao Wang
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
- Wake Forest School of MedicineWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Internal Medicine-Section of Molecular Medicine, Winston-Salem, North Carolina - Estados Unidos da América
| | - Gláucia Maria Moraes de Oliveira
- Universidade Federal do Rio de JaneiroDepartamento de Clínica MédicaFaculdade de MedicinaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Departamento de Clínica Médica, Faculdade de Medicina, Rio de Janeiro, RJ - Brasil
| | - Xuming Sun
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
| | - Gisele Zapata-Sudo
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Instituto de Ciências Biomédicas, Rio de Janeiro, RJ - Brasil
- Universidade Federal do Rio de JaneiroInstituto de Cardiologia Edson SaadFaculdade de MedicinaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Rio de Janeiro, RJ - Brasil
| | - Leanne Groban
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
- Wake Forest School of MedicineWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Internal Medicine-Section of Molecular Medicine, Winston-Salem, North Carolina - Estados Unidos da América
| |
Collapse
|
35
|
Sung HH, Gi MY, Cha JA, Cho HE, Moon AE, Yoon H. Gender difference in the relationship between lipid accumulation product index and pulse pressure in nondiabetic Korean adults: The Korean National Health and Nutrition Examination Survey 2013-2014. Clin Exp Hypertens 2021; 44:146-153. [PMID: 34821192 DOI: 10.1080/10641963.2021.2007943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The present study was conducted to assess the association between the lipid accumulation product index (LAP) and pulse pressure (PP) by gender in nondiabetic Korean adults. This study used the data of 8,240 nondiabetic adults (3,577 men and 4,663 women) aged ≥ 20 years from the Korean National Health and Nutrition Examination Survey 2013-2014. Key findings from the study were as follows: first, the mean values of age for the overall population, men, and women were 49.59 ± 15.73 years, 49.26 ± 16.04 years, and 49.85 ± 15.47 years, respectively. Second, in women (n = 4,663), after adjustment for related variables and with quartile 1 of LAP as a reference, the odds ratios (ORs) of high PP (PP > 60 mmHg) were significantly higher in quartile 3 [1.735 (95% confidence interval [CI], 1.064-2.831)] and quartile 4 of LAP [2.271 (95% CI, 1.325-3.893)]. Third, high PP in men (n = 3,577) was not associated with the quartiles of LAP. Forth, after adjustment for related variables, the PP level was positively associated with the quartiles of LAP in women (p < .001) but not in men (p = .400). PP was positively associated with LAP in nondiabetic Korean women but not in men.
Collapse
Affiliation(s)
- Hyun Ho Sung
- Department of Clinical Laboratory Science, Dongnam Health University, Suwonsi, South Korea
| | - Mi Young Gi
- Department of Nursing, Christian College of Nursing, Gwangju, South Korea
| | - Ju Ae Cha
- Department of Nursing, Chunnam Technouniversity, Gokseong-gun, South Korea
| | - Hye Eun Cho
- Department of Dental Hygiene, Kwangju Womens's University, Gwangsan-gu, South Korea
| | - Ae Eun Moon
- Department of Dental Hygiene, Honam University, Gwangju, South Korea
| | - Hyun Yoon
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan-si, South Korea
| |
Collapse
|
36
|
Zhang D, Zhu H, Zhan E, Wang F, Liu Y, Xu W, Liu X, Liu J, Li S, Pan Y, Wang Y, Cao W. Vaspin Mediates the Intraorgan Crosstalk Between Heart and Adipose Tissue in Lipoatrophic Mice. Front Cell Dev Biol 2021; 9:647131. [PMID: 34631690 PMCID: PMC8497826 DOI: 10.3389/fcell.2021.647131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lipoatrophy is characterized as selective loss of adipose tissues, leading to the severity of cardiovascular disorders. Therefore, there was close intraorgan crosstalk between adipose tissue and cardiovascular in lipoatrophy. A-ZIP/F-1 mouse, a well-established lipoatrophic model, and primary cardiomyocytes were used for investigating the pathophysiological changes and molecular mechanisms. A-ZIP/F-1 mice had severe fat loss and impaired ventricular function during growth, but closely associated with the reduction of circulating vaspin levels. Administration of recombinant vaspin protein improved cardiac structural disorders, left ventricular dysfunction, and inflammatory response in lipoatrophic mice. In detail, vaspin decreased cardiac lipid deposits, but enhanced mitochondrial biogenesis and activities. Interestingly, A-ZIP/F-1 mice transplanted with normal visceral adipose tissues exhibited improvement in cardiac structural remodeling and mitochondrial function. Mechanistically, vaspin increased cardiac AKT activity, which guaranteed the mitochondrial benefits of vaspin in lipoatrophic mice and primary mouse cardiomyocytes. The present study suggested that vaspin possessed biological benefits in attenuating lipoatrophy-induced cardiomyopathy onset, and targeting vaspin/AKT signaling was a potential strategy to maintain heart metabolism.
