1
|
Nordin N, Zaini Ambia NFA, Majid SR, Abu Bakar N. Efficient encapsulation of a model drug in chitosan cathodic electrodeposition: Preliminary analysis using FTIR, UV-vis, and NMR spectroscopy. Carbohydr Polym 2025; 348:122830. [PMID: 39562104 DOI: 10.1016/j.carbpol.2024.122830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 11/21/2024]
Abstract
This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV-visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for Td50Ti60, while UV-Vis showed 46.41 % at Td60Ti50. NMR analysis revealed effective concentrations of 0.47 mM for Td70Ti60 and 0.38 mM for Td60Ti50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications.
Collapse
Affiliation(s)
- Nurdiana Nordin
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | - S R Majid
- Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurfarhanim Abu Bakar
- Department of Engineering and Sciences, American Degree Program, School of Liberal Arts and Sciences, Taylor's University, Taylor's Lakeside Campus, No. 1 Jalan Taylor, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
2
|
He Y, Liu Y, Gong J, Yang F, Sun C, Yan X, Duan N, Hua Y, Zeng T, Fu Z, Liang Y, Li W, Huang X, Tang J, Yin Y. tRF-27 competitively Binds to G3BPs and Activates MTORC1 to Enhance HER2 Positive Breast Cancer Trastuzumab Tolerance. Int J Biol Sci 2024; 20:3923-3941. [PMID: 39113695 PMCID: PMC11302882 DOI: 10.7150/ijbs.87415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/19/2024] [Indexed: 08/10/2024] Open
Abstract
About 20% of breast cancer patients are positive for HER2. The efficacy of current treatments is limited by primary and secondary resistance to trastuzumab. tRNA-derived fragments (tRFs) have shown crucial regulatory roles in various cancers. This study aimed to evaluate the role of tRF-27 in regulating the resistance of HER2-positive breast cancer against trastuzumab. tRF-27 was highly expressed in trastuzumab-resistant cells, and its expression level could predict the resistance to trastuzumab. High expression of tRF-27 promoted the growth and proliferation of trastuzumab-exposed cells. RNA-pulldown assay and mass spectrometry were performed to identify Ras GTPase-activating protein-binding proteins 1 and 2 (G3BPs) (two proteins targeted by tRF-27); RNA-immunoprecipitation (RIP) to confirm their bindings; co-immunoprecipitation (co-IP) and RNA-pulldown assay to determine the binding domains between G3BPs and tRF-27.tRF-27 bound to the nuclear transport factor 2 like domain(NTF2 domain) of G3BPs through a specific sequence. tRF-27 relied on G3BPs and NTF2 domain to increase trastuzumab tolerance. tRF-27 competed with lysosomal associated membrane protein 1(LAMP1) for NTF2 domain, thereby inhibiting lysosomal localization of G3BPs and tuberous sclerosis complex (TSC). Overexpression of tRF-27 inhibited phosphorylation of TSCs and promoted the activation of mechanistic target of rapamycin complex 1(MTORC1) to enhance cell proliferation and entice the resistance of HER2-positive breast cancer against trastuzumab.
Collapse
Affiliation(s)
- Yaozhou He
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yincheng Liu
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jue Gong
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Fan Yang
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Xueqi Yan
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Ningjun Duan
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yijia Hua
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Tianyu Zeng
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yan Liang
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Wei Li
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Xiang Huang
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jinhai Tang
- Department of General Surgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| |
Collapse
|
3
|
Mondal A, Singh B, Felkner RH, Falco AD, Swapna GVT, Montelione GT, Roth MJ, Perez A. A Computational Pipeline for Accurate Prioritization of Protein-Protein Binding Candidates in High-Throughput Protein Libraries. Angew Chem Int Ed Engl 2024; 63:e202405767. [PMID: 38588243 PMCID: PMC11544546 DOI: 10.1002/anie.202405767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Identifying the interactome for a protein of interest is challenging due to the large number of possible binders. High-throughput experimental approaches narrow down possible binding partners but often include false positives. Furthermore, they provide no information about what the binding region is (e.g., the binding epitope). We introduce a novel computational pipeline based on an AlphaFold2 (AF) Competitive Binding Assay (AF-CBA) to identify proteins that bind a target of interest from a pull-down experiment and the binding epitope. Our focus is on proteins that bind the Extraterminal (ET) domain of Bromo and Extraterminal domain (BET) proteins, but we also introduce nine additional systems to show transferability to other peptide-protein systems. We describe a series of limitations to the methodology based on intrinsic deficiencies of AF and AF-CBA to help users identify scenarios where the approach will be most useful. Given the method's speed and accuracy, we anticipate its broad applicability to identify binding epitope regions among potential partners, setting the stage for experimental verification.
Collapse
Affiliation(s)
- Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Leigh Hall 240, Gainesville, FL
| | - Bhumika Singh
- Department of Chemistry and Quantum Theory Project, University of Florida, Leigh Hall 240, Gainesville, FL
| | - Roland H. Felkner
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane Rm 636, Piscataway, NJ 08854
| | - Anna De Falco
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - GVT Swapna
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Monica J. Roth
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane Rm 636, Piscataway, NJ 08854
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Leigh Hall 240, Gainesville, FL
| |
Collapse
|
4
|
Mondal A, Singh B, Felkner RH, De Falco A, Swapna GVT, Montelione GT, Roth MJ, Perez A. Sifting Through the Noise: A Computational Pipeline for Accurate Prioritization of Protein-Protein Binding Candidates in High-Throughput Protein Libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576374. [PMID: 38328039 PMCID: PMC10849530 DOI: 10.1101/2024.01.20.576374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Identifying the interactome for a protein of interest is challenging due to the large number of possible binders. High-throughput experimental approaches narrow down possible binding partners, but often include false positives. Furthermore, they provide no information about what the binding region is (e.g. the binding epitope). We introduce a novel computational pipeline based on an AlphaFold2 (AF) Competition Assay (AF-CBA) to identify proteins that bind a target of interest from a pull-down experiment, along with the binding epitope. Our focus is on proteins that bind the Extraterminal (ET) domain of Bromo and Extraterminal domain (BET) proteins, but we also introduce nine additional systems to show transferability to other peptide-protein systems. We describe a series of limitations to the methodology based on intrinsic deficiencies to AF and AF-CBA, to help users identify scenarios where the approach will be most useful. Given the speed and accuracy of the methodology, we expect it to be generally applicable to facilitate target selection for experimental verification starting from high-throughput protein libraries.
Collapse
Affiliation(s)
- Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Leigh Hall 240, Gainesville, FL
| | - Bhumika Singh
- Department of Chemistry and Quantum Theory Project, University of Florida, Leigh Hall 240, Gainesville, FL
| | - Roland H. Felkner
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane Rm 636, Piscataway, NJ 08854
| | - Anna De Falco
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - GVT Swapna
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Monica J. Roth
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane Rm 636, Piscataway, NJ 08854
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Leigh Hall 240, Gainesville, FL
| |
Collapse
|
5
|
Bi W, Bao K, Zhou X, Deng Y, Li X, Zhang J, Lan X, Zhao J, Lu D, Xu Y, Cen Y, Cao R, Xu M, Zhong W, Zhu L. PSMC5 regulates microglial polarization and activation in LPS-induced cognitive deficits and motor impairments by interacting with TLR4. J Neuroinflammation 2023; 20:277. [PMID: 38001534 PMCID: PMC10668523 DOI: 10.1186/s12974-023-02904-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/23/2023] [Indexed: 11/26/2023] Open
Abstract
Luteolin is a flavonoid found in high concentrations in celery and green pepper, and acts as a neuroprotectant. PSMC5 (proteasome 26S subunit, ATPase 5) protein levels were reduced after luteolin stimulation in activated microglia. We aimed to determine whether regulating PSMC5 expression could inhibit neuroinflammation, and investigate the underlying mechanisms.BV2 microglia were transfected with siRNA PSMC5 before the addition of LPS (lipopolysaccharide, 1.0 µg/ml) for 24 h in serum free DMEM. A mouse model of LPS-induced cognitive and motor impairment was established to evaluate the neuroprotective effects of shRNA PSMC5. Intracerebroventricular administration of shRNA PSMC5 was commenced 7 days prior to i.p. injection of LPS (750 μg/kg). Treatments and behavioral experiments were performed once daily for 7 consecutive days. Behavioral tests and pathological/biochemical assays were performed to evaluate LPS-induced hippocampal damage. Molecular dynamics simulation was used to confirm the interaction between PSMC5 and TLR4 (Toll-like receptor 4) in LPS-stimulated BV2 microglia. SiRNA PSMC5 inhibited BV2 microglial activation, and suppressed the release of inflammatory factors (IL-1β, COX-2, PGE2, TNF-α, and iNOS) upon after LPS stimulation in BV2 microglia. LPS increased IκB-α and p65 phosphorylation, which was attenuated by siRNA PSMC5. Behavioral tests and pathological/biochemical assays showed that shRNA PSMC5 attenuated LPS-induced cognitive and motor impairments, and restored synaptic ultrastructure and protein levels in mice. ShRNA PSMC5 reduced pro-inflammatory cytokine (TNF-α, IL-1β, PGE2, and NO) levels in the serum and brain, and relevant protein factors (iNOS and COX-2) in the brain. Furthermore, shRNA PSMC5 upregulated the anti-inflammatory mediators interleukin IL-4 and IL-10 in the serum and brain, and promoted a pro-inflammation-to-anti-inflammation phenotype shift in microglial polarization. Mechanistically, shRNA PSMC5 significantly alleviated LPS-induced TLR4 expression. The polarization of LPS-induced microglial pro-inflammation phenotype was abolished by TLR4 inhibitor and in the TLR-4-/- mouse, as in shRNA PSMC5 treatment. PSMC5 interacted with TLR4 via the amino sites Glu284, Met139, Leu127, and Phe283. PSMC5 site mutations attenuated neuroinflammation and reduced pro-inflammatory factors by reducing TLR4-related effects, thereby reducing TLR4-mediated MyD88 (myeloid differentiation factor 88)-dependent activation of NF-κB. PSMC5 could be an important therapeutic target for treatment of neurodegenerative diseases involving neuroinflammation-associated cognitive deficits and motor impairments induced by microglial activation.
