1
|
Diao L, Xie S, Xu W, Zhang H, Hou Y, Hu Y, Liang X, Liang J, Zhang Q, Xiao Z. CRISPR/Cas13 sgRNA-Mediated RNA-RNA Interaction Mapping in Live Cells with APOBEC RNA Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409004. [PMID: 39392366 PMCID: PMC11615753 DOI: 10.1002/advs.202409004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Current research on long non-coding RNA (lncRNA) has predominantly focused on identifying their protein partners and genomic binding sites, leaving their RNA partners largely unknown. To address this gap, the study has developed a method called sarID (sgRNA scaffold assisted RNA-RNA interaction detection), which integrates Cas13-based RNA targeting, sgRNA engineering, and proximity RNA editing to investigate lncRNA-RNA interactomes. By applying sarID to the lncRNA NEAT1, over one thousand previously unidentified binding transcripts are discovered. sarID is further expanded to investigate binders of XIST, MALAT1, NBR2, and DANCR, demonstrating its broad applicability in identifying lncRNA-RNA interactions. The findings suggest that lncRNAs may regulate gene expression by interacting with mRNAs, expanding their roles beyond known functions as protein scaffolds, miRNA sponges, or guides for epigenetic modulators. sarID has the potential to be adapted for studying other specific RNAs, providing a novel immunoprecipitation-free method for uncovering RNA partners and facilitating the exploration of the RNA-RNA interactome.
Collapse
Affiliation(s)
- Li‐Ting Diao
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Shu‐Juan Xie
- Institute of VaccineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Wan‐Yi Xu
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | | | - Ya‐Rui Hou
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Yan‐Xia Hu
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | | | | | - Qi Zhang
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
- Institute of VaccineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Zhen‐Dong Xiao
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| |
Collapse
|
2
|
Zigdon I, Carmi M, Brodsky S, Rosenwaser Z, Barkai N, Jonas F. Beyond RNA-binding domains: determinants of protein-RNA binding. RNA (NEW YORK, N.Y.) 2024; 30:1620-1633. [PMID: 39353735 PMCID: PMC11571813 DOI: 10.1261/rna.080026.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
RNA-binding proteins (RBPs) are composed of RNA-binding domains (RBDs) often linked via intrinsically disordered regions (IDRs). Structural and biochemical analyses have shown that disordered linkers contribute to RNA binding by orienting the adjacent RBDs and also characterized certain disordered repeats that directly contact the RNA. However, the relative contribution of IDRs and predicted RBDs to the in vivo binding pattern is poorly explored. Here, we upscaled the RNA-tagging method to map the transcriptome-wide binding of 16 RBPs in budding yeast. We then performed extensive sequence mutations to distinguish binding determinants within predicted RBDs and the surrounding IDRs in eight of these. The majority of the predicted RBDs tested were not individually essential for mRNA binding. However, multiple IDRs that lacked predicted RNA-binding potential appeared essential for binding affinity or specificity. Our results provide new insights into the function of poorly studied RBPs and emphasize the complex and distributed encoding of RBP-RNA interaction in vivo.
Collapse
Affiliation(s)
- Inbal Zigdon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Rosenwaser
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Jonas
- School of Science, Constructor University, 28759 Bremen, Germany
| |
Collapse
|
3
|
Liu J, Zhong B, Li S, Han S. Mapping subcellular RNA localization with proximity labeling. Acta Biochim Biophys Sin (Shanghai) 2024; 57:101-107. [PMID: 39210826 DOI: 10.3724/abbs.2024147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The subcellular localization of RNA is critical to a variety of physiological and pathological processes. Dissecting the spatiotemporal regulation of the transcriptome is key to understanding cell function and fate. However, it remains challenging to effectively enrich and catalogue RNAs from various subcellular structures using traditional approaches. In recent years, proximity labeling has emerged as an alternative strategy for efficient isolation and purification of RNA from these intricate subcellular compartments. This review focuses on examining RNA-related proximity labeling tools and exploring their application in elucidating the spatiotemporal regulation of RNA at the subcellular level.
Collapse
|
4
|
Yang Y, Lu Y, Wang Y, Wen X, Qi C, Piao W, Jin H. Current progress in strategies to profile transcriptomic m 6A modifications. Front Cell Dev Biol 2024; 12:1392159. [PMID: 39055651 PMCID: PMC11269109 DOI: 10.3389/fcell.2024.1392159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Various methods have been developed so far for detecting N 6-methyladenosine (m6A). The total m6A level or the m6A status at individual positions on mRNA can be detected and quantified through some sequencing-independent biochemical methods, such as LC/MS, SCARLET, SELECT, and m6A-ELISA. However, the m6A-detection techniques relying on high-throughput sequencing have more effectively advanced the understanding about biological significance of m6A-containing mRNA and m6A pathway at a transcriptomic level over the past decade. Various SGS-based (Second Generation Sequencing-based) methods with different detection principles have been widely employed for this purpose. These principles include m6A-enrichment using antibodies, discrimination of m6A from unmodified A-base by nucleases, a fusion protein strategy relying on RNA-editing enzymes, and marking m6A with chemical/biochemical reactions. Recently, TGS-based (Third Generation Sequencing-based) methods have brought a new trend by direct m6A-detection. This review first gives a brief introduction of current knowledge about m6A biogenesis and function, and then comprehensively describes m6A-profiling strategies including their principles, procedures, and features. This will guide users to pick appropriate methods according to research goals, give insights for developing novel techniques in varying areas, and continue to expand our boundary of knowledge on m6A.
Collapse
Affiliation(s)
- Yuening Yang
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanming Lu
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Wang
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xianghui Wen
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Changhai Qi
- Department of Pathology, Aerospace Center Hospital, Beijing, China
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, China
| | - Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, China
| |
Collapse
|
5
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
6
|
Yuan S, Zhou G, Xu G. Translation machinery: the basis of translational control. J Genet Genomics 2024; 51:367-378. [PMID: 37536497 DOI: 10.1016/j.jgg.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Messenger RNA (mRNA) translation consists of initiation, elongation, termination, and ribosome recycling, carried out by the translation machinery, primarily including tRNAs, ribosomes, and translation factors (TrFs). Translational regulators transduce signals of growth and development, as well as biotic and abiotic stresses, to the translation machinery, where global or selective translational control occurs to modulate mRNA translation efficiency (TrE). As the basis of translational control, the translation machinery directly determines the quality and quantity of newly synthesized peptides and, ultimately, the cellular adaption. Thus, regulating the availability of diverse machinery components is reviewed as the central strategy of translational control. We provide classical signaling pathways (e.g., integrated stress responses) and cellular behaviors (e.g., liquid-liquid phase separation) to exemplify this strategy within different physiological contexts, particularly during host-microbe interactions. With new technologies developed, further understanding this strategy will speed up translational medicine and translational agriculture.
Collapse
Affiliation(s)
- Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
7
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
8
|
Carrick BH, Crittenden SL, Chen F, Linsley M, Woodworth J, Kroll-Conner P, Ferdous AS, Keleş S, Wickens M, Kimble J. PUF partner interactions at a conserved interface shape the RNA-binding landscape and cell fate in Caenorhabditis elegans. Dev Cell 2024; 59:661-675.e7. [PMID: 38290520 PMCID: PMC11253550 DOI: 10.1016/j.devcel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Protein-RNA regulatory networks underpin much of biology. C. elegans FBF-2, a PUF-RNA-binding protein, binds over 1,000 RNAs to govern stem cells and differentiation. FBF-2 interacts with multiple protein partners via a key tyrosine, Y479. Here, we investigate the in vivo significance of partnerships using a Y479A mutant. Occupancy of the Y479A mutant protein increases or decreases at specific sites across the transcriptome, varying with RNAs. Germline development also changes in a specific fashion: Y479A abolishes one FBF-2 function-the sperm-to-oocyte cell fate switch. Y479A's effects on the regulation of one mRNA, gld-1, are critical to this fate change, though other network changes are also important. FBF-2 switches from repression to activation of gld-1 RNA, likely by distinct FBF-2 partnerships. The role of RNA-binding protein partnerships in governing RNA regulatory networks will likely extend broadly, as such partnerships pervade RNA controls in virtually all metazoan tissues and species.
