1
|
Wu G, Liang Y, Chen C, Chen G, Zuo Q, Niu Y, Song J, Han W, Jin K, Li B. Identification of Two Potential Gene Insertion Sites for Gene Editing on the Chicken Z/W Chromosomes. Genes (Basel) 2024; 15:962. [PMID: 39062741 PMCID: PMC11276091 DOI: 10.3390/genes15070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The identification of accurate gene insertion sites on chicken sex chromosomes is crucial for advancing sex control breeding materials. In this study, the intergenic region NC_006127.4 on the chicken Z chromosome and the non-repetitive sequence EE0.6 on the W chromosome were selected as potential gene insertion sites. Gene knockout vectors targeting these sites were constructed and transfected into DF-1 cells. T7E1 enzyme cleavage and luciferase reporter enzyme analyses revealed knockout efficiencies of 80.00% (16/20), 75.00% (15/20), and 75.00% (15/20) for the three sgRNAs targeting the EE0.6 site. For the three sgRNAs targeting the NC_006127.4 site, knockout efficiencies were 70.00% (14/20), 60.00% (12/20), and 45.00% (9/20). Gel electrophoresis and high-throughput sequencing were performed to detect potential off-target effects, showing no significant off-target effects for the knockout vectors at the two sites. EdU and CCK-8 proliferation assays revealed no significant difference in cell proliferation activity between the knockout and control groups. These results demonstrate that the EE0.6 and NC_006127.4 sites can serve as gene insertion sites on chicken sex chromosomes for gene editing without affecting normal cell proliferation.
Collapse
Affiliation(s)
- Gaoyuan Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Youchen Liang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA;
| | - Wei Han
- Poultry Institute of Chinese Academy of Agricultural Sciences, Yangzhou 225003, China;
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
2
|
Mariano CG, de Oliveira VC, Ambrósio CE. Gene editing in small and large animals for translational medicine: a review. Anim Reprod 2024; 21:e20230089. [PMID: 38628493 PMCID: PMC11019828 DOI: 10.1590/1984-3143-ar2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/16/2024] [Indexed: 04/19/2024] Open
Abstract
The CRISPR/Cas9 system is a simpler and more versatile method compared to other engineered nucleases such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), and since its discovery, the efficiency of CRISPR-based genome editing has increased to the point that multiple and different types of edits can be made simultaneously. These advances in gene editing have revolutionized biotechnology by enabling precise genome editing with greater simplicity and efficacy than ever before. This tool has been successfully applied to a wide range of animal species, including cattle, pigs, dogs, and other small animals. Engineered nucleases cut the genome at specific target positions, triggering the cell's mechanisms to repair the damage and introduce a mutation to a specific genomic site. This review discusses novel genome-based CRISPR/Cas9 editing tools, methods developed to improve efficiency and specificity, the use of gene-editing on animal models and translational medicine, and the main challenges and limitations of CRISPR-based gene-editing approaches.
Collapse
Affiliation(s)
- Clésio Gomes Mariano
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Vanessa Cristina de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| |
Collapse
|
3
|
Mitra S, Sarker J, Mojumder A, Shibbir TB, Das R, Emran TB, Tallei TE, Nainu F, Alshahrani AM, Chidambaram K, Simal-Gandara J. Genome editing and cancer: How far has research moved forward on CRISPR/Cas9? Biomed Pharmacother 2022; 150:113011. [PMID: 35483191 DOI: 10.1016/j.biopha.2022.113011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer accounted for almost ten million deaths worldwide in 2020. Metastasis, characterized by cancer cell invasion to other parts of the body, is the main cause of cancer morbidity and mortality. Therefore, understanding the molecular mechanisms of tumor formation and discovery of potential drug targets are of great importance. Gene editing techniques can be used to find novel drug targets and study molecular mechanisms. In this review, we describe how popular gene-editing methods such as CRISPR/Cas9, TALEN and ZFNs work, and, by comparing them, we demonstrate that CRISPR/Cas9 has superior efficiency and precision. We further provide an overview of the recent applications of CRISPR/Cas9 to cancer research, focusing on the most common cancers such as breast cancer, lung cancer, colorectal cancer, and prostate cancer. We describe how these applications will shape future research and treatment of cancer, and propose new ways to overcome current challenges.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Joyatry Sarker
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tasmim Bintae Shibbir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
4
|
Dronina J, Samukaite-Bubniene U, Ramanavicius A. Towards application of CRISPR-Cas12a in the design of modern viral DNA detection tools (Review). J Nanobiotechnology 2022; 20:41. [PMID: 35062978 PMCID: PMC8777428 DOI: 10.1186/s12951-022-01246-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Early detection of viral pathogens by DNA-sensors in clinical samples, contaminated foods, soil or water can dramatically improve clinical outcomes and reduce the socioeconomic impact of diseases such as COVID-19. Clustered regularly interspaced short palindromic repeat (CRISPR) and its associated protein Cas12a (previously known as CRISPR-Cpf1) technology is an innovative new-generation genomic engineering tool, also known as 'genetic scissors', that has demonstrated the accuracy and has recently been effectively applied as appropriate (E-CRISPR) DNA-sensor to detect the nucleic acid of interest. The CRISPR-Cas12a from Prevotella and Francisella 1 are guided by a short CRISPR RNA (gRNA). The unique simultaneous cis- and trans- DNA cleavage after target sequence recognition at the PAM site, sticky-end (5-7 bp) employment, and ssDNA/dsDNA hybrid cleavage strategies to manipulate the attractive nature of CRISPR-Cas12a are reviewed. DNA-sensors based on the CRISPR-Cas12a technology for rapid, robust, sensitive, inexpensive, and selective detection of virus DNA without additional sample purification, amplification, fluorescent-agent- and/or quencher-labeling are relevant and becoming increasingly important in industrial and medical applications. In addition, CRISPR-Cas12a system shows great potential in the field of E-CRISPR-based bioassay research technologies. Therefore, we are highlighting insights in this research direction.
Collapse
Affiliation(s)
- Julija Dronina
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania.
