1
|
Lee S, Nouraein S, Kwon JJ, Huang Z, Wojick JA, Xia B, Corder G, Szablowski JO. Engineered serum markers for non-invasive monitoring of gene expression in the brain. Nat Biotechnol 2024; 42:1717-1725. [PMID: 38200117 PMCID: PMC11233427 DOI: 10.1038/s41587-023-02087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Measurement of gene expression in the brain requires invasive analysis of brain tissue or non-invasive methods that are limited by low sensitivity. Here we introduce a method for non-invasive, multiplexed, site-specific monitoring of endogenous gene or transgene expression in the brain through engineered reporters called released markers of activity (RMAs). RMAs consist of an easily detectable reporter and a receptor-binding domain that enables transcytosis across the brain endothelium. RMAs are expressed in the brain but exit into the blood, where they can be easily measured. We show that expressing RMAs at a single mouse brain site representing approximately 1% of the brain volume provides up to a 100,000-fold signal increase over the baseline. Expression of RMAs in tens to hundreds of neurons is sufficient for their reliable detection. We demonstrate that chemogenetic activation of cells expressing Fos-responsive RMA increases serum RMA levels >6-fold compared to non-activated controls. RMAs provide a non-invasive method for repeatable, multiplexed monitoring of gene expression in the intact animal brain.
Collapse
Affiliation(s)
- Sangsin Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Shirin Nouraein
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - James J Kwon
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Zhimin Huang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Jessica A Wojick
- Department of Psychiatry and Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boao Xia
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Gregory Corder
- Department of Psychiatry and Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerzy O Szablowski
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Rice Neuroengineering Initiative, Rice University, Houston, TX, USA.
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA.
- Applied Physics Program, Rice University, Houston, TX, USA.
| |
Collapse
|
2
|
Chen Y, Xu C, Sun M, Zhao G, Wang Z, Lv C. Vertasile ferritin nanocages: Applications in detection and bioimaging. Biosens Bioelectron 2024; 262:116567. [PMID: 39013360 DOI: 10.1016/j.bios.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Food safety and human health remain significant concerns in the food industry. Detecting food contaminants and diagnosing diseases are critical aspects. Ferritin, an iron storage protein widely found in nature, offers unique advantages. Its hollow protein nanocage structure, distinct interfaces, hydrophobic or hydrophilic channels, and B-C loop regions recognized by transferrin receptor 1 make ferritin versatile for detecting heavy metals, free radicals, and bioimaging both in vitro and in vivo. This review summarizes ferritin's general characteristics, its specific properties as biosensors, and its applications in food safety and in vivo imaging. It emphasizes not only ferritin's role in detecting heavy metals like mercury and chemical hazards but also its potential in early diagnosing chronic diseases such as tumors, macrophages, and kidney diseases. Further research into ferritin promises advancements in enhancing food safety and improving human health diagnostics.
Collapse
Affiliation(s)
- Yunqi Chen
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Chen Xu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Mingyang Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, PR China.
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China.
| |
Collapse
|
3
|
Chacko AN, Miller ADC, Dhanabalan KM, Mukherjee A. Exploring the potential of water channels for developing genetically encoded reporters and biosensors for diffusion-weighted MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107743. [PMID: 39053029 DOI: 10.1016/j.jmr.2024.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Genetically encoded reporters for magnetic resonance imaging (MRI) offer a valuable technology for making molecular-scale measurements of biological processes within living organisms with high anatomical resolution and whole-organ coverage without relying on ionizing radiation. However, most MRI reporters rely on synthetic contrast agents, typically paramagnetic metals and metal complexes, which often need to be supplemented exogenously to create optimal contrast. To eliminate the need for synthetic contrast agents, we previously introduced aquaporin-1, a mammalian water channel, as a new reporter gene for the fully autonomous detection of genetically labeled cells using diffusion-weighted MRI. In this study, we aimed to expand the toolbox of diffusion-based genetic reporters by modulating aquaporin membrane trafficking and harnessing the evolutionary diversity of water channels across species. We identified a number of new water channels that functioned as diffusion-weighted reporter genes. In addition, we show that loss-of-function variants of yeast and human aquaporins can be leveraged to design first-in-class diffusion-based sensors for detecting the activity of a model protease within living cells.
Collapse
Affiliation(s)
- Asish N Chacko
- Department of Chemistry, University of California, Santa Barbara, CA 93106-5080, USA
| | - Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106-5080, USA
| | - Kaamini M Dhanabalan
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106-5080, USA; Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106-5080, USA; Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA; Department of Bioengineering, University of California, Santa Barbara, CA 93106-5080, USA.
| |
Collapse
|
4
|
Rallapalli H, McCall EC, Koretsky AP. Genetic control of MRI contrast using the manganese transporter Zip14. Magn Reson Med 2024; 92:820-835. [PMID: 38573932 PMCID: PMC11142883 DOI: 10.1002/mrm.29993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 04/06/2024]
Abstract
PURPOSE Gene-expression reporter systems, such as green fluorescent protein, have been instrumental to understanding biological processes in living organisms at organ system, tissue, cell, and molecular scales. More than 30 years of work on developing MRI-visible gene-expression reporter systems has resulted in a variety of clever application-specific methods. However, these techniques have not yet been widely adopted, so a general-purpose expression reporter is still required. Here, we demonstrate that the manganese ion transporter Zip14 is an in vivo MRI-visible, flexible, and robust gene-expression reporter to meet this need. METHODS Plasmid constructs consisting of a cell type-specific promoter, gene coding for human Zip14, and a histology-visible tag were packaged into adeno-associated viruses. These viruses were intracranially injected into the mouse brain. Serial in vivo MRI was performed using a vendor-supplied 3D-MPRAGE sequence. No additional contrast agents were administered. Animals were sacrificed after the last imaging timepoint for immunohistological validation. RESULTS Neuron-specific overexpression of Zip14 produced substantial and long-lasting changes in MRI contrast. Using appropriate viruses enabled both anterograde and retrograde neural tracing. Expression of Zip14 in astrocytes also enabled MRI of glia populations in the living mammalian brain. CONCLUSIONS The flexibility of this system as an MRI-visible gene-expression reporter will enable many applications of serial, high-resolution imaging of gene expression for basic science and therapy development.
Collapse
Affiliation(s)
- Harikrishna Rallapalli
- Section on Plasticity and Imaging of the Nervous System, NINDS/NIH, Bethesda, Maryland, USA
| | - Eleanor C McCall
- Section on Plasticity and Imaging of the Nervous System, NINDS/NIH, Bethesda, Maryland, USA
| | - Alan P Koretsky
- Section on Plasticity and Imaging of the Nervous System, NINDS/NIH, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Chu J, Yu X, Jiang G, Tao Y, Wu W, Han S. Bacterial imaging in tumour diagnosis. Microb Biotechnol 2024; 17:e14474. [PMID: 38808743 PMCID: PMC11135020 DOI: 10.1111/1751-7915.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024] Open
Abstract
Some bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), have an inherent ability to locate solid tumours, making them a versatile platform that can be combined with other tools to improve the tumour diagnosis and treatment. In anti-cancer therapy, bacteria function by carrying drugs directly or expressing exogenous therapeutic genes. The application of bacterial imaging in tumour diagnosis, a novel and promising research area, can indeed provide dynamic and real-time monitoring in both pre-treatment assessment and post-treatment detection. Different imaging techniques, including optical technology, acoustic imaging, magnetic resonance imaging (MRI) and nuclear medicine imaging, allow us to observe and track tumour-associated bacteria. Optical imaging, including bioluminescence and fluorescence, provides high-sensitivity and high-resolution imaging. Acoustic imaging is a real-time and non-invasive imaging technique with good penetration depth and spatial resolution. MRI provides high spatial resolution and radiation-free imaging. Nuclear medicine imaging, including positron emission tomography (PET) and single photon emission computed tomography (SPECT) can provide information on the distribution and dynamics of bacterial population. Moreover, strategies of synthetic biology modification and nanomaterial engineering modification can improve the viability and localization ability of bacteria while maintaining their autonomy and vitality, thus aiding the visualization of gut bacteria. However, there are some challenges, such as the relatively low bacterial abundance and heterogeneously distribution within the tumour, the high dimensionality of spatial datasets and the limitations of imaging labeling tools. In summary, with the continuous development of imaging technology and nanotechnology, it is expected to further make in-depth study on tumour-associated bacteria and develop new bacterial imaging methods for tumour diagnosis.