Collapse
Affiliation(s)
- Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fan Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - MaryGrace Linsley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer Woodworth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peggy Kroll-Conner
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ahlan S Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Loeser J, Bauer J, Janßen K, Rockenbach K, Wachter A. A transient in planta editing assay identifies specific binding of the splicing regulator PTB as a prerequisite for cassette exon inclusion. PLANT MOLECULAR BIOLOGY 2024; 114:22. [PMID: 38443687 PMCID: PMC10914923 DOI: 10.1007/s11103-024-01414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/31/2023] [Indexed: 03/07/2024]
Abstract
The dynamic interaction of RNA-binding proteins (RBPs) with their target RNAs contributes to the diversity of ribonucleoprotein (RNP) complexes that are involved in a myriad of biological processes. Identifying the RNP components at high resolution and defining their interactions are key to understanding their regulation and function. Expressing fusions between an RBP of interest and an RNA editing enzyme can result in nucleobase changes in target RNAs, representing a recent addition to experimental approaches for profiling RBP/RNA interactions. Here, we have used the MS2 protein/RNA interaction to test four RNA editing proteins for their suitability to detect target RNAs of RBPs in planta. We have established a transient test system for fast and simple quantification of editing events and identified the hyperactive version of the catalytic domain of an adenosine deaminase (hADARcd) as the most suitable editing enzyme. Examining fusions between homologs of polypyrimidine tract binding proteins (PTBs) from Arabidopsis thaliana and hADARcd allowed determining target RNAs with high sensitivity and specificity. Moreover, almost complete editing of a splicing intermediate provided insight into the order of splicing reactions and PTB dependency of this particular splicing event. Addition of sequences for nuclear localisation of the fusion protein increased the editing efficiency, highlighting this approach's potential to identify RBP targets in a compartment-specific manner. Our studies have established the editing-based analysis of interactions between RBPs and their RNA targets in a fast and straightforward assay, offering a new system to study the intricate composition and functions of plant RNPs in vivo.
Collapse
Affiliation(s)
- Jorinde Loeser
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Julia Bauer
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Kim Janßen
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Kevin Rockenbach
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
| |
Collapse
|
10
|
Seo KW, Kleiner RE. Profiling dynamic RNA-protein interactions using small-molecule-induced RNA editing. Nat Chem Biol 2023; 19:1361-1371. [PMID: 37349582 PMCID: PMC11048738 DOI: 10.1038/s41589-023-01372-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
RNA-binding proteins (RBPs) play an important role in biology, and characterizing dynamic RNA-protein interactions is essential for understanding RBP function. In this study, we developed targets of RBPs identified by editing induced through dimerization (TRIBE-ID), a facile strategy for quantifying state-specific RNA-protein interactions upon rapamycin-mediated chemically induced dimerization and RNA editing. We performed TRIBE-ID with G3BP1 and YBX1 to study RNA-protein interactions during normal conditions and upon oxidative stress-induced biomolecular condensate formation. We quantified editing kinetics to infer interaction persistence and show that stress granule formation strengthens pre-existing RNA-protein interactions and induces new RNA-protein binding events. Furthermore, we demonstrate that G3BP1 stabilizes its targets under normal and oxidative stress conditions independent of stress granule formation. Finally, we apply our method to characterize small-molecule modulators of G3BP1-RNA binding. Taken together, our work provides a general approach to profile dynamic RNA-protein interactions in cellular contexts with temporal control.
Collapse
Affiliation(s)
- Kyung W Seo
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Kleiner RE. Chemical Approaches To Investigate Post-transcriptional RNA Regulation. ACS Chem Biol 2023; 18:1684-1697. [PMID: 37540831 PMCID: PMC11031734 DOI: 10.1021/acschembio.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
RNA plays a central role in biological processes, and its activity is regulated by a host of diverse chemical and biochemical mechanisms including post-transcriptional modification and interactions with RNA-binding proteins. Here, we describe our efforts to illuminate RNA biology through the application of chemical tools, focusing on post-transcriptional regulatory mechanisms. We describe the development of an activity-based protein profiling approach for discovery and characterization of RNA-modifying enzymes. Next, we highlight novel approaches for RNA imaging based upon metabolic labeling with modified nucleosides and engineering of the nucleotide salvage pathway. Finally, we discuss profiling RNA-protein interactions using small molecule-dependent RNA editing and synthetic photo-cross-linkable oligonucleotide probes. Our work provides enabling technologies for deciphering the complexity of RNA and its diverse functions in biology.
Collapse
Affiliation(s)
- Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA 08544
| |
Collapse
|
12
|
Hao L, Zhang J, Liu Z, Zhang Z, Mao T, Guo J. Role of the RNA-binding protein family in gynecologic cancers. Am J Cancer Res 2023; 13:3799-3821. [PMID: 37693158 PMCID: PMC10492115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Gynecological cancers pose a threat to women's health. Although early-stage gynecological cancers show good outcomes after standardized treatment, the prognosis of patients with advanced, met-astatic, and recurrent cancers is poor. RNA-binding proteins (RBPs) are important cellular proteins that interact with RNA through RNA-binding domains and participate extensively in post-transcriptional regulatory processes, such as mRNA alternative splicing, polyadenylation, intracellular localization and stability, and translation. Abnormal RBP expression affects the normal function of oncogenes and tumor suppressor genes in many malignancies, thus leading to the occurrence or progression of cancers. Similarly, RBPs play crucial roles in gynecological carcinogenesis. We summarize the role of RBPs in gynecological malignancies and explore their potential in the diagnosis and treatment of cancers. The findings summarized in this review may provide a guide for future research on the functions of RBPs.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jian Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and TechnologyShenzhen 518055, Guangdong, China
| | - Zhongshan Liu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Zhiliang Zhang
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Tiezhu Mao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jie Guo
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| |
Collapse
|
13
|
Piao W, Li C, Sun P, Yang M, Ding Y, Song W, Jia Y, Yu L, Lu Y, Jin H. Identification of RNA-Binding Protein Targets with HyperTRIBE in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24109033. [PMID: 37240377 DOI: 10.3390/ijms24109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
As a master regulator in cells, RNA-binding protein (RBP) plays critical roles in organismal development, metabolism and various diseases. It regulates gene expression at various levels mostly by specific recognition of target RNA. The traditional CLIP-seq method to detect transcriptome-wide RNA targets of RBP is less efficient in yeast due to the low UV transmissivity of their cell walls. Here, we established an efficient HyperTRIBE (Targets of RNA-binding proteins Identified By Editing) in yeast, by fusing an RBP to the hyper-active catalytic domain of human RNA editing enzyme ADAR2 and expressing the fusion protein in yeast cells. The target transcripts of RBP were marked with new RNA editing events and identified by high-throughput sequencing. We successfully applied HyperTRIBE to identifying the RNA targets of two yeast RBPs, KHD1 and BFR1. The antibody-free HyperTRIBE has competitive advantages including a low background, high sensitivity and reproducibility, as well as a simple library preparation procedure, providing a reliable strategy for RBP target identification in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Weilan Piao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Chong Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Pengkun Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Miaomiao Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Yansong Ding
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Wei Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Yunxiao Jia
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Liqun Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Yanming Lu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| |
Collapse
|
14
|
Porter DF, Garg RM, Meyers RM, Miao W, Ducoli L, Zarnegar BJ, Khavari PA. Analyzing RNA-Protein Interactions by Cross-Link Rates and CLIP-seq Libraries. Curr Protoc 2023; 3:e659. [PMID: 36705610 PMCID: PMC9886339 DOI: 10.1002/cpz1.659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UV cross-linking-based methods are the most common tool to explore in vivo RNA-protein interactions. UV cross-linking enables the freezing of direct interactions in the cell, which can then be mapped by high-throughput sequencing through a family of methods termed CLIP-seq. CLIP-seq measures the distribution of cross-link events by purifying a protein of interest and sequencing the covalently bound RNA fragments. However, there are disagreements and ambiguities as to which proteins are RNA-binding proteins and what interactions are significant as all proteins contact all RNAs at some frequency. Here we describe a protocol for both determining RNA-protein interactions through a combination of RNA library preparation and the measurement of absolute cross-link rates, which helps determine what proteins are RNA-binding proteins and what interactions are significant. This protocol, comprising an updated form of the easyCLIP protocol, describes guidelines for RNA library preparation, oligo and protein standard construction, and the measurement of cross-link rates. These methods are easily visualizable through their fluorescent labels and can be adapted to study RNA-binding properties of both functional, high affinity RNA-binding proteins, and the accidental RNA interactions of non-RNA-binding proteins. © 2023 Wiley Periodicals LLC. Basic Protocol 1: RNA library construction Basic Protocol 2: Determining UV cross-link rates Support Protocol 1: Cross-linking and lysing cells Support Protocol 2: Adapter preparation Support Protocol 3: Preparation of cross-linked RBP standard.
