1
|
Obewhere OA, Acurio-Cerda K, Sutradhar S, Dike M, Keloth R, Dishari SK. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:13114-13142. [PMID: 39356467 DOI: 10.1039/d4cc03221g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
Collapse
Affiliation(s)
| | - Karen Acurio-Cerda
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Sourav Sutradhar
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Moses Dike
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Rajesh Keloth
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| |
Collapse
|
2
|
Madhusudanan M, Chowdhury M. Advancements in Novel Mechano-Rheological Probes for Studying Glassy Dynamics in Nanoconfined Thin Polymer Films. ACS POLYMERS AU 2024; 4:342-391. [PMID: 39399890 PMCID: PMC11468511 DOI: 10.1021/acspolymersau.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 10/15/2024]
Abstract
The nanoconfinement effects of glassy polymer thin films on their thermal and mechanical properties have been investigated thoroughly, especially with an emphasis on its altered glass transition behavior compared to bulk polymer, which has been known for almost three decades. While research in this direction is still evolving, reaching new heights to unravel the underlying physics of phenomena observed in confined thin polymer films, we have a much clearer picture now. This, in turn, has promoted their application in miniaturized and functional applications. To extract the full potential of such confined films, starting from their fabrication, function, and various applications, we must realize the necessity to have an understanding and availability of robust characterization protocols that specifically target thin film thermo-mechanical stability. Being nanometer-sized in thickness, often atop a solid substrate, direct mechanical testing on such films becomes extremely challenging and often encounters serious complexity from the dominating effect of the substrate. In this review, we have compiled together a few important novel and promising techniques for mechano-rheological characterization of glassy polymer thin films. The conceptual background involved in each technique, constitutive equations, methodology, and current status of research are touched upon following a pedagogical tutorial approach. Further, we discussed each technique's success and limitations, carefully covering the puzzling or contradicting observations reported within the broad nexus of glass transition temperature-viscosity-modulus-molecular mobility (including diffusion and relaxation).
Collapse
Affiliation(s)
- Mithun Madhusudanan
- Metallurgical
Engineering and Materials Science, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Mithun Chowdhury
- Metallurgical
Engineering and Materials Science, Indian
Institute of Technology Bombay, Mumbai 400076, India
- Center
for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
3
|
Zhao H, Li Z, Wang Y, Hong QA, Xia W, Chiu YC, Gu X. Unveiling Strong Thin Film Confinement Effects on Semirigid Conjugated Polymers. Macromolecules 2024; 57:9121-9134. [PMID: 39399832 PMCID: PMC11468787 DOI: 10.1021/acs.macromol.4c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Nanoconfinement has been recognized to induce significant changes in the physical properties of polymeric films when their thickness is less than 100 nm. Despite extensive research on the effect of nanoconfinement on nonconjugated polymers, studies focusing on the confinement effects on dynamics and associated electronic and mechanical properties for semiconductive and semirigid conjugated polymers remain limited. In this study, we conducted a comprehensive investigation into the nanoconfinement effects on both p- and n-type conjugated polymers having varying chain rigidity under different degrees of confinement. Using the flash differential scanning calorimetry technique, it was found that the increased molecular mobility with decreasing film thickness, as indicated by the depression of glass transition temperature (T g) from its bulk values, was directly proportional to chain rigidity. This relationship between chain rigidity and enhanced segmental mobility was further corroborated through molecular dynamics simulations. Thinner films exhibited a higher degree of crystallinity for all conjugated polymers, and a significant reduction of more than 50% in elastic modulus was observed for films with approximately 20 nm thickness compared to those of 105 nm thickness, particularly for highly rigid conjugated polymers. Interestingly, we found that the charge mobility remained independent of film thickness, with all samples demonstrating good charge mobility regardless of the different film thicknesses for devices measured here. Nanoconfined conjugated polymer thin films exhibited a combination of mechanical compliance and good charge carrier mobility properties, making them promising candidates for the next generation of flexible and portable organic electronics. From an engineering standpoint, confinement could be an effective strategy to tailor the dynamics and mechanical properties without significant loss of electronic property.
Collapse
Affiliation(s)
- Haoyu Zhao
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States of America
| | - Zhaofan Li
- Department
of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States of America
| | - Yunfei Wang
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States of America
| | - Qi-An Hong
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei City 10607, Taiwan
| | - Wenjie Xia
- Department
of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States of America
| | - Yu-Cheng Chiu
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei City 10607, Taiwan
| | - Xiaodan Gu
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States of America
| |
Collapse
|
4
|
Yang Y, Kalam S, Shabanian S, Golovin K, Zhou X, Zhang Y, Lee J. Maximizing the wetting resistance of fluorine-free omniphobic membranes for hypersaline wastewater desalination. WATER RESEARCH 2024; 261:122021. [PMID: 38986280 DOI: 10.1016/j.watres.2024.122021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Membrane distillation (MD) equipped with omniphobic (non-wetting) membranes has found a niche in water reclamation from hypersaline industrial wastewater. Here, we examined the efficacy of non-fluorinated materials as surface coating agents for omniphobic MD membrane fabrication, and identified necessary mechanisms to attain a maximized wetting resistance using fluorine-free materials. We first prepared MD membranes with different surface chemistries using a series of linear alkylsilanes and polydimethylsiloxane (PDMS) as representative fluorine-free, low surface energy materials. Membranes modified with a longer chain alkylsilane exhibited a lower surface energy and demonstrated a greater wetting resistance in direct contact MD experiments using feedwaters of various surface tensions. Despite the nearly identical surface energy measured for the longest alkylsilane and PDMS, PDMS-modified membrane exhibited an extended antiwetting performance as compared to the membrane treated with the longest alkylsilane. To elucidate the source of the distinctive wetting resistance, we examined the nucleation and condensation kinetics on the surfaces with the different surface chemistries via environmental scanning electron microscopy. Our analysis suggests that the membranes treated with long chain alkylsilanes contain surface defects (i.e., hydrophilic regions) whereas the high mobility of the PDMS effectively minimizes the defect exposure, slowing down the condensation and subsequent surface wetting.
Collapse
Affiliation(s)
- Yinchuan Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sifat Kalam
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sadaf Shabanian
- School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Kevin Golovin
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
5
|
Leoni F, Martelli F, Russo J. Correlating Ultrastability with Fragility and Surface Mobility in Vapor Deposited Tetrahedral Glasses. J Phys Chem Lett 2024; 15:8444-8450. [PMID: 39121353 DOI: 10.1021/acs.jpclett.4c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Several experiments on molecular and metallic glasses have shown that the ability of vapor deposition to produce ultrastable glasses is correlated to their structural and thermodynamic properties. Here we investigate the vapor deposition of a class of tetrahedral materials (including silicon and water) via molecular dynamics simulations of the generalized Stillinger-Weber potential. By changing a single parameter that controls the local tetrahedrality, we show that the emergence of ultrastable behavior is correlated with an increase in the fragility of the model. At the same time, while the mobility of the surface compared to the bulk shows only slight changes at low temperature, with increasing the tetrahedrality, it displays a significant enhancement toward the glass transition temperature. Our results point toward a strong connection between bulk dynamics, surface dynamics, and glass-ultrastability ability in this class of materials.
Collapse
Affiliation(s)
- Fabio Leoni
- Dipartimento di Fisica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy
| | | | - John Russo
- Dipartimento di Fisica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
6
|
Wang T, Young WO, Suazo MJ, Peera A, Carter MCD, Yeung K, Li L, Torkelson JM. Random Copolymers Based on 2-Ethylhexyl Acrylate Exhibit Unusual Glass Transition Breadth and Facile Autonomous Self-Healing over a Broad Composition Range. Macromol Rapid Commun 2024:e2400198. [PMID: 39150329 DOI: 10.1002/marc.202400198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Statistical copolymers are commercially important because their properties can be tuned by comonomer selection and composition. Rubbery-state styrene (S)/n-butyl acrylate (nBA) copolymers have previously been reported to exhibit facile, autonomous self-healing over a narrow composition band (47/53 to 53/47 mol%). The need for a narrow composition band is explained by alternating comonomer sequences that accommodate interchain secondary bonding. It is hypothesized that copolymers that achieve interchain secondary bonding without alternating sequences can exhibit facile self-healing over a broad composition range. 2-ethylhexyl acrylate (EHA) is identified as yielding sequence-independent secondary bonding interactions. For these interactions it is tested experimentally by glass transition breadth in rubbery-state S/EHA copolymers, with S/n-hexyl acrylate (nHA) and S/nBA copolymers as controls. The n-alkyl acrylate random copolymers exhibit enhanced glass transition breadths over narrow composition bands that correspond to autonomous self-healing. In contrast, S/EHA copolymers exhibit much greater glass transition breadths than S/nHA and S/nBA copolymers at all compositions tested as well as self-healing of damage over a broad composition range with full tensile-property recovery, often in 3-10 h. Characterization of glass transition breadth may serve as a simple screening tool for identifying copolymers that exhibit broad-composition-range, facile, autonomous self-healing and contribute to polymer resilience and sustainability.
