1
|
Ceballos CC, Ma L, Qin M, Zhong H. Widespread co-release of glutamate and GABA throughout the mouse brain. Commun Biol 2024; 7:1502. [PMID: 39537846 PMCID: PMC11560972 DOI: 10.1038/s42003-024-07198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Several brain neuronal populations transmit both the excitatory and inhibitory neurotransmitters, glutamate, and GABA. However, it remains largely unknown whether these opposing neurotransmitters are co-released simultaneously or are independently transmitted at different times and locations. By recording from acute mouse brain slices, we observed biphasic miniature postsynaptic currents, i.e., minis with time-locked excitatory and inhibitory currents, in striatal spiny projection neurons. This observation cannot be explained by accidental coincidence of monophasic excitatory and inhibitory minis. Interestingly, these biphasic minis could either be an excitatory current leading an inhibitory current or vice versa. Deletion of dopaminergic neurons did not eliminate biphasic minis, indicating that they originate from another source. Importantly, we found that both types of biphasic minis were present in multiple striatal neuronal types and in nine out of ten other brain regions. Overall, co-release of glutamate and GABA appears to be a widespread mode of neurotransmission in the brain.
Collapse
Affiliation(s)
- Cesar C Ceballos
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lei Ma
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Kersbergen CJ, Bergles DE. Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset. Trends Neurosci 2024; 47:522-537. [PMID: 38782701 PMCID: PMC11236524 DOI: 10.1016/j.tins.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Ceballos CC, Ma L, Qin M, Zhong H. Prevalent co-release of glutamate and GABA throughout the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587069. [PMID: 38585864 PMCID: PMC10996720 DOI: 10.1101/2024.03.27.587069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Several neuronal populations in the brain transmit both the excitatory and inhibitory neurotransmitters, glutamate, and GABA, to downstream neurons. However, it remains largely unknown whether these opposing neurotransmitters are co-released onto the same postsynaptic neuron simultaneously or are independently transmitted at different time and locations (called co-transmission). Here, using whole-cell patch-clamp recording on acute mouse brain slices, we observed biphasic miniature postsynaptic currents, i.e., minis with time-locked excitatory and inhibitory currents, in striatal spiny projection neurons (SPNs). This observation cannot be explained by accidental coincidence of monophasic miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively), arguing for the co-release of glutamate and GABA. Interestingly, these biphasic minis could either be an mEPSC leading an mIPSC or vice versa. Although dopaminergic axons release both glutamate and GABA in the striatum, deletion of dopamine neurons did not eliminate biphasic minis, indicating that the co-release originates from another neuronal type. Importantly, we found that both types of biphasic minis were detected in other neuronal subtypes in the striatum as well as in nine out of ten additionally tested brain regions. Our results suggest that co-release of glutamate and GABA is a prevalent mode of neurotransmission in the brain.
Collapse
Affiliation(s)
- Cesar C Ceballos
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lei Ma
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Radulovic T, Rajaram E, Ebbers L, Pagella S, Winklhofer M, Kopp-Scheinpflug C, Nothwang HG, Milenkovic I, Hartmann AM. Serine 937 phosphorylation enhances KCC2 activity and strengthens synaptic inhibition. Sci Rep 2023; 13:21660. [PMID: 38066086 PMCID: PMC10709408 DOI: 10.1038/s41598-023-48884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The potassium chloride cotransporter KCC2 is crucial for Cl- extrusion from mature neurons and thus key to hyperpolarizing inhibition. Auditory brainstem circuits contain well-understood inhibitory projections and provide a potent model to study the regulation of synaptic inhibition. Two peculiarities of the auditory brainstem are (i) posttranslational activation of KCC2 during development and (ii) extremely negative reversal potentials in specific circuits. To investigate the role of the potent phospho-site serine 937 therein, we generated a KCC2 Thr934Ala/Ser937Asp double mutation, in which Ser937 is replaced by aspartate mimicking the phosphorylated state, and the neighbouring Thr934 arrested in the dephosphorylated state. This double mutant showed a twofold increased transport activity in HEK293 cells, raising the hypothesis that auditory brainstem neurons show lower [Cl-]i. and increased glycinergic inhibition. This was tested in a mouse model carrying the same KCC2 Thr934Ala/Ser937Asp mutation by the use of the CRISPR/Cas9 technology. Homozygous KCC2 Thr934Ala/Ser937Asp mice showed an earlier developmental onset of hyperpolarisation in the auditory brainstem. Mature neurons displayed stronger glycinergic inhibition due to hyperpolarized ECl-. These data demonstrate that phospho-regulation of KCC2 Ser937 is a potent way to interfere with the excitation-inhibition balance in neural circuits.
Collapse
Affiliation(s)
- Tamara Radulovic
- Division of Physiology School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Ezhilarasan Rajaram
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Lena Ebbers
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Sara Pagella
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Michael Winklhofer
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Institute for Biology and Environmental Sciences IBU, Carl Von Ossietzky University of Oldenburg, 26111, Oldenburg, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Ivan Milenkovic
- Division of Physiology School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
5
|
Weingarten DJ, Sebastian E, Winkelhoff J, Patschull-Keiner N, Fischer AU, Wadle SL, Friauf E, Hirtz JJ. An inhibitory glycinergic projection from the cochlear nucleus to the lateral superior olive. Front Neural Circuits 2023; 17:1307283. [PMID: 38107610 PMCID: PMC10722231 DOI: 10.3389/fncir.2023.1307283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
Auditory brainstem neurons in the lateral superior olive (LSO) receive excitatory input from the ipsilateral cochlear nucleus (CN) and inhibitory transmission from the contralateral CN via the medial nucleus of the trapezoid body (MNTB). This circuit enables sound localization using interaural level differences. Early studies have observed an additional inhibitory input originating from the ipsilateral side. However, many of its details, such as its origin, remained elusive. Employing electrical and optical stimulation of afferents in acute mouse brainstem slices and anatomical tracing, we here describe a glycinergic projection to LSO principal neurons that originates from the ipsilateral CN. This inhibitory synaptic input likely mediates inhibitory sidebands of LSO neurons in response to acoustic stimulation.
Collapse
Affiliation(s)
- Dennis J. Weingarten
- Animal Physiology Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eva Sebastian
- Physiology of Neuronal Networks Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jennifer Winkelhoff
- Animal Physiology Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
- Physiology of Neuronal Networks Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Nadine Patschull-Keiner
- Animal Physiology Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Alexander U. Fischer
- Animal Physiology Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Simon L. Wadle
- Physiology of Neuronal Networks Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jan J. Hirtz
- Physiology of Neuronal Networks Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
6
|
Lee J, Clause A, Kandler K. Structural and Functional Development of Inhibitory Connections from the Medial Nucleus of the Trapezoid Body to the Superior Paraolivary Nucleus. J Neurosci 2023; 43:7766-7779. [PMID: 37734946 PMCID: PMC10648534 DOI: 10.1523/jneurosci.0920-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) in the auditory brainstem is the principal source of synaptic inhibition to several functionally distinct auditory nuclei. Prominent projections of individual MNTB neurons comprise the major binaural nuclei that are involved in the early processing stages of sound localization as well as the superior paraolivary nucleus (SPON), which contains monaural neurons that extract rapid changes in sound intensity to detect sound gaps and rhythmic oscillations that commonly occur in animal calls and human speech. While the processes that guide the development and refinement of MNTB axon collaterals to the binaural nuclei have become increasingly understood, little is known about the development of MNTB collaterals to the monaural SPON. In this study, we investigated the development of MNTB-SPON connections in mice of both sexes from shortly after birth to three weeks of age, which encompasses the time before and after hearing onset. Individual axon reconstructions and electrophysiological analysis of MNTB-SPON connectivity demonstrate a dramatic increase in the number of MNTB axonal boutons in the SPON before hearing onset. However, this proliferation was not accompanied by changes in the strength of MNTB-SPON connections or by changes in the structural or functional topographic precision. However, following hearing onset, the spread of single-axon boutons along the tonotopic axis increased, indicating an unexpected decrease in the tonotopic precision of the MNTB-SPON pathway. These results provide new insight into the development and organization of inhibition to SPON neurons and the regulation of developmental plasticity in diverging inhibitory pathways.SIGNIFICANCE STATEMENT The superior paraolivary nucleus (SPON) is a prominent auditory brainstem nucleus involved in the early detection of sound gaps and rhythmic oscillations. The ability of SPON neurons to fire at the offset of sound depends on strong and precise synaptic inhibition provided by glycinergic neurons in the medial nucleus of the trapezoid body (MNTB). Here, we investigated the anatomic and physiological maturation of MNTB-LSO connectivity in mice before and after the onset of hearing. We observed a period of bouton proliferation without accompanying changes in topographic precision before hearing onset. This was followed by bouton elimination and an unexpected decrease in the tonotopic precision after hearing onset. These results provide new insight into the development of inhibition to the SPON.
