1
|
Griffin S, Khanna P, Choi H, Thiesen K, Novik L, Morecraft RJ, Ganguly K. Ensemble reactivations during brief rest drive fast learning of sequences. Nature 2025:10.1038/s41586-024-08414-9. [PMID: 39814880 DOI: 10.1038/s41586-024-08414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
During motor learning, breaks in practice are known to facilitate behavioural optimizations. Although this process has traditionally been studied over long breaks that last hours to days1-6, recent studies in humans have demonstrated that rapid performance gains during early motor sequence learning are most pronounced after very brief breaks lasting seconds to minutes7-10. However, the precise causal neural mechanisms that facilitate performance gains after brief breaks remain poorly understood. Here we recorded neural ensemble activity in the motor cortex of macaques while they performed a visuomotor sequence learning task interspersed with brief breaks. We found that task-related neural cofiring patterns were reactivated during brief breaks. The rate and content of reactivations predicted the magnitude and pattern of subsequent performance gains. Of note, we found that performance gains and reactivations were positively correlated with cortical ripples (80-120 Hz oscillations) but anti-correlated with β bursts (13-30 Hz oscillations), which ultimately dominated breaks after the fast learning phase plateaued. We then applied 20 Hz epidural alternating current stimulation (ACS) to motor cortex, which reduced reactivation rates in a phase-specific and dose-dependent manner. Notably, 20 Hz ACS also eliminated performance gains. Overall, our results indicate that the reactivations of task ensembles during brief breaks are causal drivers of subsequent performance gains. β bursts compete with this process, possibly to support stable performance.
Collapse
Affiliation(s)
- Sandon Griffin
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Preeya Khanna
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Hoseok Choi
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Katherina Thiesen
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Lisa Novik
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Robert J Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, USA
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- California National Primate Research Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
2
|
Mittermaier FX, Kalbhenn T, Xu R, Onken J, Faust K, Sauvigny T, Thomale UW, Kaindl AM, Holtkamp M, Grosser S, Fidzinski P, Simon M, Alle H, Geiger JRP. Membrane potential states gate synaptic consolidation in human neocortical tissue. Nat Commun 2024; 15:10340. [PMID: 39668146 PMCID: PMC11638263 DOI: 10.1038/s41467-024-53901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states. Coupling of memory reactivation to these slow oscillations promotes consolidation, though the underlying mechanisms remain elusive. Here, we performed axonal and multineuron patch-clamp recordings in acute human brain slices, obtained from neurosurgeries, to show that sleep-like UP and DOWN states modulate axonal action potentials and temporarily enhance synaptic transmission between neocortical pyramidal neurons. Synaptic enhancement by UP and DOWN state sequences facilitates recruitment of postsynaptic action potentials, which in turn results in long-term stabilization of synaptic strength. In contrast, synapses undergo lasting depression if presynaptic neurons fail to recruit postsynaptic action potentials. Our study offers a mechanistic explanation for how coupling of neural activity to slow waves can cause synaptic consolidation, with potential implications for brain stimulation strategies targeting memory performance.
Collapse
Affiliation(s)
- Franz X Mittermaier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich W Thomale
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.
| |
Collapse
|
3
|
Do AD, Portet C, Goutagny R, Jackson J. The claustrum and synchronized brain states. Trends Neurosci 2024; 47:1028-1040. [PMID: 39488479 DOI: 10.1016/j.tins.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Cortical activity is constantly fluctuating between distinct spatiotemporal activity patterns denoted by changes in brain state. States of cortical desynchronization arise during motor generation, increased attention, and high cognitive load. Synchronized brain states comprise spatially widespread, coordinated low-frequency neural activity during rest and sleep when disengaged from the external environment or 'offline'. The claustrum is a small subcortical structure with dense reciprocal connections with the cortex suggesting modulation by, or participation in, brain state regulation. Here, we highlight recent work suggesting that neural activity in the claustrum supports cognitive processes associated with synchronized brain states characterized by increased low-frequency network activity. As an example, we outline how claustrum activity could support episodic memory consolidation during sleep.
Collapse
Affiliation(s)
- Alison D Do
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Coline Portet
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Romain Goutagny
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
El-Gaby M, Harris AL, Whittington JCR, Dorrell W, Bhomick A, Walton ME, Akam T, Behrens TEJ. A cellular basis for mapping behavioural structure. Nature 2024; 636:671-680. [PMID: 39506112 PMCID: PMC11655361 DOI: 10.1038/s41586-024-08145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
To flexibly adapt to new situations, our brains must understand the regularities in the world, as well as those in our own patterns of behaviour. A wealth of findings is beginning to reveal the algorithms that we use to map the outside world1-6. However, the biological algorithms that map the complex structured behaviours that we compose to reach our goals remain unknown. Here we reveal a neuronal implementation of an algorithm for mapping abstract behavioural structure and transferring it to new scenarios. We trained mice on many tasks that shared a common structure (organizing a sequence of goals) but differed in the specific goal locations. The mice discovered the underlying task structure, enabling zero-shot inferences on the first trial of new tasks. The activity of most neurons in the medial frontal cortex tiled progress to goal, akin to how place cells map physical space. These 'goal-progress cells' generalized, stretching and compressing their tiling to accommodate different goal distances. By contrast, progress along the overall sequence of goals was not encoded explicitly. Instead, a subset of goal-progress cells was further tuned such that individual neurons fired with a fixed task lag from a particular behavioural step. Together, these cells acted as task-structured memory buffers, implementing an algorithm that instantaneously encoded the entire sequence of future behavioural steps, and whose dynamics automatically computed the appropriate action at each step. These dynamics mirrored the abstract task structure both on-task and during offline sleep. Our findings suggest that schemata of complex behavioural structures can be generated by sculpting progress-to-goal tuning into task-structured buffers of individual behavioural steps.
Collapse
Affiliation(s)
- Mohamady El-Gaby
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Adam Loyd Harris
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - James C R Whittington
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Applied Physics, Stanford University, Palo Alto, CA, USA
| | - William Dorrell
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Arya Bhomick
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Mark E Walton
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Timothy E J Behrens
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
5
|
Van de Maele T, Dhoedt B, Verbelen T, Pezzulo G. A hierarchical active inference model of spatial alternation tasks and the hippocampal-prefrontal circuit. Nat Commun 2024; 15:9892. [PMID: 39543207 PMCID: PMC11564537 DOI: 10.1038/s41467-024-54257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Cognitive problem-solving benefits from cognitive maps aiding navigation and planning. Physical space navigation involves hippocampal (HC) allocentric codes, while abstract task space engages medial prefrontal cortex (mPFC) task-specific codes. Previous studies show that challenging tasks, like spatial alternation, require integrating these two types of maps. The disruption of the HC-mPFC circuit impairs performance. We propose a hierarchical active inference model clarifying how this circuit solves spatial interaction tasks by bridging physical and task-space maps. Simulations demonstrate that the model's dual layers develop effective cognitive maps for physical and task space. The model solves spatial alternation tasks through reciprocal interactions between the two layers. Disrupting its communication impairs decision-making, which is consistent with empirical evidence. Additionally, the model adapts to switching between multiple alternation rules, providing a mechanistic explanation of how the HC-mPFC circuit supports spatial alternation tasks and the effects of disruption.
Collapse
Grants
- This research received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Specific Grant Agreements No. 945539 (Human Brain Project SGA3) and No. 952215 (TAILOR); the European Research Council under the Grant Agreement No. 820213 (ThinkAhead), the Italian National Recovery and Resilience Plan (NRRP), M4C2, funded by the European Union – NextGenerationEU (Project IR0000011, CUP B51E22000150006, “EBRAINS-Italy”; Project PE0000013, “FAIR”; Project PE0000006, “MNESYS”), and the PRIN PNRR P20224FESY. The GEFORCE Quadro RTX6000 and Titan GPU cards used for this research were donated by the NVIDIA Corporation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Toon Van de Maele
- IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium
- VERSES Research Lab, Los Angeles, USA
| | - Bart Dhoedt
- IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium
| | | | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| |
Collapse
|
6
|
Hou R, Liu Z, Jin Z, Huang D, Hu Y, Du W, Zhu D, Yang L, Weng Y, Yuan T, Lu B, Wang Y, Ping Y, Xiao X. Coordinated Interactions between the Hippocampus and Retrosplenial Cortex in Spatial Memory. RESEARCH (WASHINGTON, D.C.) 2024; 7:0521. [PMID: 39483173 PMCID: PMC11525046 DOI: 10.34133/research.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 11/03/2024]
Abstract
While a hippocampal-cortical dialogue is generally thought to mediate memory consolidation, which is crucial for engram function, how it works remains largely unknown. Here, we examined the interplay of neural signals from the retrosplenial cortex (RSC), a neocortical region, and from the hippocampus in memory consolidation by simultaneously recording sharp-wave ripples (SWRs) of dorsal hippocampal CA1 and neural signals of RSC in free-moving mice during the delayed spatial alternation task (DSAT) and subsequent sleep. Hippocampal-RSC coordination during SWRs was identified in nonrapid eye movement (NREM) sleep, reflecting neural reactivation of decision-making in the task, as shown by a peak reactivation strength within SWRs. Using modified generalized linear models (GLMs), we traced information flow through the RSC-CA1-RSC circuit around SWRs during sleep following DSAT. Our findings show that after spatial training, RSC excitatory neurons typically increase CA1 activity prior to hippocampal SWRs, potentially initiating hippocampal memory replay, while inhibitory neurons are activated by hippocampal outputs in post-SWRs. We further identified certain excitatory neurons in the RSC that encoded spatial information related to the DSAT. These neurons, classified as splitters and location-related cells, showed varied responses to hippocampal SWRs. Overall, our study highlights the complex dynamics between the RSC and hippocampal CA1 region during SWRs in NREM sleep, underscoring their critical interplay in spatial memory consolidation.