Collapse
Affiliation(s)
- Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510630, China
- Clinical Neuoscience Institute, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Keyao Bao
- Department of Pathophysiology, School of Medicine, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, 510632, China
| | - Xinqi Zhou
- Department of Pathophysiology, School of Medicine, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, 510632, China
| | - Yihui Deng
- Central Laboratory of the First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Xiaoting Li
- Department of Neurology, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Jiawei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, 510632, China
| | - Xin Lan
- Department of Pathophysiology, School of Medicine, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, 510632, China
| | - Jiayi Zhao
- Department of Pathophysiology, School of Medicine, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, 510632, China
| | - Daxiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, 510632, China
| | - Yezi Xu
- Department of Neurology, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Yanmei Cen
- Department of Neurology, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Rui Cao
- Department of Neurology, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Mengyang Xu
- Department of Biology, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, 510632, China
| | - Wenbin Zhong
- Department of Biology, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, 510632, China.
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, 510632, China.
- Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, No. 601, West Huangpu Avenue, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Medica S, Crawford LB, Denton M, Min CK, Jones TA, Alexander T, Parkins CJ, Diggins NL, Streblow GJ, Mayo AT, Kreklywich CN, Smith P, Jeng S, McWeeney S, Hancock MH, Yurochko A, Cohen MS, Caposio P, Streblow DN. Proximity-dependent mapping of the HCMV US28 interactome identifies RhoGEF signaling as a requirement for efficient viral reactivation. PLoS Pathog 2023; 19:e1011682. [PMID: 37782657 PMCID: PMC10569644 DOI: 10.1371/journal.ppat.1011682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/12/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Abstract
Human cytomegalovirus (HCMV) encodes multiple putative G protein-coupled receptors (GPCRs). US28 functions as a viral chemokine receptor and is expressed during both latent and lytic phases of virus infection. US28 actively promotes cellular migration, transformation, and plays a major role in mediating viral latency and reactivation; however, knowledge about the interaction partners involved in these processes is still incomplete. Herein, we utilized a proximity-dependent biotinylating enzyme (TurboID) to characterize the US28 interactome when expressed in isolation, and during both latent (CD34+ hematopoietic progenitor cells) and lytic (fibroblasts) HCMV infection. Our analyses indicate that the US28 signalosome converges with RhoA and EGFR signal transduction pathways, sharing multiple mediators that are major actors in processes such as cellular proliferation and differentiation. Integral members of the US28 signaling complex were validated in functional assays by immunoblot and small-molecule inhibitors. Importantly, we identified RhoGEFs as key US28 signaling intermediaries. In vitro latency and reactivation assays utilizing primary CD34+ hematopoietic progenitor cells (HPCs) treated with the small-molecule inhibitors Rhosin or Y16 indicated that US28 -RhoGEF interactions are required for efficient viral reactivation. These findings were recapitulated in vivo using a humanized mouse model where inhibition of RhoGEFs resulted in a failure of the virus to reactivate. Together, our data identifies multiple new proteins in the US28 interactome that play major roles in viral latency and reactivation, highlights the utility of proximity-sensor labeling to characterize protein interactomes, and provides insight into targets for the development of novel anti-HCMV therapeutics.
Collapse
Affiliation(s)
- Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Lindsey B. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Chan-Ki Min
- Department of Microbiology & Immunology, Center for Molecular & Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Taylor A. Jones
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Timothy Alexander
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nicole L. Diggins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Gabriel J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Adam T. Mayo
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Patricia Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Sophia Jeng
- Department of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Shannon McWeeney
- Department of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Andrew Yurochko
- Department of Microbiology & Immunology, Center for Molecular & Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|
7
|
Madina MH, Santhanam P, Asselin Y, Jaswal R, Bélanger RR. Progress and Challenges in Elucidating the Functional Role of Effectors in the Soybean- Phytophthora sojae Interaction. J Fungi (Basel) 2022; 9:12. [PMID: 36675833 PMCID: PMC9866111 DOI: 10.3390/jof9010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Phytophthora sojae, the agent responsible for stem and root rot, is one of the most damaging plant pathogens of soybean. To establish a compatible-interaction, P. sojae secretes a wide array of effector proteins into the host cell. These effectors have been shown to act either in the apoplastic area or the cytoplasm of the cell to manipulate the host cellular processes in favor of the development of the pathogen. Deciphering effector-plant interactions is important for understanding the role of P. sojae effectors in disease progression and developing approaches to prevent infection. Here, we review the subcellular localization, the host proteins, and the processes associated with P. sojae effectors. We also discuss the emerging topic of effectors in the context of effector-resistance genes interaction, as well as model systems and recent developments in resources and techniques that may provide a better understanding of the soybean-P. sojae interaction.
Collapse
|
8
|
Costa A, Powell LM, Malaguti M, Soufi A, Lowell S, Jarman AP. Repurposing the lineage-determining transcription factor Atoh1 without redistributing its genomic binding sites. Front Cell Dev Biol 2022; 10:1016367. [PMID: 36420143 PMCID: PMC9676683 DOI: 10.3389/fcell.2022.1016367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Although the lineage-determining ability of transcription factors is often modulated according to cellular context, the mechanisms by which such switching occurs are not well known. Using a transcriptional programming model, we found that Atoh1 is repurposed from a neuronal to an inner ear hair cell (HC) determinant by the combined activities of Gfi1 and Pou4f3. In this process, Atoh1 maintains its regulation of neuronal genes but gains ability to regulate HC genes. Pou4f3 enables Atoh1 access to genomic locations controlling the expression of sensory (including HC) genes, but Atoh1 + Pou4f3 are not sufficient for HC differentiation. Gfi1 is key to the Atoh1-induced lineage switch, but surprisingly does not alter Atoh1's binding profile. Gfi1 acts in two divergent ways. It represses the induction by Atoh1 of genes that antagonise HC differentiation, a function in keeping with its well-known repressor role in haematopoiesis. Remarkably, we find that Gfi1 also acts as a co-activator: it binds directly to Atoh1 at existing target genes to enhance its activity. These findings highlight the diversity of mechanisms by which one TF can redirect the activity of another to enable combinatorial control of cell identity.
Collapse
Affiliation(s)
- Aida Costa
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lynn M. Powell
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdenour Soufi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Microscale Thermophoresis as a Tool to Study Protein Interactions and Their Implication in Human Diseases. Int J Mol Sci 2022; 23:ijms23147672. [PMID: 35887019 PMCID: PMC9315744 DOI: 10.3390/ijms23147672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
The review highlights how protein–protein interactions (PPIs) have determining roles in most life processes and how interactions between protein partners are involved in various human diseases. The study of PPIs and binding interactions as well as their understanding, quantification and pharmacological regulation are crucial for therapeutic purposes. Diverse computational and analytical methods, combined with high-throughput screening (HTS), have been extensively used to characterize multiple types of PPIs, but these procedures are generally laborious, long and expensive. Rapid, robust and efficient alternative methods are proposed, including the use of Microscale Thermophoresis (MST), which has emerged as the technology of choice in drug discovery programs in recent years. This review summarizes selected case studies pertaining to the use of MST to detect therapeutically pertinent proteins and highlights the biological importance of binding interactions, implicated in various human diseases. The benefits and limitations of MST to study PPIs and to identify regulators are discussed.
Collapse
|
10
|
Sipani R, Joshi R. Hox genes collaborate with helix-loop-helix factor Grainyhead to promote neuroblast apoptosis along the anterior-posterior axis of the Drosophila larval central nervous system. Genetics 2022; 222:6632667. [DOI: 10.1093/genetics/iyac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Hox genes code for a family of a homeodomain (HD) containing transcription factors that use TALE-HD containing factors Pbx/Exd and Meis/Hth to specify the development of the anterior-posterior (AP) axis of an organism. However, the absence of TALE-HD containing factors from specific tissues emphasizes the need to identify and validate new Hox cofactors. In Drosophila central nervous system (CNS), Hox execute segment-specific apoptosis of neural stem cells (neuroblasts-NBs) and neurons. In abdominal segments of larval CNS, Hox gene Abdominal-A (AbdA) mediates NB apoptosis with the help of Exd and bHLH factor Grainyhead (Grh) using a 717 bp apoptotic enhancer. In this study, we show that this enhancer is critical for abdominal NB apoptosis and relies on two separable set of DNA binding motifs responsible for its initiation and maintenance. Our results also show that AbdA and Grh interact through their highly conserved DNA binding domains, and the DNA binding specificity of AbdA-HD is important for it to interact with Grh and essential for it to execute NB apoptosis in CNS. We also establish that Grh is required for Hox-dependent NB apoptosis in Labial and Sex Combs Reduced (Scr) expressing regions of the CNS, and it can physically interact with all the Hox proteins in vitro. Our biochemical and functional data collectively support the idea that Grh can function as a Hox cofactor and help them carry out their in vivo roles during development.
Collapse
Affiliation(s)
- Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Inner Ring Road, Uppal, Hyderabad-500039. India
- Graduate Studies, Manipal Academy of Higher Education , Manipal 576104, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Inner Ring Road, Uppal, Hyderabad-500039. India
| |
Collapse
|
11
|
Boonyakida J, Xu J, Satoh J, Nakanishi T, Mekata T, Kato T, Park EY. Identification of antigenic domains and peptides from VP15 of white spot syndrome virus and their antiviral effects in Marsupenaeus japonicus. Sci Rep 2021; 11:12766. [PMID: 34140570 PMCID: PMC8211838 DOI: 10.1038/s41598-021-92002-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
White spot syndrome virus (WSSV) is one of the most devastating pathogens in penaeid shrimp and can cause massive damage in shrimp aquaculture industries. Previously, the WSSV structural protein VP15 was identified as an antigenic reagent against WSSV infections. In this study, we truncated this protein into VP15(1–25), VP15(26–57), VP15(58–80), and VP15(1–25,58–80). The purified proteins from the E. coli expression system were assayed as potential protective agents in Kuruma shrimp (Marsupenaeus japonicus) using the prime-and-boost strategy. Among the four truncated constructs, VP15(26–57) provided a significant improvement in the shrimp survival rate after 20 days of viral infection. Subsequently, four peptides (KR11, SR11, SK10, and KK13) from VP15(26–57) were synthesized and applied in an in vivo assay. Our results showed that SR11 could significantly enhance the shrimp survival rate, as determined from the accumulated survival rate. Moreover, a multiligand binding protein with a role in the host immune response and a possible VP15-binding partner, MjgC1qR, from the host M. japonicus were employed to test its binding with the VP15 protein. GST pull-down assays revealed that MjgC1qR binds with VP15, VP15(26–57), and SR11. Taken together, we conclude that SR11 is a determinant antigenic peptide of VP15 conferring antiviral activity against WSSV.