Collapse
Affiliation(s)
- Jongwon Lee
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Amanda Clause
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Karl Kandler
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
7
|
Haragopal H, Mellott JG, Dhar M, Kanel A, Mafi A, Tokar N, Winters BD. Tonotopic distribution and inferior colliculus projection pattern of inhibitory and excitatory cell types in the lateral superior olive of mice. J Comp Neurol 2023; 531:1381-1388. [PMID: 37436768 PMCID: PMC11571233 DOI: 10.1002/cne.25515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 07/13/2023]
Abstract
The principal neurons (PNs) of the lateral superior olive nucleus (LSO) are an important component of mammalian brainstem circuits that compare activity between the two ears and extract intensity and timing differences used for sound localization. There are two LSO PN transmitter types, glycinergic and glutamatergic, which also have different ascending projection patterns to the inferior colliculus (IC). Glycinergic LSO PNs project ipsilaterally while glutamatergic one's projections vary in laterality by species. In animals with good low-frequency hearing (<3 kHz) such as cats and gerbils, glutamatergic LSO PNs have both ipsilateral and contralateral projections; however, rats that lack this ability only have the contralateral pathway. Additionally, in gerbils, the glutamatergic ipsilateral projecting LSO PNs are biased to the low-frequency limb of the LSO suggesting this pathway may be an adaptation for low-frequency hearing. To further test this premise, we examined the distribution and IC projection pattern of LSO PNs in another high-frequency specialized species using mice by combining in situ hybridization and retrograde tracer injections. We observed no overlap between glycinergic and glutamatergic LSO PNs confirming they are distinct cell populations in mice as well. We found that mice also lack the ipsilateral glutamatergic projection from LSO to IC and that their LSO PN types do not exhibit pronounced tonotopic biases. These data provide insights into the cellular organization of the superior olivary complex and its output to higher processing centers that may underlie functional segregation of information.
Collapse
Affiliation(s)
- Hariprakash Haragopal
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Matasha Dhar
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Alinea Kanel
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Amir Mafi
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Nick Tokar
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Bradley D. Winters
- Department of Anatomy and Neurobiology and Hearing Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| |
Collapse
|
8
|
Kersbergen CJ, Babola TA, Rock J, Bergles DE. Developmental spontaneous activity promotes formation of sensory domains, frequency tuning and proper gain in central auditory circuits. Cell Rep 2022; 41:111649. [PMID: 36384119 PMCID: PMC9730452 DOI: 10.1016/j.celrep.2022.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/24/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Neurons that process sensory information exhibit bursts of electrical activity during development, providing early training to circuits that will later encode similar features of the external world. In the mammalian auditory system, this intrinsically generated activity emerges from the cochlea prior to hearing onset, but its role in maturation of auditory circuitry remains poorly understood. We show that selective suppression of cochlear supporting cell spontaneous activity disrupts patterned burst firing of central auditory neurons without affecting cell survival or acoustic thresholds. However, neurons in the inferior colliculus of these mice exhibit enhanced acoustic sensitivity and broader frequency tuning, resulting in wider isofrequency laminae. Despite this enhanced neural responsiveness, total tone-responsive regions in the auditory cortex are substantially smaller. Thus, disruption of pre-hearing cochlear activity causes profound changes in neural encoding of sound, with important implications for restoration of hearing in individuals who experience reduced activity during this critical developmental period.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Travis A Babola
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | | | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Chokr SM, Milinkeviciute G, Jimenez GA, Abubakr H, Cramer KS. Long-term microglia depletion impairs synapse elimination and auditory brainstem function. Sci Rep 2022; 12:18521. [PMID: 36323869 PMCID: PMC9630367 DOI: 10.1038/s41598-022-23250-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Specialized sound localization circuit development requires synapse strengthening, refinement, and pruning. Many of these functions are carried out by microglia, immune cells that aid in regulating neurogenesis, synaptogenesis, apoptosis, and synaptic removal. We previously showed that postnatal treatment with BLZ945 (BLZ), an inhibitor of colony stimulating factor 1 receptor (CSF1R), eliminates microglia in the brainstem and disables calyceal pruning and maturation of astrocytes in the medial nucleus of the trapezoid body (MNTB). BLZ treatment results in elevated hearing thresholds and delayed signal propagation as measured by auditory brainstem responses (ABR). However, when microglia repopulate the brain following the cessation of BLZ, most of the deficits are repaired. It is unknown whether this recovery is achievable without the return of microglia. Here, we induced sustained microglial elimination with a two-drug approach using BLZ and PLX5622 (PLX). We found that BLZ/PLX treated mice had impaired calyceal pruning, diminished astrocytic GFAP in the lateral, low frequency, region of MNTB, and elevated glycine transporter 2 (GLYT2) levels. BLZ/PLX treated mice had elevated hearing thresholds, diminished peak amplitudes, and altered latencies and inter-peak latencies. These findings suggest that microglia are required to repopulate the brain in order to rectify deficits from their ablation.
Collapse
Affiliation(s)
- Sima M Chokr
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Giedre Milinkeviciute
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Gisselle A Jimenez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hakeem Abubakr
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
10
|
Glutamate and GABA A receptor crosstalk mediates homeostatic regulation of neuronal excitation in the mammalian brain. Signal Transduct Target Ther 2022; 7:340. [PMID: 36184627 PMCID: PMC9527238 DOI: 10.1038/s41392-022-01148-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/29/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Maintaining a proper balance between the glutamate receptor-mediated neuronal excitation and the A type of GABA receptor (GABAAR) mediated inhibition is essential for brain functioning; and its imbalance contributes to the pathogenesis of many brain disorders including neurodegenerative diseases and mental illnesses. Here we identify a novel glutamate-GABAAR interaction mediated by a direct glutamate binding of the GABAAR. In HEK293 cells overexpressing recombinant GABAARs, glutamate and its analog ligands, while producing no current on their own, potentiate GABA-evoked currents. This potentiation is mediated by a direct binding at a novel glutamate binding pocket located at the α+/β− subunit interface of the GABAAR. Moreover, the potentiation does not require the presence of a γ subunit, and in fact, the presence of γ subunit significantly reduces the potency of the glutamate potentiation. In addition, the glutamate-mediated allosteric potentiation occurs on native GABAARs in rat neurons maintained in culture, as evidenced by the potentiation of GABAAR-mediated inhibitory postsynaptic currents and tonic currents. Most importantly, we found that genetic impairment of this glutamate potentiation in knock-in mice resulted in phenotypes of increased neuronal excitability, including decreased thresholds to noxious stimuli and increased seizure susceptibility. These results demonstrate a novel cross-talk between excitatory transmitter glutamate and inhibitory GABAAR. Such a rapid and short feedback loop between the two principal excitatory and inhibitory neurotransmission systems may play a critical homeostatic role in fine-tuning the excitation-inhibition balance (E/I balance), thereby maintaining neuronal excitability in the mammalian brain under both physiological and pathological conditions.
Collapse
|
11
|
Xu J, Jo A, DeVries RP, Deniz S, Cherian S, Sunmola I, Song X, Marshall JJ, Gruner KA, Daigle TL, Contractor A, Lerner TN, Zeng H, Zhu Y. Intersectional mapping of multi-transmitter neurons and other cell types in the brain. Cell Rep 2022; 40:111036. [PMID: 35793636 PMCID: PMC9290751 DOI: 10.1016/j.celrep.2022.111036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 01/04/2023] Open
Abstract
Recent developments in intersectional strategies have greatly advanced our ability to precisely target brain cell types based on unique co-expression patterns. To accelerate the application of intersectional genetics, we perform a brain-wide characterization of 13 Flp and tTA mouse driver lines and selected seven for further analysis based on expression of vesicular neurotransmitter transporters. Using selective Cre driver lines, we created more than 10 Cre/tTA combinational lines for cell type targeting and circuit analysis. We then used VGLUT-Cre/VGAT-Flp combinational lines to identify and map 30 brain regions containing neurons that co-express vesicular glutamate and gamma-aminobutyric acid (GABA) transporters, followed by tracing their projections with intersectional viral vectors. Focusing on the lateral habenula (LHb) as a target, we identified glutamatergic, GABAergic, or co-glutamatergic/GABAergic innervations from ∼40 brain regions. These data provide an important resource for the future application of intersectional strategies and expand our understanding of the neuronal subtypes in the brain.