Collapse
Affiliation(s)
- Ruiqing Hou
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Ziyue Liu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Zichen Jin
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Dongxue Huang
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Yue Hu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Danyi Zhu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Leiting Yang
- School of Life Science,
Fudan University, Shanghai 200032, China
| | - Yuanfeng Weng
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center,
Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huadong Hospital,
Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education),
Shanghai JiaoTong University, Shanghai 200240, China
| | - Xiao Xiao
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Liu J, Hall AF, Wang DV. Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation. Nat Commun 2024; 15:9248. [PMID: 39461946 PMCID: PMC11513146 DOI: 10.1038/s41467-024-53665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Memories are crucial for daily life, yet the network-level organizing principles governing neural representations of experiences remain unknown. Employing dual-site in vivo recording in freely behaving male mice, here we show that hippocampal dorsal CA1 (dCA1) and basolateral amygdala (BLA) utilize distinct coding strategies for novel experiences. A small assembly of BLA neurons emerged active during memory acquisition and persisted through consolidation, whereas most dCA1 neurons were engaged in both processes. Machine learning decoding revealed that dCA1 population spikes predicted BLA assembly firing rate, suggesting that most dCA1 neurons concurrently index an episodic event by rapidly establishing weighted communication with a specific BLA assembly - a process we term "many-to-one weighted mapping." We also found that dCA1 reactivations preceded BLA assembly activity preferably during elongated and enlarged dCA1 ripples. Using a closed-loop strategy, we demonstrated that suppressing BLA activity after large dCA1 ripples impaired memory. These findings highlight a many-to-one weighted mapping mechanism underlying both the acquisition and consolidation of new memories.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
8
|
Xiao Q, Lu M, Zhang X, Guan J, Li X, Wen R, Wang N, Qian L, Liao Y, Zhang Z, Liao X, Jiang C, Yue F, Ren S, Xia J, Hu J, Luo F, Hu Z, He C. Isolated theta waves originating from the midline thalamus trigger memory reactivation during NREM sleep in mice. Nat Commun 2024; 15:9231. [PMID: 39455583 PMCID: PMC11511994 DOI: 10.1038/s41467-024-53522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
During non-rapid eye movement (NREM) sleep, neural ensembles in the entorhinal-hippocampal circuit responsible for encoding recent memories undergo reactivation to facilitate the process of memory consolidation. This reactivation is widely acknowledged as pivotal for the formation of stable memory and its impairment is closely associated with memory dysfunction. To date, the neural mechanisms driving the reactivation of neural ensembles during NREM sleep remain poorly understood. Here, we show that the neural ensembles in the medial entorhinal cortex (MEC) that encode spatial experiences exhibit reactivation during NREM sleep. Notably, this reactivation consistently coincides with isolated theta waves. In addition, we found that the nucleus reuniens (RE) in the midline thalamus exhibits typical theta waves during NREM sleep, which are highly synchronized with those occurring in the MEC in male mice. Closed-loop optogenetic inhibition of the RE-MEC pathway specifically suppressed these isolated theta waves, resulting in impaired reactivation and compromised memory consolidation following a spatial memory task in male mice. The findings suggest that theta waves originating from the ventral midline thalamus play a role in initiating memory reactivation and consolidation during sleep.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Minmin Lu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Xiaolong Zhang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jiangheng Guan
- Department of Neurosurgery, General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Xin Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ruyi Wen
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Na Wang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ling Qian
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Yixiang Liao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences of Jilin University, Changchun, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Chenggang Jiang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Faguo Yue
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Shuancheng Ren
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jianxia Xia
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fenlan Luo
- Department of Physiology, Third Military Medical University, Chongqing, China.
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
9
|
Swanson R, Chinigò E, Levenstein D, Vöröslakos M, Mousavi N, Wang XJ, Basu J, Buzsáki G. Topography of putative bidirectional interaction between hippocampal sharp wave ripples and neocortical slow oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619879. [PMID: 39484611 PMCID: PMC11526890 DOI: 10.1101/2024.10.23.619879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Systems consolidation relies on coordination between hippocampal sharp-wave ripples (SWRs) and neocortical UP/DOWN states during sleep. However, whether this coupling exists across neocortex and the mechanisms enabling it remain unknown. By combining electrophysiology in mouse hippocampus (HPC) and retrosplenial cortex (RSC) with widefield imaging of dorsal neocortex, we found spatially and temporally precise bidirectional hippocampo-neocortical interaction. HPC multi-unit activity and SWR probability was correlated with UP/DOWN states in mouse default mode network, with highest modulation by RSC in deep sleep. Further, some SWRs were preceded by the high rebound excitation accompanying DMN DOWN→UP transitions, while large-amplitude SWRs were often followed by DOWN states originating in RSC. We explain these electrophysiological results with a model in which HPC and RSC are weakly coupled excitable systems capable of bi-directional perturbation and suggest RSC may act as a gateway through which SWRs can perturb downstream cortical regions via cortico-cortical propagation of DOWN states.
Collapse
Affiliation(s)
- Rachel Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Elisa Chinigò
- Center for Neural Science, New York University, New York, NY, USA
| | - Daniel Levenstein
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Mila – The Quebec AI Institute, Montreal, QC, Canada
| | - Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Navid Mousavi
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Jayeeta Basu
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA
- Department of Psychiatry, Langone Medical Center, New York University, New York, NY, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA
- Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| |
Collapse
|
10
|
Darevsky D, Kim J, Ganguly K. Coupling of Slow Oscillations in the Prefrontal and Motor Cortex Predicts Onset of Spindle Trains and Persistent Memory Reactivations. J Neurosci 2024; 44:e0621242024. [PMID: 39168655 PMCID: PMC11502226 DOI: 10.1523/jneurosci.0621-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024] Open
Abstract
Sleep is known to drive the consolidation of motor memories. During nonrapid eye movement (NREM) sleep, the close temporal proximity between slow oscillations (SOs) and spindles ("nesting" of SO-spindles) is known to be essential for consolidation, likely because it is closely associated with the reactivation of awake task activity. Interestingly, recent work has found that spindles can occur in temporal clusters or "trains." However, it remains unclear how spindle trains are related to the nesting phenomenon. Here, we hypothesized that spindle trains are more likely when SOs co-occur in the prefrontal and motor cortex. We conducted simultaneous neural recordings in the medial prefrontal cortex (mPFC) and primary motor cortex (M1) of male rats training on the reach-to-grasp motor task. We found that intracortically recorded M1 spindles are organized into distinct temporal clusters. Notably, the occurrence of temporally precise SOs between mPFC and M1 was a strong predictor of spindle trains. Moreover, reactivation of awake task patterns is much more persistent during spindle trains in comparison with that during isolated spindles. Together, our work suggests that the precise coupling of SOs across mPFC and M1 may be a potential driver of spindle trains and persistent reactivation of motor memory during NREM sleep.
Collapse
Affiliation(s)
- David Darevsky
- Bioengineering Graduate Program, University of California San Francisco, San Francisco, California 94143
- Medical Scientist Training Program, University of California San Francisco, San Francisco, California 94143
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Jaekyung Kim
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
11
|
Donahue MM, Robson E, Colgin LL. Hippocampal place cell sequences are impaired in a rat model of Fragile X Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619112. [PMID: 39553951 PMCID: PMC11566021 DOI: 10.1101/2024.10.18.619112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder that can cause impairments in spatial cognition and memory. The hippocampus is thought to support spatial cognition through the activity of place cells, neurons with spatial receptive fields. Coordinated firing of place cell populations is organized by different oscillatory patterns in the hippocampus during specific behavioral states. Theta rhythms organize place cell populations during awake exploration. Sharp wave-ripples organize place cell population reactivation during waking rest. Here, we examined the coordination of CA1 place cell populations during active behavior and subsequent rest in a rat model of FXS ( Fmr1 knockout rats). While the organization of individual place cells by the theta rhythm was normal, the coordinated activation of sequences of place cells during individual theta cycles was impaired in Fmr1 knockout rats. Further, the subsequent replay of place cell sequences was impaired during waking rest following active exploration. Together, these results expand our understanding of how genetic modifications that model those observed in FXS affect hippocampal physiology and suggest a potential mechanism underlying impaired spatial cognition in FXS. Significance Statement Fragile X Syndrome (FXS) is a neurodevelopmental disorder that can cause impaired memory and atypical spatial behaviors such as "elopement" (i.e., wandering off and becoming lost). Activity in the CA1 subregion of the hippocampus supports spatial memory and spatial cognition, making it an important candidate to study in the context of FXS; however, how neuronal population activity in CA1 is affected by FXS is poorly understood. In this study, we found that the coordination of populations of CA1 neurons during active behavior and waking rest was impaired in a rat model of FXS. These results reveal hippocampal physiological deficits that may contribute to cognitive impairments in FXS.