Collapse
Affiliation(s)
- Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Jian Xu
- Institute of Biology and Information Science, Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Jun Satoh
- Fisheries Technology Institute of National Research and Development Agency, Japan Fisheries Research and Education Agency, Tamaki Field Station, Mie, 519-0423, Japan
| | - Takafumi Nakanishi
- Department of Applied Biological Chemistry, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tohru Mekata
- Fisheries Technology Institute of National Research and Development Agency, Japan Fisheries Research and Education Agency, Namsei Field Station, Mie, 516-0193, Japan
| | - Tatsuya Kato
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Department of Applied Biological Chemistry, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Department of Applied Biological Chemistry, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
12
|
Wu Z, Liao Q, Liu B. A comprehensive review and evaluation of computational methods for identifying protein complexes from protein-protein interaction networks. Brief Bioinform 2020; 21:1531-1548. [PMID: 31631226 DOI: 10.1093/bib/bbz085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/03/2025] Open
Abstract
Protein complexes are the fundamental units for many cellular processes. Identifying protein complexes accurately is critical for understanding the functions and organizations of cells. With the increment of genome-scale protein-protein interaction (PPI) data for different species, various computational methods focus on identifying protein complexes from PPI networks. In this article, we give a comprehensive and updated review on the state-of-the-art computational methods in the field of protein complex identification, especially focusing on the newly developed approaches. The computational methods are organized into three categories, including cluster-quality-based methods, node-affinity-based methods and ensemble clustering methods. Furthermore, the advantages and disadvantages of different methods are discussed, and then, the performance of 17 state-of-the-art methods is evaluated on two widely used benchmark data sets. Finally, the bottleneck problems and their potential solutions in this important field are discussed.
Collapse
Affiliation(s)
- Zhourun Wu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Qing Liao
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
13
|
Dhawan K, Naslavsky N, Caplan S. Sorting nexin 17 (SNX17) links endosomal sorting to Eps15 homology domain protein 1 (EHD1)-mediated fission machinery. J Biol Chem 2020; 295:3837-3850. [PMID: 32041776 DOI: 10.1074/jbc.ra119.011368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Following endocytosis, receptors that are internalized to sorting endosomes are sorted to different pathways, in part by sorting nexin (SNX) proteins. Notably, SNX17 interacts with a multitude of receptors in a sequence-specific manner to regulate their recycling. However, the mechanisms by which SNX17-labeled vesicles that contain sorted receptors bud and undergo vesicular fission from the sorting endosomes remain elusive. Recent studies suggest that a dynamin-homolog, Eps15 homology domain protein 1, catalyzes fission and releases endosome-derived vesicles for recycling to the plasma membrane. However, the mechanism by which EHD1 is coupled to various receptors and regulates their recycling remains unknown. Here we sought to characterize the mechanism by which EHD1 couples with SNX17 to regulate recycling of SNX17-interacting receptors. We hypothesized that SNX17 couples receptors to the EHD1 fission machinery in mammalian cells. Coimmunoprecipitation experiments and in vitro assays provided evidence that EHD1 and SNX17 directly interact. We also found that inducing internalization of a SNX17 cargo receptor, low-density lipoprotein receptor-related protein 1 (LRP1), led to recruitment of cytoplasmic EHD1 to endosomal membranes. Moreover, surface rendering and quantification of overlap volumes indicated that SNX17 and EHD1 partially colocalize on endosomes and that this overlap further increases upon LRP1 internalization. Additionally, SNX17-containing endosomes were larger in EHD1-depleted cells than in WT cells, suggesting that EHD1 depletion impairs SNX17-mediated endosomal fission. Our findings help clarify our current understanding of endocytic trafficking, providing significant additional insight into the process of endosomal fission and connecting the sorting and fission machineries.
Collapse
Affiliation(s)
- Kanika Dhawan
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, Nebraska 68198 .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
14
|
Yamashiro H, Negishi M, Kinoshita T, Ishizu H, Ohtani H, Siomi MC. Armitage determines Piwi-piRISC processing from precursor formation and quality control to inter-organelle translocation. EMBO Rep 2020; 21:e48769. [PMID: 31833223 PMCID: PMC7001504 DOI: 10.15252/embr.201948769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
Piwi and piRNA form the piRNA-induced silencing complex (piRISC) to repress transposons. In the current model, Armitage (Armi) brings the Piwi-piRISC precursor (pre-piRISC) to mitochondria, where Zucchini-dependent piRISC maturation occurs. Here, we show that Armi is necessary for Piwi-pre-piRISC formation at Yb bodies and that Armi triggers the exit of Piwi-pre-piRISC from Yb bodies and the translocation to mitochondria. Piwi-pre-piRISC resist leaving Yb bodies until Armi binds Piwi-pre-piRISC through the piRNA precursors. The lack of the Armi N-terminus also blocks the Piwi-pre-piRISC exit from Yb bodies. Thus, Armi determines Piwi-piRISC processing, in a multilayered manner, from precursor formation and quality control to inter-organelle translocation for maturation.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Mayu Negishi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Tatsuki Kinoshita
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Hirotsugu Ishizu
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Hitoshi Ohtani
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
- Present address:
Van Andel Research InstituteGrand RapidsMIUSA
| | - Mikiko C Siomi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
15
|
Nguyen TMT, Kim J, Doan TT, Lee MW, Lee M. APEX Proximity Labeling as a Versatile Tool for Biological Research. Biochemistry 2019; 59:260-269. [PMID: 31718172 DOI: 10.1021/acs.biochem.9b00791] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most proteins are specifically localized in membrane-encapsulated organelles or non-membrane-bound compartments. The subcellular localization of proteins facilitates their functions and integration into functional networks; therefore, protein localization is tightly regulated in diverse biological contexts. However, protein localization has been mainly analyzed through immunohistochemistry or the fractionation of subcellular compartments, each of which has major drawbacks. Immunohistochemistry can examine only a handful of proteins at a time, and fractionation inevitably relies on the lysis of cells, which disrupts native cellular conditions. Recently, an engineered ascorbate peroxidase (APEX)-based proximity labeling technique combined with mass spectrometry was developed, which allows for temporally and spatially resolved proteomic mapping. In the presence of H2O2, engineered APEX oxidizes biotin-phenols into biotin-phenoxyl radicals, and these short-lived radicals biotinylate electron-rich amino acids within a radius of several nanometers. Biotinylated proteins are subsequently enriched by streptavidin and identified by mass spectrometry. This permits the sensitive and efficient labeling of proximal proteins around locally expressed APEX. Through the targeted expression of APEX in the subcellular region of interest, proteomic profiling of submitochondrial spaces, the outer mitochondrial membrane, the endoplasmic reticulum (ER)-mitochondrial contact, and the ER membrane has been performed. Furthermore, this method has been modified to define interaction networks in the vicinity of target proteins and has also been applied to analyze the spatial transcriptome. In this Perspective, we provide an outline of this newly developed technique and discuss its potential applications to address diverse biological questions.
Collapse
Affiliation(s)
- Thanh My Thi Nguyen
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Thi Tram Doan
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| |
Collapse
|
16
|
Sungsuwan S, Jongkaewwattana A, Jaru-Ampornpan P. Nucleocapsid proteins from other swine enteric coronaviruses differentially modulate PEDV replication. Virology 2019; 540:45-56. [PMID: 31756532 PMCID: PMC7112109 DOI: 10.1016/j.virol.2019.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) share tropism for swine intestinal epithelial cells. Whether mixing of viral components during co-infection alters pathogenic outcomes or viral replication is not known. In this study, we investigated how different coronavirus nucleocapsid (CoV N) proteins interact and affect PEDV replication. We found that PDCoV N and TGEV N can competitively interact with PEDV N. However, the presence of PDCoV or TGEV N led to very different outcomes on PEDV replication. While PDCoV N significantly suppresses PEDV replication, overexpression of TGEV N, like that of PEDV N, increases production of PEDV RNA and virions. Despite partial interchangeability in nucleocapsid oligomerization and viral RNA synthesis, endogenous PEDV N cannot be replaced in the production of infectious PEDV particles. Results from this study give insights into functional compatibilities and evolutionary relationship between CoV viral proteins during viral co-infection and co-evolution. PDCoV N and TGEV N interact with PEDV N in a competitive, RNA-dependent manner. PEDV replication in cell culture is enhanced by overexpression of TGEV or PEDV N but strongly suppressed by that of PDCoV N. Both TGEV and PDCoV N can partially rescue viral RNA and protein synthesis functions of PEDV N, albeit to different degrees. Neither TGEV nor PDCoV N can completely replace PEDV N in the production of PEDV infectious virions.