Collapse
Affiliation(s)
- Donghui Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Hong Zhu
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Enbo Zhan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Fan Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Xu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xian Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjin Liu
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shufeng Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yong Pan
- Department of Pathophysiology, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen, Guang Dong, China
| | - Yongshun Wang
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Wei Cao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| |
Collapse
|
37
|
Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 2021; 232:108008. [PMID: 34610378 DOI: 10.1016/j.pharmthera.2021.108008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Mah
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
38
|
Insights into the Interaction of Lysosomal Amino Acid Transporters SLC38A9 and SLC36A1 Involved in mTORC1 Signaling in C2C12 Cells. Biomolecules 2021; 11:biom11091314. [PMID: 34572527 PMCID: PMC8467208 DOI: 10.3390/biom11091314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Amino acids are critical for mammalian target of rapamycin complex 1 (mTORC1) activation on the lysosomal surface. Amino acid transporters SLC38A9 and SLC36A1 are the members of the lysosomal amino acid sensing machinery that activates mTORC1. The current study aims to clarify the interaction of SLC38A9 and SLC36A1. Here, we discovered that leucine increased expressions of SLC38A9 and SLC36A1, leading to mTORC1 activation. SLC38A9 interacted with SLC36A1 and they enhanced each other's expression levels and locations on the lysosomal surface. Additionally, the interacting proteins of SLC38A9 in C2C12 cells were identified to participate in amino acid sensing mechanism, mTORC1 signaling pathway, and protein synthesis, which provided a resource for future investigations of skeletal muscle mass.
Collapse
|
39
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|
40
|
Role of metabolomics in identifying cardiac hypertrophy: an overview of the past 20 years of development and future perspective. Expert Rev Mol Med 2021; 23:e8. [PMID: 34376261 DOI: 10.1017/erm.2021.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy (CH) is an augmentation of either the right ventricular or the left ventricular mass in order to compensate for the increase of work load on the heart. Metabolic abnormalities lead to histological changes of cardiac myocytes and turn into CH. The molecular mechanisms that lead to initiate CH have been of widespread concern, hence the development of the new field of research, metabolomics: one 'omics' approach that can reveal comprehensive information of the paradigm shift of metabolic pathways network in contrast to individual enzymatic reaction-based metabolites, have attempted and until now only 19 studies have been conducted using experimental animal and human specimens. Nuclear magnetic resonance spectroscopy and mass spectrometry-based metabolomics studies have found that CH is a metabolic disease and is mainly linked to the harmonic imbalance of glycolysis, citric acid cycle, amino acids and lipid metabolism. The current review will summarise the main outcomes of the above mentioned 19 studies that have expanded our understanding of the molecular mechanisms that may lead to CH and eventually to heart failure.