Collapse
Affiliation(s)
- Tong Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wenshiue O Young
- The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | - Mathew J Suazo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Asghar Peera
- The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | | | - Kimy Yeung
- The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | - Li Li
- The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | - John M Torkelson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
7
|
Omar H, Ahamadi S, Hülagü D, Hidde G, Hertwig A, Szymoniak P, Schönhals A. Investigations of the adsorbed layer of polysulfone: Influence of the thickness of the adsorbed layer on the glass transition of thin films. J Chem Phys 2024; 161:054904. [PMID: 39092946 DOI: 10.1063/5.0223415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
This work studies the influence of the adsorbed layer on the glass transition of thin films of polysulfone. Therefore, the growth kinetics of the irreversibly adsorbed layer of polysulfone on silicon substrates was first investigated using the solvent leaching approach, and the thickness of the remaining layer was measured with atomic force microscopy. Annealing conditions before leaching were varied in temperature and time (0-336 h). The growth kinetics showed three distinct regions: a pre-growth step where it was assumed that phenyl rings align parallel to the substrate at the shortest annealing times, a linear growth region, and a crossover from linear to logarithmic growth observed at higher temperatures for the longest annealing times. No signs of desorption were observed, pointing to the formation of a strongly adsorbed layer. Second, the glass transition of thin polysulfone films was studied in dependence on the film thickness using spectroscopic ellipsometry. Three annealing conditions were compared: two with only a tightly bound layer formed in the linear growth regime and one with both tightly bound and loosely adsorbed layers formed in the logarithmic growth regime. The onset thickness and increase in the glass transition temperature increases with annealing time and temperature. These differences were attributed to the distinct conformations of the formed adsorbed layers.
Collapse
Affiliation(s)
- Hassan Omar
- Bundesanstalt für Materialforschung und -prüfung (BAM) (Fachbereich 6.6), Unter den Eichen 87, 12205 Berlin, Germany
| | - Shayan Ahamadi
- Bundesanstalt für Materialforschung und -prüfung (BAM) (Fachbereich 6.6), Unter den Eichen 87, 12205 Berlin, Germany
| | - Deniz Hülagü
- Bundesanstalt für Materialforschung und -prüfung (BAM) (Fachbereich 6.6), Unter den Eichen 87, 12205 Berlin, Germany
| | - Gundula Hidde
- Bundesanstalt für Materialforschung und -prüfung (BAM) (Fachbereich 6.6), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Hertwig
- Bundesanstalt für Materialforschung und -prüfung (BAM) (Fachbereich 6.6), Unter den Eichen 87, 12205 Berlin, Germany
| | - Paulina Szymoniak
- Bundesanstalt für Materialforschung und -prüfung (BAM) (Fachbereich 6.6), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und -prüfung (BAM) (Fachbereich 6.6), Unter den Eichen 87, 12205 Berlin, Germany
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
8
|
Li X, Liu B, Wang J, Li S, Zhen X, Zhi J, Zou J, Li B, Shen Z, Zhang X, Zhang S, Nan CW. High-temperature capacitive energy stroage in polymer nanocomposites through nanoconfinement. Nat Commun 2024; 15:6655. [PMID: 39107376 PMCID: PMC11303793 DOI: 10.1038/s41467-024-51052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Polymeric-based dielectric materials hold great potential as energy storage media in electrostatic capacitors. However, the inferior thermal resistance of polymers leads to severely degraded dielectric energy storage capabilities at elevated temperatures, limiting their applications in harsh environments. Here we present a flexible laminated polymer nanocomposite where the polymer component is confined at the nanoscale, achieving improved thermal-mechanical-electrical stability within the resulting nanocomposite. The nanolaminate, consisting of nanoconfined polyetherimide (PEI) polymer sandwiched between solid Al2O3 layers, exhibits a high energy density of 18.9 J/cm3 with a high energy efficiency of ~ 91% at elevated temperature of 200°C. Our work demonstrates that nanoconfinement of PEI polymer results in reduced diffusion coefficient and constrained thermal dynamics, leading to a remarkable increase of 37°C in glass-transition temperature compared to bulk PEI polymer. The combined effects of nanoconfinement and interfacial trapping within the nanolaminates synergistically contribute to improved electrical breakdown strength and enhanced energy storage performance across temperature range up to 250°C. By utilizing the flexible ultrathin nanolaminate on curved surfaces such as thin metal wires, we introduce an innovative concept that enables the creation of a highly efficient and compact metal-wired capacitor, achieving substantial capacitance despite the minimal device volume.
Collapse
Affiliation(s)
- Xinhui Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Shuxuan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xin Zhen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiapeng Zhi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Junjie Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Bei Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhonghui Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Shujun Zhang
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, NSW, 2522, Australia.
| | - Ce-Wen Nan
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Yang L, Nickmilder P, Verhoogt H, Hoeks T, Leclère P. Probing Viscoelastic Properties and Interfaces in High-Density Polyethylene Vitrimers at the Nanoscale Using Dynamic Mode Atomic Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38501-38510. [PMID: 38993000 DOI: 10.1021/acsami.4c06809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Vitrimers are a new class of heterogeneous polymers that combine the best features of thermosets with those of thermoplastics. The introduction of cross-links strongly changes the viscoelastic behavior of vitrimer materials. However, the characterization and understanding of the nanostructures and interfaces in vitrimers resulting from dynamic cross-linking formation remain a major challenge. Here, using dynamic modes of atomic force microscopy (AFM), namely intermodulation AFM (ImAFM) and AFM-based dynamic mechanical analysis (AFM-nDMA), local viscoelastic properties and interfaces at the nanoscale length of high-density polyethylene (HDPE) vitrimer materials are reported. ImAFM imaging in combination with the k-means clustering algorithm clearly reveals two distinct phases in the vitrimer system with highly different viscoelastic properties. AFM-nDMA further provides quantitative nanoviscoelastic properties at the nanoscale to confirm that there is a cross-linking-rich aggregation area forming a nanosize network structure in the cross-linking-poor matrix phase. The cross-linking-rich region shows a similar elastic modulus but much higher adhesion force measured by AFM compared to the cross-linking-poor HDPE matrix. Furthermore, the frequency influence on the local viscoelastic properties of HDPE vitrimer at the nanoscale was initially screened. The observed HDPE vitrimer nanostructures and viscoelastic properties at the nanoscale also provide explanations on the observed bulk HDPE vitrimer crystallinity decrease and dimensional stability increase compared to HDPE. Therefore, probing the viscoelastic properties and interfaces of HDPE vitrimer provides important insights into understanding of the correlations between the vitrimer nanostructure and the bulk mechanical and rheological behaviors.
Collapse
Affiliation(s)
- Lanti Yang
- Analytical Science Europe, Corporate T&I, SABIC, Plasticslaan 1, Bergen op Zoom 4612 PX, The Netherlands
| | - Pierre Nickmilder
- Laboratory for Physics of Nanomaterials and Energy (LPNE), Research Institute in Materials Science and Engineering, University of Mons (UMONS), Mons B-7000, Belgium
| | - Henk Verhoogt
- High Performance Materials, Corporate T&I, SABIC, Geleen 6167 RD, The Netherlands
| | - Theo Hoeks
- Corporate T&I, SABIC, Plasticslaan 1, Bergen op Zoom 4612 PX, The Netherlands
| | - Philippe Leclère
- Laboratory for Physics of Nanomaterials and Energy (LPNE), Research Institute in Materials Science and Engineering, University of Mons (UMONS), Mons B-7000, Belgium
| |
Collapse
|
10
|
Tian H, Luo J, Tang Q, Zha H, Priestley RD, Hu W, Zuo B. Intramolecular dynamic coupling slows surface relaxation of polymer glasses. Nat Commun 2024; 15:6082. [PMID: 39030198 PMCID: PMC11271542 DOI: 10.1038/s41467-024-50398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Over the past three decades, studies have indicated a mobile surface layer with steep gradients on glass surfaces. Among various glasses, polymers are unique because intramolecular interactions - combined with chain connectivity - can alter surface dynamics, but their fundamental role has remained elusive. By devising polymer surfaces occupied by chain loops of various penetration depths, combined with surface dissipation experiments and Monte Carlo simulations, we demonstrate that the intramolecular dynamic coupling along surface chains causes the sluggish bulk polymers to suppress the fast surface dynamics. Such effect leads to that accelerated segmental relaxation on polymer glass surfaces markedly slows when the surface polymers extend chain loops deeper into the film interior. The surface mobility suppression due to the intramolecular coupling reduces the magnitude of the reduction in glass transition temperature commonly observed in thin films, enabling new opportunities for tailoring polymer properties at interfaces and under confinement and producing glasses with enhanced thermal stability.