Collapse
Affiliation(s)
- Suttipun Sungsuwan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Peera Jaru-Ampornpan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
17
|
Yadav P, Sur S, Desai D, Kulkarni S, Sharma V, Tandon V. Interaction of HIV-1 integrase with polypyrimidine tract binding protein and associated splicing factor (PSF) and its impact on HIV-1 replication. Retrovirology 2019; 16:12. [PMID: 31036027 PMCID: PMC6489298 DOI: 10.1186/s12977-019-0474-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background The different interactions between viral proteins and cellular host proteins are required for efficient replication of HIV-1. Various reports implicated host cellular proteins as a key factor that either interact directly with HIV-1 integrase (IN) or get involved in the integration process of virus resulting in the modulation of integration step. Polypyrimidine tract binding protein and associated splicing factor (PSF) has diverse functions inside the cell such as transcriptional regulation, DNA repair, acts as nucleic acids binding protein and regulate replication and infectivity of different viruses. Results The protein binding study identified the association of host protein PSF with HIV-1 integrase. The siRNA knockdown (KD) of PSF resulted in increased viral replication in TZM-bl cells, suggesting PSF has negative influence on viral replication. The quantitative PCR of virus infected PSF knockdown TZM-bl cells showed more integrated DNA and viral cDNA as compared to control cells. We did not observe any significant difference between the amount of early reverse transcription products as well as infectivity of virus in the PSF KD and control TZM-bl cells. Molecular docking study supported the argument that PSF hinders the binding of viral DNA with IN. Conclusion In an attempt to study the host interacting protein of IN, we have identified a new interacting host protein PSF which is a splicing factor and elucidated its role in integration and viral replication. Experimental as well as in silico analysis inferred that the host protein causes not only change in the integration events but also targets the incoming viral DNA or the integrase-viral DNA complex. The role of PSF was also investigated at early reverse transcript production as well as late stages. The PSF is causing changes in integration events, but it does not over all make any changes in the virus infectivity. MD trajectory analyses provided a strong clue of destabilization of Integrase-viral DNA complex occurred due to PSF interaction with the conserved bases of viral DNA ends that are extremely crucial contact points with integrase and indispensable for integration. Thus our study emphasizes the negative influence of PSF on HIV-1 replication. Electronic supplementary material The online version of this article (10.1186/s12977-019-0474-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Souvik Sur
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dipen Desai
- National AIDS Research Institute, Pune, Maharashtra, 411026, India
| | - Smita Kulkarni
- National AIDS Research Institute, Pune, Maharashtra, 411026, India
| | - Vartika Sharma
- International Centre for Genetics Engineering and Biotechnology, New Delhi, 110067, India
| | - Vibha Tandon
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
18
|
Ngambenjawong C, Sylvestre M, Gustafson HH, Pineda JMB, Pun SH. Reversibly Switchable, pH-Dependent Peptide Ligand Binding via 3,5-Diiodotyrosine Substitutions. ACS Chem Biol 2018; 13:995-1002. [PMID: 29481044 DOI: 10.1021/acschembio.8b00171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell type-specific targeting ligands utilized in drug delivery applications typically recognize receptors that are overexpressed on the cells of interest. Nonetheless, these receptors may also be expressed, to varying extents, on off-target cells, contributing to unintended side effects. For the selectivity profile of targeting ligands in cancer therapy to be improved, stimuli-responsive masking of these ligands with acid-, redox-, or enzyme-cleavable molecules has been reported, whereby the targeting ligands are exposed in specific environments, e.g., acidic tumor hypoxia. One possible drawback of these systems lies in their one-time, permanent trigger, which enables the "demasked" ligands to bind off-target cells if released back into the systemic circulation. A promising strategy to address the aforementioned problem is to design ligands that show selective binding based on ionization state, which may be microenvironment-dependent. In this study, we report a systematic strategy to engineer low pH-selective targeting peptides using an M2 macrophage-targeting peptide (M2pep) as an example. 3,5-Diiodotyrosine mutagenesis into native tyrosine residues of M2pep confers pH-dependent binding behavior specific to acidic environment (pH 6) when the amino acid is protonated into the native tyrosine-like state. At physiological pH of 7.4, the hydroxyl group of 3,5-diiodotyrosine on the peptide is deprotonated leading to interruption of the peptide native binding property. Our engineered pH-responsive M2pep (Ac-Y-Î-Î) binds target M2 macrophages more selectively at pH 6 than at pH 7.4. In addition, 3,5-diiodotyrosine substitutions also improve serum stability of the peptide. Finally, we demonstrate pH-dependent reversibility in target binding via a postbinding peptide elution study. The strategy presented here should be applicable for engineering pH-dependent functionality of other targeting peptides with potential applications in physiology-dependent in vivo targeting applications (e.g., targeting hypoxic tumor/inflammation) or in in vitro receptor identification.
Collapse
Affiliation(s)
- Chayanon Ngambenjawong
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Meilyn Sylvestre
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Heather H. Gustafson
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Julio Marco B. Pineda
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
19
|
Singh SS, Jois SD. Homo- and Heterodimerization of Proteins in Cell Signaling: Inhibition and Drug Design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 111:1-59. [PMID: 29459028 DOI: 10.1016/bs.apcsb.2017.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein dimerization controls many physiological processes in the body. Proteins form homo-, hetero-, or oligomerization in the cellular environment to regulate the cellular processes. Any deregulation of these processes may result in a disease state. Protein-protein interactions (PPIs) can be inhibited by antibodies, small molecules, or peptides, and inhibition of PPI has therapeutic value. PPI drug discovery research has steadily increased in the last decade, and a few PPI inhibitors have already reached the pharmaceutical market. Several PPI inhibitors are in clinical trials. With advancements in structural and molecular biology methods, several methods are now available to study protein homo- and heterodimerization and their inhibition by drug-like molecules. Recently developed methods to study PPI such as proximity ligation assay and enzyme-fragment complementation assay that detect the PPI in the cellular environment are described with examples. At present, the methods used to design PPI inhibitors can be classified into three major groups: (1) structure-based drug design, (2) high-throughput screening, and (3) fragment-based drug design. In this chapter, we have described some of the experimental methods to study PPIs and their inhibition. Examples of homo- and heterodimers of proteins, their structural and functional aspects, and some of the inhibitors that have clinical importance are discussed. The design of PPI inhibitors of epidermal growth factor receptor heterodimers and CD2-CD58 is discussed in detail.
Collapse
Affiliation(s)
- Sitanshu S Singh
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Seetharama D Jois
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States.
| |
Collapse
|
20
|
Zhang Y, Liu J, Liu X, Fan X, Hong Y, Wang Y, Huang Y, Xie M. Prioritizing disease genes with an improved dual label propagation framework. BMC Bioinformatics 2018; 19:47. [PMID: 29422030 PMCID: PMC5806269 DOI: 10.1186/s12859-018-2040-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Prioritizing disease genes is trying to identify potential disease causing genes for a given phenotype, which can be applied to reveal the inherited basis of human diseases and facilitate drug development. Our motivation is inspired by label propagation algorithm and the false positive protein-protein interactions that exist in the dataset. To the best of our knowledge, the false positive protein-protein interactions have not been considered before in disease gene prioritization. Label propagation has been successfully applied to prioritize disease causing genes in previous network-based methods. These network-based methods use basic label propagation, i.e. random walk, on networks to prioritize disease genes in different ways. However, all these methods can not deal with the situation in which plenty false positive protein-protein interactions exist in the dataset, because the PPI network is used as a fixed input in previous methods. This important characteristic of data source may cause a large deviation in results. RESULTS A novel network-based framework IDLP is proposed to prioritize candidate disease genes. IDLP effectively propagates labels throughout the PPI network and the phenotype similarity network. It avoids the method falling when few disease genes are known. Meanwhile, IDLP models the bias caused by false positive protein interactions and other potential factors by treating the PPI network matrix and the phenotype similarity matrix as the matrices to be learnt. By amending the noises in training matrices, it improves the performance results significantly. We conduct extensive experiments over OMIM datasets, and IDLP has demonstrated its effectiveness compared with eight state-of-the-art approaches. The robustness of IDLP is also validated by doing experiments with disturbed PPI network. Furthermore, We search the literatures to verify the predicted new genes got by IDLP are associated with the given diseases, the high prediction accuracy shows IDLP can be a powerful tool to help biologists discover new disease genes. CONCLUSIONS IDLP model is an effective method for disease gene prioritization, particularly for querying phenotypes without known associated genes, which would be greatly helpful for identifying disease genes for less studied phenotypes. AVAILABILITY https://github.com/nkiip/IDLP.
Collapse
Affiliation(s)
- Yaogong Zhang
- College of Software, Nankai University, TianJin, 300350, China
| | - Jiahui Liu
- College of Software, Nankai University, TianJin, 300350, China
| | - Xiaohu Liu
- College of Software, Nankai University, TianJin, 300350, China
| | - Xin Fan
- College of Software, Nankai University, TianJin, 300350, China
| | - Yuxiang Hong
- College of Software, Nankai University, TianJin, 300350, China
| | - Yuan Wang
- School of Computer Science and Information Engineering, Tianjin University of Science and Technology, TianJin, 300222, China
| | - YaLou Huang
- College of Software, Nankai University, TianJin, 300350, China
| | - MaoQiang Xie
- College of Software, Nankai University, TianJin, 300350, China.
| |
Collapse
|
21
|
Sarkar K, Han SS, Wen KK, Ochs HD, Dupré L, Seidman MM, Vyas YM. R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2017; 142:219-234. [PMID: 29248492 DOI: 10.1016/j.jaci.2017.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT), and X-linked neutropenia, which are caused by WAS mutations affecting Wiskott-Aldrich syndrome protein (WASp) expression or activity, manifest in immunodeficiency, autoimmunity, genomic instability, and lymphoid and other cancers. WASp supports filamentous actin formation in the cytoplasm and gene transcription in the nucleus. Although the genetic basis for XLT/WAS has been clarified, the relationships between mutant forms of WASp and the diverse features of these disorders remain ill-defined. OBJECTIVE We sought to define how dysfunctional gene transcription is causally linked to the degree of TH cell deficiency and genomic instability in the XLT/WAS clinical spectrum. METHODS In human TH1- or TH2-skewing cell culture systems, cotranscriptional R-loops (RNA/DNA duplex and displaced single-stranded DNA) and DNA double-strand breaks (DSBs) were monitored in multiple samples from patients with XLT and WAS and in normal T cells depleted of WASp. RESULTS WASp deficiency provokes increased R-loops and R-loop-mediated DSBs in TH1 cells relative to TH2 cells. Mechanistically, chromatin occupancy of serine 2-unphosphorylated RNA polymerase II is increased, and that of topoisomerase 1, an R-loop preventing factor, is decreased at R-loop-enriched regions of IFNG and TBX21 (TH1 genes) in TH1 cells. These aberrations accompany increased unspliced (intron-retained) and decreased spliced mRNA of IFNG and TBX21 but not IL13 (TH2 gene). Significantly, increased cellular load of R-loops and DSBs, which are normalized on RNaseH1-mediated suppression of ectopic R-loops, inversely correlates with disease severity scores. CONCLUSION Transcriptional R-loop imbalance is a novel molecular defect causative in TH1 immunodeficiency and genomic instability in patients with WAS. The study proposes that cellular R-loop load could be used as a potential biomarker for monitoring symptom severity and prognostic outcome in the XLT-WAS clinical spectrum and could be targeted therapeutically.