Collapse
|
12
|
Tabarak S, Zhu X, Li P, Weber FD, Shi L, Gong Y, Yuan K, Bao Y, Fan T, Li S, Shi J, Lu L, Deng J. Temporal dynamics of negative emotional memory reprocessing during sleep. Transl Psychiatry 2024; 14:434. [PMID: 39397004 PMCID: PMC11471876 DOI: 10.1038/s41398-024-03146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Memory reprocessing during sleep is a well-established phenomenon in numerous studies. However, it is unclear whether the intensity of memory reprocessing is consistently maintained throughout the night or exhibits dynamic changes. This study investigates the temporal dynamics of negative emotional memory reprocessing during sleep, with a specific focus on slow oscillation (SO)-spindle coupling and its role in memory reprocessing. In the first experiment (N = 40, mean age = 22.5 years), we detected the negative emotional memory reprocessing strength in each sleep cycle, we found that the 2nd sleep cycle after negative emotional memory learning constitute the most sensitive window for memory reprocessing, furthermore, SO-spindle coupling signals in this window plays a role in stabilizing negative emotional memory. To verify the role of SO-spindle coupling in negative emotional memory reprocessing, we utilized transcranial alternating current stimulation (tACS) to disrupt SO-spindle coupling during the 2nd sleep cycle (N = 21, mean age = 19.3 years). Notably, the outcomes of the tACS intervention demonstrated a significant reduction in the recognition of negative emotional memories. These findings offer new insights into the mechanisms that regulate emotional memory consolidation during sleep and may have implications for addressing psychiatric disorders associated with pathological emotional memory.
Collapse
Affiliation(s)
- Serik Tabarak
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Burkle-de-la-Camp Place 1, 44789, Bochum, Germany
| | - Ximei Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Yimiao Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, 100191, Beijing, China
| | - Tengteng Fan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Suxia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, 100191, Beijing, China
| | - Jie Shi
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Lin Lu
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, 100191, Beijing, China.
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
| |
Collapse
|
13
|
Hahn MA, Lendner JD, Anwander M, Slama KSJ, Knight RT, Lin JJ, Helfrich RF. A tradeoff between efficiency and robustness in the hippocampal-neocortical memory network during human and rodent sleep. Prog Neurobiol 2024; 242:102672. [PMID: 39369838 DOI: 10.1016/j.pneurobio.2024.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Sleep constitutes a brain state of disengagement from the external world that supports memory consolidation and restores cognitive resources. The precise mechanisms how sleep and its varied stages support information processing remain largely unknown. Synaptic scaling models imply that daytime learning accumulates neural information, which is then consolidated and downregulated during sleep. Currently, there is a lack of in-vivo data from humans and rodents that elucidate if, and how, sleep renormalizes information processing capacities. From an information-theoretical perspective, a consolidation process should entail a reduction in neural pattern variability over the course of a night. Here, in a cross-species intracranial study, we identify a tradeoff in the neural population code during sleep where information coding efficiency is higher in the neocortex than in hippocampal archicortex in humans than in rodents as well as during wakefulness compared to sleep. Critically, non-REM sleep selectively reduces information coding efficiency through pattern repetition in the neocortex in both species, indicating a transition to a more robust information coding regime. Conversely, the coding regime in the hippocampus remained consistent from wakefulness to non-REM sleep. These findings suggest that new information could be imprinted to the long-term mnemonic storage in the neocortex through pattern repetition during sleep. Lastly, our results show that task engagement increased coding efficiency, while medically-induced unconsciousness disrupted the population code. In sum, these findings suggest that neural pattern variability could constitute a fundamental principle underlying cognitive engagement and memory formation, while pattern repetition reflects robust coding, possibly underlying the consolidation process.
Collapse
Affiliation(s)
- Michael A Hahn
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany.
| | - Janna D Lendner
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Hoppe-Seyler-Str 3, Tübingen 72076, Germany
| | - Matthias Anwander
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany
| | - Katarina S J Slama
- Department of Psychology and the Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, Berkeley, CA 94720, USA
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, Berkeley, CA 94720, USA
| | - Jack J Lin
- Department of Neurology, UC Davis, 3160 Folsom Blvd, Sacramento, CA 95816, USA; Center for Mind and Brain, UC Davis, 267 Cousteau Pl, Davis, CA 95618, USA
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany.
| |
Collapse
|
14
|
Zavecz Z, Janacsek K, Simor P, Cohen MX, Nemeth D. Similarity of brain activity patterns during learning and subsequent resting state predicts memory consolidation. Cortex 2024; 179:168-190. [PMID: 39197408 DOI: 10.1016/j.cortex.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Spontaneous reactivation of brain activity from learning to a subsequent off-line period has been implicated as a neural mechanism underlying memory consolidation. However, similarities in brain activity may also emerge as a result of individual, trait-like characteristics. Here, we introduced a novel approach for analyzing continuous electroencephalography (EEG) data to investigate learning-induced changes as well as trait-like characteristics in brain activity underlying memory consolidation. Thirty-one healthy young adults performed a learning task, and their performance was retested after a short (∼1 h) delay. Consolidation of two distinct types of information (serial-order and probability) embedded in the task were tested to reveal similarities in functional networks that uniquely predict the changes in the respective memory performance. EEG was recorded during learning and pre- and post-learning rest periods. To investigate brain activity associated with consolidation, we quantified similarities in EEG functional connectivity between learning and pre-learning rest (baseline similarity) and learning and post-learning rest (post-learning similarity). While comparable patterns of these two could indicate trait-like similarities, changes from baseline to post-learning similarity could indicate learning-induced changes, possibly spontaneous reactivation. Higher learning-induced changes in alpha frequency connectivity (8.5-9.5 Hz) were associated with better consolidation of serial-order information, particularly for long-range connections across central and parietal sites. The consolidation of probability information was associated with learning-induced changes in delta frequency connectivity (2.5-3 Hz) specifically for more local, short-range connections. Furthermore, there was a substantial overlap between the baseline and post-learning similarities and their associations with consolidation performance, suggesting robust (trait-like) differences in functional connectivity networks underlying memory processes.
Collapse
Affiliation(s)
- Zsófia Zavecz
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, University of Greenwich, London, United Kingdom.
| | - Peter Simor
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Michael X Cohen
- Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dezso Nemeth
- INSERM, Université Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France; NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Department of Education and Psychology, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
15
|
Farooq U, Dragoi G. Experience of Euclidean geometry sculpts the development and dynamics of rodent hippocampal sequential cell assemblies. Nat Commun 2024; 15:8417. [PMID: 39341810 PMCID: PMC11438871 DOI: 10.1038/s41467-024-52758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Euclidean space is the fabric of the world we live in. Whether and how geometric experience shapes our spatial-temporal representations of the world remained unknown. We deprived male rats of experience with crucial features of Euclidean geometry by rearing them inside spheres, and compared activity of large hippocampal neuronal ensembles during navigation and sleep with that of cuboid cage-reared controls. Sphere-rearing from birth permitted emergence of accurate neuronal ensemble spatial codes and preconfigured and plastic time-compressed neuronal sequences. However, sphere-rearing led to diminished individual place cell tuning, more similar neuronal mapping of different track ends/corners, and impaired pattern separation and plasticity of multiple linear tracks, coupled with reduced preconfigured sleep network repertoires. Subsequent experience with multiple linear environments over four days largely reversed these effects. Thus, early-life experience with Euclidean geometry enriches the hippocampal repertoire of preconfigured neuronal patterns selected toward unique representation and discrimination of multiple linear environments.
Collapse
Affiliation(s)
- Usman Farooq
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - George Dragoi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
16
|
Zimmerman CA, Bolkan SS, Pan-Vazquez A, Wu B, Keppler EF, Meares-Garcia JB, Guthman EM, Fetcho RN, McMannon B, Lee J, Hoag AT, Lynch LA, Janarthanan SR, López Luna JF, Bondy AG, Falkner AL, Wang SSH, Witten IB. A neural mechanism for learning from delayed postingestive feedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561214. [PMID: 37873112 PMCID: PMC10592633 DOI: 10.1101/2023.10.06.561214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Animals learn the value of foods based on their postingestive effects and thereby develop aversions to foods that are toxic1-6 and preferences to those that are nutritious7-14. However, it remains unclear how the brain is able to assign credit to flavors experienced during a meal with postingestive feedback signals that can arise after a substantial delay. Here, we reveal an unexpected role for postingestive reactivation of neural flavor representations in this temporal credit assignment process. To begin, we leverage the fact that mice learn to associate novel15-18, but not familiar, flavors with delayed gastric malaise signals to investigate how the brain represents flavors that support aversive postingestive learning. Surveying cellular resolution brainwide activation patterns reveals that a network of amygdala regions is unique in being preferentially activated by novel flavors across every stage of the learning process: the initial meal, delayed malaise, and memory retrieval. By combining high-density recordings in the amygdala with optogenetic stimulation of genetically defined hindbrain malaise cells, we find that postingestive malaise signals potently and specifically reactivate amygdalar novel flavor representations from a recent meal. The degree of malaise-driven reactivation of individual neurons predicts strengthening of flavor responses upon memory retrieval, leading to stabilization of the population-level representation of the recently consumed flavor. In contrast, meals without postingestive consequences degrade neural flavor representations as flavors become familiar and safe. Thus, our findings demonstrate that interoceptive reactivation of amygdalar flavor representations provides a neural mechanism to resolve the temporal credit assignment problem inherent to postingestive learning.