Collapse
|
41
|
Ji N, Qi Z, Wang Y, Yang X, Yan Z, Li M, Ge Q, Zhang J. Pyroptosis: A New Regulating Mechanism in Cardiovascular Disease. J Inflamm Res 2021; 14:2647-2666. [PMID: 34188515 PMCID: PMC8235951 DOI: 10.2147/jir.s308177] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Pyroptosis is a kind of pro-inflammatory cell death. Compared with autophagy and apoptosis, pyroptosis has unique characteristics in morphology and mechanism. Specifically, pyroptosis is a kind of cell lysis mediated by the Gasdermin family, releases inflammatory cytokines IL-1β and IL-18. There are three different forms of mechanism, which are caspase-1-mediated, caspase-4/5/11-mediated and caspase-3-mediated. A large number of studies have proved that pyroptosis is closely related to cardiovascular disease. This paper reviewed the recent progress in the related research on pyroptosis and myocardial infarction, ischemia-reperfusion, atherosclerosis, diabetic cardiomyopathy, arrhythmia, heart failure hypertension and Kawasaki disease. Therefore, we believe that pyroptosis may be a new therapeutic target in the cardiovascular field.
Collapse
Affiliation(s)
- Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Zhongwen Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Qihui Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| |
Collapse
|
42
|
Jang AY, Scherer PE, Kim JY, Lim S, Koh KK. Adiponectin and cardiometabolic trait and mortality: where do we go? Cardiovasc Res 2021; 118:2074-2084. [PMID: 34117867 DOI: 10.1093/cvr/cvab199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Adiponectin is an adipocyte-derived cytokine known for its cardioprotective effects in preclinical studies. Early epidemiologic studies replicated these findings and drew great interest. Subsequent large-scale prospective cohorts, however, showed that adiponectin levels seemed not to relate to incident coronary artery disease (CAD). Even more surprisingly, a paradoxical increase of all-cause and cardiovascular (CV) mortality with increased adiponectin levels was reported. The adiponectin-mortality paradox has been explained by some groups asserting that adiponectin secretion is promoted by elevated natriuretic peptides (NP). Other groups have proposed that adiponectin is elevated due to adiponectin resistance in subjects with metabolic syndrome or heart failure (HF). However, there is no unifying theory that can clearly explain this paradox. In patients with HF with reduced ejection fraction (HFrEF), stretched cardiomyocytes secrete NPs, which further promote release of adiponectin from adipose tissue, leading to adiponectin resistance. On the other hand, adiponectin biology may differ in patients with heart failure with preserved ejection fraction (HFpEF), which constitutes 50% of all of HF. Most HFpEF patients are obese, which exerts inflammation and myocardial stiffness, that is likely to prevent myocardial stretch and subsequent NP release. This segment of the patient population may display a different adiponectin biology from its HFrEF counterpart. Dissecting the adiponectin-mortality relation in terms of different HF subtypes may help to comprehensively understand this paradox. Mendelian Randomization (MR) analyses claimed that adiponectin levels are not causally related to CAD or metabolic syndrome. Results from MR studies, however, should be interpreted with great caution because the underlying history of CAD or CHF were not taken into account in these analyses, an issue that may substantially confound the results. Here, we discuss many aspects of adiponectin; cardiometabolic traits, therapeutic interventions, and the ongoing debate about the adiponectin paradox, which were recently described in basic, epidemiologic, and clinical studies.
Collapse
Affiliation(s)
- Albert Youngwoo Jang
- Division of Cardiovascular Disease, Gachon University Gil Hospital, Incheon, Korea, Gachon Cardiovascular Research Institute, Incheon, Korea
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, ., Dallas, TX, 75390-8549, USA
| | - Jang Young Kim
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwang Kon Koh
- Division of Cardiovascular Disease, Gachon University Gil Hospital, Incheon, Korea, Gachon Cardiovascular Research Institute, Incheon, Korea
| |
Collapse
|
43
|
Bhat IA, Kabeer SW, Reza MI, Mir RH, Dar MO. AdipoRon: A Novel Insulin Sensitizer in Various Complications and the Underlying Mechanisms: A Review. Curr Mol Pharmacol 2021; 13:94-107. [PMID: 31642417 DOI: 10.2174/1874467212666191022102800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AdipoRon is the first synthetic analog of endogenous adiponectin, an adipose tissue-derived hormone. AdipoRon possesses pharmacological properties similar to adiponectin and its ability to bind and activate the adipoR1 and adipoR2 receptors makes it a suitable candidate for the treatment of a multitude of disorders. OBJECTIVE In the present review, an attempt was made to compile and discuss the efficacy of adipoRon against various disorders. RESULTS AdipoRon is a drug that acts not only in metabolic diseases but in other conditions unrelated to energy metabolism. It is well- reported that adipoRon exhibits strong anti-obesity, anti-diabetic, anticancer, anti-depressant, anti-ischemic, anti-hypertrophic properties and also improves conditions like post-traumatic stress disorder, anxiety, and systemic sclerosis. CONCLUSION A lot is known about its effects in experimental systems, but the translation of this knowledge to the clinic requires studies which, for many of the potential target conditions, have yet to be carried out. The beneficial effects of AdipoRon in novel clinical conditions will suggest an underlying pathophysiological role of adiponectin and its receptors in previously unsuspected settings.