Collapse
Affiliation(s)
- Jian Xu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew Jo
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Raina P DeVries
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Sercan Deniz
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Suraj Cherian
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Idris Sunmola
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xingqi Song
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - John J Marshall
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katherine A Gruner
- Mouse Histology and Phenotyping Laboratory, Northwestern University, Chicago, IL 60611, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Talia N Lerner
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Yongling Zhu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Müller NIC, Paulußen I, Hofmann LN, Fisch JO, Singh A, Friauf E. Development of synaptic fidelity and action potential robustness at an inhibitory sound localization circuit: effects of otoferlin-related deafness. J Physiol 2022; 600:2461-2497. [PMID: 35439328 DOI: 10.1113/jp280403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Inhibitory glycinergic inputs from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) are involved in sound localization. This brainstem circuit performs reliably throughout life. How such reliability develops is unknown. Here we investigated the role of acoustic experience on the functional maturation of MNTB-LSO inputs at juvenile (postnatal day P11) and young-adult ages (P38) employing deaf mice lacking otoferlin (KO). We analyzed neurotransmission at single MNTB-LSO fibers in acute brainstem slices employing prolonged high-frequency stimulation (1-200 Hz|60 s). At P11, KO inputs still performed normally, as manifested by normal synaptic attenuation, fidelity, replenishment rate, temporal precision, and action potential robustness. Between P11-P38, several synaptic parameters increased substantially in WTs, collectively resulting in high-fidelity and temporally precise neurotransmission. In contrast, maturation of synaptic fidelity was largely absent in KOs after P11. Collectively, reliable neurotransmission at inhibitory MNTB-LSO inputs develops under the guidance of acoustic experience. ABSTRACT Sound localization involves information analysis in the lateral superior olive (LSO), a conspicuous nucleus in the mammalian auditory brainstem. LSO neurons weigh interaural level differences (ILDs) through precise integration of glutamatergic excitation from the cochlear nucleus (CN) and glycinergic inhibition from the medial nucleus of the trapezoid body (MNTB). Sound sources can be localized even during sustained perception, an accomplishment that requires robust neurotransmission. Virtually nothing is known about the sustained performance and the temporal precision of MNTB-LSO inputs after postnatal day (P)12 (time of hearing onset) and whether acoustic experience guides development. Here we performed whole-cell patch-clamp recordings to investigate neurotransmission of single MNTB-LSO fibers upon sustained electrical stimulation (1-200 Hz|60 s) at P11 and P38 in wild-type (WT) and deaf otoferlin (Otof) knock-out (KO) mice. At P11, WT and KO inputs performed remarkably similarly. In WTs, the performance increased drastically between P11-P38, e.g. manifested by an 8 to 11-fold higher replenishment rate (RR) of synaptic vesicles (SVs) and action potential robustness. Together, these changes resulted in reliable and highly precise neurotransmission at frequencies ≤ 100 Hz. In contrast, KO inputs performed similarly at both ages, implying impaired synaptic maturation. Computational modeling confirmed the empirical observations and established a reduced RR per release site for P38 KOs. In conclusion, acoustic experience appears to contribute massively to the development of reliable neurotransmission, thereby forming the basis for effective ILD detection. Collectively, our results provide novel insights into experience-dependent maturation of inhibitory neurotransmission and auditory circuits at the synaptic level. Abstract figure legend MNTB-LSO inputs are a major component of the mammalian auditory brainstem. Reliable neurotransmission at these inputs requires both failure-free conduction of action potentials and robust synaptic transmission. The development of reliable neurotransmission depends crucially on functional hearing, as demonstrated in a time series and by the fact that deafness - upon loss of the protein otoferlin - results in severely impaired synaptic release and replenishment machineries. These findings from animal research may have some implications towards optimizing cochlear implant strategies on newborn humans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nicolas I C Müller
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany.,Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Isabelle Paulußen
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Lina N Hofmann
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Jonas O Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Abhyudai Singh
- 3Electrical & Computer Engineering, University of Delaware, Newark, DE, USA
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| |
Collapse
|
13
|
Zhao M, Shao C, Dong J, Chen Q, Ma R, Jiang P, Zhang WN, Yang K. GABA B receptors constrain glutamate presynaptic release and postsynaptic actions in substantia gelatinosa of rat spinal cord. Brain Struct Funct 2022; 227:1893-1905. [PMID: 35318502 DOI: 10.1007/s00429-022-02481-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
The substantia gelatinosa (SG, lamina II of spinal cord gray matter) is pivotal for modulating nociceptive information from the peripheral to the central nervous system. γ-Aminobutyric acid type B receptors (GABABRs), the metabotropic GABA receptor subtype, are widely expressed in pre- and postsynaptic structures of the SG. Activation of GABABRs by exogenous agonists induces both pre- and postsynaptic inhibition. However, the actions of endogenous GABA via presynaptic GABABRs on glutamatergic synapses, and the postsynaptic GABABRs interaction with glutamate, remain elusive. In the present study, first, using in vitro whole-cell recordings and taking minimal stimulation strategies, we found that in rat spinal cord glutamatergic synapses, blockade of presynaptic GABABRs switched "silent" synapses into active ones and increased the probability of glutamate release onto SG neurons; increasing ambient GABA concentration mimicked GABABRs activation on glutamatergic terminals. Next, using holographic photostimulation to uncage glutamate on postsynaptic SG neurons, we found that postsynaptic GABABRs modified glutamate-induced postsynaptic potentials. Taken together, our data identify that endogenous GABA heterosynaptically constrains glutamate release via persistently activating presynaptic GABABRs; and postsynaptically, GABABRs modulate glutamate responses. The results give new clues for endogenous GABA in modulating the nociception circuit of the spinal dorsal horn and shed fresh light on the postsynaptic interaction of glutamate and GABA.
Collapse
Affiliation(s)
- Mingwei Zhao
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Caifeng Shao
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiaxue Dong
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qian Chen
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rui Ma
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ping Jiang
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei-Ning Zhang
- Department of Pathophysiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kun Yang
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China. .,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Maul A, Huebner AK, Strenzke N, Moser T, Rübsamen R, Jovanovic S, Hübner CA. The Cl--channel TMEM16A is involved in the generation of cochlear Ca2+ waves and promotes the refinement of auditory brainstem networks in mice. eLife 2022; 11:72251. [PMID: 35129434 PMCID: PMC8871368 DOI: 10.7554/elife.72251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/06/2022] [Indexed: 11/17/2022] Open
Abstract
Before hearing onset (postnatal day 12 in mice), inner hair cells (IHCs) spontaneously fire action potentials, thereby driving pre-sensory activity in the ascending auditory pathway. The rate of IHC action potential bursts is modulated by inner supporting cells (ISCs) of Kölliker’s organ through the activity of the Ca2+-activated Cl--channel TMEM16A (ANO1). Here, we show that conditional deletion of Ano1 (Tmem16a) in mice disrupts Ca2+ waves within Kölliker’s organ, reduces the burst-firing activity and the frequency selectivity of auditory brainstem neurons in the medial nucleus of the trapezoid body (MNTB), and also impairs the functional refinement of MNTB projections to the lateral superior olive. These results reveal the importance of the activity of Kölliker’s organ for the refinement of central auditory connectivity. In addition, our study suggests the involvement of TMEM16A in the propagation of Ca2+ waves, which may also apply to other tissues expressing TMEM16A.
Collapse
Affiliation(s)
- Alena Maul
- Neuroscience Department, Max Delbrück Center for Molecular Medicine
| | | | - Nicola Strenzke
- Institute for Auditory Neuroscience, Department of Otolaryngology, University of Göttingen
| | - Tobias Moser
- Institute for Auditory Neuroscience, Department of Otolaryngology, University of Göttingen
| | - Rudolf Rübsamen
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig
| | - Saša Jovanovic
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig
| | | |
Collapse
|
15
|
Mellott JG, Dhar M, Mafi A, Tokar N, Winters BD. Tonotopic distribution and inferior colliculus projection pattern of inhibitory and excitatory cell types in the lateral superior olive of Mongolian gerbils. J Comp Neurol 2022; 530:506-517. [PMID: 34338321 PMCID: PMC8716415 DOI: 10.1002/cne.25226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023]
Abstract
Sound localization critically relies on brainstem neurons that compare information from the two ears. The conventional role of the lateral superior olive (LSO) is extraction of intensity differences; however, it is increasingly clear that relative timing, especially of transients, is also an important function. Cellular diversity within the LSO that is not well understood may underlie its multiple roles. There are glycinergic inhibitory and glutamatergic excitatory principal neurons in the LSO, however, there is some disagreement regarding their relative distribution and projection pattern. Here we employ in situ hybridization to definitively identify transmitter types combined with retrograde labeling of projections to the inferior colliculus (IC) to address these questions. Excitatory LSO neurons were more numerous (76%) than inhibitory ones. A smaller proportion of inhibitory neurons were IC-projecting (45% vs. 64% for excitatory) suggesting that inhibitory LSO neurons may have more projections to other regions such the lateral lemniscus or more distributed IC projections. Inhibitory LSO neurons almost exclusively projected ipsilaterally making up a sizeable proportion (41%) of the transmitter type-labeled ipsilateral IC projection from LSO and exhibited a moderate low frequency bias (10% difference H-L). Two thirds of excitatory neurons projected contralaterally and had a slight high frequency bias (4%). One third of excitatory LSO neurons projected ipsilaterally to the IC and these cells were strongly biased toward the low frequency limb of the LSO (37%). This projection appears to be species specific in animals with good low frequency hearing suggesting that it may be a specialization for such ability.
Collapse
Affiliation(s)
- Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Hearing Research Group, Rootstown, OH, United States,Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Matasha Dhar
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Hearing Research Group, Rootstown, OH, United States
| | - Amir Mafi
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Hearing Research Group, Rootstown, OH, United States
| | - Nick Tokar
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Hearing Research Group, Rootstown, OH, United States
| | - Bradley D. Winters
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Hearing Research Group, Rootstown, OH, United States,Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
16
|
Fazekas CL, Szabó A, Török B, Bánrévi K, Correia P, Chaves T, Daumas S, Zelena D. A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour. Int J Mol Sci 2022; 23:790. [PMID: 35054976 PMCID: PMC8775679 DOI: 10.3390/ijms23020790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other "classical" neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Krisztina Bánrévi
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
| | - Pedro Correia
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Tiago Chaves
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Stéphanie Daumas
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
17
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
18
|
Manchanda A, Bonventre JA, Bugel SM, Chatterjee P, Tanguay R, Johnson CP. Truncation of the otoferlin transmembrane domain alters the development of hair cells and reduces membrane docking. Mol Biol Cell 2021; 32:1293-1305. [PMID: 33979209 PMCID: PMC8351550 DOI: 10.1091/mbc.e20-10-0657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Release of neurotransmitter from sensory hair cells is regulated by otoferlin. Despite the importance of otoferlin in the auditory and vestibular pathways, the functional contributions of the domains of the protein have not been fully characterized. Using a zebrafish model, we investigated a mutant otoferlin with a stop codon at the start of the transmembrane domain. We found that both the phenotype severity and the expression level of mutant otoferlin changed with the age of the zebrafish. At the early developmental time point of 72 h post fertilization, low expression of the otoferlin mutant coincided with synaptic ribbon deficiencies, reduced endocytosis, and abnormal transcription of several hair cell genes. As development proceeded, expression of the mutant otoferlin increased, and both synaptic ribbons and hair cell transcript levels resembled wild type. However, hair cell endocytosis deficits and abnormalities in the expression of GABA receptors persisted even after up-regulation of mutant otoferlin. Analysis of membrane-reconstituted otoferlin measurements suggests a function for the transmembrane domain in liposome docking. We conclude that deletion of the transmembrane domain reduces membrane docking, attenuates endocytosis, and results in developmental delay of the hair cell.