Collapse
Affiliation(s)
| | - Scott S Bolkan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Bichan Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Emma F Keppler
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Eartha Mae Guthman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Robert N Fetcho
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Junuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Austin T Hoag
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Laura A Lynch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Juan F López Luna
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Adrian G Bondy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Annegret L Falkner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
17
|
Khamassi M, Peyrache A, Benchenane K, Hopkins DA, Lebas N, Douchamps V, Droulez J, Battaglia FP, Wiener SI. Rat anterior cingulate neurons responsive to rule or strategy changes are modulated by the hippocampal theta rhythm and sharp-wave ripples. Eur J Neurosci 2024; 60:5300-5327. [PMID: 39161082 DOI: 10.1111/ejn.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
To better understand neural processing during adaptive learning of stimulus-response-reward contingencies, we recorded synchrony of neuronal activity in anterior cingulate cortex (ACC) and hippocampal rhythms in male rats acquiring and switching between spatial and visual discrimination tasks in a Y-maze. ACC population activity as well as single unit activity shifted shortly after task rule changes or just before the rats adopted different task strategies. Hippocampal theta oscillations (associated with memory encoding) modulated an elevated proportion of rule-change responsive neurons (70%), but other neurons that were correlated with strategy-change, strategy value and reward-rate were not. However, hippocampal sharp wave-ripples modulated significantly higher proportions of rule-change, strategy-change and reward-rate responsive cells during post-session sleep but not pre-session sleep. This suggests an underestimated mechanism for hippocampal mismatch and contextual signals to facilitate ACC to detect contingency changes for cognitive flexibility, a function that is attenuated after it is damaged.
Collapse
Affiliation(s)
- M Khamassi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - A Peyrache
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - K Benchenane
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - D A Hopkins
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - N Lebas
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - V Douchamps
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - J Droulez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- CNRS, Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| | - F P Battaglia
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
- Donders Institute for Brain, Cognition, and Behavior, Radboud Universiteit Nijmegen, Nijmegen, The Netherlands
| | - S I Wiener
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
18
|
Zhao LS, Raithel CU, Tisdall MD, Detre JA, Gottfried JA. Leveraging Multi-Echo EPI to Enhance BOLD Sensitivity in Task-based Olfactory fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575530. [PMID: 38293143 PMCID: PMC10827088 DOI: 10.1101/2024.01.15.575530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) contrast relies on gradient echo echo-planar imaging (GE-EPI) to quantify dynamic susceptibility changes associated with the hemodynamic response to neural activity. However, acquiring BOLD fMRI in human olfactory regions is particularly challenging due to their proximity to the sinuses where large susceptibility gradients induce magnetic field distortions. BOLD fMRI of the human olfactory system is further complicated by respiratory artifacts that are highly correlated with event onsets in olfactory tasks. Multi-echo EPI (ME-EPI) acquires gradient echo data at multiple echo times (TEs) during a single acquisition and can leverage signal evolution over the multiple echo times to enhance BOLD sensitivity and reduce artifactual signal contributions. In the current study, we developed a ME-EPI acquisition protocol for olfactory task-based fMRI and demonstrated significant improvement in BOLD signal sensitivity over conventional single-echo EPI (1E-EPI). The observed improvement arose from both an increase in BOLD signal changes through a T 2 * -weighted echo combination and a reduction in non-BOLD artifacts through the application of the Multi-Echo Independent Components Analysis (ME-ICA) denoising method. This study represents one of the first direct comparisons between 1E-EPI and ME-EPI in high-susceptibility regions and provides compelling evidence in favor of using ME-EPI for future task-based fMRI studies.
Collapse
|
19
|
Liao Z, Losonczy A. Learning, Fast and Slow: Single- and Many-Shot Learning in the Hippocampus. Annu Rev Neurosci 2024; 47:187-209. [PMID: 38663090 PMCID: PMC11519319 DOI: 10.1146/annurev-neuro-102423-100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The hippocampus is critical for memory and spatial navigation. The ability to map novel environments, as well as more abstract conceptual relationships, is fundamental to the cognitive flexibility that humans and other animals require to survive in a dynamic world. In this review, we survey recent advances in our understanding of how this flexibility is implemented anatomically and functionally by hippocampal circuitry, during both active exploration (online) and rest (offline). We discuss the advantages and limitations of spike timing-dependent plasticity and the more recently discovered behavioral timescale synaptic plasticity in supporting distinct learning modes in the hippocampus. Finally, we suggest complementary roles for these plasticity types in explaining many-shot and single-shot learning in the hippocampus and discuss how these rules could work together to support the learning of cognitive maps.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
| | - Attila Losonczy
- Department of Neuroscience and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
| |
Collapse
|
20
|
Demchuk AM, Esteves IM, Chang H, Sun J, McNaughton BL. Hierarchical Gradients of Encoded Spatial and Sensory Information in the Neocortex Are Attenuated by Dorsal Hippocampal Lesions. J Neurosci 2024; 44:e1619232024. [PMID: 38942472 PMCID: PMC11293447 DOI: 10.1523/jneurosci.1619-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/30/2024] Open
Abstract
During navigation, the neocortex actively integrates learned spatial context with current sensory experience to guide behaviors. However, the relative encoding of spatial and sensorimotor information among cortical cells, and whether hippocampal feedback continues to modify these properties after learning, remains poorly understood. Thus, two-photon microscopy of male and female Thy1-GCaMP6s mice was used to longitudinally image neurons spanning superficial retrosplenial cortex and layers II-Va of primary and secondary motor cortices before and after bilateral dorsal hippocampal lesions. During behavior on a familiar cued treadmill, the locations of two obstacles were interchanged to decouple place-tuning from cue-tuning among position-correlated cells with fields at those locations. Subpopulations of place and cue cells each formed interareal gradients such that higher-level cortical regions exhibited higher fractions of place cells, whereas lower-level regions exhibited higher fractions of cue cells. Position-correlated cells in the motor cortex also formed translaminar gradients; more superficial cells were more likely to exhibit fields and were more sparsely and precisely tuned than deeper cells. After dorsal hippocampal lesions, a neural representation of the learned environment persisted, but retrosplenial cortex exhibited significantly increased cue-tuning, and, in motor cortices, both position-correlated cell recruitment and population activity at the unstable obstacle locations became more homogeneously elevated across laminae. Altogether, these results support that the hippocampus continues to modulate cortical responses in familiar environments, and the relative impact of descending feedback obeys hierarchical interareal and interlaminar gradients opposite to the flow of ascending sensory inputs.
Collapse
Affiliation(s)
- Aubrey M Demchuk
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ingrid M Esteves
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - HaoRan Chang
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jianjun Sun
- Hotchkiss Brain Institute, University of Calgary Foothills, Calgary, Alberta T2N 4N1, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Department of Neurobiology and Behaviour, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
21
|
Shin JD, Jadhav SP. Prefrontal cortical ripples mediate top-down suppression of hippocampal reactivation during sleep memory consolidation. Curr Biol 2024; 34:2801-2811.e9. [PMID: 38834064 PMCID: PMC11233241 DOI: 10.1016/j.cub.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Consolidation of initially encoded hippocampal representations in the neocortex through reactivation is crucial for long-term memory formation and is facilitated by the coordination of hippocampal sharp-wave ripples (SWRs) with cortical slow and spindle oscillations during non-REM sleep. Recent evidence suggests that high-frequency cortical ripples can also coordinate with hippocampal SWRs in support of consolidation; however, the contribution of cortical ripples to reactivation remains unclear. We used high-density, continuous recordings in the hippocampus (area CA1) and prefrontal cortex (PFC) over the course of spatial learning and show that independent PFC ripples dissociated from SWRs are prevalent in NREM sleep and predominantly suppress hippocampal activity. PFC ripples paradoxically mediate top-down suppression of hippocampal reactivation rather than coordination, and this suppression is stronger for assemblies that are reactivated during coordinated CA1-PFC ripples for consolidation of recent experiences. Further, we show non-canonical, serial coordination of independent cortical ripples with slow and spindle oscillations, which are known signatures of memory consolidation. These results establish a role for prefrontal cortical ripples in top-down regulation of behaviorally relevant hippocampal representations during consolidation.
Collapse
Affiliation(s)
- Justin D Shin
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
22
|
Mukherjee S, Babadi B. Adaptive modeling and inference of higher-order coordination in neuronal assemblies: A dynamic greedy estimation approach. PLoS Comput Biol 2024; 20:e1011605. [PMID: 38805569 PMCID: PMC11161120 DOI: 10.1371/journal.pcbi.1011605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/07/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Central in the study of population codes, coordinated ensemble spiking activity is widely observable in neural recordings with hypothesized roles in robust stimulus representation, interareal communication, and learning and memory formation. Model-free measures of synchrony characterize coherent pairwise activity but not higher-order interactions, a limitation transcended by statistical models of ensemble spiking activity. However, existing model-based analyses often impose assumptions about the relevance of higher-order interactions and require repeated trials to characterize dynamics in the correlational structure of ensemble activity. To address these shortcomings, we propose an adaptive greedy filtering algorithm based on a discretized mark point-process model of ensemble spiking and a corresponding statistical inference framework to identify significant higher-order coordination. In the course of developing a precise statistical test, we show that confidence intervals can be constructed for greedily estimated parameters. We demonstrate the utility of our proposed methods on simulated neuronal assemblies. Applied to multi-electrode recordings from human and rat cortical assemblies, our proposed methods provide new insights into the dynamics underlying localized population activity during transitions between brain states.