Collapse
Affiliation(s)
- Koustav Sarkar
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Seong-Su Han
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Kuo-Kuang Wen
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Hans D Ochs
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, University of Washington, Seattle, Md
| | - Loïc Dupré
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, Md; Université Toulouse III Paul-Sabatier, Toulouse, Md; CNRS, UMR5282, Toulouse, Md; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Md; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Md
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health (NIH), NIH Biomedical Research Center, Baltimore, Md
| | - Yatin M Vyas
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md.
| |
Collapse
|
22
|
Nealon JO, Philomina LS, McGuffin LJ. Predictive and Experimental Approaches for Elucidating Protein-Protein Interactions and Quaternary Structures. Int J Mol Sci 2017; 18:E2623. [PMID: 29206185 PMCID: PMC5751226 DOI: 10.3390/ijms18122623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/17/2022] Open
Abstract
The elucidation of protein-protein interactions is vital for determining the function and action of quaternary protein structures. Here, we discuss the difficulty and importance of establishing protein quaternary structure and review in vitro and in silico methods for doing so. Determining the interacting partner proteins of predicted protein structures is very time-consuming when using in vitro methods, this can be somewhat alleviated by use of predictive methods. However, developing reliably accurate predictive tools has proved to be difficult. We review the current state of the art in predictive protein interaction software and discuss the problem of scoring and therefore ranking predictions. Current community-based predictive exercises are discussed in relation to the growth of protein interaction prediction as an area within these exercises. We suggest a fusion of experimental and predictive methods that make use of sparse experimental data to determine higher resolution predicted protein interactions as being necessary to drive forward development.
Collapse
Affiliation(s)
- John Oliver Nealon
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK.
| | | | | |
Collapse
|
23
|
RPA Interacts with HIRA and Regulates H3.3 Deposition at Gene Regulatory Elements in Mammalian Cells. Mol Cell 2017; 65:272-284. [PMID: 28107649 DOI: 10.1016/j.molcel.2016.11.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/26/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022]
Abstract
The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation.
Collapse
|
24
|
El Qaidi S, Chen K, Halim A, Siukstaite L, Rueter C, Hurtado-Guerrero R, Clausen H, Hardwidge PR. NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity. J Biol Chem 2017; 292:11423-11430. [PMID: 28522607 DOI: 10.1074/jbc.m117.790675] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/09/2017] [Indexed: 01/05/2023] Open
Abstract
Many Gram-negative bacterial pathogens use a syringe-like apparatus called a type III secretion system to inject virulence factors into host cells. Some of these effectors are enzymes that modify host proteins to subvert their normal functions. NleB is a glycosyltransferase that modifies host proteins with N-acetyl-d-glucosamine to inhibit antibacterial and inflammatory host responses. NleB is conserved among the attaching/effacing pathogens enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium Moreover, Salmonella enterica strains encode up to three NleB orthologs named SseK1, SseK2, and SseK3. However, there are conflicting reports regarding the activities and host protein targets among the NleB/SseK orthologs. Therefore, here we performed in vitro glycosylation assays and cell culture experiments to compare the activities and substrate specificities of these effectors. SseK1, SseK3, EHEC NleB1, EPEC NleB1, and Crodentium NleB blocked TNF-mediated NF-κB pathway activation, whereas SseK2 and NleB2 did not. C. rodentium NleB, EHEC NleB1, and SseK1 glycosylated host GAPDH. C. rodentium NleB, EHEC NleB1, EPEC NleB1, and SseK2 glycosylated the FADD (Fas-associated death domain protein). SseK3 and NleB2 were not active against either substrate. We also found that EHEC NleB1 glycosylated two GAPDH arginine residues, Arg197 and Arg200, and that these two residues were essential for GAPDH-mediated activation of TNF receptor-associated factor 2 ubiquitination. These results provide evidence that members of this highly conserved family of bacterial virulence effectors target different host protein substrates and exhibit distinct cellular modes of action to suppress host responses.
Collapse
Affiliation(s)
- Samir El Qaidi
- From the College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Kangming Chen
- From the College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Adnan Halim
- the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,the Laboratory of Cellular and Structural Biology, Rockefeller University, New York, New York 10065
| | - Lina Siukstaite
- the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Christian Rueter
- the Institute of Infectiology, Center for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany, and
| | - Ramon Hurtado-Guerrero
- the Fundacion ARAID, Edificio CEEI ARAGÓN and Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Instituto de Quimica Fisica Rocasolano, Consejo Superior de Investigaciones Científicas Joint Unit, 500018 Zaragoza, Spain
| | - Henrik Clausen
- the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Philip R Hardwidge
- From the College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506,
| |
Collapse
|
25
|
Lee WL, Singaravelu P, Wee S, Xue B, Ang KC, Gunaratne J, Grimes JM, Swaminathan K, Robinson RC. Mechanisms of Yersinia YopO kinase substrate specificity. Sci Rep 2017; 7:39998. [PMID: 28051168 PMCID: PMC5209680 DOI: 10.1038/srep39998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Yersinia bacteria cause a range of human diseases, including yersiniosis, Far East scarlet-like fever and the plague. Yersiniae modulate and evade host immune defences through injection of Yersinia outer proteins (Yops) into phagocytic cells. One of the Yops, YopO (also known as YpkA) obstructs phagocytosis through disrupting actin filament regulation processes - inhibiting polymerization-promoting signaling through sequestration of Rac/Rho family GTPases and by using monomeric actin as bait to recruit and phosphorylate host actin-regulating proteins. Here we set out to identify mechanisms of specificity in protein phosphorylation by YopO that would clarify its effects on cytoskeleton disruption. We report the MgADP structure of Yersinia enterocolitica YopO in complex with actin, which reveals its active site architecture. Using a proteome-wide kinase-interacting substrate screening (KISS) method, we identified that YopO phosphorylates a wide range of actin-modulating proteins and located their phosphorylation sites by mass spectrometry. Using artificial substrates we clarified YopO's substrate length requirements and its phosphorylation consensus sequence. These findings provide fresh insight into the mechanism of the YopO kinase and demonstrate that YopO executes a specific strategy targeting actin-modulating proteins, across multiple functionalities, to compete for control of their native phospho-signaling, thus hampering the cytoskeletal processes required for macrophage phagocytosis.
Collapse
Affiliation(s)
- Wei Lin Lee
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Pavithra Singaravelu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Bo Xue
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Khay Chun Ang
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Anatomy, National University of Singapore, Singapore
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, UK
- Diamond Light Source Ltd., UK
| | | | - Robert C. Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biochemistry, National University of Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Lee Kong Chan School of Medicine, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
26
|
Machida K, Liu B. Binding Assays Using Recombinant SH2 Domains: Far-Western, Pull-Down, and Fluorescence Polarization. Methods Mol Biol 2017; 1555:307-330. [PMID: 28092040 DOI: 10.1007/978-1-4939-6762-9_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recognition of phosphotyrosine-containing sequences by SH2 domains confers specificity in tyrosine kinase pathways. By assessing interactions between isolated SH2 domains and their binding proteins, it is possible to gain insight into otherwise inaccessible complex cellular systems. Far-Western, pull-down, and fluorescence polarization (FP) have been frequently used for characterization of phosphotyrosine signaling. Here, we outline standard protocols for these established assays using recombinant SH2 domain, emphasizing the importance of appropriate sample preparation and assay controls.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Bernard Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
27
|
Dimitrakopoulos CM, Beerenwinkel N. Computational approaches for the identification of cancer genes and pathways. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 9. [PMID: 27863091 PMCID: PMC5215607 DOI: 10.1002/wsbm.1364] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/26/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022]
Abstract
High‐throughput DNA sequencing techniques enable large‐scale measurement of somatic mutations in tumors. Cancer genomics research aims at identifying all cancer‐related genes and solid interpretation of their contribution to cancer initiation and development. However, this venture is characterized by various challenges, such as the high number of neutral passenger mutations and the complexity of the biological networks affected by driver mutations. Based on biological pathway and network information, sophisticated computational methods have been developed to facilitate the detection of cancer driver mutations and pathways. They can be categorized into (1) methods using known pathways from public databases, (2) network‐based methods, and (3) methods learning cancer pathways de novo. Methods in the first two categories use and integrate different types of data, such as biological pathways, protein interaction networks, and gene expression measurements. The third category consists of de novo methods that detect combinatorial patterns of somatic mutations across tumor samples, such as mutual exclusivity and co‐occurrence. In this review, we discuss recent advances, current limitations, and future challenges of these approaches for detecting cancer genes and pathways. We also discuss the most important current resources of cancer‐related genes. WIREs Syst Biol Med 2017, 9:e1364. doi: 10.1002/wsbm.1364 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Christos M Dimitrakopoulos
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
28
|
Integration of multiple biological features yields high confidence human protein interactome. J Theor Biol 2016; 403:85-96. [PMID: 27196966 DOI: 10.1016/j.jtbi.2016.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/01/2016] [Accepted: 05/11/2016] [Indexed: 01/05/2023]
Abstract
The biological function of a protein is usually determined by its physical interaction with other proteins. Protein-protein interactions (PPIs) are identified through various experimental methods and are stored in curated databases. The noisiness of the existing PPI data is evident, and it is essential that a more reliable data is generated. Furthermore, the selection of a set of PPIs at different confidence levels might be necessary for many studies. Although different methodologies were introduced to evaluate the confidence scores for binary interactions, a highly reliable, almost complete PPI network of Homo sapiens is not proposed yet. The quality and coverage of human protein interactome need to be improved to be used in various disciplines, especially in biomedicine. In the present work, we propose an unsupervised statistical approach to assign confidence scores to PPIs of H. sapiens. To achieve this goal PPI data from six different databases were collected and a total of 295,288 non-redundant interactions between 15,950 proteins were acquired. The present scoring system included the context information that was assigned to PPIs derived from eight biological attributes. A high confidence network, which included 147,923 binary interactions between 13,213 proteins, had scores greater than the cutoff value of 0.80, for which sensitivity, specificity, and coverage were 94.5%, 80.9%, and 82.8%, respectively. We compared the present scoring method with others for evaluation. Reducing the noise inherent in experimental PPIs via our scoring scheme increased the accuracy significantly. As it was demonstrated through the assessment of process and cancer subnetworks, this study allows researchers to construct and analyze context-specific networks via valid PPI sets and one can easily achieve subnetworks around proteins of interest at a specified confidence level.