Collapse
Affiliation(s)
- Aayushi Manchanda
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333
| | - Josephine A Bonventre
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333
| | - Sean M Bugel
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Paroma Chatterjee
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333
| | - Robyn Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Colin P Johnson
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333
| |
Collapse
|
19
|
Brunet Avalos C, Sprecher SG. Single-Cell Transcriptomic Reveals Dual and Multi-Transmitter Use in Neurons Across Metazoans. Front Mol Neurosci 2021; 14:623148. [PMID: 33597849 PMCID: PMC7883486 DOI: 10.3389/fnmol.2021.623148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
Neurotransmitter expression is widely used as a criterion for classifying neurons. It was initially thought that neurons express a single type of neurotransmitter, a phenomenon commonly recognized as Dale's principle: “one neuron, one transmitter.” Consequently, the expression of a single neurotransmitter should determine stable and distinguishable neuronal characteristics. However, this notion has been largely challenged and increasing evidence accumulates supporting a different scenario: “one neuron, multiple neurotransmitters.” Single-cell transcriptomics provides an additional path to address coexpression of neurotransmitters, by investigating the expression of genes involved in the biosynthesis and transmission of fast-acting neuromodulators. Here, we study neuronal phenotypes based on the expression of neurotransmitters, at single-cell resolution, across different animal species representing distinct clades of the tree of life. We take advantage of several existing scRNAseq datasets and analyze them in light of neurotransmitter plasticity. Our results show that while most neurons appear to predominantly express a single type of neurotransmitter, a substantial number of neurons simultaneously expresses a combination of them, across all animal species analyzed.
Collapse
Affiliation(s)
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
20
|
Abstract
During development and adulthood, the normal activity of the auditory nerve plays a critical role in the maintenance of both fundamental structural, molecular, and functional parameters of auditory nerve synapses, and the postsynaptic excitatory or inhibitory neurons within the cochlear nucleus (CN). In addition, normal activity within the synaptic circuits of the CN is key to developing and maintaining appropriate synapse connectivity as well as the initiation of binaural sound processing in the superior olivary complex (SOC). Development plays a critical role in the proper neuronal connectivity and establishes a topographic map along the entire auditory pathway. Furthermore, evidence shows that neurons and synaptic circuits in the auditory brainstem are not hard-wired, but instead are plastic in response to hearing deficits. Whether this plasticity in response to hearing loss is compensatory or pathological is still unknown.
Collapse
Affiliation(s)
- María Eulalia Rubio
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh, School of Medicine, BST3 Building, room #10016, 3501 Fifth Venue, Pittsburgh, PA, 15261
| |
Collapse
|
21
|
Long-term potentiation of glycinergic synapses by semi-natural stimulation patterns during tonotopic map refinement. Sci Rep 2020; 10:16899. [PMID: 33037263 PMCID: PMC7547119 DOI: 10.1038/s41598-020-73050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Before the onset of hearing, cochlea-generated patterns of spontaneous spike activity drive the maturation of central auditory circuits. In the glycinergic sound localization pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) this spontaneous activity guides the strengthening and silencing of synapses which underlies tonotopic map refinement. However, the mechanisms by which patterned activity regulates synaptic refinement in the MNTB-LSO pathway are still poorly understood. To address this question, we recorded from LSO neurons in slices from prehearing mice while stimulating MNTB afferents with stimulation patterns that mimicked those present in vivo. We found that these semi-natural stimulation patterns reliably elicited a novel form of long-term potentiation (LTP) of MNTB-LSO synapses. Stimulation patterns that lacked the characteristic high-frequency (200 Hz) component of prehearing spike activity failed to elicit potentiation. LTP was calcium dependent, required the activation of both g-protein coupled GABAB and metabotropic glutamate receptors and involved an increase in postsynaptic glycine receptor-mediated currents. Our results provide a possible mechanism linking spontaneous spike bursts to tonotopic map refinement and further highlight the importance of the co-release of GABA and glutamate from immature glycinergic MNTB terminals.
Collapse
|
22
|
Rajaram E, Pagella S, Grothe B, Kopp-Scheinpflug C. Physiological and anatomical development of glycinergic inhibition in the mouse superior paraolivary nucleus following hearing onset. J Neurophysiol 2020; 124:471-483. [PMID: 32667247 DOI: 10.1152/jn.00053.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neural circuits require balanced synaptic excitation and inhibition to ensure accurate neural computation. Our knowledge about the development and maturation of inhibitory synaptic inputs is less well developed than that concerning excitation. Here we describe the maturation of an inhibitory circuit within the mammalian auditory brainstem where counterintuitively, inhibition drives action potential firing of principal neurons. With the use of combined anatomical tracing and electrophysiological recordings from mice, neurons of the superior paraolivary nucleus (SPN) are shown to receive converging glycinergic input from at least four neurons of the medial nucleus of the trapezoid body (MNTB). These four axons formed 30.71 ± 2.72 (means ± SE) synaptic boutons onto each SPN neuronal soma, generating a total inhibitory conductance of 80 nS. Such strong inhibition drives the underlying postinhibitory rebound firing mechanism, which is a hallmark of SPN physiology. In contrast to inhibitory projections to the medial and lateral superior olives, the inhibitory projection to the SPN does not exhibit experience-dependent synaptic refinement following the onset of hearing. These findings emphasize that the development and function of neural circuits cannot be inferred from one synaptic target to another, even if both originate from the same neuron.NEW & NOTEWORTHY Neuronal activity regulates development and maturation of neural circuits. This activity can include spontaneous burst firing or firing elicited by sensory input during early development. For example, auditory brainstem circuits involved in sound localization require acoustically evoked activity to form properly. Here we show, that an inhibitory circuit, involved in processing sound offsets, gaps, and rhythmically modulated vocal communication signals, matures before the onset of acoustically evoked activity.
Collapse
Affiliation(s)
- Ezhilarasan Rajaram
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Sara Pagella
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Benedikt Grothe
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
23
|
A retinal circuit for the suppressed-by-contrast receptive field of a polyaxonal amacrine cell. Proc Natl Acad Sci U S A 2020; 117:9577-9583. [PMID: 32273387 DOI: 10.1073/pnas.1913417117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amacrine cells are a diverse population of interneurons in the retina that play a critical role in extracting complex features of the visual world and shaping the receptive fields of retinal output neurons (ganglion cells). While much of the computational power of amacrine cells is believed to arise from the immense mutual interactions among amacrine cells themselves, the intricate circuitry and functions of amacrine-amacrine interactions are poorly understood in general. Here we report a specific interamacrine pathway from a small-field, glutamate-glycine dual-transmitter amacrine cell (vGluT3) to a wide-field polyaxonal amacrine cell (PAS4/5). Distal tips of vGluT3 cell dendrites made selective glycinergic (but not glutamatergic) synapses onto PAS4/5 dendrites to provide a center-inhibitory, surround-disinhibitory drive that helps PAS4/5 cells build a suppressed-by-contrast (sbc) receptive field, which is a unique and fundamental trigger feature previously found only in a small population of ganglion cells. The finding of this trigger feature in a circuit upstream to ganglion cells suggests that the sbc form of visual computation occurs more widely in the retina than previously believed and shapes visual processing in multiple downstream circuits in multiple ways. We also identified two different subpopulations of PAS4/5 cells based on their differential connectivity with vGluT3 cells and their distinct receptive-field and luminance-encoding characteristics. Moreover, our results revealed a form of crosstalk between small-field and large-field amacrine cell circuits, which provides a mechanism for feature-specific local (<150 µm) control of global (>1 mm) retinal activity.
Collapse
|
24
|
Pelkey KA, Calvigioni D, Fang C, Vargish G, Ekins T, Auville K, Wester JC, Lai M, Mackenzie-Gray Scott C, Yuan X, Hunt S, Abebe D, Xu Q, Dimidschstein J, Fishell G, Chittajallu R, McBain CJ. Paradoxical network excitation by glutamate release from VGluT3 + GABAergic interneurons. eLife 2020; 9:e51996. [PMID: 32053107 PMCID: PMC7039679 DOI: 10.7554/elife.51996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
In violation of Dale's principle several neuronal subtypes utilize more than one classical neurotransmitter. Molecular identification of vesicular glutamate transporter three and cholecystokinin expressing cortical interneurons (CCK+VGluT3+INTs) has prompted speculation of GABA/glutamate corelease from these cells for almost two decades despite a lack of direct evidence. We unequivocally demonstrate CCK+VGluT3+INT-mediated GABA/glutamate cotransmission onto principal cells in adult mice using paired recording and optogenetic approaches. Although under normal conditions, GABAergic inhibition dominates CCK+VGluT3+INT signaling, glutamatergic signaling becomes predominant when glutamate decarboxylase (GAD) function is compromised. CCK+VGluT3+INTs exhibit surprising anatomical diversity comprising subsets of all known dendrite targeting CCK+ interneurons in addition to the expected basket cells, and their extensive circuit innervation profoundly dampens circuit excitability under normal conditions. However, in contexts where the glutamatergic phenotype of CCK+VGluT3+INTs is amplified, they promote paradoxical network hyperexcitability which may be relevant to disorders involving GAD dysfunction such as schizophrenia or vitamin B6 deficiency.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Daniela Calvigioni
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Calvin Fang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Tyler Ekins
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kurt Auville
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jason C Wester
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Mandy Lai
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Connie Mackenzie-Gray Scott
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Qing Xu
- Center for Genomics and Systems Biology, NYUAbu-DhabiUnited Arab Emirates
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Gordon Fishell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Neurobiology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
25
|
Torres Cadenas L, Fischl MJ, Weisz CJC. Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of the Medial Nucleus of the Trapezoid Body. J Neurosci 2020; 40:509-525. [PMID: 31719165 PMCID: PMC6961997 DOI: 10.1523/jneurosci.1288-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Medial olivocochlear (MOC) efferent neurons in the brainstem comprise the final stage of descending control of the mammalian peripheral auditory system through axon projections to the cochlea. MOC activity adjusts cochlear gain and frequency tuning, and protects the ear from acoustic trauma. The neuronal pathways that activate and modulate the MOC somata in the brainstem to drive these cochlear effects are poorly understood. Evidence suggests that MOC neurons are primarily excited by sound stimuli in a three-neuron activation loop from the auditory nerve via an intermediate neuron in the cochlear nucleus. Anatomical studies suggest that MOC neurons receive diverse synaptic inputs, but the functional effect of additional synaptic influences on MOC neuron responses is unknown. Here we use patch-clamp electrophysiological recordings from identified MOC neurons in brainstem slices from mice of either sex to demonstrate that in addition to excitatory glutamatergic synapses, MOC neurons receive inhibitory GABAergic and glycinergic synaptic inputs. These synapses are activated by electrical stimulation of axons near the medial nucleus of the trapezoid body (MNTB). Focal glutamate uncaging confirms MNTB neurons as a source of inhibitory synapses onto MOC neurons. MNTB neurons inhibit MOC action potentials, but this effect depresses with repeat activation. This work identifies a new pathway of connectivity between brainstem auditory neurons and indicates that MOC neurons are both excited and inhibited by sound stimuli received at the same ear. The pathway depression suggests that the effect of MNTB inhibition of MOC neurons diminishes over the course of a sustained sound.SIGNIFICANCE STATEMENT Medial olivocochlear (MOC) neurons are the final stage of descending control of the mammalian auditory system and exert influence on cochlear mechanics to modulate perception of acoustic stimuli. The brainstem pathways that drive MOC function are poorly understood. Here we show for the first time that MOC neurons are inhibited by neurons of the MNTB, which may suppress the effects of MOC activity on the cochlea.