Collapse
Affiliation(s)
- Shoutik Mukherjee
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
23
|
Losey DM, Hennig JA, Oby ER, Golub MD, Sadtler PT, Quick KM, Ryu SI, Tyler-Kabara EC, Batista AP, Yu BM, Chase SM. Learning leaves a memory trace in motor cortex. Curr Biol 2024; 34:1519-1531.e4. [PMID: 38531360 PMCID: PMC11097210 DOI: 10.1016/j.cub.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 12/06/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
How are we able to learn new behaviors without disrupting previously learned ones? To understand how the brain achieves this, we used a brain-computer interface (BCI) learning paradigm, which enables us to detect the presence of a memory of one behavior while performing another. We found that learning to use a new BCI map altered the neural activity that monkeys produced when they returned to using a familiar BCI map in a way that was specific to the learning experience. That is, learning left a "memory trace" in the primary motor cortex. This memory trace coexisted with proficient performance under the familiar map, primarily by altering neural activity in dimensions that did not impact behavior. Forming memory traces might be how the brain is able to provide for the joint learning of multiple behaviors without interference.
Collapse
Affiliation(s)
- Darby M Losey
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jay A Hennig
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Emily R Oby
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew D Golub
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Patrick T Sadtler
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kristin M Quick
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | - Elizabeth C Tyler-Kabara
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurosurgery, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Aaron P Batista
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Byron M Yu
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Steven M Chase
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
25
|
Staresina BP. Coupled sleep rhythms for memory consolidation. Trends Cogn Sci 2024; 28:339-351. [PMID: 38443198 DOI: 10.1016/j.tics.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
How do passing moments turn into lasting memories? Sheltered from external tasks and distractions, sleep constitutes an optimal state for the brain to reprocess and consolidate previous experiences. Recent work suggests that consolidation is governed by the intricate interaction of slow oscillations (SOs), spindles, and ripples - electrophysiological sleep rhythms that orchestrate neuronal processing and communication within and across memory circuits. This review describes how sequential SO-spindle-ripple coupling provides a temporally and spatially fine-tuned mechanism to selectively strengthen target memories across hippocampal and cortical networks. Coupled sleep rhythms might be harnessed not only to enhance overnight memory retention, but also to combat memory decline associated with healthy ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
27
|
Pezzulo G, D'Amato L, Mannella F, Priorelli M, Van de Maele T, Stoianov IP, Friston K. Neural representation in active inference: Using generative models to interact with-and understand-the lived world. Ann N Y Acad Sci 2024; 1534:45-68. [PMID: 38528782 DOI: 10.1111/nyas.15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This paper considers neural representation through the lens of active inference, a normative framework for understanding brain function. It delves into how living organisms employ generative models to minimize the discrepancy between predictions and observations (as scored with variational free energy). The ensuing analysis suggests that the brain learns generative models to navigate the world adaptively, not (or not solely) to understand it. Different living organisms may possess an array of generative models, spanning from those that support action-perception cycles to those that underwrite planning and imagination; namely, from explicit models that entail variables for predicting concurrent sensations, like objects, faces, or people-to action-oriented models that predict action outcomes. It then elucidates how generative models and belief dynamics might link to neural representation and the implications of different types of generative models for understanding an agent's cognitive capabilities in relation to its ecological niche. The paper concludes with open questions regarding the evolution of generative models and the development of advanced cognitive abilities-and the gradual transition from pragmatic to detached neural representations. The analysis on offer foregrounds the diverse roles that generative models play in cognitive processes and the evolution of neural representation.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Leo D'Amato
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
- Polytechnic University of Turin, Turin, Italy
| | - Francesco Mannella
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Matteo Priorelli
- Institute of Cognitive Sciences and Technologies, National Research Council, Padua, Italy
| | - Toon Van de Maele
- IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium
| | - Ivilin Peev Stoianov
- Institute of Cognitive Sciences and Technologies, National Research Council, Padua, Italy
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- VERSES Research Lab, Los Angeles, California, USA
| |
Collapse
|
28
|
Sagiv Y, Akam T, Witten IB, Daw ND. Prioritizing replay when future goals are unknown. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582822. [PMID: 38496674 PMCID: PMC10942393 DOI: 10.1101/2024.02.29.582822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although hippocampal place cells replay nonlocal trajectories, the computational function of these events remains controversial. One hypothesis, formalized in a prominent reinforcement learning account, holds that replay plans routes to current goals. However, recent puzzling data appear to contradict this perspective by showing that replayed destinations lag current goals. These results may support an alternative hypothesis that replay updates route information to build a "cognitive map." Yet no similar theory exists to formalize this view, and it is unclear how such a map is represented or what role replay plays in computing it. We address these gaps by introducing a theory of replay that learns a map of routes to candidate goals, before reward is available or when its location may change. Our work extends the planning account to capture a general map-building function for replay, reconciling it with data, and revealing an unexpected relationship between the seemingly distinct hypotheses.
Collapse
Affiliation(s)
- Yotam Sagiv
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Thomas Akam
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
29
|
Maggi S, Hock RM, O'Neill M, Buckley M, Moran PM, Bast T, Sami M, Humphries MD. Tracking subjects' strategies in behavioural choice experiments at trial resolution. eLife 2024; 13:e86491. [PMID: 38426402 PMCID: PMC10959529 DOI: 10.7554/elife.86491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
Investigating how, when, and what subjects learn during decision-making tasks requires tracking their choice strategies on a trial-by-trial basis. Here, we present a simple but effective probabilistic approach to tracking choice strategies at trial resolution using Bayesian evidence accumulation. We show this approach identifies both successful learning and the exploratory strategies used in decision tasks performed by humans, non-human primates, rats, and synthetic agents. Both when subjects learn and when rules change the exploratory strategies of win-stay and lose-shift, often considered complementary, are consistently used independently. Indeed, we find the use of lose-shift is strong evidence that subjects have latently learnt the salient features of a new rewarded rule. Our approach can be extended to any discrete choice strategy, and its low computational cost is ideally suited for real-time analysis and closed-loop control.
Collapse
Affiliation(s)
- Silvia Maggi
- School of Psychology, University of NottinghamNottinghamUnited Kingdom
| | - Rebecca M Hock
- School of Psychology, University of NottinghamNottinghamUnited Kingdom
| | - Martin O'Neill
- School of Psychology, University of NottinghamNottinghamUnited Kingdom
- Department of Health & Nutritional Sciences, Atlantic Technological UniversitySligoIreland
| | - Mark Buckley
- Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Paula M Moran
- School of Psychology, University of NottinghamNottinghamUnited Kingdom
- Department of Neuroscience, University of NottinghamNottinghamUnited Kingdom
| | - Tobias Bast
- School of Psychology, University of NottinghamNottinghamUnited Kingdom
- Department of Neuroscience, University of NottinghamNottinghamUnited Kingdom
| | - Musa Sami
- Institute of Mental Health, University of NottinghamNottinghamUnited Kingdom
| | - Mark D Humphries
- School of Psychology, University of NottinghamNottinghamUnited Kingdom
| |
Collapse
|
30
|
Zhang Q, Chen F. Impact of single-trial avoidance learning on subsequent sleep. Eur J Neurosci 2024; 59:739-751. [PMID: 38342099 DOI: 10.1111/ejn.16274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Both non-rapid eye movement (NonREM) sleep and rapid eye movement (REM) sleep, as well as sleep spindle and ripple oscillations, are important for memory formation. Through cortical EEG recordings of prefrontal cortex and hippocampus during and after an inhibitory avoidance task, we analysed the dynamic changes in the amounts of sleep, spindle and ripple oscillations related to memory formation. The total amount of NonREM sleep was reduced during the first hour after learning. Moreover, significant decrease of the total spindle and ripple counts was observed at the first hour after learning as well. In addition, foot shock alone, with no associated learning, produced little effect on the dynamics of sleep oscillations, indicating that the learning experience is necessary for these changes to occur.
Collapse
Affiliation(s)
- Qianwen Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Fujun Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Pedrosa R, Nazari M, Kergoat L, Bernard C, Mohajerani M, Stella F, Battaglia F. Hippocampal ripples coincide with "up-state" and spindles in retrosplenial cortex. Cereb Cortex 2024; 34:bhae083. [PMID: 38494417 DOI: 10.1093/cercor/bhae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
During NREM sleep, hippocampal sharp-wave ripple (SWR) events are thought to stabilize memory traces for long-term storage in downstream neocortical structures. Within the neocortex, a set of distributed networks organized around retrosplenial cortex (RS-network) interact preferentially with the hippocampus purportedly to consolidate those traces. Transient bouts of slow oscillations and sleep spindles in this RS-network are often observed around SWRs, suggesting that these two activities are related and that their interplay possibly contributes to memory consolidation. To investigate how SWRs interact with the RS-network and spindles, we combined cortical wide-field voltage imaging, Electrocorticography, and hippocampal LFP recordings in anesthetized and sleeping mice. Here, we show that, during SWR, "up-states" and spindles reliably co-occur in a cortical subnetwork centered around the retrosplenial cortex. Furthermore, retrosplenial transient activations and spindles predict slow gamma oscillations in CA1 during SWRs. Together, our results suggest that retrosplenial-hippocampal interaction may be a critical pathway of information exchange between the cortex and hippocampus.