Collapse
Affiliation(s)
- Jian Chu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| | - Xiang Yu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| | - Gaofei Jiang
- Key Lab of Organic‐Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste UtilizationNanjing Agricultural UniversityNanjingChina
| | - Ye Tao
- Shanghai BIOZERON Biotechnology Co., Ltd.ShanghaiChina
| | - Wei Wu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| | - Shuwen Han
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| |
Collapse
|
6
|
Huang Y, Chen X, Zhu Z, Mukherjee A. A Dual-Gene Reporter-Amplifier Architecture for Enhancing the Sensitivity of Molecular MRI by Water Exchange. Chembiochem 2024; 25:e202400087. [PMID: 38439618 DOI: 10.1002/cbic.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
The development of genetic reporters for magnetic resonance imaging (MRI) is essential for investigating biological functions in vivo. However, current MRI reporters have low sensitivity, making it challenging to create significant contrast against the tissue background, especially when only a small fraction of cells express the reporter. To overcome this limitation, we developed an approach for amplifying the sensitivity of molecular MRI by combining a chemogenetic contrast mechanism with a biophysical approach to increase water diffusion through the co-expression of a dual-gene construct comprising an organic anion transporting polypeptide, Oatp1b3, and a water channel, Aqp1. We first show that the expression of Aqp1 amplifies MRI contrast in cultured cells engineered to express Oatp1b3. We demonstrate that the contrast amplification is caused by Aqp1-driven increase in water exchange, which provides the gadolinium ions internalized by Oatp1b3-expressing cells with access to a larger water pool compared with exchange-limited conditions. We further show that our methodology allows cells to be detected using approximately 10-fold lower concentrations of gadolinium than that in the Aqp1-free scenario. Finally, we show that our approach enables the imaging of mixed-cell cultures containing a low fraction of Oatp1b3-labeled cells that are undetectable on the basis of Oatp1b3 expression alone.
Collapse
Affiliation(s)
- Yimeng Huang
- Department of Chemistry, University of California, Santa Barbara, CA 93106-5080
| | - Xinyue Chen
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-5080
| | - Ziyue Zhu
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-5080
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106-5080
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-5080
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
| |
Collapse
|
7
|
Miller ADC, Chowdhury SP, Hanson HW, Linderman SK, Ghasemi HI, Miller WD, Morrissey MA, Richardson CD, Gardner BM, Mukherjee A. Engineering water exchange is a safe and effective method for magnetic resonance imaging in diverse cell types. J Biol Eng 2024; 18:30. [PMID: 38649904 PMCID: PMC11035135 DOI: 10.1186/s13036-024-00424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Aquaporin-1 (Aqp1), a water channel, has garnered significant interest for cell-based medicine and in vivo synthetic biology due to its ability to be genetically encoded to produce magnetic resonance signals by increasing the rate of water diffusion in cells. However, concerns regarding the effects of Aqp1 overexpression and increased membrane diffusivity on cell physiology have limited its widespread use as a deep-tissue reporter. In this study, we present evidence that Aqp1 generates strong diffusion-based magnetic resonance signals without adversely affecting cell viability or morphology in diverse cell lines derived from mice and humans. Our findings indicate that Aqp1 overexpression does not induce ER stress, which is frequently associated with heterologous expression of membrane proteins. Furthermore, we observed that Aqp1 expression had no detrimental effects on native biological activities, such as phagocytosis, immune response, insulin secretion, and tumor cell migration in the analyzed cell lines. These findings should serve to alleviate any lingering safety concerns regarding the utilization of Aqp1 as a genetic reporter and should foster its broader application as a noninvasive reporter for in vivo studies.
Collapse
Affiliation(s)
- Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Hadley W Hanson
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Sarah K Linderman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Hannah I Ghasemi
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Wyatt D Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Meghan A Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Arnab Mukherjee
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- Department of Bioengineering, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemistry, University of California, Santa Barbara, CA, 93106, USA.
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
8
|
Huang Y, Chen X, Zhu Z, Mukherjee A. A dual-gene reporter-amplifier architecture for enhancing the sensitivity of molecular MRI by water exchange. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576672. [PMID: 38328134 PMCID: PMC10849537 DOI: 10.1101/2024.01.22.576672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The development of genetic reporters for magnetic resonance imaging (MRI) is essential for investigating biological functions in intact animals. However, current MRI reporters have low sensitivity, making it challenging to create significant contrast against the tissue background, especially when only a small percentage of cells express the reporter. To overcome this limitation, we developed an approach that amplifies signals by co-expressing an MRI reporter gene, Oatp1b3, with a water channel, aquaporin-1 (Aqp1). We first show that the expression of Aqp1 amplifies the paramagnetic relaxation effect of Oatp1b3 by facilitating transmembrane water exchange. This mechanism provides Oatp1b3-expressing cells with access to a larger water pool compared with typical exchange-limited conditions. We further demonstrated that our methodology allows dual-labeled cells to be detected using approximately 10-fold lower concentrations of contrast agent than that in the Aqp1-free scenario. Finally, we show that our approach enables the imaging of mixed-cell populations containing a low fraction of Oatp1b3-labeled cells that are otherwise undetectable based on Oatp1b3 expression alone.
Collapse
Affiliation(s)
| | - Xinyue Chen
- Department of Molecular, Cellular, and Developmental Biology
| | - Ziyue Zhu
- Department of Molecular, Cellular, and Developmental Biology
| | - Arnab Mukherjee
- Department of Chemistry
- Department of Molecular, Cellular, and Developmental Biology
| |
Collapse
|
9
|
Chacko AN, Miller AD, Dhanabalan KM, Mukherjee A. Exploring the potential of water channels for developing MRI reporters and sensors without the need for exogenous contrast agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.21.576580. [PMID: 38328035 PMCID: PMC10849501 DOI: 10.1101/2024.01.21.576580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Genetically encoded reporters for magnetic resonance imaging (MRI) offer a valuable technology for making molecular-scale measurements of biological processes within living organisms with high anatomical resolution and whole-organ coverage without relying on ionizing radiation. However, most MRI reporters rely on contrast agents, typically paramagnetic metals and metal complexes, which often need to be supplemented exogenously to create optimal contrast. To eliminate the need for contrast agents, we previously introduced aquaporin-1, a mammalian water channel, as a new reporter gene for the fully autonomous detection of genetically labeled cells using diffusion-weighted MRI. In this study, we aimed to expand the toolbox of diffusion-based genetic reporters by modulating aquaporin membrane trafficking and harnessing the evolutionary diversity of water channels across species. We identified a number of new water channels that functioned as diffusion-weighted reporter genes. In addition, we show that loss-of-function variants of yeast and human aquaporins can be leveraged to design first-in-class diffusion-based sensors for detecting the activity of a model protease within living cells.
Collapse
Affiliation(s)
| | | | | | - Arnab Mukherjee
- Department of Chemistry
- Biomolecular Science and Engineering Graduate Program
- Department of Chemical Engineering
| |
Collapse
|
10
|
Hong S, Lee DS, Bae GW, Jeon J, Kim HK, Rhee S, Jung KO. In Vivo Stem Cell Imaging Principles and Applications. Int J Stem Cells 2023; 16:363-375. [PMID: 37643761 PMCID: PMC10686800 DOI: 10.15283/ijsc23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Stem cells are the foundational cells for every organ and tissue in our body. Cell-based therapeutics using stem cells in regenerative medicine have received attracting attention as a possible treatment for various diseases caused by congenital defects. Stem cells such as induced pluripotent stem cells (iPSCs) as well as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and neuroprogenitors stem cells (NSCs) have recently been studied in various ways as a cell-based therapeutic agent. When various stem cells are transplanted into a living body, they can differentiate and perform complex functions. For stem cell transplantation, it is essential to determine the suitability of the stem cell-based treatment by evaluating the origin of stem, the route of administration, in vivo bio-distribution, transplanted cell survival, function, and mobility. Currently, these various stem cells are being imaged in vivo through various molecular imaging methods. Various imaging modalities such as optical imaging, magnetic resonance imaging (MRI), ultrasound (US), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) have been introduced for the application of various stem cell imaging. In this review, we discuss the principles and recent advances of in vivo molecular imaging for application of stem cell research.