Collapse
Affiliation(s)
- Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Matthew J Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| |
Collapse
|
26
|
Root DH, Zhang S, Barker DJ, Miranda-Barrientos J, Liu B, Wang HL, Morales M. Selective Brain Distribution and Distinctive Synaptic Architecture of Dual Glutamatergic-GABAergic Neurons. Cell Rep 2019; 23:3465-3479. [PMID: 29924991 DOI: 10.1016/j.celrep.2018.05.063] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/13/2018] [Accepted: 05/17/2018] [Indexed: 10/28/2022] Open
Abstract
For decades, it has been thought that glutamate and GABA are released by distinct neurons. However, some mouse neurons innervating the lateral habenula (LHb) co-release glutamate and GABA. Here, we mapped the distribution of neurons throughout the rat brain that co-express vesicular transporters for the accumulation of glutamate (VGluT2) or GABA (VGaT) and for GABA synthesis (GAD). We found concentrated groups of neurons that co-express VGluT2, VGaT, and GAD mRNAs within subdivisions of the ventral tegmental area (VTA), entopeduncular (EPN), and supramammillary (SUM) nuclei. Single axon terminals established by VTA, EPN, or SUM neurons form a common synaptic architecture involving asymmetric (putative excitatory) and symmetric (putative inhibitory) synapses. Within the LHb, which receives co-transmitted glutamate and GABA from VTA and EPN, VGluT2 and VGaT are distributed on separate synaptic vesicles. We conclude that single axon terminals from VGluT2 and VGaT co-expressing neurons co-transmit glutamate and GABA from distinct synaptic vesicles at independent synapses.
Collapse
Affiliation(s)
- David H Root
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - Shiliang Zhang
- Electron Microscopy Core, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - David J Barker
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - Jorge Miranda-Barrientos
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - Bing Liu
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - Hui-Ling Wang
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
27
|
Müller NIC, Sonntag M, Maraslioglu A, Hirtz JJ, Friauf E. Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity. J Physiol 2019; 597:5469-5493. [PMID: 31529505 DOI: 10.1113/jp277757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Loss of the calcium sensor otoferlin disrupts neurotransmission from inner hair cells. Central auditory nuclei are functionally denervated in otoferlin knockout mice (Otof KOs) via gene ablation confined to the periphery. We employed juvenile and young adult Otof KO mice (postnatal days (P)10-12 and P27-49) as a model for lacking spontaneous activity and deafness, respectively. We studied the impact of peripheral activity on synaptic refinement in the sound localization circuit from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO). MNTB in vivo recordings demonstrated drastically reduced spontaneous spiking and deafness in Otof KOs. Juvenile KOs showed impaired synapse elimination and strengthening, manifested by broader MNTB-LSO inputs, imprecise MNTB-LSO topography and weaker MNTB-LSO fibres. The impairments persisted into young adulthood. Further functional refinement after hearing onset was undetected in young adult wild-types. Collectively, activity deprivation confined to peripheral protein loss impairs functional MNTB-LSO refinement during a critical prehearing period. ABSTRACT Circuit refinement is critical for the developing sound localization pathways in the auditory brainstem. In prehearing mice (hearing onset around postnatal day (P)12), spontaneous activity propagates from the periphery to central auditory nuclei. At the glycinergic projection from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) of neonatal mice, super-numerous MNTB fibres innervate a given LSO neuron. Between P4 and P9, MNTB fibres are functionally eliminated, whereas the remaining fibres are strengthened. Little is known about MNTB-LSO circuit refinement after P20. Moreover, MNTB-LSO refinement upon activity deprivation confined to the periphery is largely unexplored. This leaves a considerable knowledge gap, as deprivation often occurs in patients with congenital deafness, e.g. upon mutations in the otoferlin gene (OTOF). Here, we analysed juvenile (P10-12) and young adult (P27-49) otoferlin knockout (Otof KO) mice with respect to MNTB-LSO refinement. MNTB in vivo recordings revealed drastically reduced spontaneous activity and deafness in knockouts (KOs), confirming deprivation. As RNA sequencing revealed Otof absence in the MNTB and LSO of wild-types, Otof loss in KOs is specific to the periphery. Functional denervation impaired MNTB-LSO synapse elimination and strengthening, which was assessed by glutamate uncaging and electrical stimulation. Impaired elimination led to imprecise MNTB-LSO topography. Impaired strengthening was associated with lower quantal content per MNTB fibre. In young adult KOs, the MNTB-LSO circuit remained unrefined. Further functional refinement after P12 appeared absent in wild-types. Collectively, we provide novel insights into functional MNTB-LSO circuit maturation governed by a cochlea-specific protein. The central malfunctions in Otof KOs may have implications for patients with sensorineuronal hearing loss.
Collapse
Affiliation(s)
- Nicolas I C Müller
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Mandy Sonntag
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, D-04103, Leipzig, Germany
| | - Ayse Maraslioglu
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Jan J Hirtz
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.,Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| |
Collapse
|
28
|
Large-Scale Analysis of the Diversity and Complexity of the Adult Spinal Cord Neurotransmitter Typology. iScience 2019; 19:1189-1201. [PMID: 31542702 PMCID: PMC6831849 DOI: 10.1016/j.isci.2019.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/24/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
The development of nervous system atlases is a fundamental pursuit in neuroscience, since they constitute a fundamental tool to improve our understanding of the nervous system and behavior. As such, neurotransmitter maps are valuable resources to decipher the nervous system organization and functionality. We present here the first comprehensive quantitative map of neurons found in the adult zebrafish spinal cord. Our study overlays detailed information regarding the anatomical positions, sizes, neurotransmitter phenotypes, and the projection patterns of the spinal neurons. We also show that neurotransmitter co-expression is much more extensive than previously assumed, suggesting that spinal networks are more complex than first recognized. As a first direct application, we investigated the neurotransmitter diversity in the putative glutamatergic spinal V2a-interneuron assembly. These studies shed new light on the diverse and complex functions of this important interneuron class in the neuronal interplay governing the precise operation of the central pattern generators.
Collapse
|
29
|
The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019; 24:1284-1295. [PMID: 30377299 PMCID: PMC6491268 DOI: 10.1038/s41380-018-0291-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Sleep and wakefulness control in the mammalian brain requires the coordination of various discrete interconnected neurons. According to the most conventional sleep model, wake-promoting neurons (WPNs) and sleep-promoting neurons (SPNs) compete for network dominance, creating a systematic "switch" that results in either the sleep or awake state. WPNs and SPNs are ubiquitous in the brainstem and diencephalon, areas that together contain <1% of the neurons in the human brain. Interestingly, many of these WPNs and SPNs co-express and co-release various types of the neurotransmitters that often have opposing modulatory effects on the network. Co-transmission is often beneficial to structures with limited numbers of neurons because it provides increasing computational capability and flexibility. Moreover, co-transmission allows subcortical structures to bi-directionally control postsynaptic neurons, thus helping to orchestrate several complex physiological functions such as sleep. Here, we present an in-depth review of co-transmission in hypothalamic WPNs and SPNs and discuss its functional significance in the sleep-wake network.