Collapse
Affiliation(s)
- Houkuan Tian
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jintian Luo
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiyun Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China.
| | - Hao Zha
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ, 08544, USA.
| | - Wenbing Hu
- Department of Polymer Science, School of Chemistry and Chemical Engineering, State Key Lab of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| | - Biao Zuo
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China.
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou, 312400, China.
| |
Collapse
|
11
|
Gaikwad S, Urban MW. Fluorophilic Sigma(σ)-Lock Self-Healable Copolymers. Angew Chem Int Ed Engl 2024; 63:e202405504. [PMID: 38739414 DOI: 10.1002/anie.202405504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Although F-Containing molecules and macromolecules are often used in molecular biology to increase the binding with Lewis acidic groups by introducing favorable C-F dipoles, there is virtually no experimental evidence and limited understanding of the nature of these interactions, especially their role in synthetic polymeric materials. These studies elucidate the molecular origin of inter- and intra-Chain interactions responsible for self-healing of F-Containing copolymers composed of pentafluorostyrene and n-butyl acrylate units (p(PFS/nBA). Guided by dynamic surface oscillating force (SOF) and spectroscopic measurements supported by molecular dynamics (MD) simulations, these studies show that the reformation of σ-σ orbitals in -C-F of PFS and CH3CH2- of nBA units enables the recovery of entropic energy via fluorophilic-σ-lock van der Waals forces when PFS/nBA molar ratios are ~50/50. The strength of these interactions determined experimentally for self-healable PFS/nBA compositions is in the order ~0.3 kcal/mol which primarily comes from fluorophilic-σ-lock (~70 %) contributions. These interactions are significantly diminished for non-self-healable counterparts. Strongly polarized -C-F σ orbitals create lateral dipolar forces enhancing the affinity towards -C-H orbitals, facilitating energetically favorable interactions. Entropic recovery driven by non-Covalent bonding offers a valuable tool in designing materials with unique functionalities, particularly self-healable batteries and energy storage devices.
Collapse
Affiliation(s)
- Samruddhi Gaikwad
- Department of Materials Science and Engineering, Clemson University, Clemson, 29634, SC
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, 29634, SC
| |
Collapse
|
12
|
Kumaki J. In Situ Real-Time Atomic Force Microscopy Observation of the Surface Mobility on Each Domain of a Polystyrene- b-poly(methyl methacrylate) Film at High Temperatures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12974-12986. [PMID: 38857434 DOI: 10.1021/acs.langmuir.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The surface chain movements within the microdomains of a polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) and corresponding homopolymer films were observed via in situ real-time atomic force microscopy (AFM) at high temperatures and analyzed quantitatively using particle image velocimetry (PIV). At low temperatures, mobility within the PS microdomains resembled that within the PS homopolymer film, but movements in the PMMA microdomains were notably accelerated compared to the PMMA homopolymer. Conversely, at high temperatures, mobility within both PS and PMMA microdomains was considerably suppressed compared to their respective homopolymer films, likely owing to the fixed linkage of the block chains at the microdomain interface. This combination of real-time AFM observation and PIV analysis is an effective method for quantitatively evaluating surface chain mobility in real space.
Collapse
Affiliation(s)
- Jiro Kumaki
- Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
13
|
Zhai Q, Gao XY, Lee CS, Ong CY, Yan K, Deng HY, Yang S, Lam CH. Surface mobility gradient and emergent facilitation in glassy films. SOFT MATTER 2024; 20:4389-4394. [PMID: 38757511 DOI: 10.1039/d4sm00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Confining glassy polymers into films can substantially modify their local and film-averaged properties. We present a lattice model of film geometry with void-mediated facilitation behaviors but free from any elasticity effect. We analyze the spatially varying viscosity to delineate the transport properties of glassy films. The film mobility measurements reported by Yang et al., Science, 2010, 328, 1676 are successfully reproduced. The flow exhibits a crossover from a simple viscous flow to a surface-dominated regime as the temperature decreases. The propagation of a highly mobile front induced by the free surface is visualized in real space. Our approach provides a microscopic treatment of the observed glassy phenomena.
Collapse
Affiliation(s)
- Qiang Zhai
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an, Shaanxi, 710049, China.
| | - Xin-Yuan Gao
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chun-Shing Lee
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chin-Yuan Ong
- School of Physics, Yale University, New Haven, Connecticut, 06520, USA
| | - Ke Yan
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Hai-Yao Deng
- School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, Wales, UK.
| | - Sen Yang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an, Shaanxi, 710049, China.
| | - Chi-Hang Lam
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
14
|
Liu J, Urban MW. Dynamic Interfaces in Self-Healable Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7268-7285. [PMID: 38395626 DOI: 10.1021/acs.langmuir.3c03696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
It is well-established that interfaces play critical roles in biological and synthetic processes. Aside from significant practical applications, the most accessible and measurable quantity is interfacial tension, which represents a measure of the energy required to create or rejoin two surfaces. Owing to the fact that interfacial processes are critical in polymeric materials, this review outlines recent advances in dynamic interfacial processes involving physics and chemistry targeting self-healing. Entropic interfacial energies stored during damage participate in the recovery, and self-healing depends upon copolymer composition and monomer sequence, monomer molar ratios, molecular weight, and polymer dispersity. These properties ultimately impact chain flexibility, shape-memory recovery, and interfacial interactions. Self-healing is a localized process with global implications on mechanical and other properties. Selected examples driven by interfacial flow and shape memory effects are discussed in the context of covalent and supramolecular rebonding targeting self-healable materials development.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Materials Science and Engineering Clemson University, Clemson, South Carolina 29634, United States
| | - Marek W Urban
- Department of Materials Science and Engineering Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
15
|
Pallaka MR, Simon SL. The glass transition and enthalpy recovery of polystyrene nanorods using Flash differential scanning calorimetry. J Chem Phys 2024; 160:124904. [PMID: 38533885 DOI: 10.1063/5.0190076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/31/2024] [Indexed: 03/28/2024] Open
Abstract
The glass transition (Tg) behavior and enthalpy recovery of polystyrene nanorods within an anodic aluminum oxide (AAO) template (supported nanorods) and after removal from AAO (unsupported nanorods) is studied using Flash differential scanning calorimetry. Tg is found to be depressed relative to the bulk by 20 ± 2 K for 20 nm-diameter unsupported polystyrene (PS) nanorods at the slowest cooling rate and by 9 ± 1 K for 55 nm-diameter rods. On the other hand, bulk-like behavior is observed in the case of unsupported 350 nm-diameter nanorods and for all supported rods in AAO. The size-dependent Tg behavior of the PS unsupported nanorods compares well with results for ultrathin films when scaled using the volume/surface ratio. Enthalpy recovery was also studied for the 20 and 350 nm unsupported nanorods with evolution toward equilibrium found to be linear with logarithmic time. The rate of enthalpy recovery for the 350 nm rods was similar to that for the bulk, whereas the rate of recovery was enhanced for the 20 nm rods for down-jump sizes larger than 17 K. A relaxation map summarizes the behavior of the nanorods relative to the bulk and relative to that for the 20 nm-thick ultrathin film. Interestingly, the fragility of the 20 nm-diameter nanorod and the 20 nm ultrathin film are identical within the error of measurements, and when plotted vs departure from Tg (i.e., T - Tg), the relaxation maps of the two samples are identical in spite of the fact that the Tg is depressed 8 K more in the nanorod sample.