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
5
|
Hassanzadeh P. The significance of bioengineered nanoplatforms against SARS-CoV-2: From detection to genome editing. Life Sci 2021; 274:119289. [PMID: 33676931 PMCID: PMC7930743 DOI: 10.1016/j.lfs.2021.119289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022]
Abstract
COVID-19 outbreak can impose serious negative impacts on the infrastructures of societies including the healthcare systems. Despite the increasing research efforts, false positive or negative results that may be associated with serologic or even RT-PCR tests, inappropriate or variable immune response, and high rates of mutations in coronavirus may negatively affect virus detection process and effectiveness of the vaccines or drugs in development. Nanotechnology-based research attempts via developing state-of-the-art techniques such as nanomechatronics ones and advanced materials including the sensors for detecting the pathogen loads at very low concentrations or site-specific delivery of therapeutics, and real-time protections against the pandemic outbreaks by nanorobots can provide outstanding biomedical breakthroughs. Considering the unique characteristics of pathogens particularly the newly-emerged ones and avoiding the exaggerated optimism or simplistic views on the prophylactic and therapeutic approaches including the one-size-fits-all ones or presenting multiple medications that may be associated with synergistic toxicities rather than enhanced efficiencies might pave the way towards the development of more appropriate treatment strategies with reduced safety concerns. This paper highlights the significance of nanoplatforms against the viral disorders and their capabilities of genome editing that may facilitate taking more appropriate measures against SARS-CoV-2.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
6
|
Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 2021; 11:614688. [PMID: 33603767 PMCID: PMC7885404 DOI: 10.3389/fgene.2020.614688] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Accelerated development of novel CRISPR/Cas9-based genome editing techniques provides a feasible approach to introduce a variety of precise modifications in the mammalian genome, including introduction of multiple edits simultaneously, efficient insertion of long DNA sequences into specific targeted loci as well as performing nucleotide transitions and transversions. Thus, the CRISPR/Cas9 tool has become the method of choice for introducing genome alterations in livestock species. The list of new CRISPR/Cas9-based genome editing tools is constantly expanding. Here, we discuss the methods developed to improve efficiency and specificity of gene editing tools as well as approaches that can be employed for gene regulation, base editing, and epigenetic modifications. Additionally, advantages and disadvantages of two primary methods used for the production of gene-edited farm animals: somatic cell nuclear transfer (SCNT or cloning) and zygote manipulations will be discussed. Furthermore, we will review agricultural and biomedical applications of gene editing technology.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
7
|
Nakamura S, Ishino K, Fujimoto K. Photochemical RNA Editing of C to U by Using Ultrafast Reversible RNA Photo-crosslinking in DNA/RNA Duplexes. Chembiochem 2020; 21:3067-3070. [PMID: 32519413 DOI: 10.1002/cbic.202000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/08/2020] [Indexed: 11/09/2022]
Abstract
RNA editing, which is used to edit nucleobases in RNA strands; is more feasible for use in medical applications than DNA editing. We previously reported the photochemical conversion of cytosine to uracil, which required photo-crosslinking, deamination, and photo-splitting. Here, we evaluated the influence of the bases surrounding the target cytosine on the conversion of cytosine to uracil in the RNA strand. The photo-crosslinker 3-carboxyvinylcarbazole(OHV K), which is more hydrophilic than 3-cyanovinylcarbazole(CNV K), 3-carboxyamidevinylcarbazole(NH2V K), and 3-methoxy carbonylvinylcarbazole(OMeV K), induced faster deamination of cytosine. Furthermore, inosine, which forms two hydrogen bonds with cytosine, was the most efficiently paired base for accelerating photochemical RNA editing. Upon evaluation of the conversion from cytosine to uracil in RNA, the use of oligodeoxynucleotides containing OHV K and inosine and the polarity of the bases surrounding the target cytosine were found to be crucial.
Collapse
Affiliation(s)
- Shigetaka Nakamura
- School of Advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Kanako Ishino
- School of Advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Kenzo Fujimoto
- School of Advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
8
|
McMahon MA, Prakash TP, Cleveland DW, Bennett CF, Rahdar M. Chemically Modified Cpf1-CRISPR RNAs Mediate Efficient Genome Editing in Mammalian Cells. Mol Ther 2018; 26:1228-1240. [PMID: 29650467 PMCID: PMC5993945 DOI: 10.1016/j.ymthe.2018.02.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022] Open
Abstract
CRISPR-based gene editing is a powerful technology for engineering mammalian genomes. It holds the potential as a therapeutic, although much-needed in vivo delivery systems have yet to be established. Here, using the Cpf1-crRNA (CRISPR RNA) crystal structure as a guide, we synthesized a series of systematically truncated and chemically modified crRNAs, and identify positions that are amenable to modification while retaining gene-editing activity. Modified crRNAs were designed with the same modifications that provide protection against nucleases and enable wide distribution in vivo. We show crRNAs with chemically modified terminal nucleotides are exonuclease resistant while retaining gene-editing activity. Chemically modified or DNA-substituted nucleotides at select positions and up to 70% of the crRNA DNA specificity region are also well tolerated. In addition, gene-editing activity is maintained with phosphorothioate backbone substitutions in the crRNA DNA specificity region. Finally, we demonstrate that 42-mer synthetic crRNAs from the similar CRISPR-Cas9 system are taken up by cells, an attractive property for in vivo delivery. Our study is the first to show that chemically modified crRNAs of the CRISPR-Cpf1 system can functionally replace and mediate comparable gene editing to the natural crRNA, which holds the potential for enhancing both viral- and non-viral-mediated in vivo gene editing.
Collapse
Affiliation(s)
- Moira A McMahon
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
9
|
Sethi S, Nakamura S, Fujimoto K. Study of Photochemical Cytosine to Uracil Transition via Ultrafast Photo-Cross-Linking Using Vinylcarbazole Derivatives in Duplex DNA. Molecules 2018; 23:molecules23040828. [PMID: 29617316 PMCID: PMC6017022 DOI: 10.3390/molecules23040828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022] Open
Abstract
Gene therapies, including genome editing, RNAi, anti-sense technology and chemical DNA editing are becoming major methods for the treatment of genetic disorders. Techniques like CRISPR-Cas9, zinc finger nuclease (ZFN) and transcription activator-like effector-based nuclease (TALEN) are a few such enzymatic techniques. Most enzymatic genome editing techniques have their disadvantages. Thus, non-enzymatic and non-invasive technologies for nucleic acid editing has been reported in this study which might possess some advantages over the older methods of DNA manipulation. 3-cyanovinyl carbazole (CNVK) based nucleic acid editing takes advantage of photo-cross-linking between a target pyrimidine and the CNVK to afford deamination of cytosine and convert it to uracil. This method previously required the use of high temperatures but, in this study, it has been optimized to take place at physiological conditions. Different counter bases (inosine, guanine and cytosine) complementary to the target cytosine were used, along with derivatives of CNVK (NH2VK and OHVK) to afford the deamination at physiological conditions.