Collapse
Affiliation(s)
- Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Raghav M Garg
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Weili Miao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Luca Ducoli
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Brian J Zarnegar
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
- Program in Cancer Biology, Stanford University, Stanford, California
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| |
Collapse
|
15
|
Liu S, Liu S, Jiang H. Multifaceted roles of mitochondrial stress responses under ETC dysfunction - repair, destruction and pathogenesis. FEBS J 2022; 289:6994-7013. [PMID: 34918460 DOI: 10.1111/febs.16323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/13/2023]
Abstract
Electron transport chain (ETC) dysfunction is a common feature of mitochondrial diseases and induces severe cellular stresses, including mitochondrial membrane potential (Δψm ) reduction, mitochondrial matrix acidification, metabolic derangements and proteostatic stresses. Extensive studies of ETC dysfunction in yeast, Caenorhabditis elegans, cultured cells and mouse models have revealed multiple mitochondrial stress response pathways. Here, we summarise the current understanding of the triggers, sensors, signalling mechanisms and the functional outcomes of mitochondrial stress responses in different species. We highlight Δψm reduction as a major trigger of stress responses in different species, but the responses are species-specific and the outcomes are context-dependent. ETC dysfunction elicits a mitochondrial unfolded protein response (UPRmt ) to repair damaged mitochondria in C. elegans, and activates a global adaptive programme to maintain Δψm in yeast. Yeast and C. elegans responses are remarkably similar at the downstream responses, although they are activated by different signalling mechanisms. UPRmt generally protects ETC-defective worms, but its constitutive activation is toxic for wildtype worms and worms carrying mutant mtDNA. In contrast to lower organisms, ETC dysfunction in mammals mainly activates a mitochondrial integrated stress response (ISRmt ) to reprogramme metabolism and a PINK1-Parkin mitophagy pathway to degrade damaged mitochondria. Accumulating in vivo results suggest that the ATF4 branch of ISRmt exacerbates metabolic derangements to accelerate mitochondrial disease progression. The in vivo roles of mitophagy in mitochondrial diseases are also context-dependent. These results thus reveal the common and unique aspects of mitochondrial stress responses in different species and highlight their multifaceted roles in mitochondrial diseases.
Collapse
Affiliation(s)
- Shanshan Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Siqi Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Hui Jiang
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR, Alajez NM. Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin Cancer Biol 2022; 86:325-345. [PMID: 35643221 DOI: 10.1016/j.semcancer.2022.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Understanding the complex and specific roles played by non-coding RNAs (ncRNAs), which comprise the bulk of the genome, is important for understanding virtually every hallmark of cancer. This large group of molecules plays pivotal roles in key regulatory mechanisms in various cellular processes. Regulatory mechanisms, mediated by long non-coding RNA (lncRNA) and RNA-binding protein (RBP) interactions, are well documented in several types of cancer. Their effects are enabled through networks affecting lncRNA and RBP stability, RNA metabolism including N6-methyladenosine (m6A) and alternative splicing, subcellular localization, and numerous other mechanisms involved in cancer. In this review, we discuss the reciprocal interplay between lncRNAs and RBPs and their involvement in epigenetic regulation via histone modifications, as well as their key role in resistance to cancer therapy. Other aspects of RBPs including their structural domains, provide a deeper knowledge on how lncRNAs and RBPs interact and exert their biological functions. In addition, current state-of-the-art knowledge, facilitated by machine and deep learning approaches, unravels such interactions in better details to further enhance our understanding of the field, and the potential to harness RNA-based therapeutics as an alternative treatment modality for cancer are discussed.
Collapse
Affiliation(s)
- Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ramesh Elango
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed Kardousha
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Rizwan Qureshi
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
17
|
Flamand MN, Ke K, Tamming R, Meyer KD. Single-molecule identification of the target RNAs of different RNA binding proteins simultaneously in cells. Genes Dev 2022; 36:1002-1015. [PMID: 36302554 PMCID: PMC9732904 DOI: 10.1101/gad.349983.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
RNA-binding proteins (RBPs) regulate nearly every aspect of mRNA processing and are important regulators of gene expression in cells. However, current methods for transcriptome-wide identification of RBP targets are limited, since they examine only a single RBP at a time and do not provide information on the individual RNA molecules that are bound by a given RBP. Here, we overcome these limitations by developing TRIBE-STAMP, an approach for single-molecule detection of the target RNAs of two RNA binding proteins simultaneously in cells. We applied TRIBE-STAMP to the cytoplasmic m6A reader proteins YTHDF1, YTHDF2, and YTHDF3 and discovered that individual mRNA molecules can be bound by more than one YTHDF protein throughout their lifetime, providing new insights into the function of YTHDF proteins in cells. TRIBE-STAMP is a highly versatile approach that enables single-molecule analysis of the targets of RBP pairs simultaneously in the same cells.
Collapse
Affiliation(s)
- Mathieu N. Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Ke Ke
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Renee Tamming
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA;,Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
18
|
Wang Z, Dai Q, Song J, Duan X, Yang H, Yang Z. Predicting RBP Binding Sites of RNA With High-Order Encoding Features and CNN-BLSTM Hybrid Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2409-2419. [PMID: 34038367 DOI: 10.1109/tcbb.2021.3083930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RNA binding protein (RBP) is extensively involved in various cellular regulatory processes through the interaction with RNAs. Capturing the RBP binding preferences is fundamental for revealing the pathogenesis of complex diseases. Many experimental detection techniques are still time-consuming and labor-intensive, therefore, it is indispensable to develop a computational method with convincing accuracy. In this study, we proposed a CNN-BLSTM hybrid deep learning framework, named DeepDW, for predicting the RBP binding sites on RNAs with high-order encoding features of RNA sequence and secondary structure. The high-order encoding strategy was used to characterize the dependencies among adjacency nucleotides. For CNN-BLSTM hybrid model, DeepDW first employed two 1-D convolutional neural networks (CNNs) for learning the local features from high-order encoded matrices of RNA sequence and structure separately, and then applied two bidirectional long short-term memory networks (BLSTMs) to capture the global information in a higher level. Moreover, a series of experiments were carried out on 31 public datasets to evaluate our proposed framework, and DeepDW achieved superior performance than the state-of-the-art methods. The results indicated that the combination of high-order encoding method and CNN-BLSTM hybrid model had advantages in identifying RBP-RNA binding sites.