Collapse
Affiliation(s)
- Madhusudhan R Pallaka
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Sindee L Simon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
16
|
Lee J, Lee S, Lee K, Joung H, Choi SK, Kim M, Yang J, Paeng K. Segmental dynamics of polystyrene near polymer-polymer interfaces. J Chem Phys 2024; 160:124902. [PMID: 38516976 DOI: 10.1063/5.0189494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
This study investigated the segmental dynamics of polymers near polymer-polymer interfaces by probing the rotation of polymer-tethered fluorescent molecules using imaging rotational fluorescence correlation microscopy. Multilayered films were utilized to provide spatial selectivity relative to different polymer-polymer interfaces. In the experimental setup, for the overlayer polymer, polystyrene (PS) was employed and a 15 nm-thick probe-containing layer was placed ≈25 nm apart from different underlayer polymers with glass transition temperatures (Tg) either lower or higher than that of PS. The underlayer of poly-n-butyl methacrylate had 72 K lower Tg than that of PS, whereas polymethyl methacrylate and polysulfone had 22 and 81 K higher Tg, respectively, than that of PS. Two key dynamic features of the glass transition, the non-Arrhenius temperature dependence and stretched relaxation, were examined to study the influence of soft and hard confinements on the segmental dynamics of the overlayer polymer near the polymer-polymer interfaces. Although complications exist in the probing location owing to the diffusion of the polymer-tethered probe during the annealing protocol to consolidate the multilayers, the results suggest that either the segmental dynamics of the polymer near the polymer-polymer interface do not change owing to the soft and hard confinements or the interfacial perturbation is very short ranged.
Collapse
Affiliation(s)
- Jeongin Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Keonchang Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyeyoung Joung
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Republic of Korea
| | - Seung Kun Choi
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Myungwoong Kim
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Jaesung Yang
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Republic of Korea
| | - Keewook Paeng
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
17
|
Serna S, Wang T, Torkelson JM. Eliminating the Tg-confinement and fragility-confinement effects in poly(4-methylstyrene) films by incorporation of 3 mol % 2-ethylheyxl acrylate comonomer. J Chem Phys 2024; 160:034903. [PMID: 38235797 DOI: 10.1063/5.0189409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Nanoconfined poly(4-methylstyrene) [P(4-MS)] films exhibit reductions in glass transition temperature (Tg) relative to bulk Tg (Tg,bulk). Ellipsometry reveals that 15-nm-thick P(4-MS) films supported on silicon exhibit Tg - Tg,bulk = - 15 °C. P(4-MS) films also exhibit fragility-confinement effects; fragility decreases ∼60% in going from bulk to a 20-nm-thick film. Previous research found that incorporating 2-6 mol % 2-ethylhexyl acrylate (EHA) comonomer in styrene-based random copolymers eliminates Tg- and fragility-confinement effects in polystyrene. Here, we demonstrate that incorporating 3 mol % EHA in a 4-MS-based random copolymer, 97/3 P(4-MS/EHA), eliminates the Tg- and fragility-confinement effects. The invariance of fragility with nanoconfinement of 97/3 P(4-MS/EHA) films, hypothesized to originate from the interdigitation of ethylhexyl groups, indicates that the presence of EHA prevents the free surface from perturbing chain packing and the cooperative mobility associated with Tg. This method of eliminating confinement effects is advantageous as it relies on the simplest of polymerization methods and neat copolymer only slightly altered in composition from homopolymer. We also investigated whether we could eliminate the Tg-confinement effect with low levels of 2-ethylhexyl methacrylate (EHMA) in 4-MS-based or styrene-based copolymers. Although EHMA is structurally nearly identical to EHA, 4-MS-based and styrene-based copolymers incorporating 4 mol % EHMA exhibit Tg-confinement effects similar to P(4-MS) and polystyrene. These results support the special character of EHA in eliminating confinement effects originating at free surfaces.
Collapse
Affiliation(s)
- Sergio Serna
- Department of Chemical and Biological Engineering, Evanston, Illinois 60208, USA
| | - Tong Wang
- Department of Chemical and Biological Engineering, Evanston, Illinois 60208, USA
| | - John M Torkelson
- Department of Chemical and Biological Engineering, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
18
|
Gagnon YJ, Burton JC, Roth CB. Development of broad modulus profile upon polymer-polymer interface formation between immiscible glassy-rubbery domains. Proc Natl Acad Sci U S A 2024; 121:e2312533120. [PMID: 38147561 PMCID: PMC10769838 DOI: 10.1073/pnas.2312533120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 12/28/2023] Open
Abstract
Interfaces of glassy materials such as thin films, blends, and composites create strong unidirectional gradients to the local heterogeneous dynamics that can be used to elucidate the length scales and mechanisms associated with the dynamic heterogeneity of glasses. We focus on bilayer films of two different polymers with very different glass transition temperatures ([Formula: see text]) where previous work has demonstrated a long-range (∼200 nm) profile in local [Formula: see text] is established between immiscible glassy and rubbery polymer domains when the polymer-polymer interface is formed to equilibrium. Here, we demonstrate that an equally long-ranged gradient in local modulus [Formula: see text] is established when the polymer-polymer interface ([Formula: see text]5 nm) is formed between domains of glassy polystyrene (PS) and rubbery poly(butadiene) (PB), consistent with previous reports of a broad [Formula: see text] profile in this system. A continuum physics model for the shear wave propagation caused by a quartz crystal microbalance across a PB/PS bilayer film is used to measure the viscoelastic properties of the bilayer during the evolution of the PB/PS interface showing the development of a broad gradient in local modulus [Formula: see text] spanning [Formula: see text]180 nm between the glassy and rubbery domains of PS and PB. We suggest these broad profiles in [Formula: see text] and [Formula: see text] arise from a coupling of the spectrum of vibrational modes across the polymer-polymer interface as a result of acoustic impedance matching of sound waves with [Formula: see text] nm during interface broadening that can then trigger density fluctuations in the neighboring domain.
Collapse
Affiliation(s)
| | | | - Connie B. Roth
- Department of Physics, Emory University, Atlanta, GA30322
| |
Collapse
|
19
|
Fesenmeier DJ, Kim S, Won YY. Effect of temperature on the air-water surface mechanical behavior of water-spread block copolymer micelles. SOFT MATTER 2023; 19:9269-9281. [PMID: 38009013 PMCID: PMC10782589 DOI: 10.1039/d3sm01003a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
In the pursuit of the development of a first-in-kind polymer lung surfactant (PLS) therapeutic whose effects are biophysical in nature, a comprehensive understanding of the factors affecting the air-water surface mechanical behavior of water-spread block copolymer micelles is desired. To this end, we explore the effect of temperature on the surface mechanical behavior of two different micelle core chemistries, poly(styrene) (PS) and poly(tert-butyl methacrylate) (PtBMA), each having poly(ethylene glycol) (PEG) as the hydrophilic block. The behavior is characterized using surface pressure-area isotherms and quantitative Brewster angle microscopy. The results indicate that the temperature has a significant effect on the micelle structure at the interface and this effect is related to the core Tg as well as the core interfacial tension properties. When temperature is higher than the core Tg for PS-PEG, the spherical micelle core rearranges to form an oblate-like structure which increases its interfacial area. The structural rearrangement changes the mechanism by which the film produces high surface pressure. For PtBMA-PEG, which has a lower interfacial tension with water and air compared to PS, the core domains spread at the interface when the mobility is sufficiently high such that a PtBMA film is formed under high compression. The implications of these changes on PLS efficacy are discussed highlighting the importance of core Tg characterization for polymer nanoparticle applications.
Collapse
Affiliation(s)
- Daniel J Fesenmeier
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Seyoung Kim
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Polymer Science and Engineering, Dankook University, Yongin, Gyeonggi 16890, Republic of Korea
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Ghanekarade A, Simmons DS. Glass formation and dynamics of model polymer films with one versus two active interfaces. SOFT MATTER 2023; 19:8413-8422. [PMID: 37877245 DOI: 10.1039/d3sm00719g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Polymers and other glass-forming liquids can exhibit profound alterations in dynamics in the nanoscale vicinity of interfaces, over a range appreciably exceeding that of typical interfacial thermodynamic gradients. The understanding of these dynamical gradients is particularly complicated in systems with internal or external nanoscale dimensions, where a gradient nucleated at one interface can impinge on a second, potentially distinct, interface. To better understand the interactions that govern system dynamics and glass formation in these cases, here we simulate the baseline case of a glass-forming polymer film, over a wide range of thickness, supported on a dynamically neutral substrate that has little effect on nearby dynamics. We compare these results to our prior simulations of freestanding films. Results indicate that dynamical gradients in our simulated systems, as measured based upon translational relaxation, are simply truncated when they impinge on a secondary surface that is locally dynamically neutral. Altered film behavior can be described almost entirely by gradient effects down to the thinnest films probed, with no evidence for finite-size effects sometimes posited to play a role in these systems. Finally, our simulations predict that linear gradient overlap effects in the presence of symmetric dynamically active interfaces yield a non-monotonic variation of the whole free standing film stretching exponent (relaxation time distribution breadth). The maximum relaxation time distribution breadth in simulation is found at a film thickness of 4-5 times the interfacial gradient range. Observation of this maximum in experiment would provide an important validation that the gradient behavior observed in simulation persists to experimental timescales. If validated, observation of this maximum would potentially also enable determination of the dynamic gradient range from experimental mean-film measurements of film dynamics.