Collapse
Affiliation(s)
- Rafael Pedrosa
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Loig Kergoat
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
- Panaxium SAS, Aix-en-Provence 13100, France
| | - Christophe Bernard
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
| | - Majid Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Federico Stella
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Francesco Battaglia
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
32
|
Naffaa MM. Significance of the anterior cingulate cortex in neurogenesis plasticity: Connections, functions, and disorders across postnatal and adult stages. Bioessays 2024; 46:e2300160. [PMID: 38135889 DOI: 10.1002/bies.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The anterior cingulate cortex (ACC) is a complex and continually evolving brain region that remains a primary focus of research due to its multifaceted functions. Various studies and analyses have significantly advanced our understanding of how the ACC participates in a wide spectrum of memory and cognitive processes. However, despite its strong connections to brain areas associated with hippocampal and olfactory neurogenesis, the functions of the ACC in regulating postnatal and adult neurogenesis in these regions are still insufficiently explored. Investigating the intricate involvement of the ACC in neurogenesis could enhance our comprehension of essential aspects of brain plasticity. This involvement stems from its complex circuitry with other relevant brain regions, thereby exerting both direct and indirect impacts on the neurogenesis process. This review sheds light on the promising significance of the ACC in orchestrating postnatal and adult neurogenesis in conditions related to memory, cognitive behavior, and associated disorders.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
33
|
Bozic I. Neuro-oscillations in memory consolidation and forgotten parts of the brain: Commentary on Weiner et al., 2023. Eur J Neurosci 2024; 59:481-482. [PMID: 37313790 DOI: 10.1111/ejn.16056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Affiliation(s)
- Ivan Bozic
- Universitäre Psychiatrische Dienste Bern, Universität Bern, Bern, Switzerland
| |
Collapse
|
34
|
Weiss SA, Fried I, Engel J, Bragin A, Wang S, Sperling MR, Wong RK, Nir Y, Staba RJ. Pathological neurons generate ripples at the UP-DOWN transition disrupting information transfer. Epilepsia 2024; 65:362-377. [PMID: 38041560 PMCID: PMC10922301 DOI: 10.1111/epi.17845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE To confirm and investigate why pathological high-frequency oscillations (pHFOs), including ripples (80-200 Hz) and fast ripples (200-600 Hz), are generated during the UP-DOWN transition of the slow wave and if information transmission mediated by ripple temporal coupling is disrupted in the seizure-onset zone (SOZ). METHODS We isolated 217 total units from 175.95 intracranial electroencephalography (iEEG) contact-hours of synchronized macro- and microelectrode recordings from 6 patients. Sleep slow oscillation (.1-2 Hz) epochs were identified in the iEEG recording. iEEG HFOs that occurred superimposed on the slow wave were transformed to phasors and adjusted by the phase of maximum firing in nearby units (i.e., maximum UP). We tested whether, in the SOZ, HFOs and associated action potentials (APs) occur more often at the UP-DOWN transition. We also examined ripple temporal correlations using cross-correlograms. RESULTS At the group level in the SOZ, HFO and HFO-associated AP probability was highest during the UP-DOWN transition of slow wave excitability (p < < .001). In the non-SOZ, HFO and HFO-associated AP was highest during the DOWN-UP transition (p < < .001). At the unit level in the SOZ, 15.6% and 20% of units exhibited more robust firing during ripples (Cohen's d = .11-.83) and fast ripples (d = .36-.90) at the UP-DOWN transition (p < .05 f.d.r. corrected), respectively. By comparison, also in the SOZ, 6.6% (d = .14-.30) and 8.5% (d = .33-.41) of units had significantly less firing during ripples and fast ripples at the UP-DOWN transition, respectively. Additional data shows that ripple and fast ripple temporal correlations, involving global slow waves, between the hippocampus, entorhinal cortex, and parahippocampal gyrus were reduced by >50% in the SOZ compared to the non-SOZ (N = 3). SIGNIFICANCE The UP-DOWN transition of slow wave excitability facilitates the activation of pathological neurons to generate pHFOs. Ripple temporal correlations across brain regions may be important in memory consolidation and are disrupted in the SOZ, perhaps by pHFO generation.
Collapse
Affiliation(s)
- Shennan A Weiss
- Dept. of Neurology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, USA
| | - Itzhak Fried
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Anatol Bragin
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Shuang Wang
- Depts of Neurology, Epilepsy Center, Second Affiliated Hospital of Medical College, Zhejiang University, Zhejiang, China
| | - Michael R. Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Robert K.S. Wong
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Richard J Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| |
Collapse
|
35
|
Dragoi G. The generative grammar of the brain: a critique of internally generated representations. Nat Rev Neurosci 2024; 25:60-75. [PMID: 38036709 DOI: 10.1038/s41583-023-00763-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
The past decade of progress in neurobiology has uncovered important organizational principles for network preconfiguration and neuronal selection that suggest a generative grammar exists in the brain. In this Perspective, I discuss the competence of the hippocampal neural network to generically express temporally compressed sequences of neuronal firing that represent novel experiences, which is envisioned as a form of generative neural syntax supporting a neurobiological perspective on brain function. I compare this neural competence with the hippocampal network performance that represents specific experiences with higher fidelity after new learning during replay, which is envisioned as a form of neural semantic that supports a complementary neuropsychological perspective. I also demonstrate how the syntax of network competence emerges a priori during early postnatal life and is followed by the later development of network performance that enables rapid encoding and memory consolidation. Thus, I propose that this generative grammar of the brain is essential for internally generated representations, which are crucial for the cognitive processes underlying learning and memory, prospection, and inference, which ultimately underlie our reason and representation of the world.
Collapse
Affiliation(s)
- George Dragoi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
36
|
Pulver RL, Kronberg E, Medenblik LM, Kheyfets VO, Ramos AR, Holtzman DM, Morris JC, Toedebusch CD, Sillau SH, Bettcher BM, Lucey BP, McConnell BV. Mapping sleep's oscillatory events as a biomarker of Alzheimer's disease. Alzheimers Dement 2024; 20:301-315. [PMID: 37610059 PMCID: PMC10840635 DOI: 10.1002/alz.13420] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Memory-associated neural circuits produce oscillatory events including theta bursts (TBs), sleep spindles (SPs), and slow waves (SWs) in sleep electroencephalography (EEG). Changes in the "coupling" of these events may indicate early Alzheimer's disease (AD) pathogenesis. METHODS We analyzed 205 aging adults using single-channel sleep EEG, cerebrospinal fluid (CSF) AD biomarkers, and Clinical Dementia Rating® (CDR®) scale. We mapped SW-TB and SW-SP neural circuit coupling precision to amyloid positivity, cognitive impairment, and CSF AD biomarkers. RESULTS Cognitive impairment correlated with lower TB spectral power in SW-TB coupling. Cognitively unimpaired, amyloid positive individuals demonstrated lower precision in SW-TB and SW-SP coupling compared to amyloid negative individuals. Significant biomarker correlations were found in oscillatory event coupling with CSF Aβ42 /Aβ40 , phosphorylated- tau181 , and total-tau. DISCUSSION Sleep-dependent memory processing integrity in neural circuits can be measured for both SW-TB and SW-SP coupling. This breakdown associates with amyloid positivity, increased AD pathology, and cognitive impairment. HIGHLIGHTS At-home sleep EEG is a potential biomarker of neural circuits linked to memory. Circuit precision is associated with amyloid positivity in asymptomatic aging adults. Levels of CSF amyloid and tau also correlate with circuit precision in sleep EEG. Theta burst EEG power is decreased in very early mild cognitive impairment. This technique may enable inexpensive wearable EEGs for monitoring brain health.
Collapse
Affiliation(s)
- Rachelle L. Pulver
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Eugene Kronberg
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Lindsey M. Medenblik
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Vitaly O. Kheyfets
- Department of Pediatric Critical Care MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Alberto R. Ramos
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - David M. Holtzman
- Department of NeurologyWashington University School of MedicineSt LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMissouriUSA
| | - John C. Morris
- Department of NeurologyWashington University School of MedicineSt LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMissouriUSA
| | | | - Stefan H Sillau
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Brianne M. Bettcher
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Brendan P. Lucey
- Department of NeurologyWashington University School of MedicineSt LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMissouriUSA
| | - Brice V. McConnell
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
37
|
Jarovi J, Pilkiw M, Takehara-Nishiuchi K. Prefrontal neuronal ensembles link prior knowledge with novel actions during flexible action selection. Cell Rep 2023; 42:113492. [PMID: 37999978 DOI: 10.1016/j.celrep.2023.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
We make decisions based on currently perceivable information or an internal model of the environment. The medial prefrontal cortex (mPFC) and its interaction with the hippocampus have been implicated in the latter, model-based decision-making; however, the underlying computational properties remain incompletely understood. We have examined mPFC spiking and hippocampal oscillatory activity while rats flexibly select new actions using a known associative structure of environmental cues and outcomes. During action selection, the mPFC reinstates representations of the associative structure. These awake reactivation events are accompanied by synchronous firings among neurons coding the associative structure and those coding actions. Moreover, their functional coupling is strengthened upon the reactivation events leading to adaptive actions. In contrast, only cue-coding neurons improve functional coupling during hippocampal sharp wave ripples. Thus, the lack of direct experience disconnects the mPFC from the hippocampus to independently form self-organized neuronal ensemble dynamics linking prior knowledge with novel actions.