Collapse
|
19
|
Ribonomics Approaches to Identify RBPome in Plants and Other Eukaryotes: Current Progress and Future Prospects. Int J Mol Sci 2022; 23:ijms23115923. [PMID: 35682602 PMCID: PMC9180120 DOI: 10.3390/ijms23115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
RNA-binding proteins (RBPs) form complex interactions with RNA to regulate the cell’s activities including cell development and disease resistance. RNA-binding proteome (RBPome) aims to profile and characterize the RNAs and proteins that interact with each other to carry out biological functions. Generally, RNA-centric and protein-centric ribonomic approaches have been successfully developed to profile RBPome in different organisms including plants and animals. Further, more and more novel methods that were firstly devised and applied in mammalians have shown great potential to unravel RBPome in plants such as RNA-interactome capture (RIC) and orthogonal organic phase separation (OOPS). Despise the development of various robust and state-of-the-art ribonomics techniques, genome-wide RBP identifications and characterizations in plants are relatively fewer than those in other eukaryotes, indicating that ribonomics techniques have great opportunities in unraveling and characterizing the RNA–protein interactions in plant species. Here, we review all the available approaches for analyzing RBPs in living organisms. Additionally, we summarize the transcriptome-wide approaches to characterize both the coding and non-coding RBPs in plants and the promising use of RBPome for booming agriculture.
Collapse
|
20
|
Mair A, Bergmann DC. Advances in enzyme-mediated proximity labeling and its potential for plant research. PLANT PHYSIOLOGY 2022; 188:756-768. [PMID: 34662401 PMCID: PMC8825456 DOI: 10.1093/plphys/kiab479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/21/2021] [Indexed: 06/12/2023]
Abstract
Cellular processes rely on the intimate interplay of different molecules, including DNA, RNA, proteins, and metabolites. Obtaining and integrating data on their abundance and dynamics at high temporal and spatial resolution are essential for our understanding of plant growth and development. In the past decade, enzymatic proximity labeling (PL) has emerged as a powerful tool to study local protein and nucleotide ensembles, discover protein-protein and protein-nucleotide interactions, and resolve questions about protein localization and membrane topology. An ever-growing number and continuous improvement of enzymes and methods keep broadening the spectrum of possible applications for PL and make it more accessible to different organisms, including plants. While initial PL experiments in plants required high expression levels and long labeling times, recently developed faster enzymes now enable PL of proteins on a cell type-specific level, even with low-abundant baits, and in different plant species. Moreover, expanding the use of PL for additional purposes, such as identification of locus-specific gene regulators or high-resolution electron microscopy may now be in reach. In this review, we give an overview of currently available PL enzymes and their applications in mammalian cell culture and plants. We discuss the challenges and limitations of PL methods and highlight open questions and possible future directions for PL in plants.
Collapse
Affiliation(s)
- Andrea Mair
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Dominique C Bergmann
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
21
|
Xu W, Biswas J, Singer RH, Rosbash M. Targeted RNA editing: novel tools to study post-transcriptional regulation. Mol Cell 2022; 82:389-403. [PMID: 34739873 PMCID: PMC8792254 DOI: 10.1016/j.molcel.2021.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023]
Abstract
RNA binding proteins (RBPs) regulate nearly all post-transcriptional processes within cells. To fully understand RBP function, it is essential to identify their in vivo targets. Standard techniques for profiling RBP targets, such as crosslinking immunoprecipitation (CLIP) and its variants, are limited or suboptimal in some situations, e.g. when compatible antibodies are not available and when dealing with small cell populations such as neuronal subtypes and primary stem cells. This review summarizes and compares several genetic approaches recently designed to identify RBP targets in such circumstances. TRIBE (targets of RNA binding proteins identified by editing), RNA tagging, and STAMP (surveying targets by APOBEC-mediated profiling) are new genetic tools useful for the study of post-transcriptional regulation and RBP identification. We describe the underlying RNA base editing technology, recent applications, and therapeutic implications.
Collapse
Affiliation(s)
- Weijin Xu
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | - Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02451, USA.
| |
Collapse
|
22
|
Faber MW, Vo TV. Long RNA-Mediated Chromatin Regulation in Fission Yeast and Mammals. Int J Mol Sci 2022; 23:968. [PMID: 35055152 PMCID: PMC8778201 DOI: 10.3390/ijms23020968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
As part of a complex network of genome control, long regulatory RNAs exert significant influences on chromatin dynamics. Understanding how this occurs could illuminate new avenues for disease treatment and lead to new hypotheses that would advance gene regulatory research. Recent studies using the model fission yeast Schizosaccharomyces pombe (S. pombe) and powerful parallel sequencing technologies have provided many insights in this area. This review will give an overview of key findings in S. pombe that relate long RNAs to multiple levels of chromatin regulation: histone modifications, gene neighborhood regulation in cis and higher-order chromosomal ordering. Moreover, we discuss parallels recently found in mammals to help bridge the knowledge gap between the study systems.
Collapse
Affiliation(s)
| | - Tommy V. Vo
- Department of Biochemistry and Molecular Biology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
23
|
Li Y, Liu S, Cao L, Luo Y, Du H, Li S, Zhang Z, Guo X, Tian W, Wong CC, You F. CBRPP: a new RNA-centric method to study RNA-protein interactions. RNA Biol 2021; 18:1608-1621. [PMID: 33596778 DOI: 10.1101/2020.04.09.033290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
RNA and protein are interconnected biomolecules that can influence each other's life cycles and functions through physical interactions. Abnormal RNA-protein interactions lead to cell dysfunctions and human diseases. Therefore, mapping networks of RNA-protein interactions is crucial for understanding cellular processes and pathogenesis of related diseases. Different practical protein-centric methods for studying RNA-protein interactions have been reported, but few robust RNA-centric methods exist. Here, we developed CRISPR-based RNA proximity proteomics (CBRPP), a new RNA-centric method to identify proteins associated with an endogenous RNA of interest in native cellular context without pre-editing of the target RNA, cross-linking or RNA-protein complexes manipulation in vitro. CBRPP is based on a fusion of dCas13 and proximity-based labelling (PBL) enzyme. dCas13 can deliver PBL enzyme to the target RNA with high specificity, while PBL enzyme labels the surrounding proteins of the target RNA, which are then identified by mass spectrometry.
Collapse
Affiliation(s)
- Yunfei Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Shengde Liu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Hongqiang Du
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Siji Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Xuefei Guo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Wenmin Tian
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing, China
| | - Catherine Cl Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
24
|
Robust single-cell discovery of RNA targets of RNA-binding proteins and ribosomes. Nat Methods 2021; 18:507-519. [PMID: 33963355 PMCID: PMC8148648 DOI: 10.1038/s41592-021-01128-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023]
Abstract
RNA-binding proteins (RBPs) are critical regulators of gene expression and RNA processing that are required for gene function. Yet the dynamics of RBP regulation in single cells is unknown. To address this gap in understanding, we developed STAMP (Surveying Targets by APOBEC-Mediated Profiling), which efficiently detects RBP-RNA interactions. STAMP does not rely on ultraviolet cross-linking or immunoprecipitation and, when coupled with single-cell capture, can identify RBP-specific and cell-type-specific RNA-protein interactions for multiple RBPs and cell types in single, pooled experiments. Pairing STAMP with long-read sequencing yields RBP target sites in an isoform-specific manner. Finally, Ribo-STAMP leverages small ribosomal subunits to measure transcriptome-wide ribosome association in single cells. STAMP enables the study of RBP-RNA interactomes and translational landscapes with unprecedented cellular resolution.