Collapse
Affiliation(s)
- Asieh Ghanekarade
- Department of Chemical, Biological, and Materials Engineering, The University of South Florida, Tampa, Florida, USA.
| | - David S Simmons
- Department of Chemical, Biological, and Materials Engineering, The University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
21
|
Mo R, Zhang F, Sheng X, Zhang X. A Sensitive Concentration- and Polarity-Dependent Pyrene-Derived Vibrationally Resolved Fluorescence Probe for The Polymer Interdiffusion Study. Macromol Rapid Commun 2023; 44:e2300391. [PMID: 37690003 DOI: 10.1002/marc.202300391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Indexed: 09/11/2023]
Abstract
The vibrationally resolved pyrene fluorescence probe method is once popular but now languished, because the vibrationally resolved patterns of pyrene with limited sensitivity and concentration independence have not been updated for over 50 years. During investigation on the polymer interdiffusion of a latex film, it is found that a pyrene acylhydrazone whose vibrationally resolved fluorescence pattern contradictory to those reported in pyrene and most pyrene derivatives. The pyrene acylhydrazone has sensitive concentration- and polarity-dependent fluorescence spectra (the sensitivity on polarity is at most 26 times higher than the old vibrationally resolved patterns), and the sensitivity well remains when it is copolymerized in a polymer. The vibrationally resolved spectrum of this pyrene acylhydrazone is a powerful fluorescence probe, which would be as useful as the pyrene excimer probe nowadays popular.
Collapse
Affiliation(s)
- Ruibin Mo
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Fusheng Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Xinxin Sheng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinya Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
22
|
Li X, He S, Jiang Y, Wang J, Yu Y, Liu X, Zhu F, Xie Y, Li Y, Ma C, Shen Z, Li B, Shen Y, Zhang X, Zhang S, Nan CW. Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites. Nat Commun 2023; 14:5707. [PMID: 37714851 PMCID: PMC10504251 DOI: 10.1038/s41467-023-41479-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Polymer nanocomposites with nanoparticles dispersed in polymer matrices have attracted extensive attention due to their significantly improved overall performance, in which the nanoparticle-polymer interface plays a key role. Understanding the structures and properties of the interfacial region, however, remains a major challenge for polymer nanocomposites. Here, we directly observe the presence of two interfacial polymer layers around a nanoparticle in polar polymers, i.e., an inner bound polar layer (~10 nm thick) with aligned dipoles and an outer polar layer (over 100 nm thick) with randomly orientated dipoles. Our results reveal that the impacts of the local nanoparticle surface potential and interparticle distance on molecular dipoles induce interfacial polymer layers with different polar molecular conformations from the bulk polymer. The bilayer interfacial features lead to an exceptional enhancement in polarity-related properties of polymer nanocomposites at ultralow nanoparticle loadings. By maximizing the contribution of inner bound polar layer via a nanolamination design, we achieve an ultrahigh dielectric energy storage density of 86 J/cm3, far superior to state-of-the-art polymers and nanocomposites.
Collapse
Affiliation(s)
- Xinhui Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, Hubei, China
| | - Shan He
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China
| | - Yanda Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, Hubei, China
| | - Yi Yu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Xiaofei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, Hubei, China
| | - Feng Zhu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yimei Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, Hubei, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Cheng Ma
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhonghui Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, Hubei, China
| | - Baowen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, Hubei, China
| | - Yang Shen
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, Hubei, China.
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China.
| | - Shujun Zhang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, Australia.
| | - Ce-Wen Nan
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China.
| |
Collapse
|
23
|
Wen P, Ke W, Dirisala A, Toh K, Tanaka M, Li J. Stealth and pseudo-stealth nanocarriers. Adv Drug Deliv Rev 2023; 198:114895. [PMID: 37211278 DOI: 10.1016/j.addr.2023.114895] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The stealth effect plays a central role on capacitating nanomaterials for drug delivery applications through improving the pharmacokinetics such as blood circulation, biodistribution, and tissue targeting. Here based on a practical analysis of stealth efficiency and a theoretical discussion of relevant factors, we provide an integrated material and biological perspective in terms of engineering stealth nanomaterials. The analysis surprisingly shows that more than 85% of the reported stealth nanomaterials encounter a rapid drop of blood concentration to half of the administered dose within 1 h post administration although a relatively long β-phase is observed. A term, pseudo-stealth effect, is used to delineate this common pharmacokinetics behavior of nanomaterials, that is, dose-dependent nonlinear pharmacokinetics because of saturating or depressing bio-clearance of RES. We further propose structural holism can be a watershed to improve the stealth effect; that is, the whole surface structure and geometry play important roles, rather than solely relying on a single factor such as maximizing repulsion force through polymer-based steric stabilization (e.g., PEGylation) or inhibiting immune attack through a bio-inspired component. Consequently, engineering delicate structural hierarchies to minimize attractive binding sites, that is, minimal charges/dipole and hydrophobic domain, becomes crucial. In parallel, the pragmatic implementation of the pseudo-stealth effect and dynamic modulation of the stealth effect are discussed for future development.
Collapse
Affiliation(s)
- Panyue Wen
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Wendong Ke
- Chemical Macromolecule Division, Asymchem Life Science (Tianjin) Co., Ltd. No. 71, Seventh Avenue, TEDA Tianjin 300457, P.R. China
| | - Anjaneyulu Dirisala
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazuko Toh
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junjie Li
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
24
|
Leoni F, Martelli F, Royall CP, Russo J. Structural Signatures of Ultrastability in a Deposited Glassformer. PHYSICAL REVIEW LETTERS 2023; 130:198201. [PMID: 37243654 DOI: 10.1103/physrevlett.130.198201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
Glasses obtained from vapor deposition on a cold substrate have superior thermodynamic and kinetic stability with respect to ordinary glasses. Here we perform molecular dynamics simulations of vapor deposition of a model glassformer and investigate the origin of its high stability compared to that of ordinary glasses. We find that the vapor deposited glass is characterized by locally favored structures (LFSs) whose occurrence correlates with its stability, reaching a maximum at the optimal deposition temperature. The formation of LFSs is enhanced near the free surface, hence supporting the idea that the stability of vapor deposited glasses is connected to the relaxation dynamics at the surface.
Collapse
Affiliation(s)
- Fabio Leoni
- Dipartimento di Fisica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Fausto Martelli
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom
| | - C Patrick Royall
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - John Russo
- Dipartimento di Fisica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
25
|
Liu J, Li J, Liu B, Hamley IW, Jiang S. Mpemba effect in crystallization of polybutene-1. SOFT MATTER 2023; 19:3337-3347. [PMID: 37096363 DOI: 10.1039/d3sm00309d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Mpemba effect and its inverse can be understood as a result of nonequilibrium thermodynamics. In polymers, changes of state are generally non-equilibrium processes. However, the Mpemba effect has been rarely reported in the crystallization of polymers. In the melt, polybutene-1 (PB-1) has the lowest critical cooling rate in polyolefins and tends to maintain its original structure and properties with thermal history. A nascent PB-1 sample was prepared by using metallocene catalysis at low temperature, and the crystallization behavior and crystalline structure of the PB-1 were characterized by DSC and WAXS. Experimentally, a clear Mpemba effect is observed not only in the crystallization of the nascent PB-1 melt in form II but also in form I obtained from the nascent PB-1 at low melting temperature. It is proposed that this is due to the differences in the chain conformational entropy in the lattice which influence conformational relaxation times. The entropy and the relaxation time can be predicted using the Adam-Gibbs equations, whereas non-equilibrium thermodynamics is required to describe the crystallization with the Mpemba effect.
Collapse
Affiliation(s)
- Jinghua Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Jingqing Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymer Materials, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300130, China
| | - Ian W Hamley
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Shichun Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
26
|
Kuebler J, Loosbrock T, Strzalka J, Fernandez-Ballester L. Direct Observation of Two-Step, Stratified Crystallization and Morphology in Conjugated Polymer Thin Films. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Jesse Kuebler
- Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska at Lincoln, Lincoln, Nebraska 68588, United States
| | - Tucker Loosbrock
- Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska at Lincoln, Lincoln, Nebraska 68588, United States
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lucia Fernandez-Ballester
- Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska at Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
27
|
Zhou Y, Zhang J, Huang J. Dynamic Propagation Depth in Substrate-Supported Polymer Films: A Molecular Dynamics Simulation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Yun Zhou
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jin Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianhua Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
28
|
Esparza GL, Kodur M, Chen AX, Wang B, Bunch JA, Cramlet J, Runser R, Fenning DP, Lipomi DJ. Solvent-Free Transfer of Freestanding Large-Area Conjugated Polymer Films for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207798. [PMID: 36634339 DOI: 10.1002/adma.202207798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Conventional processes for depositing thin films of conjugated polymers are restricted to those based on vapor, liquid, and solution-phase precursors. Each of these methods bear some limitations. For example, low-bandgap polymers with alternating donor-acceptor structures cannot be deposited from the vapor phase, and solution-phase deposition is always subject to issues related to the incompatibility of the substrate with the solvent. Here, a technique to enable deposition of large-area, ultra-thin films (≈20 nm or more), which are transferred from the surface of water, is demonstrated. From the water, these pre-solidified films can then be transferred to a desired substrate, circumventing limitations such as solvent orthogonality. The quality of these films is characterized by a variety of imaging and electrochemical measurements. Mechanical toughness is identified as a limiting property of polymer compatibility, along with some strategies to address this limitation. As a demonstration, the films are used as the hole-transport layer in perovskite solar cells, in which their performance is shown to be comparable to controls formed by spin-coating.