Collapse
|
30
|
Torres G, Hoehmann CL, Cuoco JA, Hitscherich K, Pavia C, Hadjiargyrou M, Leheste JR. Ketamine intervention limits pathogen expansion in vitro. Pathog Dis 2018; 76:4819281. [PMID: 29365093 DOI: 10.1093/femspd/fty006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/20/2018] [Indexed: 01/21/2023] Open
Abstract
Ketamine is one of several clinically important drugs whose therapeutic efficacy is due in part to their ability to act upon ion channels prevalent in nearly all biological systems. In studying eukaryotic and prokaryotic organisms in vitro, we show that ketamine short-circuits the growth and spatial expansion of three microorganisms, Stachybotrys chartarum, Staphylococcus epidermidis and Borrelia burgdorferi, at doses efficient at reducing depression-like behaviors in mouse models of clinical depression. Although our findings do not reveal the mechanism(s) by which ketamine mediates its antifungal and antibacterial effects, we hypothesize that a function of L-glutamate signal transduction is associated with the ability of ketamine to limit pathogen expansion. In general, our findings illustrate the functional similarities between fungal, bacterial and human ion channels, and suggest that ketamine or its metabolites not only act in neurons, as previously thought, but also in microbial communities colonizing human body surfaces.
Collapse
Affiliation(s)
- German Torres
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Northern Blvd, Old Westbury, NY 11568-8000, USA
| | - Christopher L Hoehmann
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Northern Blvd, Old Westbury, NY 11568-8000, USA
| | - Joshua A Cuoco
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Northern Blvd, Old Westbury, NY 11568-8000, USA
| | - Kyle Hitscherich
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Northern Blvd, Old Westbury, NY 11568-8000, USA
| | - Charles Pavia
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Northern Blvd, Old Westbury, NY 11568-8000, USA
| | - Michael Hadjiargyrou
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Northern Blvd, Old Westbury, NY 11568-8000, USA
| | - Joerg R Leheste
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Northern Blvd, Old Westbury, NY 11568-8000, USA
| |
Collapse
|
31
|
Gjoni E, Zenke F, Bouhours B, Schneggenburger R. Specific synaptic input strengths determine the computational properties of excitation-inhibition integration in a sound localization circuit. J Physiol 2018; 596:4945-4967. [PMID: 30051910 DOI: 10.1113/jp276012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/18/2018] [Indexed: 02/03/2023] Open
Abstract
KEY POINTS During the computation of sound localization, neurons of the lateral superior olive (LSO) integrate synaptic excitation arising from the ipsilateral ear with inhibition from the contralateral ear. We characterized the functional connectivity of the inhibitory and excitatory inputs onto LSO neurons in terms of unitary synaptic strength and convergence. Unitary IPSCs can generate large conductances, although their strength varies over a 10-fold range in a given recording. By contrast, excitatory inputs are relatively weak. The conductance associated with IPSPs needs to be at least 2-fold stronger than the excitatory one to guarantee effective inhibition of action potential (AP) firing. Computational modelling showed that strong unitary inhibition ensures an appropriate slope and midpoint of the tuning curve of LSO neurons. Conversely, weak but numerous excitatory inputs filter out spontaneous AP firing from upstream auditory neurons. ABSTRACT The lateral superior olive (LSO) is a binaural nucleus in the auditory brainstem in which excitation from the ipsilateral ear is integrated with inhibition from the contralateral ear. It is unknown whether the strength of the unitary inhibitory and excitatory inputs is adapted to allow for optimal tuning curves of LSO neuron action potential (AP) firing. Using electrical and optogenetic stimulation of afferent synapses, we found that the strength of unitary inhibitory inputs to a given LSO neuron can vary over a ∼10-fold range, follows a roughly log-normal distribution, and, on average, causes a large conductance (9 nS). Conversely, unitary excitatory inputs, stimulated optogenetically under the bushy-cell specific promoter Math5, were numerous, and each caused a small conductance change (0.7 nS). Approximately five to seven bushy cell inputs had to be active simultaneously to bring an LSO neuron to fire. In double stimulation experiments, the effective inhibition window caused by IPSPs was short (1-3 ms) and its length depended on the inhibitory conductance; an ∼2-fold stronger inhibition than excitation was needed to suppress AP firing. Computational modelling suggests that few, but strong, unitary IPSPs create a tuning curve of LSO neuron firing with an appropriate slope and midpoint. Furthermore, weak but numerous excitatory inputs reduce the spontaneous AP firing that LSO neurons would otherwise inherit from their upstream auditory neurons. Thus, the specific connectivity and strength of unitary excitatory and inhibitory inputs to LSO neurons is optimized for the computations performed by these binaural neurons.
Collapse
Affiliation(s)
- Enida Gjoni
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Friedemann Zenke
- Laboratory of Computational Neuroscience, Brain Mind Institute, School of Life Science and School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Brice Bouhours
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
32
|
Babola TA, Li S, Gribizis A, Lee BJ, Issa JB, Wang HC, Crair MC, Bergles DE. Homeostatic Control of Spontaneous Activity in the Developing Auditory System. Neuron 2018; 99:511-524.e5. [PMID: 30077356 DOI: 10.1016/j.neuron.2018.07.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/01/2018] [Accepted: 06/29/2018] [Indexed: 11/29/2022]
Abstract
Neurons in the developing auditory system exhibit spontaneous bursts of activity before hearing onset. How this intrinsically generated activity influences development remains uncertain, because few mechanistic studies have been performed in vivo. We show using macroscopic calcium imaging in unanesthetized mice that neurons responsible for processing similar frequencies of sound exhibit highly synchronized activity throughout the auditory system during this critical phase of development. Spontaneous activity normally requires synaptic excitation of spiral ganglion neurons (SGNs). Unexpectedly, tonotopic spontaneous activity was preserved in a mouse model of deafness in which glutamate release from hair cells is abolished. SGNs in these mice exhibited enhanced excitability, enabling direct neuronal excitation by supporting cell-induced potassium transients. These results indicate that homeostatic mechanisms maintain spontaneous activity in the pre-hearing period, with significant implications for both circuit development and therapeutic approaches aimed at treating congenital forms of deafness arising through mutations in key sensory transduction components.
Collapse
Affiliation(s)
- Travis A Babola
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sally Li
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alexandra Gribizis
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Brian J Lee
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - John B Issa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Han Chin Wang
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Michael C Crair
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Dwight E Bergles
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21287, USA; Johns Hopkins University Kavli Neuroscience Discovery Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Gamlin CR, Yu WQ, Wong ROL, Hoon M. Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system. Neural Dev 2018; 13:12. [PMID: 29875009 PMCID: PMC5991458 DOI: 10.1186/s13064-018-0109-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/06/2018] [Indexed: 12/19/2022] Open
Abstract
Inhibition in the central nervous systems (CNS) is mediated by two neurotransmitters: gamma-aminobutyric acid (GABA) and glycine. Inhibitory synapses are generally GABAergic or glycinergic, although there are synapses that co-release both neurotransmitter types. Compared to excitatory circuits, much less is known about the cellular and molecular mechanisms that regulate synaptic partner selection and wiring patterns of inhibitory circuits. Recent work, however, has begun to fill this gap in knowledge, providing deeper insight into whether GABAergic and glycinergic circuit assembly and maintenance rely on common or distinct mechanisms. Here we summarize and contrast the developmental mechanisms that regulate the selection of synaptic partners, and that promote the formation, refinement, maturation and maintenance of GABAergic and glycinergic synapses and their respective wiring patterns. We highlight how some parts of the CNS demonstrate developmental changes in the type of inhibitory transmitter or receptor composition at their inhibitory synapses. We also consider how perturbation of the development or maintenance of one type of inhibitory connection affects other inhibitory synapse types in the same circuit. Mechanistic insight into the development and maintenance of GABAergic and glycinergic inputs, and inputs that co-release both these neurotransmitters could help formulate comprehensive therapeutic strategies for treating disorders of synaptic inhibition.
Collapse
Affiliation(s)
- Clare R Gamlin
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, WA, USA. .,Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
34
|
Pre- and postsynaptic ionotropic glutamate receptors in the auditory system of mammals. Hear Res 2018; 362:1-13. [DOI: 10.1016/j.heares.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 01/22/2023]
|
35
|
Winters BD, Golding NL. Glycinergic Inhibitory Plasticity in Binaural Neurons Is Cumulative and Gated by Developmental Changes in Action Potential Backpropagation. Neuron 2018; 98:166-178.e2. [PMID: 29576388 PMCID: PMC5886803 DOI: 10.1016/j.neuron.2018.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/09/2018] [Accepted: 02/28/2018] [Indexed: 11/20/2022]
Abstract
Utilization of timing-based sound localization cues by neurons in the medial superior olive (MSO) depends critically on glycinergic inhibitory inputs. After hearing onset, the strength and subcellular location of these inhibitory inputs are dramatically altered, but the cellular processes underlying this experience-dependent refinement are unknown. Here we reveal a form of inhibitory long-term potentiation (iLTP) in MSO neurons that is dependent on spiking and synaptic activation but is not affected by their fine-scale relative timing at higher frequencies prevalent in auditory circuits. We find that iLTP reinforces inhibitory inputs coactive with binaural excitation in a cumulative manner, likely well suited for networks featuring persistent high-frequency activity. We also show that a steep drop in action potential size and backpropagation limits induction of iLTP to the first 2 weeks of hearing. These intrinsic changes would deprive more distal inhibitory synapses of reinforcement, conceivably establishing the mature, soma-biased pattern of inhibition.