Collapse
Affiliation(s)
- Seongje Hong
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Dong-Sung Lee
- Department of Life Sciences, University of Seoul, Seoul, Korea
| | - Geun-Woo Bae
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Juhyeong Jeon
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
11
|
Liao Q, Yang J, Lu Z, Jiang Q, Gong Y, Liu L, Peng H, Wang Q, Zhang X, Liu Z. FTH1 indicates poor prognosis and promotes metastasis in head and neck squamous cell carcinoma. PeerJ 2023; 11:e16493. [PMID: 38025726 PMCID: PMC10658887 DOI: 10.7717/peerj.16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Currently, ferritin heavy chain (FTH1) has been increasingly found to play a crucial role in cancer as a core regulator of ferroptosis, while its role of non-ferroptosis in head and neck squamous cell carcinoma (HNSCC) is still unclear. Methods Herein, we analyzed the expression level of FTH1 in HNSCC using TCGA database, and FTH1 protein in HNSCC tissues and cell lines was determined by immunohistochemistry (IHC) and western blotting, respectively. Then, its prognostic value and relationship with clinical parameters were investigated in HNSCC patients. Additionally, the biological function of FTH1 in HNSCC was explored. Results The current study showed that FTH1 is significantly overexpressed in HNSCC tissues and related to poor prognosis and lymph node metastasis of HNSCC. FTH1 knockdown could suppress the metastasis and epithelial-mesenchymal transition (EMT) process of HNSCC. Conclusion Our findings indicate that FTH1 plays a critical role in the progression and metastasis of HNSCC and can serve as a promising prognostic factor and therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Qingyun Liao
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Cancer Research Institute, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhaoyi Lu
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| | - Qingshan Jiang
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongqian Gong
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijun Liu
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Peng
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qin Wang
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin Zhang
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| | - Zhifeng Liu
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
12
|
Zhuang K, Romagnuolo R, Sadikov Valdman T, Vollett KDW, Szulc DA, Cheng HYM, Laflamme MA, Cheng HLM. Bright ferritin for long-term MR imaging of human embryonic stem cells. Stem Cell Res Ther 2023; 14:330. [PMID: 37964388 PMCID: PMC10647036 DOI: 10.1186/s13287-023-03565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND A non-invasive imaging technology that can monitor cell viability, retention, distribution, and interaction with host tissue after transplantation is needed for optimizing and translating stem cell-based therapies. Current cell imaging approaches are limited in sensitivity or specificity, or both, for in vivo cell tracking. The objective of this study was to apply a novel ferritin-based magnetic resonance imaging (MRI) platform to longitudinal tracking of human embryonic stem cells (hESCs) in vivo. METHODS Human embryonic stem cells (hESCs) were genetically modified to stably overexpress ferritin using the CRISPR-Cas9 system. Cellular toxicity associated with ferritin overexpression and manganese (Mn) supplementation were assessed based on cell viability, proliferation, and metabolic activity. Ferritin-overexpressing hESCs were characterized based on stem cell pluripotency and cardiac-lineage differentiation capability. Cells were supplemented with Mn and imaged in vitro as cell pellets on a preclinical 3 T MR scanner. T1-weighted images and T1 relaxation times were analyzed to assess contrast. For in vivo study, three million cells were injected into the leg muscle of non-obese diabetic severe combined immunodeficiency (NOD SCID) mice. Mn was administrated subcutaneously. T1-weighted sequences and T1 mapping were used to image the animals for longitudinal in vivo cell tracking. Cell survival, proliferation, and teratoma formation were non-invasively monitored by MRI. Histological analysis was used to validate MRI results. RESULTS Ferritin-overexpressing hESCs labeled with 0.1 mM MnCl2 provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, proliferation, pluripotency, and differentiation into cardiomyocytes. Transplanted hESCs displayed significant bright contrast on MRI 24 h after Mn administration, with contrast persisting for 5 days. Bright contrast was recalled at 4-6 weeks with early teratoma outgrowth. CONCLUSIONS The bright-ferritin platform provides the first demonstration of longitudinal cell tracking with signal recall, opening a window on the massive cell death that hESCs undergo in the weeks following transplantation before the surviving cell fraction proliferates to form teratomas.
Collapse
Affiliation(s)
- Keyu Zhuang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Room 1433, Toronto, ON, M5G 1M1, Canada
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | | | - Kyle D W Vollett
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Room 1433, Toronto, ON, M5G 1M1, Canada
| | - Daniel A Szulc
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Room 1433, Toronto, ON, M5G 1M1, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Room 1433, Toronto, ON, M5G 1M1, Canada.
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Miller ADC, Chowdhury SP, Hanson HW, Linderman SK, Ghasemi HI, Miller WD, Morrissey MA, Richardson CD, Gardner BM, Mukherjee A. Engineering water exchange is a safe and effective method for magnetic resonance imaging in diverse cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566095. [PMID: 37986852 PMCID: PMC10659288 DOI: 10.1101/2023.11.07.566095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Aquaporin-1 (Aqp1), a water channel, has garnered significant interest for cell-based medicine and in vivo synthetic biology due to its ability to be genetically encoded to produce magnetic resonance signals by increasing the rate of water diffusion in cells. However, concerns regarding the effects of Aqp1 overexpression and increased membrane diffusivity on cell physiology have limited its widespread use as a deep-tissue reporter. In this study, we present evidence that Aqp1 generates strong diffusion-based magnetic resonance signals without adversely affecting cell viability or morphology in diverse cell lines derived from mice and humans. Our findings indicate that Aqp1 overexpression does not induce ER stress, which is frequently associated with heterologous expression of membrane proteins. Furthermore, we observed that Aqp1 expression had no detrimental effects on native biological activities, such as phagocytosis, immune response, insulin secretion, and tumor cell migration in the analyzed cell lines. These findings should serve to alleviate any lingering safety concerns regarding the utilization of Aqp1 as a genetic reporter and should foster its broader application as a noninvasive reporter for in vivo studies.
Collapse
Affiliation(s)
- Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Hadley W Hanson
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Sarah K Linderman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Hannah I Ghasemi
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Wyatt D Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Meghan A Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Bioengineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
14
|
Fillion AJ, Bricco AR, Lee HD, Korenchan D, Farrar CT, Gilad AA. Development of a synthetic biosensor for chemical exchange MRI utilizing in silico optimized peptides. NMR IN BIOMEDICINE 2023; 36:e5007. [PMID: 37469121 PMCID: PMC11075521 DOI: 10.1002/nbm.5007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non-existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast. We have developed an in silico method for the evolution of peptide sequences to optimize CEST contrast and showed that these peptides could be combined to create de novo biosensors for CEST MRI. A single protein, superCESTide, was designed to be 198 amino acids. SuperCESTide was expressed in E. coli and purified with size exclusion chromatography. The magnetic transfer ratio asymmetry generated by superCESTide was comparable to levels seen in previous CEST reporters, such as protamine sulfate (salmon protamine) and human protamine. These data show that novel peptides with sequences optimized in silico for CEST contrast that utilize a more comprehensive range of amino acids can still produce contrast when assembled into protein units expressed in complex living environments.
Collapse
Affiliation(s)
- Adam J. Fillion
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Harvey D. Lee
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - David Korenchan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
15
|
Zheng N, Gui Z, Liu X, Wu Y, Wang H, Cai A, Wu J, Li X, Kaewborisuth C, Zhang Z, Wang Q, Manyande A, Xu F, Wang J. Investigations of brain-wide functional and structural networks of dopaminergic and CamKIIα-positive neurons in VTA with DREADD-fMRI and neurotropic virus tracing technologies. J Transl Med 2023; 21:543. [PMID: 37580725 PMCID: PMC10424380 DOI: 10.1186/s12967-023-04362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/16/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The ventral tegmental area (VTA) contains heterogeneous cell populations. The dopaminergic neurons in VTA play a central role in reward and cognition, while CamKIIα-positive neurons, composed mainly of glutamatergic and some dopaminergic neurons, participate in the reward learning and locomotor activity behaviors. The differences in brain-wide functional and structural networks between these two neuronal subtypes were comparatively elucidated. METHODS In this study, we applied a method combining Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and fMRI to assess the cell type-specific modulation of whole-brain neural networks. rAAV encoding the cre-dependent hM3D was injected into the right VTA of DAT-cre or CamKIIα-cre transgenic rats. The global brain activities elicited by DREADD stimulation were then detected using BOLD-fMRI. Furthermore, the cre-dependent antegrade transsynaptic viral tracer H129ΔTK-TT was applied to label the outputs of VTA neurons. RESULTS We found that DREADD stimulation of dopaminergic neurons induced significant BOLD signal changes in the VTA and several VTA-related regions including mPFC, Cg and Septum. More regions responded to selective activation of VTA CamKIIα-positive neurons, resulting in increased BOLD signals in VTA, Insula, mPFC, MC_R (Right), Cg, Septum, Hipp, TH_R, PtA_R, and ViC_R. Along with DREADD-BOLD analysis, further neuronal tracing identified multiple cortical (MC, mPFC) and subcortical (Hipp, TH) brain regions that are structurally and functionally connected by VTA dopaminergic and CamKIIα-positive neurons. CONCLUSIONS Our study dissects brain-wide structural and functional networks of two neuronal subtypes in VTA and advances our understanding of VTA functions.
Collapse
Affiliation(s)
- Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huadong Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
| | - Xihai Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qitian Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, TW8 9GA, UK
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, People's Republic of China.
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China.
| |
Collapse
|
16
|
Cheng HLM. A primer on in vivo cell tracking using MRI. Front Med (Lausanne) 2023; 10:1193459. [PMID: 37324153 PMCID: PMC10264782 DOI: 10.3389/fmed.2023.1193459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Cell tracking by in vivo magnetic resonance imaging (MRI) offers a collection of multiple advantages over other imaging modalities, including high spatial resolution, unlimited depth penetration, 3D visualization, lack of ionizing radiation, and the potential for long-term cell monitoring. Three decades of innovation in both contrast agent chemistry and imaging physics have built an expansive array of probes and methods to track cells non-invasively across a diverse range of applications. In this review, we describe both established and emerging MRI cell tracking approaches and the variety of mechanisms available for contrast generation. Emphasis is given to the advantages, practical limitations, and persistent challenges of each approach, incorporating quantitative comparisons where possible. Toward the end of this review, we take a deeper dive into three key application areas - tracking cancer metastasis, immunotherapy for cancer, and stem cell regeneration - and discuss the cell tracking techniques most suitable to each.