Collapse
Affiliation(s)
- Guillermo L Esparza
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA, 92093-0448, USA
- Materials Science & Engineering Program, University of California, San Diego, 500 Gilman Drive, Mail Code 0418, La Jolla, CA, 92093-0418, USA
| | - Moses Kodur
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA, 92093-0448, USA
| | - Alexander X Chen
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA, 92093-0448, USA
| | - Benjamin Wang
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA, 92093-0448, USA
| | - Jordan A Bunch
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA, 92093-0448, USA
| | - Jaden Cramlet
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA, 92093-0448, USA
| | - Rory Runser
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA, 92093-0448, USA
| | - David P Fenning
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA, 92093-0448, USA
- Materials Science & Engineering Program, University of California, San Diego, 500 Gilman Drive, Mail Code 0418, La Jolla, CA, 92093-0418, USA
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA, 92093-0448, USA
- Materials Science & Engineering Program, University of California, San Diego, 500 Gilman Drive, Mail Code 0418, La Jolla, CA, 92093-0418, USA
| |
Collapse
|
29
|
Bonneau H, Arutkin M, Chen R, Forrest JA, Raphaël E, Salez T. On the bridge hypothesis in the glass transition of freestanding polymer films. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:8. [PMID: 36856883 DOI: 10.1140/epje/s10189-023-00272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Freestanding thin polymer films with high molecular weights exhibit an anomalous decrease in the glass-transition temperature with film thickness. Specifically, in such materials, the measured glass-transition temperature evolves in an affine way with the film thickness, with a slope that weakly depends on the molecular weight. De Gennes proposed a sliding mechanism as the hypothetical dominant relaxation process in these systems, where stress kinks could propagate in a reptation-like fashion through so-called bridges, i.e. from one free interface to the other along the backbones of polymer macromolecules. Here, by considering the exact statistics of finite-sized random walks within a confined box, we investigate in details the bridge hypothesis. We show that the sliding mechanism cannot reproduce the basic features appearing in the experiments, and we exhibit the fundamental reasons behind such a fact.
Collapse
Affiliation(s)
- Haggai Bonneau
- Gulliver, CNRS UMR 7083, ESPCI Paris, Univ. PSL, 75005, Paris, France
| | - Maxence Arutkin
- School of Chemistry, Center for the Physics and Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Rainni Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - James A Forrest
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Elie Raphaël
- Gulliver, CNRS UMR 7083, ESPCI Paris, Univ. PSL, 75005, Paris, France
| | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400, Talence, France.
| |
Collapse
|
30
|
Roberts RC, Palmer JC, Conrad JC. Long-Wavelength Fluctuations in Quasi-2D Supercooled Liquids. J Phys Chem B 2023; 127:961-969. [PMID: 36656297 DOI: 10.1021/acs.jpcb.2c07417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We use molecular simulation to characterize the dynamics of supercooled liquids confined in quasi-2D slit geometries. Similar to bulk supercooled liquids, the confined systems exhibit subdiffusive dynamics on intermediate time scales arising from particle localization inside their neighbor cages, followed by an eventual crossover to diffusive behavior as cage rearrangement occurs. The quasi-2D confined liquids also exhibit signatures of long-wavelength fluctuations (LWFs) in the lateral directions parallel to the confining walls, reminiscent of the collective displacements observed in 2D but not 3D systems. The magnitude of the LWFs increases with the lateral dimensions of systems with the same particle volume fraction and confinement length scale, consistent with the logarithmic scaling predicted for 2D Mermin-Wagner fluctuations. The amplitude of the fluctuations is a nonmonotonic function of the confinement length scale because of a competition between caging and strengthening LWFs upon approaching the 2D limit. Our findings suggest that LWFs may play an important role in understanding the behavior of confined supercooled liquids due to their prevalence over a surprisingly broad range of particle densities and confinement length scales.
Collapse
Affiliation(s)
- Ryan C Roberts
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204-4004, United States
| | - Jeremy C Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204-4004, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204-4004, United States
| |
Collapse
|
31
|
Merrill JH, Li R, Roth CB. End-Tethered Chains Increase the Local Glass Transition Temperature of Matrix Chains by 45 K Next to Solid Substrates Independent of Chain Length. ACS Macro Lett 2023; 12:1-7. [PMID: 36516977 DOI: 10.1021/acsmacrolett.2c00582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The local glass transition temperature Tg of pyrene-labeled polystyrene (PS) chains intermixed with end-tethered PS chains grafted to a neutral silica substrate was measured by fluorescence spectroscopy. To isolate the impact of the grafted chains, the films were capped with bulk neat PS layers eliminating competing effects of the free surface. Results demonstrate that end-grafted chains strongly increase the local Tg of matrix chains by ≈45 K relative to bulk Tg, independent of grafted chain molecular weight from Mn = 8.6 to 212 kg/mol and chemical end-group, over a wide range of grafting densities σ = 0.003 to 0.33 chains/nm2 spanning the mushroom-to-brush transition regime. The tens-of-degree increase in local Tg resulting from immobilization of the chain ends by covalent bonding in this athermal system suggests a mechanism that substantially increases the local activation energy required for cooperative rearrangements.
Collapse
Affiliation(s)
- James H Merrill
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| | - Ruoyu Li
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| | - Connie B Roth
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
32
|
Yan J, Xu J, Weng LT, Wang F, Wang X, Yuan H, Wang T, Tsui OKC. Glass Transition of the Surface Monolayer of Polystyrene Films with Different Film Thicknesses and Supporting Surfaces. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jinsong Yan
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
| | - Jianquan Xu
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Lu-Tao Weng
- Materials Characterization and Preparation Facility (GZ), Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou511400, Guangdong, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
| | - Fengliang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Hailin Yuan
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
| | - Tong Wang
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois60208-3120, United States
| | - Ophelia K. C. Tsui
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
- William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Kowloon, 999077Hong Kong, China
| |
Collapse
|
33
|
Ghanekarade A, Simmons DS. Combined Mixing and Dynamical Origins of Tg Alterations Near Polymer–Polymer Interfaces. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Asieh Ghanekarade
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida33544, United States
| | - David S. Simmons
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida33544, United States
| |
Collapse
|
34
|
Koike K, Kumaki J. Chain Movements at the Topmost Surface of Poly(methyl methacrylate) and Polystyrene Films Directly Evaluated by In Situ High-Temperature Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13707-13719. [PMID: 36318939 PMCID: PMC9671121 DOI: 10.1021/acs.langmuir.2c01788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
The surfaces of polymeric materials are thermodynamically unstable, and the glass-transition temperature (Tg) is significantly lower than that in the bulk material. However, the mobility of the chains at the top of the surface has never been directly evaluated. In this study, the movements of the topmost chains of poly(methyl methacrylate) (PMMA) and polystyrene (PS) bulk films were observed in situ at high temperatures with atomic force microscopy in tapping mode. PMMA and PS chains started moving at ∼97 and ∼50 °C, respectively, which were slightly and significantly below the values of their bulk Tg (PMMA, 108 °C; PS, 104 °C), respectively. The activation energies of the apparent diffusion constants of PMMA and PS, derived by particle image velocimetry analysis, were 193 and 151 kJ mol-1, respectively, and reasonable for the glass transition. Movements of isolated PMMA chains deposited on a PMMA film by the Langmuir-Blodgett technique were also observed and confirmed to be essentially the same as those on the PMMA film surface.