Collapse
Affiliation(s)
- Ishfaq Ahmad Bhat
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Shaheen Wasil Kabeer
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Mohammad Irshad Reza
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Muhammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
44
|
Caldwell JT, Jones KMD, Park H, Pinto JR, Ghosh P, Reid-Foley EC, Ulrich B, Delp MD, Behnke BJ, Muller-Delp JM. Aerobic exercise training reduces cardiac function and coronary flow-induced vasodilation in mice lacking adiponectin. Am J Physiol Heart Circ Physiol 2021; 321:H1-H14. [PMID: 33989084 DOI: 10.1152/ajpheart.00885.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that adiponectin deficiency attenuates cardiac and coronary microvascular function and prevents exercise training-induced adaptations of the myocardium and the coronary microvasculature in adult mice. Adult wild-type (WT) or adiponectin knockout (adiponectin KO) mice underwent treadmill exercise training or remained sedentary for 8-10 wk. Systolic and diastolic functions were assessed before and after exercise training or cage confinement. Vasoreactivity of coronary resistance arteries was assessed at the end of exercise training or cage confinement. Before exercise training, ejection fraction and fractional shortening were similar in adiponectin KO and WT mice, but isovolumic contraction time was significantly lengthened in adiponectin KO mice. Exercise training increased ejection fraction (12%) and fractional shortening (20%) with no change in isovolumic contraction time in WT mice. In adiponectin KO mice, both ejection fraction (-9%) and fractional shortening (-12%) were reduced after exercise training and these decreases were coupled to a further increase in isovolumic contraction time (20%). In sedentary mice, endothelium-dependent dilation to flow was higher in arterioles from adiponectin KO mice as compared with WT mice. Exercise training enhanced dilation to flow in WT mice but decreased flow-induced dilation in adiponectin KO mice. These data suggest that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice lacking adiponectin; however, in the absence of adiponectin, cardiac and coronary microvascular adaptations to exercise training are compromised.NEW & NOTEWORTHY We report that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice in which adiponectin has been deleted; however, when mice lacking adiponectin are subjected to the physiological stress of exercise training, beneficial coronary microvascular and cardiac adaptations are compromised or absent.
Collapse
Affiliation(s)
- Jacob T Caldwell
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | | | - Hyerim Park
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Payal Ghosh
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| | - Emily C Reid-Foley
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Brody Ulrich
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| | - Brad J Behnke
- Department of Kinesiology, Johnson Cancer Research Center, Kansas State University, Manhattan, Kansas
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
45
|
Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021; 101:1745-1807. [PMID: 33949876 PMCID: PMC8422427 DOI: 10.1152/physrev.00030.2020] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shuyi Wang
- School of Medicine, Shanghai University, Shanghai, China.,University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - James R Sowers
- Dalton Cardiovascular Research Center, Diabetes and Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
46
|
da Silva Rosa SC, Liu M, Sweeney G. Adiponectin Synthesis, Secretion and Extravasation from Circulation to Interstitial Space. Physiology (Bethesda) 2021; 36:134-149. [PMID: 33904786 PMCID: PMC8461789 DOI: 10.1152/physiol.00031.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adiponectin, an adipokine that circulates as multiple multimeric complexes at high levels in serum, has antidiabetic, anti-inflammatory, antiatherogenic, and cardioprotective properties. Understanding the mechanisms regulating adiponectin's physiological effects is likely to provide critical insight into the development of adiponectin-based therapeutics to treat various metabolic-related diseases. In this review, we summarize our current understanding on adiponectin action in its various target tissues and in cellular models. We also focus on recent advances in two particular regulatory aspects; namely, the regulation of adiponectin gene expression, multimerization, and secretion, as well as extravasation of circulating adiponectin to the interstitial space and its degradation. Finally, we discuss some potential therapeutic approaches using adiponectin as a target and the current challenges facing adiponectin-based therapeutic interventions.