Collapse
Affiliation(s)
- Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, ON, Canada
| |
Collapse
|
17
|
Fillion AJ, Bricco AR, Lee HD, Korenchan D, Farrar CT, Gilad AA. Development of a Synthetic Biosensor for Chemical Exchange MRI Utilizing In Silico Optimized Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531737. [PMID: 37016672 PMCID: PMC10071792 DOI: 10.1101/2023.03.08.531737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chemical Exchange Saturation Transfer (CEST) magnetic resonance imaging (MRI) has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non-existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast. We have developed an in-silico method for the evolution of peptide sequences to optimize CEST contrast and showed that these peptides could be combined to create de novo biosensors for CEST MRI. A single protein, superCESTide 2.0, was designed to be 198 amino acids. SuperCESTide 2.0 was expressed in E. coli and purified with size-exclusion chromatography. The magnetic transfer ratio asymmetry (MTR asym ) generated by superCESTide 2.0 was comparable to levels seen in previous CEST reporters, such as protamine sulfate (salmon protamine, SP), Poly-L-Lysine (PLL), and human protamine (hPRM1). This data shows that novel peptides with sequences optimized in silico for CEST contrast that utilizes a more comprehensive range of amino acids can still produce contrast when assembled into protein units expressed in complex living environments.
Collapse
Affiliation(s)
- Adam J. Fillion
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Harvey D. Lee
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - David Korenchan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Yang H, Qian Z, Liu C, Tie C, Cai A, Wang J, Xing Y, Xia J, Li X. A versatile genetic-encoded reporter for magnetic resonance imaging. Heliyon 2023; 9:e14054. [PMID: 36915487 PMCID: PMC10006841 DOI: 10.1016/j.heliyon.2023.e14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
It has been a long-cherished wish in biomedicine research to have an imaging tool to visualize gene expression, with good spatiotemporal resolution, in rodent and primate animals noninvasively and longitudinally. To this purpose, we here present a novel genetic encoded magnetic resonance imaging reporter, i.e., GEM reporter, for noninvasive visualization of cell-specific gene expression. The GEM reporter was developed through codon modification of a bacteria-originated manganese (Mn) binding protein, allowing the sequestration of endogenous Mn in local tissues. When expressed in bacteria, plant and animals, GEM reporter can robustly produce high image contrast in T1-weighted MRI without additional substrates or contrast agents. Importantly, GEM reporter can be tracked inherently by MRI in specific cells and tissues. These findings support GEM reporter as a versatile marker for deciphering gene expression spatiotemporally in living subjects.
Collapse
Affiliation(s)
- Haiyang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengjiang Qian
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chunhua Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Changjun Tie
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,Peng Cheng Laboratory, Shenzhen, China
| | - Aoling Cai
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, Hubei Province, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, Hubei Province, China
| | - Yao Xing
- Shanghai United Imaging Healthcare Co., Ltd., China
| | - Jun Xia
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 SunGang Road West, Shenzhen 518035, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
19
|
Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria. Nat Biotechnol 2023:10.1038/s41587-022-01581-y. [PMID: 36593411 DOI: 10.1038/s41587-022-01581-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/20/2022] [Indexed: 01/03/2023]
Abstract
Ultrasound allows imaging at a much greater depth than optical methods, but existing genetically encoded acoustic reporters for in vivo cellular imaging have been limited by poor sensitivity, specificity and in vivo expression. Here we describe two acoustic reporter genes (ARGs)-one for use in bacteria and one for use in mammalian cells-identified through a phylogenetic screen of candidate gas vesicle gene clusters from diverse bacteria and archaea that provide stronger ultrasound contrast, produce non-linear signals distinguishable from background tissue and have stable long-term expression. Compared to their first-generation counterparts, these improved bacterial and mammalian ARGs produce 9-fold and 38-fold stronger non-linear contrast, respectively. Using these new ARGs, we non-invasively imaged in situ tumor colonization and gene expression in tumor-homing therapeutic bacteria, tracked the progression of tumor gene expression and growth in a mouse model of breast cancer, and performed gene-expression-guided needle biopsies of a genetically mosaic tumor, demonstrating non-invasive access to dynamic biological processes at centimeter depth.
Collapse
|
20
|
Bulte JWM, Wang C, Shakeri-Zadeh A. In Vivo Cellular Magnetic Imaging: Labeled vs. Unlabeled Cells. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2207626. [PMID: 36589903 PMCID: PMC9798832 DOI: 10.1002/adfm.202207626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 06/17/2023]
Abstract
Superparamagnetic iron oxide (SPIO)-labeling of cells has been applied for magnetic resonance imaging (MRI) cell tracking for over 30 years, having resulted in a dozen or so clinical trials. SPIO nanoparticles are biodegradable and can be broken down into elemental iron, and hence the tolerance of cells to magnetic labeling has been overall high. Over the years, however, single reports have accumulated demonstrating that the proliferation, migration, adhesion and differentiation of magnetically labeled cells may differ from unlabeled cells, with inhibition of chondrocytic differentiation of labeled human mesenchymal stem cells (hMSCs) as a notable example. This historical perspective provides an overview of some of the drawbacks that can be encountered with magnetic labeling. Now that magnetic particle imaging (MPI) cell tracking is emerging as a new in vivo cellular imaging modality, there has been a renaissance in the formulation of SPIO nanoparticles this time optimized for MPI. Lessons learned from the occasional past pitfalls encountered with SPIO-labeling of cells for MRI may expedite possible future clinical translation of (combined) MRI/MPI cell tracking.
Collapse
Affiliation(s)
- Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chao Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ali Shakeri-Zadeh
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Hill M, Cunniffe N, Franklin R. Seeing is believing: Identifying remyelination in the central nervous system. Curr Opin Pharmacol 2022; 66:102269. [DOI: 10.1016/j.coph.2022.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
|
22
|
Brindle KM. Gene reporters for magnetic resonance imaging. Trends Genet 2022; 38:996-998. [PMID: 35641343 DOI: 10.1016/j.tig.2022.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
Abstract
MRI-based gene reporters allow imaging of gene expression at depth (tens of centimetres) and at relatively high resolution (~10-100 μm) and have the potential to be translated to the clinic. The reporters exploit either endogenous contrast mechanisms or they modulate the response to an introduced exogenous contrast agent.
Collapse
Affiliation(s)
- Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK.
| |
Collapse
|
23
|
Abstract
MRI is a widely available clinical tool for cancer diagnosis and treatment monitoring. MRI provides excellent soft tissue imaging, using a wide range of contrast mechanisms, and can non-invasively detect tissue metabolites. These approaches can be used to distinguish cancer from normal tissues, to stratify tumor aggressiveness, and to identify changes within both the tumor and its microenvironment in response to therapy. In this review, the role of MRI in immunotherapy monitoring will be discussed and how it could be utilized in the future to address some of the unique clinical questions that arise from immunotherapy. For example, MRI could play a role in identifying pseudoprogression, mixed response, T cell infiltration, cell tracking, and some of the characteristic immune-related adverse events associated with these agents. The factors to be considered when developing MRI imaging biomarkers for immunotherapy will be reviewed. Finally, the advantages and limitations of each approach will be discussed, as well as the challenges for future clinical translation into routine clinical care. Given the increasing use of immunotherapy in a wide range of cancers and the ability of MRI to detect the microstructural and functional changes associated with successful response to immunotherapy, the technique has great potential for more widespread and routine use in the future for these applications.
Collapse
Affiliation(s)
- Doreen Lau
- Centre for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Pippa G Corrie
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
24
|
Yun J, Baldini M, Chowdhury R, Mukherjee A. Designing Protein-Based Probes for Sensing Biological Analytes with Magnetic Resonance Imaging. ANALYSIS & SENSING 2022; 2:e202200019. [PMID: 37409177 PMCID: PMC10321474 DOI: 10.1002/anse.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Genetically encoded sensors provide unique advantages for monitoring biological analytes with molecular and cellular-level specificity. While sensors derived from fluorescent proteins represent staple tools in biological imaging, these probes are limited to optically accessible preparations owing to physical curbs on light penetration. In contrast to optical methods, magnetic resonance imaging (MRI) may be used to noninvasively look inside intact organisms at any arbitrary depth and over large fields of view. These capabilities have spurred the development of innovative methods to connect MRI readouts with biological targets using protein-based probes that are in principle genetically encodable. Here, we highlight the state-of-the-art in MRI-based biomolecular sensors, focusing on their physical mechanisms, quantitative characteristics, and biological applications. We also describe how innovations in reporter gene technology are creating new opportunities to engineer MRI sensors that are sensitive to dilute biological targets.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Michelle Baldini
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Rochishnu Chowdhury
- Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for BioEngineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
25
|
Zheng N, Li M, Wu Y, Kaewborisuth C, Li Z, Gui Z, Wu J, Cai A, Lin K, Su KP, Xiang H, Tian X, Manyande A, Xu F, Wang J. A novel technology for in vivo detection of cell type-specific neural connection with AQP1-encoding rAAV2-retro vector and metal-free MRI. Neuroimage 2022; 258:119402. [PMID: 35732245 DOI: 10.1016/j.neuroimage.2022.119402] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 01/10/2023] Open
Abstract
A mammalian brain contains numerous neurons with distinct cell types for complex neural circuits. Virus-based circuit tracing tools are powerful in tracking the interaction among the different brain regions. However, detecting brain-wide neural networks in vivo remains challenging since most viral tracing systems rely on postmortem optical imaging. We developed a novel approach that enables in vivo detection of brain-wide neural connections based on metal-free magnetic resonance imaging (MRI). The recombinant adeno-associated virus (rAAV) with retrograde ability, the rAAV2-retro, encoding the human water channel aquaporin 1 (AQP1) MRI reporter gene was generated to label neural connections. The mouse was micro-injected with the virus at the Caudate Putamen (CPU) region and subjected to detection with Diffusion-weighted MRI (DWI). The prominent structure of the CPU-connected network was clearly defined. In combination with a Cre-loxP system, rAAV2-retro expressing Cre-dependent AQP1 provides a CPU-connected network of specific type neurons. Here, we established a sensitive, metal-free MRI-based strategy for in vivo detection of cell type-specific neural connections in the whole brain, which could visualize the dynamic changes of neural networks in rodents and potentially in non-human primates.