Collapse
|
25
|
Weissinger R, Heinold L, Akram S, Jansen RP, Hermesh O. RNA Proximity Labeling: A New Detection Tool for RNA-Protein Interactions. Molecules 2021; 26:2270. [PMID: 33919831 PMCID: PMC8070807 DOI: 10.3390/molecules26082270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple cellular functions are controlled by the interaction of RNAs and proteins. Together with the RNAs they control, RNA interacting proteins form RNA protein complexes, which are considered to serve as the true regulatory units for post-transcriptional gene expression. To understand how RNAs are modified, transported, and regulated therefore requires specific knowledge of their interaction partners. To this end, multiple techniques have been developed to characterize the interaction between RNAs and proteins. In this review, we briefly summarize the common methods to study RNA-protein interaction including crosslinking and immunoprecipitation (CLIP), and aptamer- or antisense oligonucleotide-based RNA affinity purification. Following this, we focus on in vivo proximity labeling to study RNA-protein interactions. In proximity labeling, a labeling enzyme like ascorbate peroxidase or biotin ligase is targeted to specific RNAs, RNA-binding proteins, or even cellular compartments and uses biotin to label the proteins and RNAs in its vicinity. The tagged molecules are then enriched and analyzed by mass spectrometry or RNA-Seq. We highlight the latest studies that exemplify the strength of this approach for the characterization of RNA protein complexes and distribution of RNAs in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Orit Hermesh
- Interfaculty Institute for Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany; (R.W.); (L.H.); (S.A.); (R.-P.J.)
| |
Collapse
|
26
|
Liu S, Liu S, He B, Li L, Li L, Wang J, Cai T, Chen S, Jiang H. OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential. EMBO Rep 2021; 22:e51606. [PMID: 33655635 DOI: 10.15252/embr.202051606] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Reduction of mitochondrial membrane potential (Δψm ) is a hallmark of mitochondrial dysfunction. It activates adaptive responses in organisms from yeast to human to rewire metabolism, remove depolarized mitochondria, and degrade unimported precursor proteins. It remains unclear how cells maintain Δψm , which is critical for maintaining iron-sulfur cluster (ISC) synthesis, an indispensable function of mitochondria. Here, we show that yeast oxidative phosphorylation mutants deficient in complex III, IV, V, and mtDNA, respectively, exhibit activated stress responses and progressive reduction of Δψm . Extensive omics analyses of these mutants show that these mutants progressively activate adaptive responses, including transcriptional downregulation of ATP synthase inhibitor Inh1 and OXPHOS subunits, Puf3-mediated upregulation of import receptor Mia40 and global mitochondrial biogenesis, Snf1/AMPK-mediated upregulation of glycolysis and repression of ribosome biogenesis, and transcriptional upregulation of cytoplasmic chaperones. These adaptations disinhibit mitochondrial ATP hydrolysis, remodel mitochondrial proteome, and optimize ATP supply to mitochondria to convergently maintain Δψm , ISC biosynthesis, and cell proliferation.
Collapse
Affiliation(s)
- Siqi Liu
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Shanshan Liu
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Baiyu He
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.,College of Biological Sciences, China Agriculture University, Beijing, China
| | - Lanlan Li
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.,College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jiawen Wang
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Hui Jiang
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Li Y, Liu S, Cao L, Luo Y, Du H, Li S, Zhang Z, Guo X, Tian W, Wong CC, You F. CBRPP: a new RNA-centric method to study RNA-protein interactions. RNA Biol 2021; 18:1608-1621. [PMID: 33596778 DOI: 10.1080/15476286.2021.1873620] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RNA and protein are interconnected biomolecules that can influence each other's life cycles and functions through physical interactions. Abnormal RNA-protein interactions lead to cell dysfunctions and human diseases. Therefore, mapping networks of RNA-protein interactions is crucial for understanding cellular processes and pathogenesis of related diseases. Different practical protein-centric methods for studying RNA-protein interactions have been reported, but few robust RNA-centric methods exist. Here, we developed CRISPR-based RNA proximity proteomics (CBRPP), a new RNA-centric method to identify proteins associated with an endogenous RNA of interest in native cellular context without pre-editing of the target RNA, cross-linking or RNA-protein complexes manipulation in vitro. CBRPP is based on a fusion of dCas13 and proximity-based labelling (PBL) enzyme. dCas13 can deliver PBL enzyme to the target RNA with high specificity, while PBL enzyme labels the surrounding proteins of the target RNA, which are then identified by mass spectrometry.
Collapse
Affiliation(s)
- Yunfei Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Shengde Liu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Hongqiang Du
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Siji Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Xuefei Guo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Wenmin Tian
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing, China
| | - Catherine Cl Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
28
|
Qin W, Cho KF, Cavanagh PE, Ting AY. Deciphering molecular interactions by proximity labeling. Nat Methods 2021; 18:133-143. [PMID: 33432242 PMCID: PMC10548357 DOI: 10.1038/s41592-020-01010-5] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein 'baits', via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein-protein, protein-RNA and protein-DNA interactions in living cells and organisms.
Collapse
Affiliation(s)
- Wei Qin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Peter E Cavanagh
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
29
|
Mitchell SF. In Vivo Cross-Linking Followed by polyA Enrichment to Identify Yeast mRNA Binding Proteins. Methods Mol Biol 2021; 2209:235-249. [PMID: 33201473 DOI: 10.1007/978-1-0716-0935-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
mRNA binding proteins regulate gene expression by controlling the processing, localization, decay, and translation of messenger RNAs (mRNAs). To fully understand these mechanisms of posttranscriptional gene regulation, it is necessary to identify the complete set of mRNA binding proteins. In recent years, several assays have been developed to accomplish this goal in a wide variety of organisms. This work describes a method for the systematic identification of mRNA binding proteins in Saccharomyces cerevisiae. This method applies in vivo UV cross-linking, affinity pull-down of polyA(+) mRNAs, and analysis by mass spectrometry to identify proteins that directly bind to mRNAs.
Collapse
Affiliation(s)
- Sarah F Mitchell
- Department of Chemistry and Biochemistry, Loyola Marymount University, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Lou L, Ding L, Wang T, Xiang Y. Emerging Roles of RNA-Binding Proteins in Seed Development and Performance. Int J Mol Sci 2020; 21:ijms21186822. [PMID: 32957608 PMCID: PMC7555721 DOI: 10.3390/ijms21186822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/01/2023] Open
Abstract
Seed development, dormancy, and germination are key physiological events that are not only important for seed generation, survival, and dispersal, but also contribute to agricultural production. RNA-binding proteins (RBPs) directly interact with target mRNAs and fine-tune mRNA metabolism by governing post-transcriptional regulation, including RNA processing, intron splicing, nuclear export, trafficking, stability/decay, and translational control. Recent studies have functionally characterized increasing numbers of diverse RBPs and shown that they participate in seed development and performance, providing significant insight into the role of RBP-mRNA interactions in seed processes. In this review, we discuss recent research progress on newly defined RBPs that have crucial roles in RNA metabolism and affect seed development, dormancy, and germination.
Collapse
|
31
|
Abstract
RNA movements and localization pervade biology, from embryonic development to disease. To identify RNAs at specific locations, we developed a strategy in which a uridine-adding enzyme is anchored to subcellular sites, where it directly marks RNAs with 3' terminal uridines. This localized RNA recording approach yields a record of RNA locations, and is validated through identification of RNAs localized selectively to the endoplasmic reticulum (ER) or mitochondria. We identify a broad dual localization pattern conserved from yeast to human cells, in which the same battery of mRNAs encounter both ER and mitochondria in both species, and include an mRNA encoding a key stress sensor. Subunits of many multiprotein complexes localize to both the ER and mitochondria, suggesting coordinated assembly. Noncoding RNAs in the course of RNA surveillance and processing encounter both organelles. By providing a record of RNA locations over time, the approach complements those that capture snapshots of instantaneous positions.