Collapse
Affiliation(s)
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Li L, Aslam M, Siegler BH, Niemann B, Rohrbach S. Comparative Analysis of CTRP-Mediated Effects on Cardiomyocyte Glucose Metabolism: Cross Talk between AMPK and Akt Signaling Pathway. Cells 2021; 10:cells10040905. [PMID: 33919975 PMCID: PMC8070942 DOI: 10.3390/cells10040905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
C1q/tumor necrosis factor -alpha-related proteins (CTRPs) have been shown to mediate protective cardiovascular effects, but no data exists on their effects on glucose and fatty acid (FA) metabolism in cardiomyocytes. In the present study, adult rat cardiomyocytes and H9C2 cardiomyoblasts were stimulated with various recombinant CTRPs. Glucose or FA uptake, expression of genes involved in glucose or FA metabolism and the role of the AMP-activated protein kinase (AMPK) and Akt were investigated. Although most CTRPs induced an increase in phosphorylation of AMPK and Akt in cardiomyocytes, mainly CTRP2, 7, 9 and 13 induced GLUT1 and GLUT4 translocation and glucose uptake in cardiomyocytes, despite high structural similarities among CTRPs. AMPK inhibition reduced the CTRPs-mediated activation of Akt, while Akt inhibition did not impair AMPK activation. In addition, CTRP2, 7, 9 and 13 mediated strong effects on the expression of enzymes involved in glucose or FA metabolism. Loss of adiponectin receptor 1, which has been suggested to be involved in CTRP-induced signal transduction, abolished the effects of some but not all CTRPs on glucose metabolism. Targeting the AMPK signaling pathway via CTRPs may offer a therapeutic principle to restore glucose homeostasis by acting on glucose uptake independent of the Akt pathway.
Collapse
Affiliation(s)
- Ling Li
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.H.S.); (S.R.)
- Correspondence: ; Tel.: +49-641-99-47342
| | - Muhammad Aslam
- Experimental Cardiology, Department of Cardiology and Angiology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Benedikt H. Siegler
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.H.S.); (S.R.)
| | - Bernd Niemann
- Department of Cardiac and Vascular Surgery, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.H.S.); (S.R.)
| |
Collapse
|
48
|
Marino A, Hausenloy DJ, Andreadou I, Horman S, Bertrand L, Beauloye C. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radic Biol Med 2021; 166:238-254. [PMID: 33675956 DOI: 10.1016/j.freeradbiomed.2021.02.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
Heart failure is one of the leading causes of death and disability worldwide. Left ventricle remodeling, fibrosis, and ischemia/reperfusion injury all contribute to the deterioration of cardiac function and predispose to the onset of heart failure. Adenosine monophosphate-activated protein kinase (AMPK) is the universally recognized energy sensor which responds to low ATP levels and restores cellular metabolism. AMPK activation controls numerous cellular processes and, in the heart, it plays a pivotal role in preventing onset and progression of disease. Excessive reactive oxygen species (ROS) generation, known as oxidative stress, can activate AMPK, conferring an additional role of AMPK as a redox-sensor. In this review, we discuss recent insights into the crosstalk between ROS and AMPK. We describe the molecular mechanisms by which ROS activate AMPK and how AMPK signaling can further prevent heart failure progression. Ultimately, we review the potential therapeutic approaches to target AMPK for the treatment of cardiovascular disease and prevention of heart failure.