Collapse
Affiliation(s)
- Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Mei Li
- The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kuan-Pin Su
- Department of Psychiatry, China Medical University Hospital, Taichung City, Taiwan, China
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, TW8 9GA, UK
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
26
|
Liu T, Li Z, Li X, Zhao R, Wei X, Wang Z, Xin SX. In vivo visualization of murine melanoma cells B16-derived exosomes through magnetic resonance imaging. Biochim Biophys Acta Gen Subj 2022; 1866:130062. [PMID: 34822924 DOI: 10.1016/j.bbagen.2021.130062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Numerous studies demonstrated that exosomes play a powerful role in mediating intercellular communication to induce a pro-tumoral environment to promote tumor progression, including pre-metastatic niche formation and metastasis. Noninvasive imaging could determine the in vivo kinetics of exosomes in real time to provide better understanding of the mechanisms of the tumor formation, progression and metastasis. Magnetic resonance imaging (MRI) is an ideal technique which provides excellent anatomical resolution, intrinsic soft tissue contrast, unlimited penetration depth and no radiation exposure. METHODS A fusion protein composed of ferritin heavy chain (FTH1) and lactadherin was designed for visualizing exosomes through MRI. FTH1 was served as MRI reporter protein and lactadherin is a membrane-associated protein that is distributed on exosome surface. The characterizations of labeled exosomes were validated through transmission electron microscopy, western blot, nanoparticle tracking analysis and finally visualized in vitro and in vivo through MRI. RESULTS MR imaging showed that the labeled exosomes are able to be visualized in vitro and in vivo. Verification of the characterizations of exosomes observed no significant difference between labeled and unlabeled exosomes. CONCLUSION The proposed FTH1 labeling method was useful for visualizing exosomes through MRI. GENERAL SIGNIFICANCE The present study first reported a novel self-label method for imaging labeled exosomes of tumor cells in vivo through MR with cell endogenous MRI reporter protein. It may be further used as a tool to enhance understanding the role of exosomes in various pathophysiological conditions.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhenlin Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaodong Li
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ruiting Zhao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, Guangdong, China
| | - Zixin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou 510275, Guangdong, China
| | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China; School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
27
|
Computationally designed dual-color MRI reporters for noninvasive imaging of transgene expression. Nat Biotechnol 2022; 40:1143-1149. [PMID: 35102291 DOI: 10.1038/s41587-021-01162-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Imaging of gene-expression patterns in live animals is difficult to achieve with fluorescent proteins because tissues are opaque to visible light. Imaging of transgene expression with magnetic resonance imaging (MRI), which penetrates to deep tissues, has been limited by single reporter visualization capabilities. Moreover, the low-throughput capacity of MRI limits large-scale mutagenesis strategies to improve existing reporters. Here we develop an MRI system, called GeneREFORM, comprising orthogonal reporters for two-color imaging of transgene expression in deep tissues. Starting from two promiscuous deoxyribonucleoside kinases, we computationally designed highly active, orthogonal enzymes ('reporter genes') that specifically phosphorylate two MRI-detectable synthetic deoxyribonucleosides ('reporter probes'). Systemically administered reporter probes exclusively accumulate in cells expressing the designed reporter genes, and their distribution is displayed as pseudo-colored MRI maps based on dynamic proton exchange for noninvasive visualization of transgene expression. We envision that future extensions of GeneREFORM will pave the way to multiplexed deep-tissue mapping of gene expression in live animals.
Collapse
|
28
|
Magnetic iron oxide nanoparticles for biomedical applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20. [DOI: 10.1016/j.cobme.2021.100330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Sugaya K. Characterization of cells expressing MRI reporters for the analysis of epigenetics. Anal Biochem 2021; 633:114395. [PMID: 34600867 DOI: 10.1016/j.ab.2021.114395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
Epigenetics is thought to be involved in highly advanced life phenomena, and its regulation has created new opportunities in regenerative medicine. Mintbody (modification-specific intracellular antibody) can track a posttranslational protein modification in epigenetics using a genetic system encoded within a single chain of variable fragments tagged with a fluorescent protein. Magnetic resonance imaging (MRI) is a technique that allows observation of specific molecules in living organisms. The ferritin heavy chain (FTH1) is one of the MRI reporters used in mammals. The combination of FTH1 with mintbody may show remarkable ability as a reporter for MRI to investigate epigenetics in the deep part of a living organism. This article discusses the suitability and safety of FTH1 for use in the analysis of epigenetics by MRI. Cells expressing the FTH1 hybrid of mintbody showed insufficiently increased sensitivity by MRI even in the presence of excess iron. After incubation with ferric ammonium citrate, DNA damage was found in cells expressing the FTH1 hybrid of mintbody. The use of FTH1 as a genetically encoded reporter for MRI appears to be limited by the requirement of metal and its relatively low sensitivity. These results suggest future directionality and the possibility of studying epigenetics in vivo.
Collapse
Affiliation(s)
- Kimihiko Sugaya
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan.
| |
Collapse
|
30
|
Helfer BM, Ponomarev V, Patrick PS, Blower PJ, Feitel A, Fruhwirth GO, Jackman S, Pereira Mouriès L, Park MVDZ, Srinivas M, Stuckey DJ, Thu MS, van den Hoorn T, Herberts CA, Shingleton WD. Options for imaging cellular therapeutics in vivo: a multi-stakeholder perspective. Cytotherapy 2021; 23:757-773. [PMID: 33832818 PMCID: PMC9344904 DOI: 10.1016/j.jcyt.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Cell-based therapies have been making great advances toward clinical reality. Despite the increase in trial activity, few therapies have successfully navigated late-phase clinical trials and received market authorization. One possible explanation for this is that additional tools and technologies to enable their development have only recently become available. To support the safety evaluation of cell therapies, the Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee, a multisector collaborative committee, polled the attendees of the 2017 International Society for Cell & Gene Therapy conference in London, UK, to understand the gaps and needs that cell therapy developers have encountered regarding safety evaluations in vivo. The goal of the survey was to collect information to inform stakeholders of areas of interest that can help ensure the safe use of cellular therapeutics in the clinic. This review is a response to the cellular imaging interests of those respondents. The authors offer a brief overview of available technologies and then highlight the areas of interest from the survey by describing how imaging technologies can meet those needs. The areas of interest include imaging of cells over time, sensitivity of imaging modalities, ability to quantify cells, imaging cellular survival and differentiation and safety concerns around adding imaging agents to cellular therapy protocols. The Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee believes that the ability to understand therapeutic cell fate is vital for determining and understanding cell therapy efficacy and safety and offers this review to aid in those needs. An aim of this article is to share the available imaging technologies with the cell therapy community to demonstrate how these technologies can accomplish unmet needs throughout the translational process and strengthen the understanding of cellular therapeutics.
Collapse
Affiliation(s)
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - P Stephen Patrick
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alexandra Feitel
- Formerly, Health and Environmental Sciences Institute, US Environmental Protection Agency, Washington, DC, USA
| | - Gilbert O Fruhwirth
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shawna Jackman
- Charles River Laboratories, Shrewsbury, Massachusetts, USA
| | | | - Margriet V D Z Park
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, the Netherlands; Cenya Imaging BV, Amsterdam, the Netherlands
| | - Daniel J Stuckey
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Mya S Thu
- Visicell Medical Inc, La Jolla, California, USA
| | | | | | | |
Collapse
|
31
|
Escherichiacoli Nissle 1917 as a Novel Microrobot for Tumor-Targeted Imaging and Therapy. Pharmaceutics 2021; 13:pharmaceutics13081226. [PMID: 34452187 PMCID: PMC8401140 DOI: 10.3390/pharmaceutics13081226] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 01/26/2023] Open
Abstract
Highly efficient drug delivery systems with excellent tumor selectivity and minimal toxicity to normal tissues remain challenging for tumor treatment. Although great effort has been made to prolong the blood circulation and improve the delivery efficiency to tumor sites, nanomedicines are rarely approved for clinical application. Bacteria have the inherent properties of homing to solid tumors, presenting themselves as promising drug delivery systems. Escherichia coli Nissle 1917 (EcN) is a commonly used probiotic in clinical practice. Its facultative anaerobic property drives it to selectively colonize in the hypoxic area of the tumor for survival and reproduction. EcN can be engineered as a bacteria-based microrobot for molecular imaging, drug delivery, and gene delivery. This review summarizes the progress in EcN-mediated tumor imaging and therapy and discusses the prospects and challenges for its clinical application. EcN provides a new idea as a delivery vehicle and will be a powerful weapon against cancer.