Collapse
Affiliation(s)
- Justin Jarovi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Maryna Pilkiw
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Collaborative Program in Neuroscience, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
38
|
Denis D, Cairney SA. Neural reactivation during human sleep. Emerg Top Life Sci 2023; 7:487-498. [PMID: 38054531 PMCID: PMC10754334 DOI: 10.1042/etls20230109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sleep promotes memory consolidation: the process by which newly acquired memories are stabilised, strengthened, and integrated into long-term storage. Pioneering research in rodents has revealed that memory reactivation in sleep is a primary mechanism underpinning sleep's beneficial effect on memory. In this review, we consider evidence for memory reactivation processes occurring in human sleep. Converging lines of research support the view that memory reactivation occurs during human sleep, and is functionally relevant for consolidation. Electrophysiology studies have shown that memory reactivation is tightly coupled to the cardinal neural oscillations of non-rapid eye movement sleep, namely slow oscillation-spindle events. In addition, functional imaging studies have found that brain regions recruited during learning become reactivated during post-learning sleep. In sum, the current evidence paints a strong case for a mechanistic role of neural reactivation in promoting memory consolidation during human sleep.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, U.K
| | - Scott A. Cairney
- Department of Psychology, University of York, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, York YO10 5DD, U.K
| |
Collapse
|
39
|
El Oussini H, Zhang CL, François U, Castelli C, Lampin-Saint-Amaux A, Lepleux M, Molle P, Velez L, Dejean C, Lanore F, Herry C, Choquet D, Humeau Y. CA3 hippocampal synaptic plasticity supports ripple physiology during memory consolidation. Nat Commun 2023; 14:8312. [PMID: 38097535 PMCID: PMC10721822 DOI: 10.1038/s41467-023-42969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
The consolidation of recent memories depends on memory replays, also called ripples, generated within the hippocampus during slow-wave sleep, and whose inactivation leads to memory impairment. For now, the mobilisation, localisation and importance of synaptic plasticity events associated to ripples are largely unknown. To tackle this question, we used cell surface AMPAR immobilisation to block post-synaptic LTP within the hippocampal region of male mice during a spatial memory task, and show that: 1- hippocampal synaptic plasticity is engaged during consolidation, but is dispensable during encoding or retrieval. 2- Plasticity blockade during sleep results in apparent forgetting of the encoded rule. 3- In vivo ripple recordings show a strong effect of AMPAR immobilisation when a rule has been recently encoded. 4- In situ investigation suggests that plasticity at CA3-CA3 recurrent synapses supports ripple generation. We thus propose that post-synaptic AMPAR mobility at CA3 recurrent synapses is necessary for ripple-dependent rule consolidation.
Collapse
Affiliation(s)
- Hajer El Oussini
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Chun-Lei Zhang
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine (IBPS), Neurosciences Paris Seine (NPS), Team Synaptic Plasticity and Neural Networks, F-75005, Paris, France
| | - Urielle François
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Cecilia Castelli
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | | | - Marilyn Lepleux
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Pablo Molle
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Legeolas Velez
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Cyril Dejean
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Frederic Lanore
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Cyril Herry
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Yann Humeau
- University of Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
40
|
Shin JD, Jadhav SP. Cortical ripples mediate top-down suppression of hippocampal reactivation during sleep memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571373. [PMID: 38168420 PMCID: PMC10760112 DOI: 10.1101/2023.12.12.571373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Consolidation of initially encoded hippocampal representations in the neocortex through reactivation is crucial for long-term memory formation, and is facilitated by the coordination of hippocampal sharp-wave ripples (SWRs) with cortical oscillations during non-REM sleep. However, the contribution of high-frequency cortical ripples to consolidation is still unclear. We used continuous recordings in the hippocampus and prefrontal cortex (PFC) over the course of spatial learning and show that independent PFC ripples, when dissociated from SWRs, predominantly suppress hippocampal activity in non-REM sleep. PFC ripples paradoxically mediate top-down suppression of hippocampal reactivation, which is inversely related to reactivation strength during coordinated CA1-PFC ripples. Further, we show non-canonical, serial coordination of ripples with cortical slow and spindle oscillations. These results establish a role for cortical ripples in regulating consolidation.
Collapse
Affiliation(s)
- Justin D. Shin
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Shantanu P. Jadhav
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
41
|
Farooq U, Dragoi G. Geometric experience sculpts the development and dynamics of hippocampal sequential cell assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.570026. [PMID: 38105999 PMCID: PMC10723290 DOI: 10.1101/2023.12.04.570026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Euclidean space is the fabric of the world we live in. Whether and how geometric experience shapes our spatial-temporal representations of the world remained unknown. We deprived rats of experience with crucial features of Euclidean geometry by rearing them inside translucent spheres, and compared activity of large hippocampal neuronal ensembles during navigation and sleep with that of cuboid cage-reared controls. Sphere-rearing from birth permitted emergence of accurate neuronal ensemble spatial codes and preconfigured and plastic time-compressed neuronal sequences. However, sphere-rearing led to diminished individual place cell tuning, similar neuronal mapping of different track ends/corners, and impaired neuronal pattern separation and plasticity of multiple linear track experiences, partly driven by reduced preconfigured network repertoires. Subsequent experience with multiple linear environments over four days largely reversed these effects, substantiating the role of geometric experience on hippocampal neural development. Thus, early-life experience with Euclidean geometry enriches the hippocampal repertoire of preconfigured neuronal patterns selected toward unique representation and discrimination of multiple linear environments.
Collapse
|
42
|
Jeong H, Namboodiri VMK, Jung MW, Andermann ML. Sensory cortical ensembles exhibit differential coupling to ripples in distinct hippocampal subregions. Curr Biol 2023; 33:5185-5198.e4. [PMID: 37995696 PMCID: PMC10842729 DOI: 10.1016/j.cub.2023.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Cortical neurons activated during recent experiences often reactivate with dorsal hippocampal CA1 ripples during subsequent rest. Less is known about cortical interactions with intermediate hippocampal CA1, whose connectivity, functions, and ripple events differ from dorsal CA1. We identified three clusters of putative excitatory neurons in mouse visual cortex that are preferentially excited together with either dorsal or intermediate CA1 ripples or suppressed before both ripples. Neurons in each cluster were evenly distributed across primary and higher visual cortices and co-active even in the absence of ripples. These ensembles exhibited similar visual responses but different coupling to thalamus and pupil-indexed arousal. We observed a consistent activity sequence preceding and predicting ripples: (1) suppression of ripple-suppressed cortical neurons, (2) thalamic silence, and (3) activation of intermediate CA1-ripple-activated cortical neurons. We propose that coordinated dynamics of these ensembles relay visual experiences to distinct hippocampal subregions for incorporation into different cognitive maps.
Collapse
Affiliation(s)
- Huijeong Jeong
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA.
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| | - Mark L Andermann
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Simpson BK, Rangwani R, Abbasi A, Chung JM, Reed CM, Gulati T. Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study. Front Neurol 2023; 14:1243575. [PMID: 38099067 PMCID: PMC10719949 DOI: 10.3389/fneur.2023.1243575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations in the post-stroke human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations (SOs) and concomitant decrease in pathological delta (δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles, and their nesting) in post-stroke patients vs. healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n = 5) and healthy subjects (n = 3). We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles, and nested spindles in affected hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results in this pilot study indicate that considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.
Collapse
Affiliation(s)
- Benjamin K. Simpson
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rohit Rangwani
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aamir Abbasi
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jeffrey M. Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Chrystal M. Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tanuj Gulati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
Chang H, Esteves IM, Neumann AR, Mohajerani MH, McNaughton BL. Cortical reactivation of spatial and non-spatial features coordinates with hippocampus to form a memory dialogue. Nat Commun 2023; 14:7748. [PMID: 38012135 PMCID: PMC10682454 DOI: 10.1038/s41467-023-43254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
Episodic memories comprise diverse attributes of experience distributed across neocortical areas. The hippocampus is integral to rapidly binding these diffuse representations, as they occur, to be later reinstated. However, the nature of the information exchanged during this hippocampal-cortical dialogue remains poorly understood. A recent study has shown that the secondary motor cortex carries two types of representations: place cell-like activity, which were impaired by hippocampal lesions, and responses tied to visuo-tactile cues, which became more pronounced following hippocampal lesions. Using two-photon Ca2+ imaging to record neuronal activities in the secondary motor cortex of male Thy1-GCaMP6s mice, we assessed the cortical retrieval of spatial and non-spatial attributes from previous explorations in a virtual environment. We show that, following navigation, spontaneous resting state reactivations convey varying degrees of spatial (trajectory sequences) and non-spatial (visuo-tactile attributes) information, while reactivations of non-spatial attributes tend to precede reactivations of spatial representations surrounding hippocampal sharp-wave ripples.