Collapse
|
32
|
Zheng J, Hong X, Xie J, Tong X, Liu S. P3DOCK: a protein-RNA docking webserver based on template-based and template-free docking. Bioinformatics 2020; 36:96-103. [PMID: 31173056 DOI: 10.1093/bioinformatics/btz478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
MOTIVATION The main function of protein-RNA interaction is to regulate the expression of genes. Therefore, studying protein-RNA interactions is of great significance. The information of three-dimensional (3D) structures reveals that atomic interactions are particularly important. The calculation method for modeling a 3D structure of a complex mainly includes two strategies: free docking and template-based docking. These two methods are complementary in protein-protein docking. Therefore, integrating these two methods may improve the prediction accuracy. RESULTS In this article, we compare the difference between the free docking and the template-based algorithm. Then we show the complementarity of these two methods. Based on the analysis of the calculation results, the transition point is confirmed and used to integrate two docking algorithms to develop P3DOCK. P3DOCK holds the advantages of both algorithms. The results of the three docking benchmarks show that P3DOCK is better than those two non-hybrid docking algorithms. The success rate of P3DOCK is also higher (3-20%) than state-of-the-art hybrid and non-hybrid methods. Finally, the hierarchical clustering algorithm is utilized to cluster the P3DOCK's decoys. The clustering algorithm improves the success rate of P3DOCK. For ease of use, we provide a P3DOCK webserver, which can be accessed at www.rnabinding.com/P3DOCK/P3DOCK.html. An integrated protein-RNA docking benchmark can be downloaded from http://rnabinding.com/P3DOCK/benchmark.html. AVAILABILITY AND IMPLEMENTATION www.rnabinding.com/P3DOCK/P3DOCK.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jinfang Zheng
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xu Hong
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Juan Xie
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoxue Tong
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shiyong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
33
|
Biswas J, Rahman R, Gupta V, Rosbash M, Singer RH. MS2-TRIBE Evaluates Both Protein-RNA Interactions and Nuclear Organization of Transcription by RNA Editing. iScience 2020; 23:101318. [PMID: 32674054 PMCID: PMC7363692 DOI: 10.1016/j.isci.2020.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/13/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
Both UV-cross-linking and immunoprecipitation (CLIP) and RNA editing (TRIBE) can identify the targets of RNA-binding proteins. To evaluate false-positives of CLIP and TRIBE, endogenous β-actin mRNA was tagged with MS2 stem loops, making it the only bona fide target mRNA for the MS2 capsid protein (MCP). CLIP and TRIBE detected β-actin, albeit with false-positives. False-positive CLIP signals were attributed to nonspecific antibody interactions. In contrast, putative false-positive TRIBE targets were genes spatially proximal to the β-actin gene. MCP-ADAR edited nearby nascent transcripts consistent with interchromosomal contacts observed in Hi-C. The identification of nascent contacts implies RNA regulatory proteins (e.g., splicing factors) associated with multiple nascent transcripts, forming domains of post-transcriptional activity. Repeating these results with an integrated inducible MS2 reporter indicated that MS2-TRIBE can be applied to a broad array of cells and transcripts to study spatial organization and nuclear RNA regulation.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Reazur Rahman
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA.
| |
Collapse
|
34
|
Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH, Alcaro S, Di Martino MT, Tagliaferri P, Tassone P. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic "dark matter". J Exp Clin Cancer Res 2020; 39:117. [PMID: 32563270 PMCID: PMC7305591 DOI: 10.1186/s13046-020-01622-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
The discovery of the role of non-coding RNAs (ncRNAs) in the onset and progression of malignancies is a promising frontier of cancer genetics. It is clear that ncRNAs are candidates for therapeutic intervention, since they may act as biomarkers or key regulators of cancer gene network. Recently, profiling and sequencing of ncRNAs disclosed deep deregulation in human cancers mostly due to aberrant mechanisms of ncRNAs biogenesis, such as amplification, deletion, abnormal epigenetic or transcriptional regulation. Although dysregulated ncRNAs may promote hallmarks of cancer as oncogenes or antagonize them as tumor suppressors, the mechanisms behind these events remain to be clarified. The development of new bioinformatic tools as well as novel molecular technologies is a challenging opportunity to disclose the role of the "dark matter" of the genome. In this review, we focus on currently available platforms, computational analyses and experimental strategies to investigate ncRNAs in cancer. We highlight the differences among experimental approaches aimed to dissect miRNAs and lncRNAs, which are the most studied ncRNAs. These two classes indeed need different investigation taking into account their intrinsic characteristics, such as length, structures and also the interacting molecules. Finally, we discuss the relevance of ncRNAs in clinical practice by considering promises and challenges behind the bench to bedside translation.
Collapse
Affiliation(s)
- Katia Grillone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Caterina Riillo
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Francesca Scionti
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Roberta Rocca
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Giuseppe Tradigo
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4science srl, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Department of Health Sciences, Magna Græcia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Maria Teresa Di Martino
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| | - Pierfrancesco Tassone
- Laboratory of Translational Medical Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, 88100 Catanzaro, Italy
| |
Collapse
|
35
|
Bhondeley M, Liu Z. Mitochondrial Biogenesis Is Positively Regulated by Casein Kinase I Hrr25 Through Phosphorylation of Puf3 in Saccharomyces cerevisiae. Genetics 2020; 215:463-482. [PMID: 32317286 PMCID: PMC7268985 DOI: 10.1534/genetics.120.303191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial biogenesis requires coordinated expression of genes encoding mitochondrial proteins, which in Saccharomyces cerevisiae is achieved in part via post-transcriptional control by the Pumilio RNA-binding domain protein Puf3 Puf3 binds to the 3'-UTR of many messenger RNAs (mRNAs) that encode mitochondrial proteins, regulating their turnover, translation, and/or mitochondrial targeting. Puf3 hyperphosphorylation correlates with increased mitochondrial biogenesis; however, the kinase responsible for Puf3 phosphorylation is unclear. Here, we show that the casein kinase I protein Hrr25 negatively regulates Puf3 by mediating its phosphorylation. An hrr25 mutation results in reduced phosphorylation of Puf3 in vivo and a puf3 deletion mutation reverses growth defects of hrr25 mutant cells grown on medium with a nonfermentable carbon source. We show that Hrr25 directly phosphorylates Puf3, and that the interaction between Puf3 and Hrr25 is mediated through the N-terminal domain of Puf3 and the kinase domain of Hrr25 We further found that an hrr25 mutation reduces GFP expression from GFP reporter constructs carrying the 3'-UTR of Puf3 targets. Downregulation of GFP expression due to an hrr25 mutation can be reversed either by puf3Δ or by mutations to the Puf3-binding sites in the 3'-UTR of the GFP reporter constructs. Together, our data indicate that Hrr25 is a positive regulator of mitochondrial biogenesis by phosphorylating Puf3 and inhibiting its function in downregulating target mRNAs encoding mitochondrial proteins.
Collapse
Affiliation(s)
- Manika Bhondeley
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, Louisiana 70148
| |
Collapse
|
36
|
Biswas J, Nunez L, Das S, Yoon YJ, Eliscovich C, Singer RH. Zipcode Binding Protein 1 (ZBP1; IGF2BP1): A Model for Sequence-Specific RNA Regulation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:1-10. [PMID: 32086331 DOI: 10.1101/sqb.2019.84.039396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fate of an RNA, from its localization, translation, and ultimate decay, is dictated by interactions with RNA binding proteins (RBPs). β-actin mRNA has functioned as the classic example of RNA localization in eukaryotic cells. Studies of β-actin mRNA over the past three decades have allowed understanding of how RBPs, such as ZBP1 (IGF2BP1), can control both RNA localization and translational status. Here, we summarize studies of β-actin mRNA and focus on how ZBP1 serves as a model for understanding interactions between RNA and their binding protein(s). Central to the study of RNA and RBPs were technological developments that occurred along the way. We conclude with a future outlook highlighting new technologies that may be used to address still unanswered questions about RBP-mediated regulation of mRNA during its life cycle, within the cell.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Leti Nunez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Carolina Eliscovich
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147, USA
| |
Collapse
|
37
|
Muellner J, Schmidt KH. Yeast Genome Maintenance by the Multifunctional PIF1 DNA Helicase Family. Genes (Basel) 2020; 11:genes11020224. [PMID: 32093266 PMCID: PMC7073672 DOI: 10.3390/genes11020224] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/04/2022] Open
Abstract
The two PIF1 family helicases in Saccharomyces cerevisiae, Rrm3, and ScPif1, associate with thousands of sites throughout the genome where they perform overlapping and distinct roles in telomere length maintenance, replication through non-histone proteins and G4 structures, lagging strand replication, replication fork convergence, the repair of DNA double-strand break ends, and transposable element mobility. ScPif1 and its fission yeast homolog Pfh1 also localize to mitochondria where they protect mitochondrial genome integrity. In addition to yeast serving as a model system for the rapid functional evaluation of human Pif1 variants, yeast cells lacking Rrm3 have proven useful for elucidating the cellular response to replication fork pausing at endogenous sites. Here, we review the increasingly important cellular functions of the yeast PIF1 helicases in maintaining genome integrity, and highlight recent advances in our understanding of their roles in facilitating fork progression through replisome barriers, their functional interactions with DNA repair, and replication stress response pathways.