Collapse
|
32
|
Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics 2021; 21:98-109. [PMID: 33981826 PMCID: PMC8065251 DOI: 10.1016/j.omto.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reporter gene imaging (RGI) can accelerate development timelines for gene and viral therapies by facilitating rapid and noninvasive in vivo studies to determine the biodistribution, magnitude, and durability of viral gene expression and/or virus infection. Functional molecular imaging systems used for this purpose can be divided broadly into deep-tissue and optical modalities. Deep-tissue modalities, which can be used in animals of any size as well as in human subjects, encompass single photon emission computed tomography (SPECT), positron emission tomography (PET), and functional/molecular magnetic resonance imaging (f/mMRI). Optical modalities encompass fluorescence, bioluminescence, Cerenkov luminescence, and photoacoustic imaging and are suitable only for small animal imaging. Here we discuss the mechanisms of action and relative merits of currently available reporter gene systems, highlighting the strengths and weaknesses of deep tissue versus optical imaging systems and the hardware/reagents that are used for data capture and processing. In light of recent technological advances, falling costs of imaging instruments, better availability of novel radioactive and optical tracers, and a growing realization that RGI can give invaluable insights across the entire in vivo translational spectrum, the approach is becoming increasingly essential to facilitate the competitive development of new virus- and gene-based drugs.
Collapse
Affiliation(s)
| | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
33
|
Farhadi A, Sigmund F, Westmeyer GG, Shapiro MG. Genetically encodable materials for non-invasive biological imaging. NATURE MATERIALS 2021; 20:585-592. [PMID: 33526879 PMCID: PMC8606175 DOI: 10.1038/s41563-020-00883-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/18/2020] [Indexed: 05/04/2023]
Abstract
Many questions in basic biology and medicine require the ability to visualize the function of specific cells and molecules inside living organisms. In this context, technologies such as ultrasound, optoacoustics and magnetic resonance provide non-invasive imaging access to deep-tissue regions, as used in many laboratories and clinics to visualize anatomy and physiology. In addition, recent work has enabled these technologies to image the location and function of specific cells and molecules inside the body by coupling the physics of sound waves, nuclear spins and light absorption to unique protein-based materials. These materials, which include air-filled gas vesicles, capsid-like nanocompartments, pigment-producing enzymes and transmembrane transporters, enable new forms of biomolecular and cellular contrast. The ability of these protein-based contrast agents to be genetically encoded and produced by cells creates opportunities for unprecedented in vivo studies of cellular function, while their amenability to genetic engineering enables atomic-level design of their physical, chemical and biological properties.
Collapse
Affiliation(s)
- Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felix Sigmund
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany.
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
34
|
Fan K, Lu C, Shu G, Lv XL, Qiao E, Zhang N, Chen M, Song J, Wu F, Zhao Z, Xu X, Xu M, Chen C, Yang W, Sun J, Du Y, Ji J. Sialic acid-engineered mesoporous polydopamine dual loaded with ferritin gene and SPIO for achieving endogenous and exogenous synergistic T2-weighted magnetic resonance imaging of HCC. J Nanobiotechnology 2021; 19:76. [PMID: 33731140 PMCID: PMC7968241 DOI: 10.1186/s12951-021-00821-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor with poor prognosis. Magnetic resonance imaging (MRI) is one of the most effective imaging methods for the early diagnosis of HCC. However, the current MR contrast agents are still facing challenges in the early diagnosis of HCC due to their relatively low sensitivity and biosafety. Thus, the development of effective MR agents is highly needed for the early diagnosis of HCC. Results Herein, we fabricated an HCC-targeted nanocomplexes containing SPIO-loaded mesoporous polydopamine (MPDA@SPIO), sialic acid (SA)-modified polyethyleneimine (SA-PEI), and alpha-fetoprotein regulated ferritin gene (AFP-Fth) which was developed for the early diagnosis of HCC. It was found that the prepared nanocomplexes (MPDA@SPIO/SA-PEI/AFP-Fth) has an excellent biocompatibility towards the liver cells. In vivo and in vivo studies revealed that the transfection of AFP-Fth gene in hepatic cells significantly upregulated the expression level of ferritin, thereby resulting in an enhanced contrast on T2-weighted images via the formed endogenous MR contrast. Conclusions The results suggested that MPDA@SPIO/SA-PEI/AFP-Fth had a superior ability to enhance the MR contrast of T2-weighted images of tumor region than the other preparations, which was due to its HCC-targeted ability and the combined T2 contrast effect of endogenous ferritin and exogenous SPIO. Our study proved that MPDA@SPIO/SA-PEI/AFP-Fth nanocomplexes could be used as an effective MR contrast agent to detect HCC in the early stage.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00821-8.
Collapse
Affiliation(s)
- Kai Fan
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.,Department of Radiology, Sir Run Shaw Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chengying Lu
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Gaofeng Shu
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xiu-Ling Lv
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Enqi Qiao
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.,Department of Radiology, Sir Run Shaw Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Nannan Zhang
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Minjiang Chen
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jingjing Song
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Fazong Wu
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Zhongwei Zhao
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Min Xu
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Chunmiao Chen
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Weibin Yang
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Jihong Sun
- Department of Radiology, Sir Run Shaw Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
| | - Jiansong Ji
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
35
|
Efremova MV, Bodea SV, Sigmund F, Semkina A, Westmeyer GG, Abakumov MA. Genetically Encoded Self-Assembling Iron Oxide Nanoparticles as a Possible Platform for Cancer-Cell Tracking. Pharmaceutics 2021; 13:pharmaceutics13030397. [PMID: 33809789 PMCID: PMC8002387 DOI: 10.3390/pharmaceutics13030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
The study of growth and possible metastasis in animal models of tumors would benefit from reliable cell labels for noninvasive whole-organism imaging techniques such as magnetic resonance imaging. Genetically encoded cell-tracking reporters have the advantage that they are contrast-selective for viable cells with intact protein expression machinery. Besides, these reporters do not suffer from dilution during cell division. Encapsulins, which are bacterial protein nanocompartments, can serve as genetically controlled labels for multimodal detection of cells. Such nanocompartments can host various guest molecules inside their lumen. These include, for example, fluorescent proteins or enzymes with ferroxidase activity leading to biomineralization of iron oxide inside the encapsulin nanoshell. The aim of this work was to implement heterologous expression of encapsulin systems from Quasibacillus thermotolerans using the fluorescent reporter protein mScarlet-I and ferroxidase IMEF in the human hepatocellular carcinoma cell line HepG2. The successful expression of self-assembled encapsulin nanocompartments with functional cargo proteins was confirmed by fluorescence microscopy and transmission electron microscopy. Also, coexpression of encapsulin nanoshells, ferroxidase cargo, and iron transporter led to an increase in T2-weighted contrast in magnetic resonance imaging of HepG2 cells. The results demonstrate that the encapsulin cargo system from Q. thermotolerans may be suitable for multimodal imaging of cancer cells and could contribute to further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Maria V. Efremova
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Correspondence: (M.V.E.); (M.A.A.); Tel.: +74-95-638-4465 (M.A.A.)
| | - Silviu-Vasile Bodea
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Felix Sigmund
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Alevtina Semkina
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Gil G. Westmeyer
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Maxim A. Abakumov
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Correspondence: (M.V.E.); (M.A.A.); Tel.: +74-95-638-4465 (M.A.A.)
| |
Collapse
|
36
|
In Vitro Labeling Mesenchymal Stem Cells with Superparamagnetic Iron Oxide Nanoparticles: Efficacy and Cytotoxicity. Methods Mol Biol 2021; 2118:235-250. [PMID: 32152984 DOI: 10.1007/978-1-0716-0319-2_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell (MSC) therapy has emerged as a potential therapeutic option for several diseases due to their unique properties of releasing important bioactive factors. Despite the advances in stem cell therapy, it is still difficult to accurately determine the mechanisms of cell activities after in vivo transplantation. The application of noninvasive cell tracking approaches is important to determine tissue distribution and the lifetime of stem cells following their injection, which consequently provides knowledge about the mechanisms of stem cell tissue repair. Superparamagnetic iron oxide nanoparticles (SPION) can provide a very useful tool for labeling and tracking stem cells by magnetic resonance imaging without causing toxic cellular effects and do not elicit any other side effects. Here we describe how to use SPIONs to label mesenchymal stem cells and evaluate efficacy and potential cytotoxicity in vitro.