Collapse
Affiliation(s)
- HaoRan Chang
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, AB, Canada.
| | - Ingrid M Esteves
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, AB, Canada
| | - Adam R Neumann
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, AB, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, AB, Canada
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, 6875 Boulevard LaSalle, Verdun, QC, H4H 1R3, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, AB, Canada
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, 92697, CA, USA
| |
Collapse
|
45
|
Salgado-Puga K, Rothschild G. Exposure to sounds during sleep impairs hippocampal sharp wave ripples and memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568283. [PMID: 38045371 PMCID: PMC10690295 DOI: 10.1101/2023.11.22.568283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Sleep is critical for the consolidation of recent experiences into long-term memories. As a key underlying neuronal mechanism, hippocampal sharp-wave ripples (SWRs) occurring during sleep define periods of hippocampal reactivation of recent experiences and have been causally linked with memory consolidation. Hippocampal SWR-dependent memory consolidation during sleep is often referred to as occurring during an "offline" state, dedicated to processing internally generated neural activity patterns rather than external stimuli. However, the brain is not fully disconnected from the environment during sleep. In particular, sounds heard during sleep are processed by a highly active auditory system which projects to brain regions in the medial temporal lobe, reflecting an anatomical pathway for sound modulation of hippocampal activity. While neural processing of salient sounds during sleep, such as those of a predator or an offspring, is evolutionarily adaptive, whether ongoing processing of environmental sounds during sleep interferes with SWR-dependent memory consolidation remains unknown. To address this question, we used a closed-loop system to deliver non-waking sound stimuli during or following SWRs in sleeping rats. We found that exposure to sounds during sleep suppressed the ripple power and reduced the rate of SWRs. Furthermore, sounds delivered during SWRs (On-SWR) suppressed ripple power significantly more than sounds delivered 2 seconds after SWRs (Off-SWR). Next, we tested the influence of sound presentation during sleep on memory consolidation. To this end, SWR-triggered sounds were applied during sleep sessions following learning of a conditioned place preference paradigm, in which rats learned a place-reward association. We found that On-SWR sound pairing during post-learning sleep induced a complete abolishment of memory retention 24 h following learning, while leaving memory retention immediately following sleep intact. In contrast, Off-SWR pairing weakened memory 24 h following learning as well as immediately following learning. Notably, On-SWR pairing induced a significantly larger impairment in memory 24 h after learning as compared to Off-SWR pairing. Together, these findings suggest that sounds heard during sleep suppress SWRs and memory consolidation, and that the magnitude of these effects are dependent on sound-SWR timing. These results suggest that exposure to environmental sounds during sleep may pose a risk for memory consolidation processes.
Collapse
|
46
|
Samanta A, Aleman-Zapata A, Agarwal K, Özsezer P, Alonso A, van der Meij J, Rayan A, Navarro-Lobato I, Genzel L. CBD lengthens sleep but shortens ripples and leads to intact simple but worse cumulative memory. iScience 2023; 26:108327. [PMID: 38026151 PMCID: PMC10656268 DOI: 10.1016/j.isci.2023.108327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cannabidiol (CBD) is on the rise as over-the-counter medication to treat sleep disturbances, anxiety, pain, and epilepsy due to its action on the excitatory/inhibitory balance in the brain. However, it remains unclear if CBD also leads to adverse effects on memory via changes of sleep macro- and microarchitecture. To investigate the effect of CBD on sleep and memory consolidation, we performed two experiments using the object space task testing for both simple and cumulative memory in rats. We show that oral CBD administration extended the sleep period but changed the properties of rest and non-REM sleep oscillations (delta, spindle, ripples). Specifically, CBD also led to less long (>100 ms) ripples and, consequently, worse cumulative memory consolidation. In contrast, simple memories were not affected. In sum, we can confirm the beneficial effect of CBD on sleep; however, this comes with changes in oscillations that negatively impact memory consolidation.
Collapse
Affiliation(s)
- Anumita Samanta
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Adrian Aleman-Zapata
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Kopal Agarwal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Pelin Özsezer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Alejandra Alonso
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Jacqueline van der Meij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Abdelrahman Rayan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Irene Navarro-Lobato
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen
| |
Collapse
|
47
|
Chappel-Farley MG, Adams JN, Betzel RF, Janecek JC, Sattari NS, Berisha DE, Meza NJ, Niknazar H, Kim S, Dave A, Chen IY, Lui KK, Neikrug AB, Benca RM, Yassa MA, Mander BA. Medial temporal lobe functional network architecture supports sleep-related emotional memory processing in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564260. [PMID: 37961192 PMCID: PMC10634911 DOI: 10.1101/2023.10.27.564260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Memory consolidation occurs via reactivation of a hippocampal index during non-rapid eye movement slow-wave sleep (NREM SWS) which binds attributes of an experience existing within cortical modules. For memories containing emotional content, hippocampal-amygdala dynamics facilitate consolidation over a sleep bout. This study tested if modularity and centrality-graph theoretical measures that index the level of segregation/integration in a system and the relative import of its nodes-map onto central tenets of memory consolidation theory and sleep-related processing. Findings indicate that greater network integration is tied to overnight emotional memory retention via NREM SWS expression. Greater hippocampal and amygdala influence over network organization supports emotional memory retention, and hippocampal or amygdala control over information flow are differentially associated with distinct stages of memory processing. These centrality measures are also tied to the local expression and coupling of key sleep oscillations tied to sleep-dependent memory consolidation. These findings suggest that measures of intrinsic network connectivity may predict the capacity of brain functional networks to acquire, consolidate, and retrieve emotional memories.
Collapse
Affiliation(s)
- Miranda G. Chappel-Farley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Jenna N. Adams
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, University of Indiana Bloomington, Bloomington IN, 47405
| | - John C. Janecek
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Negin S. Sattari
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Destiny E. Berisha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Novelle J. Meza
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Hamid Niknazar
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
| | - Soyun Kim
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Abhishek Dave
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ivy Y. Chen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Kitty K. Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92093, USA
| | - Ariel B. Neikrug
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ruth M. Benca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, 53706, WI, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, 27109, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine CA, 92697, USA
| | - Bryce A. Mander
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine CA, 92697, USA
| |
Collapse
|
48
|
Takagi S. Exploring Ripple Waves in the Human Brain. Clin EEG Neurosci 2023; 54:594-600. [PMID: 34287087 DOI: 10.1177/15500594211034371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ripples are brief (<150 ms) high-frequency oscillatory neural activities in the brain with a range of 140 to 200 Hz in rodents and 80 to 140 Hz in humans. Ripples are regarded as playing an essential role in several aspects of memory function, mainly in the hippocampus. This type of ripple generally occurs with sharp waves and is called a sharp-wave ripple (SPW-R). Extensive research of SPW-Rs in the rodent brain while actively awake has also linked the function of these SPW-Rs to navigation and decision making. Although many studies with rodents unveiled SPW-R function, research in humans on this subject is still sparse. Therefore, unveiling SPW-R function in the human hippocampus is warranted. A certain type of ripples may also be a biomarker of epilepsy. This type of ripple is called a pathological ripple (p-ripple). p-ripples have a wider range of frequency (80-500 Hz) than SPW-Rs, and the range of frequency is especially higher in brain regions that are intrinsically linked to epilepsy onset. Brain regions producing ripples are too small for scalp electrode recording, and intracranial recording is typically needed to detect ripples. In addition, SPW-Rs in the human hippocampus have been recorded from patients with epilepsy who may have p-ripples. Differentiating SPW-Rs and p-ripples is often not easy. We need to develop more sophisticated methods to record SPW-Rs to differentiate them from p-ripples. This paper reviews the general features and roles of ripple waves.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
49
|
Simpson BK, Rangwani R, Abbasi A, Chung JM, Reed CM, Gulati T. Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.01.23289359. [PMID: 37205348 PMCID: PMC10187327 DOI: 10.1101/2023.05.01.23289359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations post-stroke in the human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations(SOs) and concomitant decrease in pathological delta(δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles and their nesting) in post-stroke patients versus healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n=5) and healthy subjects (n=3) from an open-sourced dataset. We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles and nested spindles in one hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results indicate considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.
Collapse
Affiliation(s)
| | - Rohit Rangwani
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California - Los Angeles, Los Angeles, CA
| | - Aamir Abbasi
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Tanuj Gulati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California - Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA
| |
Collapse
|
50
|
Zutshi I, Buzsáki G. Hippocampal sharp-wave ripples and their spike assembly content are regulated by the medial entorhinal cortex. Curr Biol 2023; 33:3648-3659.e4. [PMID: 37572665 PMCID: PMC10530523 DOI: 10.1016/j.cub.2023.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
Hippocampal sharp-wave ripples (SPW-Rs) are critical for memory consolidation and retrieval. The neuronal content of spiking during SPW-Rs is believed to be under the influence of neocortical inputs via the entorhinal cortex (EC). Optogenetic silencing of the medial EC (mEC) reduced the incidence of SPW-Rs with minor impacts on their magnitude or duration, similar to local CA1 silencing. The effect of mEC silencing on CA1 firing and field potentials was comparable to the effect of transient cortex-wide DOWN states of non-REM (NREM) sleep, implying that decreased SPW-R incidence in both cases is due to tonic disfacilitation of hippocampal circuits. The neuronal composition of CA1 pyramidal neurons during SPW-Rs was altered by mEC silencing but was restored immediately after silencing. We suggest that the mEC provides both tonic and transient influences on hippocampal network states by timing the occurrence of SPW-Rs and altering their neuronal content.
Collapse
Affiliation(s)
- Ipshita Zutshi
- New York University Neuroscience Institute, New York, NY, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York, NY, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|