Collapse
Affiliation(s)
- Siddhant Sethi
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan.
| | - Shigetaka Nakamura
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan.
| | - Kenzo Fujimoto
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan.
| |
Collapse
|
10
|
CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget 2018; 7:52541-52552. [PMID: 27250031 PMCID: PMC5239572 DOI: 10.18632/oncotarget.9646] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer is caused by a series of alterations in genome and epigenome mostly resulting in activation of oncogenes or inactivation of cancer suppressor genes. Genetic engineering has become pivotal in the treatment of cancer and other genetic diseases, especially the formerly-niche use of clustered regularly interspaced short palindromic repeats (CRISPR) associated with Cas9. In defining its superior use, we have followed the recent advances that have been made in producing CRISPR/Cas9 as a therapy of choice. We also provide important genetic mutations where CRISPRs can be repurposed to create adaptive immunity to fight carcinomas and edit genetic mutations causing it. Meanwhile, challenges to CRISPR technology are also discussed with emphasis on ability of pathogens to evolve against CRISPRs. We follow the recent developments on the function of CRISPRs with different carriers which can efficiently deliver it to target cells; furthermore, analogous technologies are also discussed along CRISPRs, including zinc-finger nuclease (ZFN) and transcription activator-like effector nucleases (TALENs). Moreover, progress in clinical applications of CRISPR therapeutics is reviewed; in effect, patients can have lower morbidity and/or mortality from the therapeutic method with least possible side-effects.
Collapse
|
11
|
Abstract
Curing a genetic disease by repairing the underlying genetic defect is a fascinating concept that has been addressed so far by gene compensation therapy. For this, a functional copy of the gene in question together with elements controlling its expression is produced as a vector and introduced ex vivo into the patient's own cells that subsequently are reinfused. Alternatively, vectors are administered directly in vivo. Although this strategy resulted in impressive therapeutic benefits for patients, the ultimate goal of gene therapy, i.e., a cure by repairing the actual genetic or epigenetic defect, remained an unresolved task. With the advent of designer DNA-binding domains, this goal is coming into reach. These domains are either combined with nucleases and used as molecular precision scissors for introducing DNA breaks at defined sites in the cell's genome preparing for position-selective DNA repair, or they are used as programmable DNA-binding units for positioning epigenome-modifying domains to predefined target sequences. However, for reaching its full potential, these components need to be delivered into cells in an efficient and safe manner. Here, we summarize current viral and non-viral delivery approaches applicable for genome and epigenome editing and discuss their respective advantages and limitations.
Collapse
Affiliation(s)
- Sabrina Just
- Laboratory for Infection Biology & Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Laboratory for Infection Biology & Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- Laboratory for AAV Vector Development, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany.
| |
Collapse
|
12
|
Thomas M, Willerth SM. 3-D Bioprinting of Neural Tissue for Applications in Cell Therapy and Drug Screening. Front Bioeng Biotechnol 2017; 5:69. [PMID: 29204424 PMCID: PMC5698280 DOI: 10.3389/fbioe.2017.00069] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/19/2017] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases affect millions of individuals in North America and cost the health-care industry billions of dollars for treatment. Current treatment options for degenerative diseases focus on physical rehabilitation or drug therapies, which temporarily mask the effects of cell damage, but quickly lose their efficacy. Cell therapies for the central nervous system remain an untapped market due to the complexity involved in growing neural tissues, controlling their differentiation, and protecting them from the hostile environment they meet upon implantation. Designing tissue constructs for the discovery of better drug treatments are also limited due to the resolution needed for an accurate cellular representation of the brain, in addition to being expensive and difficult to translate to biocompatible materials. 3-D printing offers a streamlined solution for engineering brain tissue for drug discovery or, in the future, for implantation. New microfluidic and bioplotting devices offer increased resolution, little impact on cell viability and have been tested with several bioink materials including fibrin, collagen, hyaluronic acid, poly(caprolactone), and poly(ethylene glycol). This review details current efforts at bioprinting neural tissue and highlights promising avenues for future work.
Collapse
Affiliation(s)
- Michaela Thomas
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| |
Collapse
|
13
|
Killian T, Dickopf S, Haas AK, Kirstenpfad C, Mayer K, Brinkmann U. Disruption of diphthamide synthesis genes and resulting toxin resistance as a robust technology for quantifying and optimizing CRISPR/Cas9-mediated gene editing. Sci Rep 2017; 7:15480. [PMID: 29133816 PMCID: PMC5684134 DOI: 10.1038/s41598-017-15206-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
We have devised an effective and robust method for the characterization of gene-editing events. The efficacy of editing-mediated mono- and bi-allelic gene inactivation and integration events is quantified based on colony counts. The combination of diphtheria toxin (DT) and puromycin (PM) selection enables analyses of 10,000-100,000 individual cells, assessing hundreds of clones with inactivated genes per experiment. Mono- and bi-allelic gene inactivation is differentiated by DT resistance, which occurs only upon bi-allelic inactivation. PM resistance indicates integration. The robustness and generalizability of the method were demonstrated by quantifying the frequency of gene inactivation and cassette integration under different editing approaches: CRISPR/Cas9-mediated complete inactivation was ~30-50-fold more frequent than cassette integration. Mono-allelic inactivation without integration occurred >100-fold more frequently than integration. Assessment of gRNA length confirmed 20mers to be most effective length for inactivation, while 16-18mers provided the highest overall integration efficacy. The overall efficacy was ~2-fold higher for CRISPR/Cas9 than for zinc-finger nuclease and was significantly increased upon modulation of non-homologous end joining or homology-directed repair. The frequencies and ratios of editing events were similar for two different DPH genes (independent of the target sequence or chromosomal location), which indicates that the optimization parameters identified with this method can be generalized.
Collapse
Affiliation(s)
- Tobias Killian
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82372, Penzberg, Germany
| | - Steffen Dickopf
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82372, Penzberg, Germany
| | - Alexander K Haas
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82372, Penzberg, Germany
| | - Claudia Kirstenpfad
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82372, Penzberg, Germany
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82372, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82372, Penzberg, Germany.
| |
Collapse
|
14
|
Polejaeva IA, Rutigliano HM, Wells KD. Livestock in biomedical research: history, current status and future prospective. Reprod Fertil Dev 2017; 28:112-24. [PMID: 27062879 DOI: 10.1071/rd15343] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.