Collapse
Affiliation(s)
- Kouki Koike
- Department of Organic Materials Science,
Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Jiro Kumaki
- Department of Organic Materials Science,
Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
35
|
Yuan H, Yan J, Gao P, Kumar SK, Tsui OKC. Microscale mobile surface double layer in a glassy polymer. SCIENCE ADVANCES 2022; 8:eabq5295. [PMID: 36351025 PMCID: PMC9645724 DOI: 10.1126/sciadv.abq5295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
This study examines the origin of the widely different length scales, ht-nanometers to micrometers-that have been observed for the propagation of the near-surface enhanced mobility in glassy polymers. Mechanical relaxations of polystyrene films with thicknesses, h, from 5 nm to 186 μm have been studied. For h < ~1 μm, the films relaxed faster than the bulk and the relaxation time decreased with decreasing h below ~100 nm, consistent with the enhanced dynamics originating from a near-surface nanolayer. For h > ~1 μm, a bulk-like relaxation mode emerged, while the fast mode changed to one that extended over ~1 μm from the free surface. These findings evidence that the mobile surface region is inhomogeneous, comprising a nanoscale outer layer and a slower microscale sublayer that relax by different mechanisms. Consequently, measurements probing the enhanced mobility of different mechanisms may find vastly different ht's as shown by the literature.
Collapse
Affiliation(s)
- Hailin Yuan
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jinsong Yan
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ping Gao
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Ophelia K. C. Tsui
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
36
|
Hu S, Wang T, Wei T, Peera A, Zhang S, Pujari S, Torkelson JM. Very low levels of n-butyl acrylate comonomer strongly affect residual stress relaxation in styrene/acrylic random copolymer films. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
37
|
Wang T, Hu S, Zhang S, Peera A, Reffner J, Torkelson JM. Eliminating the Tg-Confinement Effect in Polystyrene Films: Extraordinary Impact of a 2 mol % 2-Ethylhexyl Acrylate Comonomer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tong Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Sumeng Hu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Sipei Zhang
- The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania19426, United States
| | - Asghar Peera
- The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania19426, United States
| | - John Reffner
- The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania19426, United States
| | - John M. Torkelson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| |
Collapse
|
38
|
Nugroho FAA, Świtlik D, Armanious A, O’Reilly P, Darmadi I, Nilsson S, Zhdanov VP, Höök F, Antosiewicz TJ, Langhammer C. Time-Resolved Thickness and Shape-Change Quantification using a Dual-Band Nanoplasmonic Ruler with Sub-Nanometer Resolution. ACS NANO 2022; 16:15814-15826. [PMID: 36083800 PMCID: PMC9620406 DOI: 10.1021/acsnano.2c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Time-resolved measurements of changes in the size and shape of nanobiological objects and layers are crucial to understand their properties and optimize their performance. Optical sensing is particularly attractive with high throughput and sensitivity, and label-free operation. However, most state-of-the-art solutions require intricate modeling or multiparameter measurements to disentangle conformational or thickness changes of biomolecular layers from complex interfacial refractive index variations. Here, we present a dual-band nanoplasmonic ruler comprising mixed arrays of plasmonic nanoparticles with spectrally separated resonance peaks. As electrodynamic simulations and model experiments show, the ruler enables real-time simultaneous measurements of thickness and refractive index variations in uniform and heterogeneous layers with sub-nanometer resolution. Additionally, nanostructure shape changes can be tracked, as demonstrated by quantifying the degree of lipid vesicle deformation at the critical coverage prior to rupture and supported lipid bilayer formation. In a broader context, the presented nanofabrication approach constitutes a generic route for multimodal nanoplasmonic optical sensing.
Collapse
Affiliation(s)
- Ferry Anggoro Ardy Nugroho
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan
1081, 1081 HV Amsterdam, The Netherlands
- Department
of Physics, Universitas Indonesia, Depok 16424, Indonesia
| | - Dominika Świtlik
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Antonius Armanious
- Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Padraic O’Reilly
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Iwan Darmadi
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Sara Nilsson
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Vladimir P. Zhdanov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Boreskov
Institute of Catalysis, Russian Academy
of Sciences, Novosibirsk 630090, Russia
| | - Fredrik Höök
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tomasz J. Antosiewicz
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
39
|
Chowdhury M, Monnier X, Cangialosi D, Priestley RD. Decoupling of Glassy Dynamics from Viscosity in Thin Supported Poly( n-butyl methacrylate) Films. ACS POLYMERS AU 2022; 2:333-340. [PMID: 36267547 PMCID: PMC9576260 DOI: 10.1021/acspolymersau.2c00010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We utilized fast scanning calorimetry to characterize the glass transition temperature (T g) and intrinsic molecular mobility of low-molecular-weight poly(n-butyl methacrylate) thin films of varying thicknesses. We found that the T g and intrinsic molecular mobility were coupled, showing no film thickness-dependent variation. We further employed a unique noncontact capillary nanoshearing technique to directly probe layer-resolved gradients in the rheological response of these films. We found that layer-resolved shear mobility was enhanced with a reduction in film thickness, whereas the effective viscosity decreased. Our results highlight the importance of polymer-substrate attractive interactions and free surface-promoted enhanced mobility, establishing a competitive nanoconfinement effect in poly(n-butyl methacrylate) thin films. Moreover, the findings indicate a decoupling in the thickness-dependent variation of T g and intrinsic molecular mobility with the mechanical responses (shear mobility and effective viscosity).
Collapse
Affiliation(s)
- Mithun Chowdhury
- Lab
of Soft Interfaces, Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
- Center
for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Xavier Monnier
- Centro
de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Daniele Cangialosi
- Centro
de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Rodney D. Priestley
- Chemical
and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
40
|
Bay RK, Zhang T, Shimomura S, Ilton M, Tanaka K, Riggleman RA, Crosby AJ. Decoupling the Impact of Entanglements and Mobility on the Failure Properties of Ultrathin Polymer Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. Ko̅nane Bay
- Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Tianren Zhang
- Chemical and Biomolecular Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shinichiro Shimomura
- Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Applied Chemistry and Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, California 91711, United States
| | - Keiji Tanaka
- Department of Applied Chemistry and Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Robert A. Riggleman
- Chemical and Biomolecular Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alfred J. Crosby
- Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
41
|
Zhang Y, Yang H, Sun Y, Zheng X, Guo Y. A molecular dynamics simulation on tunable and self-healing epoxy-polyimine network based on imine bond exchange reactions. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Yongqin Zhang
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, People’s Republic of China
| | - Hua Yang
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yaguang Sun
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, People’s Republic of China
| | - Xiangrui Zheng
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, People’s Republic of China
| | - Yafang Guo
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, People’s Republic of China
| |
Collapse
|
42
|
Han Y, Roth CB. Temperature dependent perylene fluorescence as a probe of local polymer glass transition dynamics. SOFT MATTER 2022; 18:6094-6104. [PMID: 35929948 DOI: 10.1039/d2sm00552b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We demonstrate how the temperature dependence of perylene's fluorescence emission spectrum doped in bulk polymer matrices is sensitive to the local glass transition dynamics of the surrounding polymer segments. Focusing on the first fluorescence peak, we show that the intensity ratio IRatio(T) = IPeak(T)/ISRR between the first peak and a self referencing region (SRR) has a temperature dependence resulting from the temperature-dependent nonradiative decay pathway of the excited perylene dye that is influenced by its intermolecular collisions with the surrounding polymers segments. For different polymer matrices, poly(methyl methacrylate) (PMMA), polystyrene (PS), poly(2-vinyl pyridine) (P2VP), and polycarbonate (PC), we demonstrate that IRatio(T) exhibits a transition from a non-Arrhenius behavior above the glass transition temperature Tg of the polymer to an Arrhenius temperature dependence with constant activation energy E below the Tg of the polymer matrix, indicating perylene's sensitivity to cooperative α-relaxation dynamics of the polymer matrix. This transition in temperature dependence allows us to identify a perylene defined local Tperyleneg of the surrounding polymer matrix that agrees well with the known Tg values of the polymers. We define a fluorescence intensity shift factor in analogy with the Williams-Landel-Ferry (WLF) equation and use literature WLF parameters for the polymer matrix to quantify the calibration factor cf needed to convert the fluorescence intensity ratio to the effective time scale ratio described by the conventional WLF shift factor. This work opens up a new characterization method that could be used to map the local dynamical response of the glass transition in nanoscale polymer materials using appropriate covalent attachment of perylene to polymer chains.
Collapse
Affiliation(s)
- Yixuan Han
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA.
| | - Connie B Roth
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
43
|
Karimata A, Fayzullin RR, Khusnutdinova JR. Versatile Method of Generating Triboluminescence in Polymer Films Blended with Common Luminophores. ACS Macro Lett 2022; 11:1028-1033. [PMID: 35905142 DOI: 10.1021/acsmacrolett.2c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we report a versatile method for the preparation of triboluminescent polymer films by physical blending with common luminophores. This method does not require the presence of a crystalline phase or the use of materials known to be triboluminescent. Emission is generated in response to friction of the polymer surface via triboelectrification, either by rubbing directly or through an inert coating layer, even with low applied stress (<0.1 MPa). Our findings offer a convenient and practical method of preparation of triboluminescent, amorphous polymer films with easily tunable emission properties.