Collapse
Affiliation(s)
- Alice Marino
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Division of Cardiology, Cliniques universitaires Saint Luc, Brussels, Belgium.
| |
Collapse
|
49
|
Perpétuo L, Voisin PM, Amado F, Hirtz C, Vitorino R. Ghrelin and adipokines: An overview of their physiological role, antimicrobial activity and impact on cardiovascular conditions. VITAMINS AND HORMONES 2021; 115:477-509. [PMID: 33706959 DOI: 10.1016/bs.vh.2020.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human body has many different hormones that interact with each other and with other factors such as proteins, cell receptors and metabolites. There is still a limited understanding of some of the underlying biological mechanisms of some hormones. In the past decades, science and technology have made major advancements in regard to innovation and knowledge in fields such as medicine. However, some conditions are complex and have many variables that their full picture is still unclear, even though some of these conditions have an alarming rate of incidence and serious health consequences. Conditions such as type 2 diabetes, obesity, nonalcoholic liver disease (NAFLD), cancer in its different forms and even mental conditions, such as Alzheimer's disease, are some of the most common diseases in the 21st century. These conditions are relevant not only because of their high incidence on the general population, but also because of their severity. In this chapter, we present an overview of cardiovascular (CV) diseases. According to the World Health Organization (WHO), cardiovascular diseases, such as coronary artery disease (CAD), heart attack, cardiomyopathy and heart failure (among others), are the number one cause of death worldwide. In 2016, it was estimated that 17.9 million people died from CV diseases, representing more than 30% of all global deaths. Approximately 95% of people who died from CV diseases were so-called "premature deaths" because were referenced to individuals under the age of 70 years old. In this chapter we described some of the hormones that may have an impact on CV diseases, including ghrelin, a peptide that is mostly produced in the stomach, known to induce hunger. Ghrelin is linked to an increase in body fat, i.e., adipose tissue in animals. For this reason, we also included the adipokines leptin, adiponectin and resistin. The main objectives of this chapter are to present the state of the art knowledge concerning the mechanisms of each hormone relevant to CV diseases; to compile data and results that further elucidate the relevance of these peptides for several physiological events, conditions and diseases; and to discuss the metabolic impact of each hormone. We established connections between multiple peptides and the underlying condition/disease with tools such as STRING, referring to research using databases, such as UniProt, DisGeNET and Proteomics DB. Fig. 1 shows a network that summarizes the information presented in this chapter, which serves as a visual representation.
Collapse
Affiliation(s)
- Luís Perpétuo
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | | | - Francisco Amado
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Christophe Hirtz
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
50
|
Adiponectin enhances the bioenergetics of cardiac myocytes via an AMPK- and succinate dehydrogenase-dependent mechanism. Cell Signal 2021; 78:109866. [PMID: 33271223 PMCID: PMC9619024 DOI: 10.1016/j.cellsig.2020.109866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
Adiponectin is one of the most abundant circulating hormones, which through adenosine monophosphate-activated protein kinase (AMPK), enhances fatty acid and glucose oxidation, and exerts a cardioprotective effect. However, its effects on cellular bioenergetics have not been explored. We have previously reported that 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, an AMPK activator) enhances mitochondrial respiration through a succinate dehydrogenase (SDH or complex II)-dependent mechanism in cardiac myocytes, leading us to predict that Adiponectin would exert a similar effect via activating AMPK. Our results show that Adiponectin enhances basal mitochondrial oxygen consumption rate (OCR), ATP production, and spare respiratory capacity (SRC), which were all abolished by the knockdown of AMPKγ1, inhibition of SDH complex assembly, via the knockdown of the SDH assembly factor 1 (Sdhaf1), or inhibition of SDH activity. Additionally, Adiponectin alleviated hypoxia-induced reductions in OCR and ATP production, in a Sdhaf1-dependent manner, whereas overexpression of Sdhaf1 confirmed its sufficiency for mediating these effects. Importantly, the levels of holoenzyme SDH under the various conditions correlated with OCR. We also show that the effects of Adiponectin, AMPK, Sdhaf1, as well as, SDH complex assembly all required sirtuin 3 (Sirt3). In conclusion, Adiponectin potentiates mitochondrial bioenergetics via promoting SDH complex assembly in an AMPK-, Sdhaf1-, and Sirt3-dependent fashion in cardiac myocytes.
Collapse
|