Collapse
Affiliation(s)
- Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Kevin D Wells
- Division of Animal Sciences, Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
15
|
Im W, Moon J, Kim M. Applications of CRISPR/Cas9 for Gene Editing in Hereditary Movement Disorders. J Mov Disord 2016; 9:136-43. [PMID: 27667185 PMCID: PMC5035944 DOI: 10.14802/jmd.16029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022] Open
Abstract
Gene therapy is a potential therapeutic strategy for treating hereditary movement disorders, including hereditary ataxia, dystonia, Huntington’s disease, and Parkinson’s disease. Genome editing is a type of genetic engineering in which DNA is inserted, deleted or replaced in the genome using modified nucleases. Recently, clustered regularly interspaced short palindromic repeat/CRISPR associated protein 9 (CRISPR/Cas9) has been used as an essential tool in biotechnology. Cas9 is an RNA-guided DNA endonuclease enzyme that was originally associated with the adaptive immune system of Streptococcus pyogenes and is now being utilized as a genome editing tool to induce double strand breaks in DNA. CRISPR/Cas9 has advantages in terms of clinical applicability over other genome editing technologies such as zinc-finger nucleases and transcription activator-like effector nucleases because of easy in vivo delivery. Here, we review and discuss the applicability of CRISPR/Cas9 to preclinical studies or gene therapy in hereditary movement disorders.
Collapse
Affiliation(s)
- Wooseok Im
- Department of Neurology, Neuroscience Research Center, Seoul National University Hospital, Seoul, Korea
| | - Jangsup Moon
- Department of Neurology, Neuroscience Research Center, Seoul National University Hospital, Seoul, Korea
| | - Manho Kim
- Department of Neurology, Neuroscience Research Center, Seoul National University Hospital, Seoul, Korea.,Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Shahbazi Dastjerdeh M, Kouhpayeh S, Sabzehei F, Khanahmad H, Salehi M, Mohammadi Z, Shariati L, Hejazi Z, Rabiei P, Manian M. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance. Jundishapur J Microbiol 2016; 9:e29384. [PMID: 27099691 PMCID: PMC4833962 DOI: 10.5812/jjm.29384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/05/2015] [Accepted: 10/07/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. OBJECTIVES The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. MATERIALS AND METHODS An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (amp(R)) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kana(R)) plasmid as the case or the pP15A, kana(R) empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. RESULTS The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P < 0.001). Despite being more efficient in hypothermic conditions at 30°C (P < 0.001), there were no significant associations between the incubation temperature and the ZFN gene targeting efficiency. CONCLUSIONS Our findings revealed that the ZFN technology could be employed to overcome ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages expressing ZFNs against different ARGs could be constructed and released into both hospital and urban wastewater systems.
Collapse
Affiliation(s)
- Mansoureh Shahbazi Dastjerdeh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Shirin Kouhpayeh
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Faezeh Sabzehei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
- Corresponding author: Hossein Khanahmad, Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran. Tel: +98-031337922487, Fax: +98-031-3668859, E-mail:
| | - Mansour Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Zahra Mohammadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Laleh Shariati
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Zahra Hejazi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Parisa Rabiei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Mostafa Manian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| |
Collapse
|
17
|
Gene Expression Studies on Human Trisomy 21 iPSCs and Neurons: Towards Mechanisms Underlying Down's Syndrome and Early Alzheimer's Disease-Like Pathologies. Methods Mol Biol 2016; 1303:247-65. [PMID: 26235072 DOI: 10.1007/978-1-4939-2627-5_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cause of Alzheimer disease (AD) is not well understood and there is no cure. Our ability to understand the early events in the course of AD is severely limited by the difficulty of identifying individuals who are in the early, preclinical stage of this disease. Most individuals with Down's syndrome (DS, trisomy 21) will predictably develop AD and that they will do so at a young age makes them an ideal population in which to study the early stages of AD. Several recent studies have exploited induced pluripotent stem cells (iPSCs) generated from individuals with familial AD, spontaneous AD and DS to attempt to identify early events and discover novel biomarkers of disease progression in AD. Here, we summarize the progress and limitations of these iPSC studies with a focus on iPSC-derived neurons. Further, we outline the methodology and results for comparing gene expression between AD and DS iPSC-derived neurons. We highlight differences and commonalities in these data that may implicate underlying genes and pathways that are causative for AD.
Collapse
|
18
|
Rahdar M, McMahon MA, Prakash TP, Swayze EE, Bennett CF, Cleveland DW. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells. Proc Natl Acad Sci U S A 2015; 112:E7110-7. [PMID: 26589814 PMCID: PMC4697396 DOI: 10.1073/pnas.1520883112] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genome editing with the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nuclease system is a powerful technology for manipulating genomes, including introduction of gene disruptions or corrections. Here we develop a chemically modified, 29-nucleotide synthetic CRISPR RNA (scrRNA), which in combination with unmodified transactivating crRNA (tracrRNA) is shown to functionally replace the natural guide RNA in the CRISPR-Cas9 nuclease system and to mediate efficient genome editing in human cells. Incorporation of rational chemical modifications known to protect against nuclease digestion and stabilize RNA-RNA interactions in the tracrRNA hybridization region of CRISPR RNA (crRNA) yields a scrRNA with enhanced activity compared with the unmodified crRNA and comparable gene disruption activity to the previously published single guide RNA. Taken together, these findings provide a platform for therapeutic applications, especially for nervous system disease, using successive application of cell-permeable, synthetic CRISPR RNAs to activate and then silence Cas9 nuclease activity.