Collapse
|
29
|
Li Z, Waadt R, Schroeder JI. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs. PLoS Biol 2016; 14:e1002461. [PMID: 27192441 PMCID: PMC4871701 DOI: 10.1371/journal.pbio.1002461] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/12/2016] [Indexed: 01/07/2023] Open
Abstract
The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by "monomeric" PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA.
Collapse
Affiliation(s)
- Zixing Li
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, United States of America
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rainer Waadt
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, United States of America
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
30
|
Kohnhorst CL, Schmitt DL, Sundaram A, An S. Subcellular functions of proteins under fluorescence single-cell microscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1864:77-84. [PMID: 26025769 PMCID: PMC5679394 DOI: 10.1016/j.bbapap.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
Abstract
A cell is a highly organized, dynamic, and intricate biological entity orchestrated by a myriad of proteins and their self-assemblies. Because a protein's actions depend on its coordination in both space and time, our curiosity about protein functions has extended from the test tube into the intracellular space of the cell. Accordingly, modern technological developments and advances in enzymology have been geared towards analyzing protein functions within intact single cells. We discuss here how fluorescence single-cell microscopy has been employed to identify subcellular locations of proteins, detect reversible protein-protein interactions, and measure protein activity and kinetics in living cells. Considering that fluorescence single-cell microscopy has been only recently recognized as a primary technique in enzymology, its potentials and outcomes in studying intracellular protein functions are projected to be immensely useful and enlightening. We anticipate that this review would inspire many investigators to study their proteins of interest beyond the conventional boundary of specific disciplines. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
- Casey L Kohnhorst
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Danielle L Schmitt
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Anand Sundaram
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
31
|
Abstract
Multiple biological processes are regulated by complicated interaction networks formed by protein-protein or protein-RNA interactions. Nuclear bodies (NBs) are a class of membrane-less subnuclear structures, acting as reaction sites, storage and modification sites, or transcription regulating sites involved in signaling transduction. Biochemical and fluorescence-based methods are widely used to study protein-protein interactions, but false-positive results are a major issue, especially for some fluorescence-based methods. Moreover, these methods fail to be applied to study the formation of NBs, which were characterized by a popular bacterial Lac operator and/or repressor (LacO/LacI) system in mammalian cells. Methods investigating assembly of plant NBs are not available. We have recently developed a nucleolar marker protein nucleolin2 (Nuc2)-based method named Nucleolus-tethering System (NoTS) and showed its application in interaction assay among nucleoplasmic proteins and initiation of plant specific NBs, photobodies. In this extraview, we will compare NoTS with the traditional methods and discuss the assembly mechanisms of NBs, in addition to advantages, limitations, and perspectives about the application of NoTS.
Collapse
Affiliation(s)
- Yin Liu
- a National Key Laboratory of Plant Molecular Genetics; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China
| | | |
Collapse
|
32
|
Swetha M, Ramaiah KVA. Insulin treatment promotes tyrosine phosphorylation of PKR and inhibits polyIC induced PKR threonine phosphorylation. Arch Biochem Biophys 2015; 585:98-108. [PMID: 26321373 DOI: 10.1016/j.abb.2015.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 12/17/2022]
Abstract
Tyrosine phosphorylation of insulin receptor beta (IRβ) in insulin treated HepG2 cells is inversely correlated to ser(51) phosphorylation in the alpha-subunit of eukaryotic initiation factor 2 (eIF2α) that regulates protein synthesis. Insulin stimulates interaction between IRβ and PKR, double stranded RNA-dependent protein kinase, also known as EIF2AK2, and phosphorylation of tyrosine residues in PKR, as analyzed by immunoprecipitation and pull down assays using anti-IRβ and anti-phosphotyrosine antibodies, recombinant IRβ and immunopurified PKR. Further polyIC or synthetic double stranded RNA-induced threonine phosphorylation or activation of immunopurified and cellular PKR is suppressed in the presence of insulin treated purified IRβ and cell extracts. Acute, but not chronic, insulin treatment enhances tyrosine phosphorylation of IRβ, its interaction with PKR and tyrosine phosphorylation of PKR. In contrast, lipopolysaccharide that stimulates threonine phosphorylation of PKR and eIF2α phosphorylation and AG 1024, an inhibitor of the tyrosine kinase activity of IRβ, reduces PKR association with the receptor, IRβ in HepG2 cells. These findings therefore may suggest that tyrosine phosphorylated PKR plays a role in the regulation of insulin induced protein synthesis and in maintaining insulin sensitivity, whereas, suppression of polyIC-mediated threonine phosphorylation of PKR by insulin compromises its ability to fight against virus infection in host cells.
Collapse
Affiliation(s)
- Medchalmi Swetha
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana, India
| | - Kolluru V A Ramaiah
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana, India.
| |
Collapse
|
33
|
Akerman M, Fregoso OI, Das S, Ruse C, Jensen MA, Pappin DJ, Zhang MQ, Krainer AR. Differential connectivity of splicing activators and repressors to the human spliceosome. Genome Biol 2015; 16:119. [PMID: 26047612 PMCID: PMC4502471 DOI: 10.1186/s13059-015-0682-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/22/2015] [Indexed: 12/29/2022] Open
Abstract
Background During spliceosome assembly, protein-protein interactions (PPI) are sequentially formed and disrupted to accommodate the spatial requirements of pre-mRNA substrate recognition and catalysis. Splicing activators and repressors, such as SR proteins and hnRNPs, modulate spliceosome assembly and regulate alternative splicing. However, it remains unclear how they differentially interact with the core spliceosome to perform their functions. Results Here, we investigate the protein connectivity of SR and hnRNP proteins to the core spliceosome using probabilistic network reconstruction based on the integration of interactome and gene expression data. We validate our model by immunoprecipitation and mass spectrometry of the prototypical splicing factors SRSF1 and hnRNPA1. Network analysis reveals that a factor’s properties as an activator or repressor can be predicted from its overall connectivity to the rest of the spliceosome. In addition, we discover and experimentally validate PPIs between the oncoprotein SRSF1 and members of the anti-tumor drug target SF3 complex. Our findings suggest that activators promote the formation of PPIs between spliceosomal sub-complexes, whereas repressors mostly operate through protein-RNA interactions. Conclusions This study demonstrates that combining in-silico modeling with biochemistry can significantly advance the understanding of structure and function relationships in the human spliceosome. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0682-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Present address: Envisagenics, Inc, 315 Main St., 2nd floor, Huntington, NY, 11743, USA
| | - Oliver I Fregoso
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Watson School of Biological Sciences, Cold Spring Harbor, NY, 11724, USA.,Present address: Fred Hutchinson Cancer Research Center, Division of Human Biology, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Shipra Das
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Cristian Ruse
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Present address: New England Biolabs, 240 County Road, Ipswich, MA, 01938, UK
| | - Mads A Jensen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Present address: Santaris Pharma A/S, Horsholm, Denmark
| | | | - Michael Q Zhang
- Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA.,Bioinformatics Division, TNLIST, Tsinghua University, Beijing, 100084, China
| | | |
Collapse
|
34
|
Li Z, Gu TP, Weber AR, Shen JZ, Li BZ, Xie ZG, Yin R, Guo F, Liu X, Tang F, Wang H, Schär P, Xu GL. Gadd45a promotes DNA demethylation through TDG. Nucleic Acids Res 2015; 43:3986-97. [PMID: 25845601 PMCID: PMC4417182 DOI: 10.1093/nar/gkv283] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022] Open
Abstract
Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)—initiated oxidative demethylation. The connection of Gadd45a with oxidative demethylation is evidenced by the enhanced activation of a methylated reporter gene in HEK293T cells expressing Gadd45a in combination with catalytically active TDG and Tet. Gadd45a interacts with TDG physically and increases the removal of 5fC and 5caC from genomic and transfected plasmid DNA by TDG. Knockout of both Gadd45a and Gadd45b from mouse ES cells leads to hypermethylation of specific genomic loci most of which are also targets of TDG and show 5fC enrichment in TDG-deficient cells. These observations indicate that the demethylation effect of Gadd45a is mediated by TDG activity. This finding thus unites Gadd45a with the recently defined Tet-initiated demethylation pathway.