Collapse
|
37
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
38
|
Helfer BM, Bulte JW. Cell Surveillance Using Magnetic Resonance Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Zhang Y, Huang D, Zhang C, Meng J, Tan B, Deng Z. IQF characterization of a cathepsin B-responsive nanoprobe for report of differentiation of HL60 cells into macrophages. RSC Adv 2021; 11:16522-16529. [PMID: 35479137 PMCID: PMC9031808 DOI: 10.1039/d1ra01549d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
Tracking of in vivo fates of exogenous cell transplants in terms of viability, migration, directional differentiation and function delivery by a suitable method of medical imaging is of great significance in the development and application of various cell therapies. In this contribution directional differentiation of HL60 cells into macrophages and granulocytes, and a difference in the associated expression level of cathepsin B (Cat B) among the parent and daughter cells is used as a model to guide and evaluate the development of a Cat B-responsive Abz-FRFK-Dnp@PLGA nanoprobe for an optical report of the differentiation process. A well-documented internally quenched fluorescence (IQF) pair coupled with a peptide substrate FRFK of Cat B was synthesized and imbedded in PLGA to form the nanoprobe. The nanoprobe is resistant to leakage when dispersed in water for 10 days. Degradation of the nanoprobe is dominated by Cat B. HL60 cells were then labelled with the Abz-FRFK-Dnp@PLGA nanoprobe to track the differentiation process. Differentiation of labelled HL60 cells into macrophages exhibited a significantly higher fluorescence relative to the granulocytes or the labelled parent cells. The fluorescence difference allows the differentiation process to be followed. The established characterization and assessment procedure is to be used for the development and evaluation of nanoprobes for other imaging modalities. A Cat B-responsive Abz-FRFK-Dnp@PLGA nanoprobe for an optical report of the differentiation of HL60 cells into macrophages.![]()
Collapse
Affiliation(s)
- Yanhui Zhang
- School of Nano-Tech and Nano-Bionics
- University of Science and Technology of China
- Hefei
- P. R. China
- CAS Key Laboratory of Nano-Bio Interface
| | - Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-tech and Nano-bionics
- Chinese Academy of Sciences
- Suzhou
- P. R. China
| | - Chengxing Zhang
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-tech and Nano-bionics
- Chinese Academy of Sciences
- Suzhou
- P. R. China
| | - Jingjing Meng
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-tech and Nano-bionics
- Chinese Academy of Sciences
- Suzhou
- P. R. China
| | - Bo Tan
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-tech and Nano-bionics
- Chinese Academy of Sciences
- Suzhou
- P. R. China
| | - Zongwu Deng
- School of Nano-Tech and Nano-Bionics
- University of Science and Technology of China
- Hefei
- P. R. China
- CAS Key Laboratory of Nano-Bio Interface
| |
Collapse
|
40
|
Shapiro MG. Reporter Genes for Ultrasound and MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
41
|
Perlman O, Ito H, Gilad AA, McMahon MT, Chiocca EA, Nakashima H, Farrar CT. Redesigned reporter gene for improved proton exchange-based molecular MRI contrast. Sci Rep 2020; 10:20664. [PMID: 33244130 PMCID: PMC7692519 DOI: 10.1038/s41598-020-77576-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Reporter gene imaging allows for non-invasive monitoring of molecular processes in living cells, providing insights on the mechanisms underlying pathology and therapy. A lysine-rich protein (LRP) chemical exchange saturation transfer (CEST) MRI reporter gene has previously been developed and used to image tumor cells, cardiac viral gene transfer, and oncolytic virotherapy. However, the highly repetitive nature of the LRP reporter gene sequence leads to DNA recombination events and the expression of a range of truncated LRP protein fragments, thereby greatly limiting the CEST sensitivity. Here we report the use of a redesigned LRP reporter (rdLRP), aimed to provide excellent stability and CEST sensitivity. The rdLRP contains no DNA repeats or GC rich regions and 30% less positively charged amino-acids. RT-PCR of cell lysates transfected with rdLRP demonstrated a stable reporter gene with a single distinct band corresponding to full-length DNA. A distinct increase in CEST-MRI contrast was obtained in cell lysates of rdLRP transfected cells and in in vivo LRP expressing mouse brain tumors ([Formula: see text], n = 10).
Collapse
Affiliation(s)
- Or Perlman
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Hirotaka Ito
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Assaf A Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Michael T McMahon
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - E Antonio Chiocca
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hiroshi Nakashima
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian T Farrar
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA.
| |
Collapse
|
42
|
Baek SE, Ul-Haq A, Kim DH, Choi HW, Kim MJ, Choi HJ, Kim H. Human Organic Anion Transporting Polypeptide 1B3 Applied as an MRI-Based Reporter Gene. Korean J Radiol 2020; 21:726-735. [PMID: 32410411 PMCID: PMC7231618 DOI: 10.3348/kjr.2019.0903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Recent innovations in biology are boosting gene and cell therapy, but monitoring the response to these treatments is difficult. The purpose of this study was to find an MRI-reporter gene that can be used to monitor gene or cell therapy and that can be delivered without a viral vector, as viral vector delivery methods can result in long-term complications. Materials and Methods CMV promoter-human organic anion transporting polypeptide 1B3 (CMV-hOATP1B3) cDNA or CMV-blank DNA (control) was transfected into HEK293 cells using Lipofectamine. OATP1B3 expression was confirmed by western blotting and confocal microscopy. In vitro cell phantoms were made using transfected HEK293 cells cultured in various concentrations of gadoxetic acid for 24 hours, and images of the phantoms were made with a 9.4T micro-MRI. In vivo xenograft tumors were made by implanting HEK293 cells transfected with CMV-hOATP1B3 (n = 4) or CMV-blank (n = 4) in 8-week-old male nude mice, and MRI was performed before and after intravenous injection of gadoxetic acid (1.2 µL/g). Results Western blot and confocal microscopy after immunofluorescence staining revealed that only CMV-hOATP1B3-transfected HEK293 cells produced abundant OATP1B3, which localized at the cell membrane. OATP1B3 expression levels remained high through the 25th subculture cycle, but decreased substantially by the 50th subculture cycle. MRI of cell phantoms showed that only the CMV-hOATP1B3-transfected cells produced a significant contrast enhancement effect. In vivo MRI of xenograft tumors revealed that only CMV-hOATP1B3-transfected HEK293 tumors demonstrated a T1 contrast effect, which lasted for at least 5 hours. Conclusion The human endogenous OATP1B3 gene can be non-virally delivered into cells to induce transient OATP1B3 expression, leading to gadoxetic acid-mediated enhancement on MRI. These results indicate that hOATP1B3 can serve as an MRI-reporter gene while minimizing the risk of long-term complications.
Collapse
Affiliation(s)
- Song Ee Baek
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Asad Ul-Haq
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dae Hee Kim
- Yonsei University College of Medicine, Seoul, Korea
| | | | - Myeong Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Honsoul Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
43
|
Szulc DA, Lee XA, Cheng HYM, Cheng HLM. Bright Ferritin-a Reporter Gene Platform for On-Demand, Longitudinal Cell Tracking on MRI. iScience 2020; 23:101350. [PMID: 32707432 PMCID: PMC7381694 DOI: 10.1016/j.isci.2020.101350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 02/02/2023] Open
Abstract
A major unresolved challenge in cell-based regenerative medicine is the absence of non-invasive technologies for tracking cell fate in deep tissue and with high spatial resolution over an extended interval. MRI is highly suited for this task, but current methods fail to provide longitudinal monitoring or high sensitivity, or both. In this study, we fill this technological gap with the first discovery and demonstration of in vivo cellular production of endogenous bright contrast via an MRI genetic reporter system that forms manganese-ferritin nanoparticles. We demonstrate this technology in human embryonic kidney cells genetically modified to stably overexpress ferritin and show that, in the presence of manganese, these cells produce far greater contrast than conventional ferritin overexpression with iron or manganese-permeable cells. In living mice, diffusely implanted bright-ferritin cells produce the highest and most sustained contrast in skeletal muscle. The bright-ferritin platform has potential for on-demand, longitudinal, and sensitive cell tracking in vivo.
Collapse
Affiliation(s)
- Daniel A Szulc
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, RS407, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Xavier A Lee
- Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, RS407, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada; The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada.
| |
Collapse
|
44
|
Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO. Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Mol Ther 2020; 28:1392-1416. [PMID: 32243834 PMCID: PMC7264441 DOI: 10.1016/j.ymthe.2020.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapies represent a rapidly emerging class of new therapeutics. They are intended and developed for the treatment of some of the most prevalent human diseases, including cancer, diabetes, and for regenerative medicine. Currently, they are largely developed without precise assessment of their in vivo distribution, efficacy, or survival either clinically or preclinically. However, it would be highly beneficial for both preclinical cell therapy development and subsequent clinical use to assess these parameters in situ to enable enhancements in efficacy, applicability, and safety. Molecular imaging can be exploited to track cells non-invasively on the whole-body level and can enable monitoring for prolonged periods in a manner compatible with rapidly expanding cell types. In this review, we explain how in vivo imaging can aid the development and clinical translation of cell-based therapeutics. We describe the underlying principles governing non-invasive in vivo long-term cell tracking in the preclinical and clinical settings, including available imaging technologies, reporter genes, and imaging agents as well as pitfalls related to experimental design. Our emphasis is on adoptively transferred T cell and stem cell therapies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Madeleine Iafrate
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Adeel Saleem
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
45
|
Iafrate M, Fruhwirth GO. How Non-invasive in vivo Cell Tracking Supports the Development and Translation of Cancer Immunotherapies. Front Physiol 2020; 11:154. [PMID: 32327996 PMCID: PMC7152671 DOI: 10.3389/fphys.2020.00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy is a relatively new treatment regimen for cancer, and it is based on the modulation of the immune system to battle cancer. Immunotherapies can be classified as either molecular or cell-based immunotherapies, and both types have demonstrated promising results in a growing number of cancers. Indeed, several immunotherapies representing both classes are already approved for clinical use in oncology. While spectacular treatment successes have been reported, particularly for so-called immune checkpoint inhibitors and certain cell-based immunotherapies, they have also been accompanied by a variety of severe, sometimes life-threatening side effects. Furthermore, not all patients respond to immunotherapy. Hence, there is the need for more research to render these promising therapeutics more efficacious, more widely applicable, and safer to use. Whole-body in vivo imaging technologies that can interrogate cancers and/or immunotherapies are highly beneficial tools for immunotherapy development and translation to the clinic. In this review, we explain how in vivo imaging can aid the development of molecular and cell-based anti-cancer immunotherapies. We describe the principles of imaging host T-cells and adoptively transferred therapeutic T-cells as well as the value of traceable cancer cell models in immunotherapy development. Our emphasis is on in vivo cell tracking methodology, including important aspects and caveats specific to immunotherapies. We discuss a variety of associated experimental design aspects including parameters such as cell type, observation times/intervals, and detection sensitivity. The focus is on non-invasive 3D cell tracking on the whole-body level including aspects relevant for both preclinical experimentation and clinical translatability of the underlying methodologies.