Collapse
Affiliation(s)
| | - Moira A McMahon
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093
| | | | | | | | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
19
|
Lee HJ, Lee HC, Han JY. Germline Modification and Engineering in Avian Species. Mol Cells 2015; 38:743-9. [PMID: 26333275 PMCID: PMC4588716 DOI: 10.14348/molcells.2015.0225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022] Open
Abstract
Production of genome-edited animals using germline-competent cells and genetic modification tools has provided opportunities for investigation of biological mechanisms in various organisms. The recently reported programmed genome editing technology that can induce gene modification at a target locus in an efficient and precise manner facilitates establishment of animal models. In this regard, the demand for genome-edited avian species, which are some of the most suitable model animals due to their unique embryonic development, has also increased. Furthermore, germline chimera production through long-term culture of chicken primordial germ cells (PGCs) has facilitated research on production of genome-edited chickens. Thus, use of avian germline modification is promising for development of novel avian models for research of disease control and various biological mechanisms. Here, we discuss recent progress in genome modification technology in avian species and its applications and future strategies.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Hyung Chul Lee
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT,
UK
| | - Jae Yong Han
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598,
Japan
| |
Collapse
|
20
|
Hendel A, Fine EJ, Bao G, Porteus MH. Quantifying on- and off-target genome editing. Trends Biotechnol 2015; 33:132-40. [PMID: 25595557 PMCID: PMC4308725 DOI: 10.1016/j.tibtech.2014.12.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 12/13/2022]
Abstract
Genome editing with engineered nucleases is a rapidly growing field thanks to transformative technologies that allow researchers to precisely alter genomes for numerous applications including basic research, biotechnology, and human gene therapy. While the ability to make precise and controlled changes at specified sites throughout the genome has grown tremendously in recent years, we still lack a comprehensive and standardized battery of assays for measuring the different genome editing outcomes created at endogenous genomic loci. Here we review the existing assays for quantifying on- and off-target genome editing and describe their utility in advancing the technology. We also highlight unmet assay needs for quantifying on- and off-target genome editing outcomes and discuss their importance for the genome editing field.
Collapse
Affiliation(s)
- Ayal Hendel
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Eli J Fine
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Mikkelsen JG. Nonviral Gene Therapy—The Challenge of Mobilizing DNA. SOMATIC GENOME MANIPULATION 2015:69-104. [DOI: 10.1007/978-1-4939-2389-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Boissel S, Scharenberg AM. Assembly and characterization of megaTALs for hyperspecific genome engineering applications. Methods Mol Biol 2015; 1239:171-96. [PMID: 25408406 DOI: 10.1007/978-1-4939-1862-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Rare-cleaving nucleases have emerged as valuable tools for creating targeted genomic modification for both therapeutic and research applications. MegaTALs are novel monomeric nucleases composed of a site-specific meganuclease cleavage head with additional affinity and specificity provided by a TAL effector DNA binding domain. This fusion product facilitates the transformation of meganucleases into hyperspecific and highly active genome engineering tools that are amenable to multiplexing and compatible with multiple cellular delivery methods. In this chapter, we describe the process of assembling a megaTAL from a meganuclease, as well as a method for characterization of nuclease cleavage activity in vivo using a fluorescence reporter assay.
Collapse
Affiliation(s)
- Sandrine Boissel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | | |
Collapse
|
23
|
Hendel A, Kildebeck EJ, Fine EJ, Clark J, Punjya N, Sebastiano V, Bao G, Porteus MH. Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell Rep 2014; 7:293-305. [PMID: 24685129 DOI: 10.1016/j.celrep.2014.02.040] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/16/2014] [Accepted: 02/26/2014] [Indexed: 12/19/2022] Open
Abstract
Targeted genome editing with engineered nucleases has transformed the ability to introduce precise sequence modifications at almost any site within the genome. A major obstacle to probing the efficiency and consequences of genome editing is that no existing method enables the frequency of different editing events to be simultaneously measured across a cell population at any endogenous genomic locus. We have developed a method for quantifying individual genome-editing outcomes at any site of interest with single-molecule real-time (SMRT) DNA sequencing. We show that this approach can be applied at various loci using multiple engineered nuclease platforms, including transcription-activator-like effector nucleases (TALENs), RNA-guided endonucleases (CRISPR/Cas9), and zinc finger nucleases (ZFNs), and in different cell lines to identify conditions and strategies in which the desired engineering outcome has occurred. This approach offers a technique for studying double-strand break repair, facilitates the evaluation of gene-editing technologies, and permits sensitive quantification of editing outcomes in almost every experimental system used.
Collapse
Affiliation(s)
- Ayal Hendel
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Eric J Kildebeck
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Eli J Fine
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Joseph Clark
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Niraj Punjya
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Abstract
Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.
Collapse
|
25
|
Boissel S, Jarjour J, Astrakhan A, Adey A, Gouble A, Duchateau P, Shendure J, Stoddard BL, Certo MT, Baker D, Scharenberg AM. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res 2014; 42:2591-601. [PMID: 24285304 PMCID: PMC3936731 DOI: 10.1093/nar/gkt1224] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 01/13/2023] Open
Abstract
Rare-cleaving endonucleases have emerged as important tools for making targeted genome modifications. While multiple platforms are now available to generate reagents for research applications, each existing platform has significant limitations in one or more of three key properties necessary for therapeutic application: efficiency of cleavage at the desired target site, specificity of cleavage (i.e. rate of cleavage at 'off-target' sites), and efficient/facile means for delivery to desired target cells. Here, we describe the development of a single-chain rare-cleaving nuclease architecture, which we designate 'megaTAL', in which the DNA binding region of a transcription activator-like (TAL) effector is used to 'address' a site-specific meganuclease adjacent to a single desired genomic target site. This architecture allows the generation of extremely active and hyper-specific compact nucleases that are compatible with all current viral and nonviral cell delivery methods.
Collapse
Affiliation(s)
- Sandrine Boissel
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA, Pregenen, Inc., Seattle, WA 98103, USA, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Cellectis S.A., Paris, 75013, France, Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Jordan Jarjour
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA, Pregenen, Inc., Seattle, WA 98103, USA, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Cellectis S.A., Paris, 75013, France, Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Alexander Astrakhan
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA, Pregenen, Inc., Seattle, WA 98103, USA, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Cellectis S.A., Paris, 75013, France, Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Andrew Adey
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA, Pregenen, Inc., Seattle, WA 98103, USA, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Cellectis S.A., Paris, 75013, France, Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Agnès Gouble
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA, Pregenen, Inc., Seattle, WA 98103, USA, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Cellectis S.A., Paris, 75013, France, Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Philippe Duchateau
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA, Pregenen, Inc., Seattle, WA 98103, USA, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Cellectis S.A., Paris, 75013, France, Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA, Pregenen, Inc., Seattle, WA 98103, USA, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Cellectis S.A., Paris, 75013, France, Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Barry L. Stoddard
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA, Pregenen, Inc., Seattle, WA 98103, USA, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Cellectis S.A., Paris, 75013, France, Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Michael T. Certo
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA, Pregenen, Inc., Seattle, WA 98103, USA, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Cellectis S.A., Paris, 75013, France, Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA, Pregenen, Inc., Seattle, WA 98103, USA, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Cellectis S.A., Paris, 75013, France, Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Andrew M. Scharenberg
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA, Pregenen, Inc., Seattle, WA 98103, USA, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, Cellectis S.A., Paris, 75013, France, Division of Basic Sciences, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Wefers B, Ortiz O, Wurst W, Kühn R. Generation of targeted mouse mutants by embryo microinjection of TALENs. Methods 2014; 69:94-101. [PMID: 24418396 DOI: 10.1016/j.ymeth.2014.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/01/2014] [Accepted: 01/02/2014] [Indexed: 12/26/2022] Open
Abstract
Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step, without the need for embryonic stem cells. Thereby, knockout and knockin alleles can be generated fast and efficiently by embryo microinjection of TALEN mRNAs and targeting vectors. In this article we present an introduction into the TALEN technology and provide protocols for the application of TALENs in mouse zygotes.