Collapse
Affiliation(s)
- Zheng Li
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Peng Gu
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Alain R Weber
- Department of Biomedicine, University of Basel, Basel 4048, Switzerland
| | - Jia-Zhen Shen
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin-Zhong Li
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Guo Xie
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruichuan Yin
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fan Guo
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaomeng Liu
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100871, China
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel 4048, Switzerland
| | - Guo-Liang Xu
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
35
|
Heo J, Li J, Summerlin M, Hays A, Katyal S, McKinnon PJ, Nitiss KC, Nitiss JL, Hanakahi LA. TDP1 promotes assembly of non-homologous end joining protein complexes on DNA. DNA Repair (Amst) 2015; 30:28-37. [PMID: 25841101 DOI: 10.1016/j.dnarep.2015.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 11/16/2022]
Abstract
The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3'-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Rockford Health Sciences Campus, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - Jing Li
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Rockford Health Sciences Campus, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - Matthew Summerlin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Rockford Health Sciences Campus, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - Annette Hays
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Rockford Health Sciences Campus, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - Sachin Katyal
- University of Manitoba, Department of Pharmacology and Therapeutics, Manitoba Institute of Cell Biology, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Peter J McKinnon
- Department of Genetics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Karin C Nitiss
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Rockford Health Sciences Campus, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - John L Nitiss
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Rockford Health Sciences Campus, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - Leslyn A Hanakahi
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Rockford Health Sciences Campus, 1601 Parkview Avenue, Rockford, IL 61107, USA; Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Rockford Health Sciences Campus, 1601 Parkview Avenue, Rockford, IL 61107, USA.
| |
Collapse
|
36
|
Proteins interacting with cloning scars: a source of false positive protein-protein interactions. Sci Rep 2015; 5:8530. [PMID: 25704442 PMCID: PMC4336944 DOI: 10.1038/srep08530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 01/23/2015] [Indexed: 01/10/2023] Open
Abstract
A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.
Collapse
|
37
|
Mirenda M, Toffali L, Montresor A, Scardoni G, Sorio C, Laudanna C. Protein tyrosine phosphatase receptor type γ is a JAK phosphatase and negatively regulates leukocyte integrin activation. THE JOURNAL OF IMMUNOLOGY 2015; 194:2168-79. [PMID: 25624455 DOI: 10.4049/jimmunol.1401841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Regulation of signal transduction networks depends on protein kinase and phosphatase activities. Protein tyrosine kinases of the JAK family have been shown to regulate integrin affinity modulation by chemokines and mediated homing to secondary lymphoid organs of human T lymphocytes. However, the role of protein tyrosine phosphatases in leukocyte recruitment is still elusive. In this study, we address this issue by focusing on protein tyrosine phosphatase receptor type γ (PTPRG), a tyrosine phosphatase highly expressed in human primary monocytes. We developed a novel methodology to study the signaling role of receptor type tyrosine phosphatases and found that activated PTPRG blocks chemoattractant-induced β2 integrin activation. Specifically, triggering of LFA-1 to high-affinity state is prevented by PTPRG activation. High-throughput phosphoproteomics and computational analyses show that PTPRG activation affects the phosphorylation state of at least 31 signaling proteins. Deeper examination shows that JAKs are critically involved in integrin-mediated monocyte adhesion and that PTPRG activation leads to JAK2 dephosphorylation on the critical 1007-1008 phosphotyrosine residues, implying JAK2 inhibition and thus explaining the antiadhesive role of PTPRG. Overall, the data validate a new approach to study receptor tyrosine phosphatases and show that, by targeting JAKs, PTPRG downmodulates the rapid activation of integrin affinity in human monocytes, thus emerging as a potential novel critical regulator of leukocyte trafficking.
Collapse
Affiliation(s)
- Michela Mirenda
- Division of General Pathology, Department of Pathology and Diagnostics, School of Medicine, University of Verona, Verona 37134, Italy; and
| | - Lara Toffali
- Division of General Pathology, Department of Pathology and Diagnostics, School of Medicine, University of Verona, Verona 37134, Italy; and Center for Biomedical Computing, University of Verona, Verona 37134, Italy
| | - Alessio Montresor
- Division of General Pathology, Department of Pathology and Diagnostics, School of Medicine, University of Verona, Verona 37134, Italy; and Center for Biomedical Computing, University of Verona, Verona 37134, Italy
| | - Giovanni Scardoni
- Center for Biomedical Computing, University of Verona, Verona 37134, Italy
| | - Claudio Sorio
- Division of General Pathology, Department of Pathology and Diagnostics, School of Medicine, University of Verona, Verona 37134, Italy; and
| | - Carlo Laudanna
- Division of General Pathology, Department of Pathology and Diagnostics, School of Medicine, University of Verona, Verona 37134, Italy; and Center for Biomedical Computing, University of Verona, Verona 37134, Italy
| |
Collapse
|
38
|
Agola JO, Sivalingam D, Cimino DF, Simons PC, Buranda T, Sklar LA, Wandinger-Ness A. Quantitative bead-based flow cytometry for assaying Rab7 GTPase interaction with the Rab-interacting lysosomal protein (RILP) effector protein. Methods Mol Biol 2015; 1298:331-54. [PMID: 25800855 PMCID: PMC6033261 DOI: 10.1007/978-1-4939-2569-8_28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Rab7 facilitates vesicular transport and delivery from early endosomes to late endosomes as well as from late endosomes to lysosomes. The role of Rab7 in vesicular transport is dependent on its interactions with effector proteins, among them Rab-interacting lysosomal protein (RILP), which aids in the recruitment of active Rab7 (GTP-bound) onto dynein-dynactin motor complexes to facilitate late endosomal transport on the cytoskeleton. Here we detail a novel bead-based flow cytometry assay to measure Rab7 interaction with the Rab-interacting lysosomal protein (RILP) effector protein and demonstrate its utility for quantitative assessment and studying drug-target interactions. The specific binding of GTP-bound Rab7 to RILP is readily demonstrated and shown to be dose-dependent and saturable enabling K d and B max determinations. Furthermore, binding is nearly instantaneous and temperature-dependent. In a novel application of the assay method, a competitive small molecule inhibitor of Rab7 nucleotide binding (CID 1067700 or ML282) is shown to inhibit the Rab7-RILP interaction. Thus, the assay is able to distinguish that the small molecule, rather than incurring the active conformation, instead 'locks' the GTPase in the inactive conformation. Together, this work demonstrates the utility of using a flow cytometry assay to quantitatively characterize protein-protein interactions involving small GTPases and which has been adapted to high-throughput screening. Further, the method provides a platform for testing small molecule effects on protein-protein interactions, which can be relevant to drug discovery and development.
Collapse
Affiliation(s)
- Jacob O Agola
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
MBF1 (multi-protein bridging factor 1) is a protein containing a conserved HTH (helix-turn-helix) domain in both eukaryotes and archaea. Eukaryotic MBF1 has been reported to function as a transcriptional co-activator that physically bridges transcription regulators with the core transcription initiation machinery of RNA polymerase II. In addition, MBF1 has been found to be associated with polyadenylated mRNA in yeast as well as in mammalian cells. aMBF1 (archaeal MBF1) is very well conserved among most archaeal lineages; however, its function has so far remained elusive. To address this, we have conducted a molecular characterization of this aMBF1. Affinity purification of interacting proteins indicates that aMBF1 binds to ribosomal subunits. On sucrose density gradients, aMBF1 co-fractionates with free 30S ribosomal subunits as well as with 70S ribosomes engaged in translation. Binding of aMBF1 to ribosomes does not inhibit translation. Using NMR spectroscopy, we show that aMBF1 contains a long intrinsically disordered linker connecting the predicted N-terminal zinc-ribbon domain with the C-terminal HTH domain. The HTH domain, which is conserved in all archaeal and eukaryotic MBF1 homologues, is directly involved in the association of aMBF1 with ribosomes. The disordered linker of the ribosome-bound aMBF1 provides the N-terminal domain with high flexibility in the aMBF1-ribosome complex. Overall, our findings suggest a role for aMBF1 in the archaeal translation process.
Collapse
|
40
|
Basal cell carcinoma of the penis: a case report and review of the literature. Case Rep Urol 2014; 2014:173076. [PMID: 25298901 PMCID: PMC4179948 DOI: 10.1155/2014/173076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/31/2014] [Indexed: 12/16/2022] Open
Abstract
Basal cell carcinoma of the penis is an extremely rare entity, accounting for less than 0.03% of all basal cell carcinomas. Fortunately, wide local excision of such lesions is generally curative. Fewer than 25 cases have been reported in the literature describing penile basal cell carcinoma. Here we report a case of penile basal cell carcinoma cured with wide local excision.
Collapse
|
41
|
Dubois-Chevalier J, Oger F, Dehondt H, Firmin FF, Gheeraert C, Staels B, Lefebvre P, Eeckhoute J. A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Res 2014; 42:10943-59. [PMID: 25183525 PMCID: PMC4176165 DOI: 10.1093/nar/gku780] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CCCTC-binding factor (CTCF) is a ubiquitously expressed multifunctional transcription factor characterized by chromatin binding patterns often described as largely invariant. In this context, how CTCF chromatin recruitment and functionalities are used to promote cell type-specific gene expression remains poorly defined. Here, we show that, in addition to constitutively bound CTCF binding sites (CTS), the CTCF cistrome comprises a large proportion of sites showing highly dynamic binding patterns during the course of adipogenesis. Interestingly, dynamic CTCF chromatin binding is positively linked with changes in expression of genes involved in biological functions defining the different stages of adipogenesis. Importantly, a subset of these dynamic CTS are gained at cell type-specific regulatory regions, in line with a requirement for CTCF in transcriptional induction of adipocyte differentiation. This relates to, at least in part, CTCF requirement for transcriptional activation of both the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARG) and its target genes. Functionally, we show that CTCF interacts with TET methylcytosine dioxygenase (TET) enzymes and promotes adipogenic transcriptional enhancer DNA hydroxymethylation. Our study reveals a dynamic CTCF chromatin binding landscape required for epigenomic remodeling of enhancers and transcriptional activation driving cell differentiation.
Collapse
Affiliation(s)
- Julie Dubois-Chevalier
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Frédérik Oger
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Hélène Dehondt
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - François F Firmin
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Céline Gheeraert
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Bart Staels
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Philippe Lefebvre
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Jérôme Eeckhoute
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| |
Collapse
|
42
|
Advances in Human Biology: Combining Genetics and Molecular Biophysics to Pave the Way for Personalized Diagnostics and Medicine. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/471836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in several biology-oriented initiatives such as genome sequencing and structural genomics, along with the progress made through traditional biological and biochemical research, have opened up a unique opportunity to better understand the molecular effects of human diseases. Human DNA can vary significantly from person to person and determines an individual’s physical characteristics and their susceptibility to diseases. Armed with an individual’s DNA sequence, researchers and physicians can check for defects known to be associated with certain diseases by utilizing various databases. However, for unclassified DNA mutations or in order to reveal molecular mechanism behind the effects, the mutations have to be mapped onto the corresponding networks and macromolecular structures and then analyzed to reveal their effect on the wild type properties of biological processes involved. Predicting the effect of DNA mutations on individual’s health is typically referred to as personalized or companion diagnostics. Furthermore, once the molecular mechanism of the mutations is revealed, the patient should be given drugs which are the most appropriate for the individual genome, referred to as pharmacogenomics. Altogether, the shift in focus in medicine towards more genomic-oriented practices is the foundation of personalized medicine. The progress made in these rapidly developing fields is outlined.