Collapse
Affiliation(s)
- Julius Muellner
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kristina H. Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
38
|
Bajak K, Leiss K, Clayton CE, Erben E. The endoplasmic reticulum-associated mRNA-binding proteins ERBP1 and ERBP2 interact in bloodstream-form Trypanosoma brucei. PeerJ 2020; 8:e8388. [PMID: 32095321 PMCID: PMC7025706 DOI: 10.7717/peerj.8388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/12/2019] [Indexed: 01/20/2023] Open
Abstract
Kinetoplastids rely heavily on post-transcriptional mechanisms for control of gene expression, and on RNA-binding proteins that regulate mRNA splicing, translation and decay. Trypanosoma brucei ERBP1 (Tb927.10.14150) and ERBP2 (Tb927.9.9550) were previously identified as mRNA binding proteins that lack canonical RNA-binding domains. We show here that ERBP1 is associated with the endoplasmic reticulum, like ERBP2, and that the two proteins interact in vivo. Loss of ERBP1 from bloodstream-form T. brucei initially resulted in a growth defect but proliferation was restored after more prolonged cultivation. Pull-down analysis of tagged ERBP1 suggests that it preferentially binds to ribosomal protein mRNAs. The ERBP1 sequence resembles that of Saccharomyces cerevisiae Bfr1, which also localises to the endoplasmic reticulum and binds to ribosomal protein mRNAs. However, unlike Bfr1, ERBP1 does not bind to mRNAs encoding secreted proteins, and it is also not recruited to stress granules after starvation.
Collapse
Affiliation(s)
- Kathrin Bajak
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Kevin Leiss
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Christine E Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Esteban Erben
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
39
|
Integrative Structural Biology of Protein-RNA Complexes. Structure 2020; 28:6-28. [DOI: 10.1016/j.str.2019.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
|
40
|
Licatalosi DD, Ye X, Jankowsky E. Approaches for measuring the dynamics of RNA-protein interactions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1565. [PMID: 31429211 PMCID: PMC7006490 DOI: 10.1002/wrna.1565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022]
Abstract
RNA-protein interactions are pivotal for the regulation of gene expression from bacteria to human. RNA-protein interactions are dynamic; they change over biologically relevant timescales. Understanding the regulation of gene expression at the RNA level therefore requires knowledge of the dynamics of RNA-protein interactions. Here, we discuss the main experimental approaches to measure dynamic aspects of RNA-protein interactions. We cover techniques that assess dynamics of cellular RNA-protein interactions that accompany biological processes over timescales of hours or longer and techniques measuring the kinetic dynamics of RNA-protein interactions in vitro. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Evolution and Genomics > Ribonomics.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xuan Ye
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
41
|
Castells-Ballester J, Rinis N, Kotan I, Gal L, Bausewein D, Kats I, Zatorska E, Kramer G, Bukau B, Schuldiner M, Strahl S. Translational Regulation of Pmt1 and Pmt2 by Bfr1 Affects Unfolded Protein O-Mannosylation. Int J Mol Sci 2019; 20:ijms20246220. [PMID: 31835530 PMCID: PMC6940804 DOI: 10.3390/ijms20246220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
O-mannosylation is implicated in protein quality control in Saccharomyces cerevisiae due to the attachment of mannose to serine and threonine residues of un- or misfolded proteins in the endoplasmic reticulum (ER). This process also designated as unfolded protein O-mannosylation (UPOM) that ends futile folding cycles and saves cellular resources is mainly mediated by protein O-mannosyltransferases Pmt1 and Pmt2. Here we describe a genetic screen for factors that influence O-mannosylation in yeast, using slow-folding green fluorescent protein (GFP) as a reporter. Our screening identifies the RNA binding protein brefeldin A resistance factor 1 (Bfr1) that has not been linked to O-mannosylation and ER protein quality control before. We find that Bfr1 affects O-mannosylation through changes in Pmt1 and Pmt2 protein abundance but has no effect on PMT1 and PMT2 transcript levels, mRNA localization to the ER membrane or protein stability. Ribosome profiling reveals that Bfr1 is a crucial factor for Pmt1 and Pmt2 translation thereby affecting unfolded protein O-mannosylation. Our results uncover a new level of regulation of protein quality control in the secretory pathway.
Collapse
Affiliation(s)
- Joan Castells-Ballester
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Natalie Rinis
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Ilgin Kotan
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (L.G.); (M.S.)
| | - Daniela Bausewein
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
- spm—Safety Projects & More GmbH, D-69493 Hirschberg a. d. Bergstraße, Germany
| | - Ilia Kats
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Ewa Zatorska
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, D-69120 Heidelberg, Germany; (I.K.); (I.K.); (G.K.); (B.B.)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (L.G.); (M.S.)
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, D-69120 Heidelberg, Germany; (J.C.-B.); (N.R.); (D.B.); (E.Z.)
- Correspondence: ; Tel.: +49-6221-54-6286
| |
Collapse
|
42
|
Nechay M, Kleiner RE. High-throughput approaches to profile RNA-protein interactions. Curr Opin Chem Biol 2019; 54:37-44. [PMID: 31812895 DOI: 10.1016/j.cbpa.2019.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/22/2019] [Accepted: 11/03/2019] [Indexed: 12/17/2022]
Abstract
RNA-protein interactions play a critical role in post-transcriptional gene regulation. Characterizing these interactions in their native context has been challenging; however, advances in RNA sequencing and mass spectrometrybased proteomics combined with innovative chemical biological tools have heralded the development of robust strategies for performing biochemistry on a cellular scale. Herein, we review recent advances in the development and application of proteomic and transcriptomic approaches to profile cellular RNA-protein interactions, focusing on sequencing-based strategies and proteomic analysis of RNA-binding proteins, as well as approaches to address the role of RNA modifications in protein-RNA binding events.
Collapse
Affiliation(s)
- Misha Nechay
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
43
|
Manchalu S, Mittal N, Spang A, Jansen RP. Local translation of yeast ERG4 mRNA at the endoplasmic reticulum requires the brefeldin A resistance protein Bfr1. RNA (NEW YORK, N.Y.) 2019; 25:1661-1672. [PMID: 31455610 PMCID: PMC6859859 DOI: 10.1261/rna.072017.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/20/2019] [Indexed: 05/13/2023]
Abstract
Brefeldin A resistance factor 1 (Bfr1p) is a nonessential RNA-binding protein and multicopy suppressor of brefeldin A sensitivity in Saccharomyces cerevisiae Deletion of BFR1 leads to multiple defects, including altered cell shape and size, change in ploidy, induction of P-bodies and chromosomal missegregation. Bfr1p has been shown to associate with polysomes, binds to several hundred mRNAs, and can target some of them to P-bodies. Although this implies a role of Bfr1p in translational control of mRNAs, its molecular function remains elusive. In the present study, we show that mutations in RNA-binding residues of Bfr1p impede its RNA-dependent colocalization with ER, yet do not mimic the known cellular defects seen upon BFR1 deletion. However, a Bfr1 RNA-binding mutant is impaired in binding to ERG4 mRNA, which encodes an enzyme required for the final step of ergosterol biosynthesis. Consistently, bfr1Δ strains show a strong reduction in Erg4p protein levels, most likely because of degradation of misfolded Erg4p. Polysome profiling of bfr1Δ or bfr1 mutant strains reveals a strong shift of ERG4 mRNA to polysomes, consistent with a function of Bfr1p in elongation or increased ribosome loading. Collectively, our data reveal that Bfr1 has at least two separable functions: one in RNA binding and cotranslational protein translocation into the ER and one in ploidy control or chromosome segregation.