Collapse
Affiliation(s)
- Benedikt Wefers
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich, Germany.
| | - Oskar Ortiz
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich, Germany.
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich, Germany; Technische Universität München, 85350 Freising-Weihenstephan, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), 80336 Munich, Germany; Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Ralf Kühn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich, Germany; Technische Universität München, 85350 Freising-Weihenstephan, Germany.
| |
Collapse
|
27
|
Zhang M, Wang F, Li S, Wang Y, Bai Y, Xu X. TALE: A tale of genome editing. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:25-32. [DOI: 10.1016/j.pbiomolbio.2013.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/10/2013] [Accepted: 11/17/2013] [Indexed: 11/16/2022]
|
28
|
Yanik M, Alzubi J, Lahaye T, Cathomen T, Pingoud A, Wende W. TALE-PvuII fusion proteins--novel tools for gene targeting. PLoS One 2013; 8:e82539. [PMID: 24349308 PMCID: PMC3857828 DOI: 10.1371/journal.pone.0082539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/01/2013] [Indexed: 12/15/2022] Open
Abstract
Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.
Collapse
Affiliation(s)
- Mert Yanik
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jamal Alzubi
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Thomas Lahaye
- ZMBP – General Genetics, University of Tuebingen, Tuebingen, Germany
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Alfred Pingoud
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang Wende
- Institute for Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
29
|
Abstract
Polycystic diseases affect approximately 1/1000 and are important causes of kidney failure. No therapies presently are in clinical practice that can prevent disease progression. Multiple mouse models have been produced for the genetic forms of the disease that most commonly affect humans. In this report, we review recent progress in the field and describe some of the outstanding challenges.
Collapse
Affiliation(s)
- Luis Fernando Menezes
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10 Room 8D46, 10 Center Drive, Bethesda, MD 20892
| | - Gregory George Germino
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10 Room 8D46, 10 Center Drive, Bethesda, MD 20892
| |
Collapse
|
30
|
Chen J, Zhang W, Lin J, Wang F, Wu M, Chen C, Zheng Y, Peng X, Li J, Yuan Z. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Ther 2013; 22:303-311. [PMID: 24025750 DOI: 10.1038/mt.2013.212] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/26/2013] [Indexed: 02/07/2023] Open
Abstract
The hepatitis B virus (HBV) is a DNA virus that can cause chronic hepatitis B (CHB) in humans. Current therapies for CHB infection are limited in efficacy and do not target the pre-existing viral genomic DNA, which are present in the nucleus as a covalently closed circular DNA (cccDNA) form. The transcription activator-like (TAL) effector nucleases (TALENs) are newly developed enzymes that can cleave sequence-specific DNA targets. Here, TALENs targeting the conserved regions of the viral genomic DNA among different HBV genotypes were constructed. The expression of TALENs in Huh7 cells transfected with monomeric linear full-length HBV DNA significantly reduced the viral production of HBeAg, HBsAg, HBcAg, and pgRNA, resulted in a decreased cccDNA level and misrepaired cccDNAs without apparent cytotoxic effects. The anti-HBV effect of TALENs was further demonstrated in a hydrodynamic injection-based mouse model. In addition, an enhanced antiviral effect with combinations of TALENs and interferon-α (IFN-α) treatment was observed and expression of TALENs restored HBV suppressed IFN-stimulated response element-directed transcription. Taken together, these data indicate that TALENs can specifically target and successfully inactivate the HBV genome and are potently synergistic with IFN-α, thus providing a potential therapeutic strategy for treating CHB infection.
Collapse
Affiliation(s)
- Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wen Zhang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Junyu Lin
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Fan Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Cuncun Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai, China
| | - Ye Zheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiuhua Peng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Boyer J, Byrne P, Cassman K, Cooper M, Delmer D, Greene T, Gruis F, Habben J, Hausmann N, Kenny N, Lafitte R, Paszkiewicz S, Porter D, Schlegel A, Schussler J, Setter T, Shanahan J, Sharp R, Vyn T, Warner D, Gaffney J. The U.S. drought of 2012 in perspective: A call to action. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2013. [DOI: 10.1016/j.gfs.2013.08.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Anand P, Schug A, Wenzel W. Structure based design of protein linkers for zinc finger nuclease. FEBS Lett 2013; 587:3231-5. [PMID: 23994524 DOI: 10.1016/j.febslet.2013.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 12/18/2022]
Abstract
Zinc finger nucleases are a promising tool to edit DNA in many biological applications, in particular for gene knockout. Despite many efforts the number of genes that can be effectively targeted with ZFNs remains severely limited, as available constructs cannot address arbitrary gene sequences. Here, we develop a novel concept to significantly enhance the number of DNA sequences that can be targeted by ZFN. Using an efficient computational model, we provide an extensive library of possible linker molecules between individual zinc finger motifs in the construct that can skip up to 10 base pairs between adjacent zinc finger recognition sites in the DNA sequence, which increases the number of genes that can be efficiently targeted by more than an order of magnitude.
Collapse
Affiliation(s)
- Priya Anand
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | | | | |
Collapse
|
33
|
Mali P, Aach J, Lee JH, Levner D, Nip L, Church GM. Barcoding cells using cell-surface programmable DNA-binding domains. Nat Methods 2013; 10:403-6. [PMID: 23503053 PMCID: PMC3641172 DOI: 10.1038/nmeth.2407] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/11/2013] [Indexed: 12/31/2022]
Abstract
We report an approach to barcode cells through cell-surface expression of programmable zinc-finger DNA-binding domains (surface zinc fingers, sZFs). We show that sZFs enable sequence-specific labeling of living cells by dsDNA, and we develop a sequential labeling approach to image more than three cell types in mixed populations using three fluorophores. We demonstrate the versatility of sZFs through applications in which they serve as surrogate reporters, function as selective cell capture reagents and facilitate targeted cellular delivery of viruses.