Collapse
|
43
|
Structure-function analysis of the C-clamp of TCF/Pangolin in Wnt/ß-catenin signaling. PLoS One 2014; 9:e86180. [PMID: 24465946 PMCID: PMC3896468 DOI: 10.1371/journal.pone.0086180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/05/2013] [Indexed: 02/03/2023] Open
Abstract
The evolutionarily conserved Wnt/ß-catenin (Wnt/ß-cat) pathway plays an important role in animal development in metazoans. Many Wnt targets are regulated by members of the TCF/LEF1 (TCF) family of transcription factors. All TCFs contain a High Mobility Group (HMG) domain that bind specific DNA sequences. Invertebrate TCFs and some vertebrate TCF isoforms also contain another domain, called the C-clamp, which allows TCFs to recognize an additional DNA motif known as the Helper site. While the C-clamp has been shown to be important for regulating several Wnt reporter genes in cell culture, its physiological role in regulating Wnt targets is less clear. In addition, little is known about this domain, except that two of the four conserved cysteines are functionally important. Here, we carried out a systematic mutagenesis and functional analysis of the C-clamp from the Drosophila TCF/Pangolin (TCF/Pan) protein. We found that the C-clamp is a zinc-binding domain that is sufficient for binding to the Helper site. In addition to this DNA-binding activity, the C-clamp also inhibits the HMG domain from binding its cognate DNA site. Point mutations were identified that specifically affected DNA-binding or reduced the inhibitory effect. These mutants were characterized in TCF/Pan rescue assays. The specific DNA-binding activity of the C-clamp was essential for TCF/Pan function in cell culture and in patterning the embryonic epidermis of Drosophila, demonstrating the importance of this C-clamp activity in regulating Wnt target gene expression. In contrast, the inhibitory mutation had a subtle effect in cell culture and no effect on TCF/Pan activity in embryos. These results provide important information about the functional domains of the C-clamp, and highlight its importance for Wnt/ß-cat signaling in Drosophila.
Collapse
|
44
|
Zhao R, Han C, Eisenhauer E, Kroger J, Zhao W, Yu J, Selvendiran K, Liu X, Wani AA, Wang QE. DNA damage-binding complex recruits HDAC1 to repress Bcl-2 transcription in human ovarian cancer cells. Mol Cancer Res 2013; 12:370-80. [PMID: 24249678 DOI: 10.1158/1541-7786.mcr-13-0281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UNLABELLED Elevated expression of the antiapoptotic factor Bcl-2 is believed to be one of the contributing factors to an increased relapse rate associated with multiple cisplatin-resistant cancers. DNA damage-binding protein complex subunit 2 (DDB2) has recently been revealed to play an important role in sensitizing human ovarian cancer cells to cisplatin-induced apoptosis through the downregulation of Bcl-2, but the underlying molecular mechanism remains poorly defined. Here, it is report that DDB2 functions as a transcriptional repressor for Bcl-2 in combination with DDB1. Quantitative ChIP and EMSA analysis revealed that DDB2 binds to a specific cis-acting element at the 5'-end of Bcl-2 P1 promoter. Overexpression of DDB2 resulted in marked losses of histone H3K9,14 acetylation along the Bcl-2 promoter and enhancer regions, concomitant with a local enrichment of HDAC1 to the Bcl-2 P1 core promoter in ovarian cancer cells. Coimmunoprecipitation and in vitro binding analyses identified a physical interaction between DDB1 and HDAC1, whereas downregulation of HDAC1 significantly enhanced Bcl-2 promoter activity. Finally, in comparison with wild-type DDB2, mutated DDB2, which is unable to repress Bcl-2 transcription, mediates a compromised apoptosis upon cisplatin treatment. Taken together, these data support a model wherein DDB1 and DDB2 cooperate to repress Bcl-2 transcription. DDB2 recognizes and binds to the Bcl-2 P1 promoter, and HDAC1 is recruited through the DDB1 subunit associated with DDB2 to deacetylate histone H3K9,14 across Bcl-2 regulatory regions, resulting in suppressed Bcl-2 transcription. IMPLICATIONS Increasing the expression of DDB complex may provide a molecular strategy for cancer therapy.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Radiology, The Ohio State University, Room 1014 BRT, 460 W. 12th Avenue, Columbus, OH 43210.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Zhang X, Zhang F, Guo L, Wang Y, Zhang P, Wang R, Zhang N, Chen R. Interactome analysis reveals that C1QBP (complement component 1, q subcomponent binding protein) is associated with cancer cell chemotaxis and metastasis. Mol Cell Proteomics 2013; 12:3199-209. [PMID: 23924515 DOI: 10.1074/mcp.m113.029413] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complement component 1, q subcomponent binding protein (C1QBP/p32/HABP1) is a ubiquitously expressed and multicompartmental cellular protein involved in various biological processes. In order to further understand its biological functions, we conducted proteomics analysis of its interactome in this study. An improved sample preparation and mass spectrometric identification strategy was developed combining high-speed centrifugation, formaldehyde labeling, and two-dimensional reverse-phase liquid chromatography. Using this approach, we identified 187 interacting proteins and constructed a highly connected interacting network for C1QBP. Moreover, we explored the interaction between C1QBP and protein kinase C ζ, a key regulator of cell polarity and migration. The results indicated that C1QBP regulated the activity of protein kinase C ζ and modulated EGF-induced cancer cell chemotaxis. In addition, C1QBP was required for breast cancer metastasis in a severe combined immunodeficiency mouse model. Furthermore, C1QBP was observed to be overexpressed in breast cancer tissues, and its expression level was closely linked with distant metastasis and TNM stages. In summary, C1QBP was identified as a novel regulator of cancer metastasis that may serve as a therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard TJ, Smartt HJM, Batson J, Malik K, Paraskeva C, Greenhough A. Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J 2013; 32:1903-16. [PMID: 23736261 PMCID: PMC3981178 DOI: 10.1038/emboj.2013.123] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/30/2013] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin signalling and autophagy pathways each play important roles during development, adult tissue homeostasis and tumorigenesis. Here we identify the Wnt/β-catenin signalling pathway as a negative regulator of both basal and stress-induced autophagy. Manipulation of β-catenin expression levels in vitro and in vivo revealed that β-catenin suppresses autophagosome formation and directly represses p62/SQSTM1 (encoding the autophagy adaptor p62) via TCF4. Furthermore, we show that during nutrient deprivation β-catenin is selectively degraded via the formation of a β-catenin-LC3 complex, attenuating β-catenin/TCF-driven transcription and proliferation to favour adaptation during metabolic stress. Formation of the β-catenin-LC3 complex is mediated by a W/YXXI/L motif and LC3-interacting region (LIR) in β-catenin, which is required for interaction with LC3 and non-proteasomal degradation of β-catenin. Thus, Wnt/β-catenin represses autophagy and p62 expression, while β-catenin is itself targeted for autophagic clearance in autolysosomes upon autophagy induction. These findings reveal a regulatory feedback mechanism that place β-catenin at a key cellular integration point coordinating proliferation with autophagy, with implications for targeting these pathways for cancer therapy.
Collapse
Affiliation(s)
- Katy J Petherick
- Cancer Research UK Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Catimel B, Kapp E, Yin MX, Gregory M, Wong LSM, Condron M, Church N, Kershaw N, Holmes AB, Burgess AW. The PI(3)P interactome from a colon cancer cell. J Proteomics 2013; 82:35-51. [DOI: 10.1016/j.jprot.2013.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/21/2012] [Accepted: 01/24/2013] [Indexed: 02/07/2023]
|
49
|
Lee S, Ha JS, Lee SG, Kim TK. Inducible Biosynthetic Nanoscaffolds as Recruitment Platforms for Detecting Molecular Target Interactions inside Living Cells. J Am Chem Soc 2012; 134:11346-9. [DOI: 10.1021/ja303518d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sangkyu Lee
- Department of Biological
Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, Korea
| | - Jae-Seok Ha
- Reons Innovative Medicines Institute, Anyang, Gyeonggi-do, Korea
| | - Seung-Goo Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon,
Korea
| | - Tae K. Kim
- Reons Innovative Medicines Institute, Anyang, Gyeonggi-do, Korea
- Unist-Olympus Biomed Imaging
Center, School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology,
Ulsan, Korea
| |
Collapse
|
50
|
Kuzu G, Keskin O, Gursoy A, Nussinov R. Constructing structural networks of signaling pathways on the proteome scale. Curr Opin Struct Biol 2012; 22:367-77. [PMID: 22575757 DOI: 10.1016/j.sbi.2012.04.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/20/2012] [Accepted: 04/18/2012] [Indexed: 11/30/2022]
Abstract
Proteins function through their interactions, and the availability of protein interaction networks could help in understanding cellular processes. However, the known structural data are limited and the classical network node-and-edge representation, where proteins are nodes and interactions are edges, shows only which proteins interact; not how they interact. Structural networks provide this information. Protein-protein interface structures can also indicate which binding partners can interact simultaneously and which are competitive, and can help forecasting potentially harmful drug side effects. Here, we use a powerful protein-protein interactions prediction tool which is able to carry out accurate predictions on the proteome scale to construct the structural network of the extracellular signal-regulated kinases (ERK) in the mitogen-activated protein kinase (MAPK) signaling pathway. This knowledge-based method, PRISM, is motif-based, and is combined with flexible refinement and energy scoring. PRISM predicts protein interactions based on structural and evolutionary similarity to known protein interfaces.
Collapse
Affiliation(s)
- Guray Kuzu
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | | | | | | |
Collapse
|