Collapse
Affiliation(s)
- Bradley D Winters
- The University of Texas at Austin, Department of Neuroscience and Center for Learning and Memory, 1 University Station C7000, Austin TX 78712-0248, USA
| | - Nace L Golding
- The University of Texas at Austin, Department of Neuroscience and Center for Learning and Memory, 1 University Station C7000, Austin TX 78712-0248, USA.
| |
Collapse
|
36
|
Schlüter T, Berger C, Rosengauer E, Fieth P, Krohs C, Ushakov K, Steel KP, Avraham KB, Hartmann AK, Felmy F, Nothwang HG. miR-96 is required for normal development of the auditory hindbrain. Hum Mol Genet 2018; 27:860-874. [DOI: 10.1093/hmg/ddy007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/30/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tina Schlüter
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Christina Berger
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
| | - Elena Rosengauer
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Pascal Fieth
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Constanze Krohs
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexander K Hartmann
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
37
|
Ebbers L, Weber M, Nothwang HG. Activity-dependent formation of a vesicular inhibitory amino acid transporter gradient in the superior olivary complex of NMRI mice. BMC Neurosci 2017; 18:75. [PMID: 29073893 PMCID: PMC5659004 DOI: 10.1186/s12868-017-0393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem. RESULTS Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 -/- mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient. CONCLUSIONS Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular factors involved in activity-dependent developmental processes in the auditory system. This would provide an important step forward concerning improved auditory rehabilitation in cases of congenital deafness.
Collapse
Affiliation(s)
- Lena Ebbers
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Maren Weber
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
38
|
Case DT, Burton SD, Gedeon JY, Williams SPG, Urban NN, Seal RP. Layer- and cell type-selective co-transmission by a basal forebrain cholinergic projection to the olfactory bulb. Nat Commun 2017; 8:652. [PMID: 28935940 PMCID: PMC5608700 DOI: 10.1038/s41467-017-00765-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/26/2017] [Indexed: 11/24/2022] Open
Abstract
Cholinergic neurons in the basal forebrain project heavily to the main olfactory bulb, the first processing station in the olfactory pathway. The projections innervate multiple layers of the main olfactory bulb and strongly influence odor discrimination, detection, and learning. The precise underlying circuitry of this cholinergic input to the main olfactory bulb remains unclear, however. Here, we identify a specific basal forebrain cholinergic projection that innervates select neurons concentrated in the internal plexiform layer of the main olfactory bulb. Optogenetic activation of this projection elicits monosynaptic nicotinic and GABAergic currents in glomerular layer-projecting interneurons. Additionally, we show that the projection co-expresses markers for GABAergic neurotransmission. The data thus implicate neurotransmitter co-transmission in the basal forebrain regulation of this inhibitory olfactory microcircuit. Cholinergic neurons innervate multiple layers in the main olfactory bulb but the precise circuitry of this input is not known. Here the authors show that VGLUT3+ cholinergic neurons selectively innervate deep short axon cells in specific layers and elicit robust monosynaptic GABAergic and nicotinic postsynaptic currents.
Collapse
Affiliation(s)
- Daniel T Case
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, USA
| | - Shawn D Burton
- Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, USA.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeremy Y Gedeon
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sean-Paul G Williams
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nathaniel N Urban
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, USA.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA. .,Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
39
|
Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice. J Neurosci 2017; 37:7403-7419. [PMID: 28674175 DOI: 10.1523/jneurosci.2310-16.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 06/06/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS (Fmr1 KO), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS.SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social interactions, contributing to their isolation. Here, a mouse model of FXS was used to investigate the auditory brainstem where basic sound information is first processed. Loss of the Fragile X mental retardation protein leads to excessive excitatory compared with inhibitory inputs in neurons extracting information about sound levels. Functionally, this elevated excitation results in increased firing rates, and abnormal coding of frequency and binaural sound localization cues. Imbalanced early-stage sound level processing could partially explain the auditory processing deficits in FXS.
Collapse
|
40
|
Granger AJ, Wallace ML, Sabatini BL. Multi-transmitter neurons in the mammalian central nervous system. Curr Opin Neurobiol 2017; 45:85-91. [PMID: 28500992 DOI: 10.1016/j.conb.2017.04.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/17/2017] [Indexed: 01/22/2023]
Abstract
It is firmly established that many mammalian neurons release various combinations of amino acids, their derivatives, and other small molecules from presynaptic terminals in order to signal to their postsynaptic targets. Here we discuss recent findings about four types of multi-transmitter neurons-those that release GABA and acetylcholine (Ach); dopamine (DA) and GABA or glutamate; and glutamate and GABA. The mechanisms of co-release in each class differ and highlight the complex and dynamic nature of neurotransmitter release. Furthermore, identifying the neurotransmitter signature of each neuron and the post-synaptic targets of each neurotransmitter remain challenging. The existence of multi-transmitter neurons complicates the interpretation of connectomic wiring diagrams and poses interesting challenges for our understanding of circuit function in the brain.
Collapse
Affiliation(s)
- Adam J Granger
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Michael L Wallace
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
41
|
Synaptotagmin2 (Syt2) Drives Fast Release Redundantly with Syt1 at the Output Synapses of Parvalbumin-Expressing Inhibitory Neurons. J Neurosci 2017; 37:4604-4617. [PMID: 28363983 DOI: 10.1523/jneurosci.3736-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/16/2022] Open
Abstract
Parvalbumin-expressing inhibitory neurons in the mammalian CNS are specialized for fast transmitter release at their output synapses. However, the Ca2+ sensor(s) used by identified inhibitory synapses, including the output synapses of parvalbumin-expressing inhibitory neurons, have only recently started to be addressed. Here, we investigated the roles of Syt1 and Syt2 at two types of fast-releasing inhibitory connections in the mammalian CNS: the medial nucleus of the trapezoid body to lateral superior olive glycinergic synapse, and the basket/stellate cell-Purkinje GABAergic synapse in the cerebellum. We used conditional and conventional knock-out (KO) mouse lines, with viral expression of Cre-recombinase and a light-activated ion channel for optical stimulation of the transduced fibers, to produce Syt1-Syt2 double KO synapses in vivo Surprisingly, we found that KO of Syt2 alone had only minor effects on evoked transmitter release, despite the clear presence of the protein in inhibitory nerve terminals revealed by immunohistochemistry. We show that Syt1 is weakly coexpressed at these inhibitory synapses and must be genetically inactivated together with Syt2 to achieve a significant reduction and desynchronization of fast release. Thus, our work identifies the functionally relevant Ca2+ sensor(s) at fast-releasing inhibitory synapses and shows that two major Syt isoforms can cooperate to mediate release at a given synaptic connection.SIGNIFICANCE STATEMENT During synaptic transmission, the influx of Ca2+ into the presynaptic nerve terminal activates a Ca2+ sensor for vesicle fusion, a crucial step in the activity-dependent release of neurotransmitter. Synaptotagmin (Syt) proteins, and especially Syt1 and Syt2, have been identified as the Ca2+ sensor at excitatory synapses, but the Ca2+ sensor(s) at inhibitory synapses in native brain tissue are not well known. We found that both Syt1 and Syt2 need to be genetically inactivated to cause a significant reduction of activity-evoked release at two types of fast inhibitory synapses in mouse brain. Thus, we identify Syt2 as a functionally important Ca2+ sensor at fast-releasing inhibitory synapses, and show that Syt1 and Syt2 can redundantly control transmitter release at specific brain synapses.
Collapse
|
42
|
Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc Natl Acad Sci U S A 2017; 114:2586-2591. [PMID: 28223513 DOI: 10.1073/pnas.1615557114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The use of single-cell assays has emerged as a cutting-edge technique during the past decade. Although single-cell mass spectrometry (MS) has recently achieved remarkable results, deep biological insights have not yet been obtained, probably because of various technical issues, including the unavoidable use of matrices, the inability to maintain cell viability, low throughput because of sample pretreatment, and the lack of recordings of cell physiological activities from the same cell. In this study, we describe a patch clamp/MS-based platform that enables the sensitive, rapid, and in situ chemical profiling of single living neurons. This approach integrates modified patch clamp technique and modified MS measurements to directly collect and detect nanoliter-scale samples from the cytoplasm of single neurons in mice brain slices. Abundant possible cytoplasmic constituents were detected in a single neuron at a relatively fast rate, and over 50 metabolites were identified in this study. The advantages of direct, rapid, and in situ sampling and analysis enabled us to measure the biological activities of the cytoplasmic constituents in a single neuron, including comparing neuron types by cytoplasmic chemical constituents; observing changes in constituent concentrations as the physiological conditions, such as age, vary; and identifying the metabolic pathways of small molecules.
Collapse
|
43
|
Krächan EG, Fischer AU, Franke J, Friauf E. Synaptic reliability and temporal precision are achieved via high quantal content and effective replenishment: auditory brainstem versus hippocampus. J Physiol 2017; 595:839-864. [PMID: 27673320 PMCID: PMC5285727 DOI: 10.1113/jp272799] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Auditory brainstem neurons involved in sound source localization are equipped with several morphological and molecular features that enable them to compute interaural level and time differences. As sound source localization works continually, synaptic transmission between these neurons should be reliable and temporally precise, even during sustained periods of high-frequency activity. Using patch-clamp recordings in acute brain slices, we compared synaptic reliability and temporal precision in the seconds-minute range between auditory and two types of hippocampal synapses; the latter are less confronted with temporally precise high-frequency transmission than the auditory ones. We found striking differences in synaptic properties (e.g. continually high quantal content) that allow auditory synapses to reliably release vesicles at much higher rate than their hippocampal counterparts. Thus, they are indefatigable and also in a position to transfer information with exquisite temporal precision and their performance appears to be supported by very efficient replenishment mechanisms. ABSTRACT At early stations of the auditory pathway, information is encoded by precise signal timing and rate. Auditory synapses must maintain the relative timing of events with submillisecond precision even during sustained and high-frequency stimulation. In non-auditory brain regions, e.g. telencephalic ones, synapses are activated at considerably lower frequencies. Central to understanding the heterogeneity of synaptic systems is the elucidation of the physical, chemical and biological factors that determine synapse performance. In this study, we used slice recordings from three synapse types in the mouse auditory brainstem and hippocampus. Whereas the auditory brainstem nuclei experience high-frequency activity in vivo, the hippocampal circuits are activated at much lower frequencies. We challenged the synapses with sustained high-frequency stimulation (up to 200 Hz for 60 s) and found significant performance differences. Our results show that auditory brainstem synapses differ considerably from their hippocampal counterparts in several aspects, namely resistance to synaptic fatigue, low failure rate and exquisite temporal precision. Their high-fidelity performance supports the functional demands and appears to be due to the large size of the readily releasable pool and a high release probability, which together result in a high quantal content. In conjunction with very efficient vesicle replenishment mechanisms, these properties provide extremely rapid and temporally precise signalling required for neuronal communication at early stations of the auditory system, even during sustained activation in the minute range.