Collapse
Affiliation(s)
- Prashant Mali
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
34
|
Magnetic separation and antibiotics selection enable enrichment of cells with ZFN/TALEN-induced mutations. PLoS One 2013; 8:e56476. [PMID: 23441197 PMCID: PMC3575389 DOI: 10.1371/journal.pone.0056476] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/09/2013] [Indexed: 11/19/2022] Open
Abstract
The ability to enrich cells with targeted mutations greatly facilitates the process of using engineered nucleases, including zinc-finger nucleases and transcription activator-like effector nucleases, to construct such cells. We previously used surrogate reporters to enrich cells containing nuclease-induced mutations via flow cytometry. This method is, however, limited by the availability of flow cytometers. Furthermore, sorted cells occasionally fail to form colonies after exposure to a strong laser and hydrostatic pressure. Here we describe two different types of novel reporters that enable mutant cell enrichment without the use of flow cytometers. We designed reporters that express H-2Kk, a surface antigen, and the hygromycin resistance protein (HygroR), respectively, when insertions or deletions are generated at the target sequences by the activity of engineered nucleases. After cotransfection of these reporters and the engineered nuclease-encoding plasmids, H-2Kk- and HygroR-expressing cells were isolated using magnetic separation and hygromycin treatment, respectively. We found that mutant cells were drastically enriched in the isolated cells, suggesting that these two reporters enable efficient enrichment of mutants. We propose that these two reporters will greatly facilitate the use of engineered nucleases in a wider range of biomedical research.
Collapse
|
35
|
Sakuma T, Hosoi S, Woltjen K, Suzuki KI, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 2013; 18:315-26. [PMID: 23388034 DOI: 10.1111/gtc.12037] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/19/2012] [Indexed: 12/25/2022]
Abstract
Transcription activator-like effector nucleases (TALENs) have recently arisen as effective tools for targeted genome engineering. Here, we report streamlined methods for the construction and evaluation of TALENs based on the 'Golden Gate TALEN and TAL Effector Kit' (Addgene). We diminished array vector requirements and increased assembly rates using six-module concatemerization. We altered the architecture of the native TALEN protein to increase nuclease activity and replaced the final destination vector with a mammalian expression/in vitro transcription vector bearing both CMV and T7 promoters. Using our methods, the whole process, from initiating construction to completing evaluation directly in mammalian cells, requires only 1 week. Furthermore, TALENs constructed in this manner may be directly applied to transfection of cultured cells or mRNA synthesis for use in animals and embryos. In this article, we show genomic modification of HEK293T cells, human induced pluripotent stem cells, Drosophila melanogaster, Danio rerio and Xenopus laevis, using custom-made TALENs constructed and evaluated with our protocol. Our methods are more time efficient compared with conventional yeast-based evaluation methods and provide a more accessible and effective protocol for the application of TALENs in various model organisms.
Collapse
Affiliation(s)
- Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Experimental animals in biomedical research provide insights into disease mechanisms and models for determining the efficacy and safety of new therapies and for discovery of corresponding biomarkers. Although mouse and rat models are most widely used, observations in these species cannot always be faithfully extrapolated to human patients. Thus, a number of domestic species are additionally used in specific disease areas. This review summarizes the most important applications of domestic animal models and emphasizes the new possibilities genetic tailoring of disease models, specifically in pigs, provides.
Collapse
Affiliation(s)
- A Bähr
- Chair for Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
37
|
Genetically engineered animal models for in vivo target identification and validation in oncology. Methods Mol Biol 2013; 986:281-305. [PMID: 23436419 DOI: 10.1007/978-1-62703-311-4_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In vitro approaches using human cancer cell lines aimed to identify and validate oncology targets, have pinpointed a number of key targets and signalling pathways which control cell growth and cell death. However, tumors are more than insular masses of proliferating cancer cells. Instead they are complex tissues composed of multiple distinct cell types that participate in homotypic and heterotypic interactions and depend upon each other for their growth. Therefore, many targets in oncology need to be validated in the context of the whole animal. This review provides an overview on how animal models can be generated and used for target identification and validation in vivo.
Collapse
|
38
|
Xiao A, Wu Y, Yang Z, Hu Y, Wang W, Zhang Y, Kong L, Gao G, Zhu Z, Lin S, Zhang B. EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering. Nucleic Acids Res 2012. [PMID: 23203870 PMCID: PMC3531095 DOI: 10.1093/nar/gks1144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We report here the construction of engineered endonuclease database (EENdb) (http://eendb.zfgenetics.org/), a searchable database and knowledge base for customizable engineered endonucleases (EENs), including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). EENs are artificial nucleases designed to target and cleave specific DNA sequences. EENs have been shown to be a very useful genetic tool for targeted genome modification and have shown great potentials in the applications in basic research, clinical therapies and agricultural utilities, and they are specifically essential for reverse genetics research in species where no other gene targeting techniques are available. EENdb contains over 700 records of all the reported ZFNs and TALENs and related information, such as their target sequences, the peptide components [zinc finger protein-/transcription activator-like effector (TALE)-binding domains, FokI variants and linker peptide/framework], the efficiency and specificity of their activities. The database also lists EEN engineering tools and resources as well as information about forms and types of EENs, EEN screening and construction methods, detection methods for targeting efficiency and many other utilities. The aim of EENdb is to represent a central hub for EEN information and an integrated solution for EEN engineering. These studies may help to extract in-depth properties and common rules regarding ZFN or TALEN efficiency through comparison of the known ZFNs or TALENs.