Collapse
Affiliation(s)
- Ayumu Karimata
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
44
|
Drayer WF, Simmons DS. Sequence Effects on the Glass Transition of a Model Copolymer System. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- William F. Drayer
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - David S. Simmons
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
45
|
Xing Z, Zhu N, Yang Y, Wang X, Zuo B. Alternating chain sequence weakening of interfacial molecular interactions enhances the Tg confinement effect of polymers. Polym J 2022. [DOI: 10.1038/s41428-022-00672-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Kharintsev SS, Kazarian SG. Nanoscale Melting of 3D Confined Azopolymers through Tunable Thermoplasmonics. J Phys Chem Lett 2022; 13:5351-5357. [PMID: 35678375 PMCID: PMC9208006 DOI: 10.1021/acs.jpclett.2c01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/20/2022] [Indexed: 05/11/2023]
Abstract
Phase transitions that are thermally induced by using light at the nanoscale play a vital role in material science. Enhanced optical heating sustained by resonant nanostructures can turn out to be insignificant when a higher thermal conductivity of a heatsink, regardless of the pumping intensity. In this Letter, we demonstrate an approach to control an operating temperature range due to excess heating of a structured heatsink. A design rationale has been performed by using a 2D array of TiN:Si voxels, consisting of stacked TiN and Si pillars. All the TiN nanoheaters responsible for enhanced light absorption at plasmon resonance are of equal size, and the height of the Si pillars varies to control heat localization. A height-dependent temperature rise of the Si pillars is found from Raman thermometry. Herein, for the first time, we have determined the melting temperature of azobenzene-functionalized polymers at the nanoscale using the tunable plasmonic metasurface.
Collapse
Affiliation(s)
- Sergey S. Kharintsev
- Department
of Optics and Nanophotonics, Institute of Physics, Kazan Federal University, Kremlevskaya, 16, Kazan 420008, Russia
| | - Sergei G. Kazarian
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| |
Collapse
|
47
|
Zhang H, Chang T, Zhang S, Zhou K, Zhang W, Hu Z. Effects of chain ends and densities on the glass transition of polymer thin films probed by linear and cyclic polystyrene. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Yimam DT, Kooi BJ. Thickness-Dependent Crystallization of Ultrathin Antimony Thin Films for Monatomic Multilevel Reflectance and Phase Change Memory Designs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13593-13600. [PMID: 35266381 PMCID: PMC8949766 DOI: 10.1021/acsami.1c23974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Phase change materials, with more than one reflectance and resistance states, have been a subject of interest in the fields of phase change memories and nanophotonics. Although most current research focuses on rather complex phase change alloys, e.g., Ge2Sb2Te5, recently, monatomic antimony thin films have aroused a lot of interest. One prominent attractive feature is its simplicity, giving fewer reliability issues like segregation and phase separation. However, phase transformation and crystallization properties of ultrathin Sb thin films must be understood to fully incorporate them into future memory and nanophotonics devices. Here, we studied the thickness-dependent crystallization behavior of pulsed laser-deposited ultrathin Sb thin films by employing dynamic ellipsometry. We show that the crystallization temperature and phase transformation speed of as-deposited amorphous Sb thin films are thickness-dependent and can be precisely tuned by controlling the film thickness. Thus, crystallization temperature tuning by thickness can be applied to future memory and nanophotonic devices. As a proof of principle, we designed a heterostructure device with three Sb layers of varying thicknesses with distinct crystallization temperatures. Measurements and simulation results show that it is possible to address these layers individually and produce distinct and multiple reflectance profiles in a single device. In addition, we show that the immiscible nature of Sb and GaSb could open up possible heterostructure device designs with high stability after melt-quench and increased crystallization temperature. Our results demonstrate that the thickness-dependent phase transformation and crystallization dynamics of ultrathin Sb thin films have attractive features for future memory and nanophotonic devices.
Collapse
|
49
|
Reishofer D, Resel R, Sattelkow J, Fischer WJ, Niegelhell K, Mohan T, Kleinschek KS, Amenitsch H, Plank H, Tammelin T, Kontturi E, Spirk S. Humidity Response of Cellulose Thin Films. Biomacromolecules 2022; 23:1148-1157. [PMID: 35225593 PMCID: PMC8924868 DOI: 10.1021/acs.biomac.1c01446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Cellulose-water interactions are crucial to understand biological processes as well as to develop tailor made cellulose-based products. However, the main challenge to study these interactions is the diversity of natural cellulose fibers and alterations in their supramolecular structure. Here, we study the humidity response of different, well-defined, ultrathin cellulose films as a function of industrially relevant treatments using different techniques. As treatments, drying at elevated temperature, swelling, and swelling followed by drying at elevated temperatures were chosen. The cellulose films were prepared by spin coating a soluble cellulose derivative, trimethylsilyl cellulose, onto solid substrates followed by conversion to cellulose by HCl vapor. For the highest investigated humidity levels (97%), the layer thickness increased by ca. 40% corresponding to the incorporation of 3.6 molecules of water per anhydroglucose unit (AGU), independent of the cellulose source used. The aforementioned treatments affected this ratio significantly with drying being the most notable procedure (2.0 and 2.6 molecules per AGU). The alterations were investigated in real time with X-ray reflectivity and quartz crystal microbalance with dissipation, equipped with a humidity module to obtain information about changes in the thickness, roughness, and electron density of the films and qualitatively confirmed using grazing incidence small angle X-ray scattering measurements using synchrotron irradiation.
Collapse
Affiliation(s)
- David Reishofer
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, Graz 8010, Austria
| | - Roland Resel
- Institute
for Solid State Physics, Graz University
of Technology, Petersgasse 16, Graz 8010, Austria
| | - Jürgen Sattelkow
- Institute
for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, Graz 8010, Austria
| | - Wolfgang J. Fischer
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, Graz 8010, Austria
| | - Katrin Niegelhell
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, Graz 8010, Austria
| | - Tamilselvan Mohan
- Institute
of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Karin Stana Kleinschek
- Institute
of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Heinz Amenitsch
- Institute
for Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Harald Plank
- Institute
for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, Graz 8010, Austria
| | - Tekla Tammelin
- High Performance
Fibre Products, VTT Technical Research Center
of Finland Ltd, Espoo FI-02044 VTT, Finland
| | - Eero Kontturi
- Department
of Bioproducts and Biosystems, School of Chemical Technology, Aalto University, Espoo 02150, Finland
| | - Stefan Spirk
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, Graz 8010, Austria
| |
Collapse
|
50
|
Ren W, Wang X, Shi J, Xu J, Taneda H, Yamada NL, Kawaguchi D, Tanaka K, Wang X. The role of the molecular weight of the adsorbed layer on a substrate in the suppressed dynamics of supported thin polystyrene films. SOFT MATTER 2022; 18:1997-2005. [PMID: 35195149 DOI: 10.1039/d2sm00067a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The adsorbed layer on a solid surface plays a crucial role in the dynamics of nanoconfinement polymer materials. However, the influence of the adsorbed layer is complex, and clarifying this influence on the dynamics of confined polymers remains a major challenge. In this paper, SiO2-Si substrates with various thicknesses and adsorbed layers of PS with various molecular weights were used to reveal the effect of the adsorbed layer on the corresponding segmental dynamics of the supported thin PS films. Strongly suppressed segmental dynamics of thin PS films were observed for the films supported on thicker adsorbed layers or prepared using higher molecular weight. Neutron reflectivity revealed that the overlap region thickness between the adsorbed layer and the top overlayer increased with increasing thickness and molecular weight of the adsorbed layer, both of which correlate well with the distance over which the polystyrene dynamics were depressed by the adsorbed layer. The results show that the influencing distance of the adsorbed layer is related to the overlap zone formed between the adsorption layer and the upper thin film. The effect of the adsorbed layer molecular weight can be ascribed to the fact that large loops and long tails in the adsorbed layer result in stronger interpenetrations and entanglements between polymer chains in the adsorbed layer and in the overlayer, causing a stronger substrate effect and suppression of the segment dynamics of the supported thin PS films.
Collapse
Affiliation(s)
- Weizhao Ren
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Xin Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Jiahui Shi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Jianquan Xu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Hidenobu Taneda
- Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Norifumi L Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Daisuke Kawaguchi
- Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| |
Collapse
|