Collapse
Affiliation(s)
| | - Gilbert O. Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
46
|
Alambyan V, Pace J, Sukpornchairak P, Yu X, Alnimir H, Tatton R, Chitturu G, Yarlagadda A, Ramos-Estebanez C. Imaging Guidance for Therapeutic Delivery: The Dawn of Neuroenergetics. Neurotherapeutics 2020; 17:522-538. [PMID: 32240530 PMCID: PMC7283376 DOI: 10.1007/s13311-020-00843-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Modern neurocritical care relies on ancillary diagnostic testing in the form of multimodal monitoring to address acute changes in the neurological homeostasis. Much of our armamentarium rests upon physiological and biochemical surrogates of organ or regional level metabolic activity, of which a great deal is invested at the metabolic-hemodynamic-hydrodynamic interface to rectify the traditional intermediaries of glucose consumption. Despite best efforts to detect cellular neuroenergetics, current modalities cannot appreciate the intricate coupling between astrocytes and neurons. Invasive monitoring is not without surgical complication, and noninvasive strategies do not provide an adequate spatial or temporal resolution. Without knowledge of the brain's versatile behavior in specific metabolic states (glycolytic vs oxidative), clinical practice would lag behind laboratory empiricism. Noninvasive metabolic imaging represents a new hope in delineating cellular, nigh molecular level energy exchange to guide targeted management in a diverse array of neuropathology.
Collapse
Affiliation(s)
- Vilakshan Alambyan
- Department of Neurology, Albert Einstein Medical Center, Philadelphia, Pennsylvania, USA
| | - Jonathan Pace
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Persen Sukpornchairak
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hamza Alnimir
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ryan Tatton
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gautham Chitturu
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anisha Yarlagadda
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ciro Ramos-Estebanez
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
47
|
Ozbakir HF, Anderson NT, Fan KC, Mukherjee A. Beyond the Green Fluorescent Protein: Biomolecular Reporters for Anaerobic and Deep-Tissue Imaging. Bioconjug Chem 2020; 31:293-302. [PMID: 31794658 PMCID: PMC7033020 DOI: 10.1021/acs.bioconjchem.9b00688] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging represents cornerstone technology for studying biological function at the cellular and molecular levels. The technology's centerpiece is a prolific collection of genetic reporters based on the green fluorescent protein (GFP) and related analogs. More than two decades of protein engineering have endowed the GFP repertoire with an incredible assortment of fluorescent proteins, allowing scientists immense latitude in choosing reporters tailored to various cellular and environmental contexts. Nevertheless, GFP and derivative reporters have specific limitations that hinder their unrestricted use for molecular imaging. These challenges have inspired the development of new reporter proteins and imaging mechanisms. Here, we review how these developments are expanding the frontiers of reporter gene techniques to enable nondestructive studies of cell function in anaerobic environments and deep inside intact animals-two important biological contexts that are fundamentally incompatible with the use of GFP-based reporters.
Collapse
Affiliation(s)
- Harun F. Ozbakir
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Nolan T. Anderson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kang-Ching Fan
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
48
|
Liu T, Zhu Y, Zhao R, Wei X, Xin X. Visualization of exosomes from mesenchymal stem cells in vivo by magnetic resonance imaging. Magn Reson Imaging 2020; 68:75-82. [PMID: 32027941 DOI: 10.1016/j.mri.2020.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE We develop a method of imaging exosomes in vivo according to the vital role of exosomes in intercellular communication. This study aims to design a new label method that allows the visualization of labeled exosomes with magnetic resonance imaging (MRI). METHODS We designed a fusion protein consisting of two parts, namely, ferritin heavy chain (FTH1) and a truncated lactadherin. FTH1 is used as an MRI reporter. Lactadherin is a trans-membrane protein. The lactadherin protein are mostly located on the outer surface of exosomes. We replaced the outer membrane part of lactadherin with FTH1, infected mesenchymal stem cells with lentivirus carrying the fusion protein, and isolated exosomes from the labeled cells by ultracentrifugation. Labeled exosomes were validated by transmission electron microscopy images, Western blot, nanosight particle tracking, and visualized in vitro and in vivo by MRI. RESULTS FTH1 expression would suppress mesenchymal stem cell proliferation, whereas the characterization of labeled exosomes remains comparable with unlabeled exosomes. MR imaging shows that exosomes labeled with FTH1 can be visualized in vitro and in vivo. CONCLUSION This innovative reporter-imaging approach to track and visualize exosomes with MRI can be utilized as a tool for the study of the role of exosomes under different conditions.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yurong Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ruiting Zhao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, Guangdong, China
| | - Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China; School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
49
|
Anderson CE, Johansen M, Erokwu BO, Hu H, Gu Y, Zhang Y, Kavran M, Vincent J, Drumm ML, Griswold MA, Steinmetz NF, Li M, Clark H, Darrah RJ, Yu X, Brady-Kalnay SM, Flask CA. Dynamic, Simultaneous Concentration Mapping of Multiple MRI Contrast Agents with Dual Contrast - Magnetic Resonance Fingerprinting. Sci Rep 2019; 9:19888. [PMID: 31882792 PMCID: PMC6934650 DOI: 10.1038/s41598-019-56531-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022] Open
Abstract
Synchronous assessment of multiple MRI contrast agents in a single scanning session would provide a new "multi-color" imaging capability similar to fluorescence imaging but with high spatiotemporal resolution and unlimited imaging depth. This multi-agent MRI technology would enable a whole new class of basic science and clinical MRI experiments that simultaneously explore multiple physiologic/molecular events in vivo. Unfortunately, conventional MRI acquisition techniques are only capable of detecting and quantifying one paramagnetic MRI contrast agent at a time. Herein, the Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF) methodology was extended for in vivo application and evaluated by simultaneously and dynamically mapping the intra-tumoral concentration of two MRI contrast agents (Gd-BOPTA and Dy-DOTA-azide) in a mouse glioma model. Co-registered gadolinium and dysprosium concentration maps were generated with sub-millimeter spatial resolution and acquired dynamically with just over 2-minute temporal resolution. Mean tumor Gd and Dy concentration measurements from both single agent and dual agent DC-MRF studies demonstrated significant correlations with ex vivo mass spectrometry elemental analyses. This initial in vivo study demonstrates the potential for DC-MRF to provide a useful dual-agent MRI platform.
Collapse
Affiliation(s)
- Christian E Anderson
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Mette Johansen
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Bernadette O Erokwu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - He Hu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yifan Zhang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Kavran
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Jason Vincent
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole F Steinmetz
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, USA
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California-San Diego, La Jolla, CA, USA
| | - Ming Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Heather Clark
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Institute of Systems Bioanalysis and Chemical Imaging, Northeastern University, Boston, MA, USA
| | - Rebecca J Darrah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Francis Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Susann M Brady-Kalnay
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Chris A Flask
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
50
|
Tong S, Zhu H, Bao G. Magnetic Iron Oxide Nanoparticles for Disease Detection and Therapy. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2019; 31:86-99. [PMID: 32831620 PMCID: PMC7441585 DOI: 10.1016/j.mattod.2019.06.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic iron oxide nanoparticles (MIONs) are among the first generation of nanomaterials that have advanced to clinic use. A broad range of biomedical techniques has been developed by combining the versatile nanomagnetism of MIONs with various forms of applied magnetic fields. MIONs can generate imaging contrast and provide mechanical/thermal energy in vivo in response to an external magnetic field, a special feature that distinguishes MIONs from other nanomaterials. These properties offer unique opportunities for nanomaterials engineering in biomedical research and clinical interventions. The past few decades have witnessed the evolution of the applications of MIONs from conventional drug delivery and hyperthermia to the regulation of molecular and cellular processes in the body. Here we review the most recent development in this field, including clinical studies of MIONs and the emerging techniques that may contribute to future innovation in medicine.
Collapse
Affiliation(s)
- Sheng Tong
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Haibao Zhu
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| |
Collapse
|