Collapse
Affiliation(s)
- An Xiao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Alvarez CV, Garcia-Lavandeira M, Garcia-Rendueles MER, Diaz-Rodriguez E, Garcia-Rendueles AR, Perez-Romero S, Vila TV, Rodrigues JS, Lear PV, Bravo SB. Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J Mol Endocrinol 2012; 49:R89-111. [PMID: 22822049 DOI: 10.1530/jme-12-0072] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Embryonic, adult, artificially reprogrammed, and cancer…- there are various types of cells associated with stemness. Do they have something fundamental in common? Are we applying a common name to very different entities? In this review, we will revisit the characteristics that define 'pluripotency', the main property of stem cells (SCs). For each main type of physiological (embryonic and adult) or synthetic (induced pluripotent) SCs, markers and functional behavior in vitro and in vivo will be described. We will review the pioneering work that has led to obtaining human SC lines, together with the problems that have arisen, both in a biological context (DNA alterations, heterogeneity, tumors, and immunogenicity) and with regard to ethical concerns. Such problems have led to proposals for new operative procedures for growing human SCs of sufficiently high quality for use as models of disease and in human therapy. Finally, we will review the data from the first clinical trials to use various types of SCs.
Collapse
Affiliation(s)
- Clara V Alvarez
- Centro de Investigaciones Medicas e Instituto de Investigaciones Sanitarias (CIMUS-IDIS), Department of Physiology, University of Santiago de Compostela (USC), C/Barcelona S/N, 15782 Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y. Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep 2012; 2:707-13. [PMID: 23022487 DOI: 10.1016/j.celrep.2012.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/08/2012] [Accepted: 09/10/2012] [Indexed: 01/17/2023] Open
Abstract
The transcription activator-like (TAL) effector targets specific host promoter through its central DNA-binding domain, which comprises multiple tandem repeats (TALE repeats). Recent structural analyses revealed that the TALE repeats form a superhelical structure that tracks along the forward strand of the DNA duplex. Here, we demonstrate that TALE repeats specifically recognize a DNA-RNA hybrid where the DNA strand determines the binding specificity. The crystal structure of a designed TALE in complex with the DNA-RNA hybrid was determined at a resolution of 2.5 Å. Although TALE repeats are in direct contact with only the DNA strand, the phosphodiester backbone of the RNA strand is inaccessible by macromolecules such as RNases. Consistent with this observation, sequence-specific recognition of an HIV-derived DNA-RNA hybrid by an engineered TALE efficiently blocked RNase H-mediated degradation of the RNA strand. Our study broadens the utility of TALE repeats and suggests potential applications in processes involving DNA replication and retroviral infections.
Collapse
Affiliation(s)
- Ping Yin
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Ryffel GU. Orgenic plants: Gene-manipulated plants compatible with organic farming. Biotechnol J 2012; 7:1328-31. [DOI: 10.1002/biot.201200225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 11/08/2022]
|
43
|
Valton J, Daboussi F, Leduc S, Molina R, Redondo P, Macmaster R, Montoya G, Duchateau P. 5'-Cytosine-phosphoguanine (CpG) methylation impacts the activity of natural and engineered meganucleases. J Biol Chem 2012; 287:30139-50. [PMID: 22740697 DOI: 10.1074/jbc.m112.379966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, we asked whether CpG methylation could influence the DNA binding affinity and activity of meganucleases used for genome engineering applications. A combination of biochemical and structural approaches enabled us to demonstrate that CpG methylation decreases I-CreI DNA binding affinity and inhibits its endonuclease activity in vitro. This inhibition depends on the position of the methylated cytosine within the DNA target and was almost total when it is located inside the central tetrabase. Crystal structures of I-CreI bound to methylated cognate target DNA suggested a molecular basis for such inhibition, although the precise mechanism still has to be specified. Finally, we demonstrated that the efficacy of engineered meganucleases can be diminished by CpG methylation of the targeted endogenous site, and we proposed a rational design of the meganuclease DNA binding domain to alleviate such an effect. We conclude that although activity and sequence specificity of engineered meganucleases are crucial parameters, target DNA epigenetic modifications need to be considered for successful gene editions.
Collapse
Affiliation(s)
- Julien Valton
- CELLECTIS S.A., 8 Rue de la Croix Jarry, 75013 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), and herpes simplex virus (HSV) have been incurable to date because effective antiviral therapies target only replicating viruses and do not eradicate latently integrated or nonreplicating episomal viral genomes. Endonucleases that can target and cleave critical regions within latent viral genomes are currently in development. These enzymes are being engineered with high specificity such that off-target binding of cellular DNA will be absent or minimal. Imprecise nonhomologous-end-joining (NHEJ) DNA repair following repeated cleavage at the same critical site may permanently disrupt translation of essential viral proteins. We discuss the benefits and drawbacks of three types of DNA cleavage enzymes (zinc finger endonucleases, transcription activator-like [TAL] effector nucleases [TALENs], and homing endonucleases [also called meganucleases]), the development of delivery vectors for these enzymes, and potential obstacles for successful treatment of chronic viral infections. We then review issues regarding persistence of HIV-1, HBV, and HSV that are relevant to eradication with genome-altering approaches.
Collapse
|
45
|
Taylor GK, Petrucci LH, Lambert AR, Baxter SK, Jarjour J, Stoddard BL. LAHEDES: the LAGLIDADG homing endonuclease database and engineering server. Nucleic Acids Res 2012; 40:W110-6. [PMID: 22570419 PMCID: PMC3394308 DOI: 10.1093/nar/gks365] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
LAGLIDADG homing endonucleases (LHEs) are DNA cleaving enzymes, also termed ‘meganucleases’ that are employed as gene-targeting reagents. This use of LHEs requires that their DNA specificity be altered to match sequences in genomic targets. The choice of the most appropriate LHE to target a particular gene is facilitated by the growing number of such enzymes with well-characterized activities and structures. ‘LAHEDES’ (The LAGLIDADG Homing Endonuclease Database and Engineering Server) provides both an online archive of LHEs with validated DNA cleavage specificities and DNA-binding interactions, as well as a tool for the identification of DNA sequences that might be targeted by various LHEs. Searches can be performed using four separate scoring algorithms and user-defined choices of LHE scaffolds. The webserver subsequently provides information regarding clusters of amino acids that should be interrogated during engineering and selection experiments. The webserver is fully open access and can be found at http://homingendonuclease.net.
Collapse
Affiliation(s)
- Gregory K Taylor
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
46
|
Enard W. Functional primate genomics—leveraging the medical potential. J Mol Med (Berl) 2012; 90:471-80. [DOI: 10.1007/s00109-012-0901-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
47
|
Prisecaru A, Devereux M, Barron N, McCann M, Colleran J, Casey A, McKee V, Kellett A. Potent oxidative DNA cleavage by the di-copper cytotoxin: [Cu2(μ-terephthalate)(1,10-phen)4]2+. Chem Commun (Camb) 2012; 48:6906-8. [DOI: 10.1039/c2cc31023f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|