Collapse
Affiliation(s)
- Srinivas Manchalu
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen 72076, Germany
| | - Nitish Mittal
- Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Ralf-Peter Jansen
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
44
|
Lin C, Miles WO. Beyond CLIP: advances and opportunities to measure RBP-RNA and RNA-RNA interactions. Nucleic Acids Res 2019; 47:5490-5501. [PMID: 31076772 PMCID: PMC6582316 DOI: 10.1093/nar/gkz295] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
RNA is an essential player in almost all biological processes, and has an ever-growing number of roles in regulating cellular growth and organization. RNA functions extend far beyond just coding for proteins and RNA has been shown to function in signaling events, chromatin organization and transcriptional regulation. Dissecting how the complex network of RNA-binding proteins (RBPs) and regulatory RNAs interact with their substrates within the cell is a real, but exciting, challenge for the RNA community. Investigating these biological questions has fueled the development of new quantitative technologies to measure how RNA and RBPs interact both locally and on a global scale. In this review, we provide an assessment of available approaches to enable researchers to select the protocol most applicable for their experimental question.
Collapse
Affiliation(s)
- Chenyu Lin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Wayne O Miles
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
45
|
Jarmoskaite I, Denny SK, Vaidyanathan PP, Becker WR, Andreasson JOL, Layton CJ, Kappel K, Shivashankar V, Sreenivasan R, Das R, Greenleaf WJ, Herschlag D. A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Mol Cell 2019; 74:966-981.e18. [PMID: 31078383 DOI: 10.1101/403006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 05/20/2023]
Abstract
High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Scribe Therapeutics, Berkeley, CA, 94704, USA
| | | | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johan O L Andreasson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Raashi Sreenivasan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Morton M, AlTamimi N, Butt H, Reddy ASN, Mahfouz M. Serine/Arginine-rich protein family of splicing regulators: New approaches to study splice isoform functions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:127-134. [PMID: 31128682 DOI: 10.1016/j.plantsci.2019.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 05/06/2023]
Abstract
Serine/arginine-rich (SR) proteins are conserved RNA-binding proteins that play major roles in RNA metabolism. They function as molecular adaptors, facilitate spliceosome assembly and modulate constitutive and alternative splicing of pre-mRNAs. Pre-mRNAs encoding SR proteins and many other proteins involved in stress responses are extensively alternatively spliced in response to diverse stresses. Hence, it is proposed that stress-induced changes in splice isoforms contribute to the adaptation of plants to stress responses. However, functions of most SR genes and their splice isoforms in stress responses are not known. Lack of easy and robust tools hindered the progress in this area. Emerging technologies such as CRISPR/Cas9 will facilitate studies of SR function by enabling the generation of single and multiple knock-out mutants of SR subfamily members. Moreover, CRISPR/Cas13 allows targeted manipulation of splice isoforms from SR and other genes in a constitutive or tissue-specific manner to evaluate functions of individual splice variants. Identification of the in vivo targets of SR proteins and their splice variants using the recently developed TRIBE (Targets of RNA-binding proteins Identified By Editing) and other methods will help unravel their mode of action and splicing regulatory elements under various conditions. These new approaches are expected to provide significant new insights into the roles of SRs and splice isoforms in plants adaptation to diverse stresses.
Collapse
Affiliation(s)
- Mitchell Morton
- Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Nadia AlTamimi
- Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Anireddy S N Reddy
- Department of Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Magdy Mahfouz
- Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
47
|
Jarmoskaite I, Denny SK, Vaidyanathan PP, Becker WR, Andreasson JOL, Layton CJ, Kappel K, Shivashankar V, Sreenivasan R, Das R, Greenleaf WJ, Herschlag D. A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Mol Cell 2019; 74:966-981.e18. [PMID: 31078383 DOI: 10.1016/j.molcel.2019.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023]
Abstract
High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Scribe Therapeutics, Berkeley, CA, 94704, USA
| | | | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johan O L Andreasson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Raashi Sreenivasan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
Rahman R, Xu W, Jin H, Rosbash M. Identification of RNA-binding protein targets with HyperTRIBE. Nat Protoc 2019; 13:1829-1849. [PMID: 30013039 DOI: 10.1038/s41596-018-0020-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNA-binding proteins (RBPs) accompany RNA from birth to death, affecting RNA biogenesis and functions. Identifying RBP-RNA interactions is essential to understanding their complex roles in different cellular processes. However, detecting in vivo RNA targets of RBPs, especially in a small number of discrete cells, has been a technically challenging task. We previously developed a novel technique called TRIBE (targets of RNA-binding proteins identified by editing) to overcome this problem. TRIBE expresses a fusion protein consisting of a queried RBP and the catalytic domain of the RNA-editing enzyme ADAR (adenosine deaminase acting on RNA) (ADARcd), which marks target RNA transcripts by converting adenosine to inosine near the RBP binding sites. These marks can be subsequently identified via high-throughput sequencing. In spite of its usefulness, TRIBE is constrained by a low editing efficiency and editing-sequence bias from the ADARcd. Therefore, we developed HyperTRIBE by incorporating a previously characterized hyperactive mutation, E488Q, into the ADARcd. This strategy increases the editing efficiency and reduces sequence bias, which markedly increases the sensitivity of this technique without sacrificing specificity. HyperTRIBE provides a more powerful strategy for identifying RNA targets of RBPs with an easy experimental and computational protocol at low cost, that can be performed not only in flies, but also in mammals. The HyperTRIBE experimental protocol described below can be carried out in cultured Drosophila S2 cells in 1 week, using tools available in a common molecular biology laboratory; the computational analysis requires 3 more days.
Collapse
Affiliation(s)
- Reazur Rahman
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Weijin Xu
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Hua Jin
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
49
|
Ramanathan M, Porter DF, Khavari PA. Methods to study RNA-protein interactions. Nat Methods 2019; 16:225-234. [PMID: 30804549 PMCID: PMC6692137 DOI: 10.1038/s41592-019-0330-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022]
Abstract
Noncoding RNA sequences, including long noncoding RNAs, small nucleolar RNAs, and untranslated mRNA regions, accomplish many of their diverse functions through direct interactions with RNA-binding proteins (RBPs). Recent efforts have identified hundreds of new RBPs that lack known RNA-binding domains, thus underscoring the complexity and diversity of RNA-protein complexes. Recent progress has expanded the number of methods for studying RNA-protein interactions in two general categories: approaches that characterize proteins bound to an RNA of interest (RNA-centric), and those that examine RNAs bound to a protein of interest (protein-centric). Each method has unique strengths and limitations, which makes it important to select optimal approaches for the biological question being addressed. Here we review methods for the study of RNA-protein interactions, with a focus on their suitability for specific applications.
Collapse
Affiliation(s)
- Muthukumar Ramanathan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
50
|
Mayya VK, Duchaine TF. Ciphers and Executioners: How 3'-Untranslated Regions Determine the Fate of Messenger RNAs. Front Genet 2019; 10:6. [PMID: 30740123 PMCID: PMC6357968 DOI: 10.3389/fgene.2019.00006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
The sequences and structures of 3'-untranslated regions (3'UTRs) of messenger RNAs govern their stability, localization, and expression. 3'UTR regulatory elements are recognized by a wide variety of trans-acting factors that include microRNAs (miRNAs), their associated machinery, and RNA-binding proteins (RBPs). In turn, these factors instigate common mechanistic strategies to execute the regulatory programs encoded by 3'UTRs. Here, we review classes of factors that recognize 3'UTR regulatory elements and the effector machineries they guide toward mRNAs to dictate their expression and fate. We outline illustrative examples of competitive, cooperative, and coordinated interplay such as mRNA localization and localized translation. We further review the recent advances in the study of mRNP granules and phase transition, and their possible significance for the functions of 3'UTRs. Finally, we highlight some of the most recent strategies aimed at deciphering the complexity of the regulatory codes of 3'UTRs, and identify some of the important remaining challenges.
Collapse
Affiliation(s)
| | - Thomas F. Duchaine
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|