Collapse
Affiliation(s)
- Elisa G Krächan
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Alexander U Fischer
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Jürgen Franke
- Chair for Applied Mathematical Statistics, Department of MathematicsUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Eckhard Friauf
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| |
Collapse
|
44
|
Leijon SC, Peyda S, Magnusson AK. Temporal processing capacity in auditory-deprived superior paraolivary neurons is rescued by sequential plasticity during early development. Neuroscience 2016; 337:315-330. [DOI: 10.1016/j.neuroscience.2016.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023]
|
45
|
Insufficient developmental excitatory neuronal activity fails to foster establishment of normal levels of inhibitory neuronal activity. Int J Dev Neurosci 2016; 55:66-71. [PMID: 27686511 DOI: 10.1016/j.ijdevneu.2016.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 11/22/2022] Open
Abstract
The nervous system is composed of excitatory and inhibitory neurons. One major class of inhibitory neurons release the neurotransmitter γ-Aminobutyric acid (GABA). GABAergic inhibitory activity maintains the balance that is disrupted in conditions such as epilepsy. At least some GABAergic neurons are initially excitatory and undergo a developmental conversion to convert to inhibitory neurons. The mechanism(s) behind this conversion are thought to include a critical developmental increase in excitatory activity. To test this hypothesis, we subjected ex vivo developing neuronal networks on multi-electrode arrays to various stimulation and pharmacological regimens. Synaptic activity of networks initially consists of epileptiform-like high-amplitude individual "spikes", which convert to organized bursts of activity over the course of approximately 1 month. Stimulation of networks with a digitized synaptic signal for 5days hastened the decrease of epileptiform activity. By contrast, stimulation for a single day delayed the appearance of bursts and instead increased epileptiform signaling. GABA treatment reduced total signals in unstimulated networks and networks stimulated for 5days, but instead increased signaling in networks stimulated for 1day. This increase was prevented by co-treatment with (2R)-amino-5-phosphonopentanoate and 6-cyano-7-nitroquinoxaline-2,3-dione, confirming that GABA invoked excitatory activity in networks stimulated for 1day. Glutamate increased signals in networks subjected to all stimulation regimens; the GABA receptor antagonist bicuculline prevented this increase only in networks stimulated for 1day. These latter findings are consistent with the induction of so-called "mixed" synapses (which release a combination of excitatory and inhibitory neurotransmitters) in networks stimulated for 1day, and support the hypothesis that a critical level of excitatory activity fosters the developmental transition of GABAergic neurons from excitatory to inhibitory.
Collapse
|
46
|
VTA Projection Neurons Releasing GABA and Glutamate in the Dentate Gyrus. eNeuro 2016; 3:eN-NWR-0137-16. [PMID: 27648470 PMCID: PMC5020313 DOI: 10.1523/eneuro.0137-16.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
Both dopamine and nondopamine neurons from the ventral tegmental area (VTA) project to a variety of brain regions. Here we examine nondopaminergic neurons in the mouse VTA that send long-range projections to the hippocampus. Using a combination of retrograde tracers, optogenetic tools, and electrophysiological recordings, we show that VTA GABAergic axons make synaptic contacts in the granule cell layer of the dentate gyrus, where we can elicit small postsynaptic currents. Surprisingly, the currents displayed a partial sensitivity to both bicuculline and NBQX, suggesting that these mesohippocampal neurons corelease both GABA and glutamate. Finally, we show that this projection is functional in vivo and its stimulation reduces granule cell-firing rates under anesthesia. Altogether, the present results describe a novel connection between GABA and glutamate coreleasing of cells of the VTA and the dentate gyrus. This connection could be relevant for a variety of functions, including reward-related memory and neurogenesis.
Collapse
|
47
|
Felix RA, Magnusson AK. Development of excitatory synaptic transmission to the superior paraolivary and lateral superior olivary nuclei optimizes differential decoding strategies. Neuroscience 2016; 334:1-12. [PMID: 27476438 DOI: 10.1016/j.neuroscience.2016.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/08/2016] [Accepted: 07/23/2016] [Indexed: 11/17/2022]
Abstract
The superior paraolivary nucleus (SPON) is a prominent structure in the mammalian auditory brainstem with a proposed role in encoding transient broadband sounds such as vocalized utterances. Currently, the source of excitatory pathways that project to the SPON and how these inputs contribute to SPON function are poorly understood. To shed light on the nature of these inputs, we measured evoked excitatory postsynaptic currents (EPSCs) in the SPON originating from the intermediate acoustic stria and compared them with the properties of EPSCs in the lateral superior olive (LSO) originating from the ventral acoustic stria during auditory development from postnatal day 5 to 22 in mice. Before hearing onset, EPSCs in the SPON and LSO are very similar in size and kinetics. After the onset of hearing, SPON excitation is refined to extremely few (2:1) fibers, with each strengthened by an increase in release probability, yielding fast and strong EPSCs. LSO excitation is recruited from more fibers (5:1), resulting in strong EPSCs with a comparatively broader stimulus-response range after hearing onset. Evoked SPON excitation is comparatively weaker than evoked LSO excitation, likely due to a larger fraction of postsynaptic GluR2-containing Ca2+-impermeable AMPA receptors after hearing onset. Taken together, SPON excitation develops synaptic properties that are suited for transmitting single events with high temporal reliability and the strong, dynamic LSO excitation is compatible with high rate-level sensitivity. Thus, the excitatory input pathways to the SPON and LSO mature to support different decoding strategies of respective coarse temporal and sound intensity information at the brainstem level.
Collapse
Affiliation(s)
- Richard A Felix
- Unit of Audiology, Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anna K Magnusson
- Unit of Audiology, Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
48
|
Balázsfi D, Farkas L, Csikota P, Fodor A, Zsebők S, Haller J, Zelena D. Sex-dependent role of vesicular glutamate transporter 3 in stress-regulation and related anxiety phenotype during the early postnatal period. Stress 2016; 19:434-8. [PMID: 27442776 DOI: 10.1080/10253890.2016.1203413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Stress and related disorders are in the focus of interest and glutamate is one of the most important neurotransmitters that can affect these processes. Glutamatergic neurons are characterized by vesicular glutamate transporters (VGluT1-3) among which vGluT3 is unique contributing to the non-canonical, neuromodulatory effect of glutamate. We aimed to study the role of vGluT3 in stress axis regulation and related anxiety during the early postnatal period using knockout (KO) mice with special focus on sex differences. Anxiety was explored on postnatal day (PND) 7-8 by maternal separation-induced ultrasonic vocalization (USV). Stress-hormone levels were detected 60 min after intraperitoneal lipopolysaccharide (LPS) injection 7 days later. Both genotypes gained weight, but on PND 14-15 KO mice pups had smaller body weight compared to wild type (WT). vGluT3 KO mice reacted to an immune stressor with enhanced adrenocorticotropin (ACTH) and corticosterone secretion compared to WT. Although there was a tendency for enhanced anxiety measured by more emitted USV, this did not reach the level of significance. The only sex-related effect was the enhanced corticosterone reactivity in male pups. For the HPA axis regulation in neonates vGluT3 expression seems to be dispensable under basal conditions, but is required for optimal response to immune stressors, most probably through an interaction with other neurotransmitters. Disturbance of the fine balance between these systems may result in a borderline enhanced anxiety-like behavior in vGluT3 KO pups.
Collapse
Affiliation(s)
- Diána Balázsfi
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
- b János Szentágothai School of Neurosciences, Semmelweis University , Budapest , Hungary
| | - Lívia Farkas
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| | - Péter Csikota
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| | - Anna Fodor
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
- b János Szentágothai School of Neurosciences, Semmelweis University , Budapest , Hungary
| | - Sándor Zsebők
- c Behaviuor Ecology Research Group, Department of Systematic Zoology and Ecology , Eötvös Loránd University , Budapest , Hungary
| | - József Haller
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| | - Dóra Zelena
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| |
Collapse
|
49
|
Ure K, Lu H, Wang W, Ito-Ishida A, Wu Z, He LJ, Sztainberg Y, Chen W, Tang J, Zoghbi HY. Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. eLife 2016; 5. [PMID: 27328321 PMCID: PMC4946897 DOI: 10.7554/elife.14198] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022] Open
Abstract
The postnatal neurodevelopmental disorder Rett syndrome, caused by mutations in MECP2, produces a diverse array of symptoms, including loss of language, motor, and social skills and the development of hand stereotypies, anxiety, tremor, ataxia, respiratory dysrhythmias, and seizures. Surprisingly, despite the diversity of these features, we have found that deleting Mecp2 only from GABAergic inhibitory neurons in mice replicates most of this phenotype. Here we show that genetically restoring Mecp2 expression only in GABAergic neurons of male Mecp2 null mice enhanced inhibitory signaling, extended lifespan, and rescued ataxia, apraxia, and social abnormalities but did not rescue tremor or anxiety. Female Mecp2+/- mice showed a less dramatic but still substantial rescue. These findings highlight the critical regulatory role of GABAergic neurons in certain behaviors and suggest that modulating the excitatory/inhibitory balance through GABAergic neurons could prove a viable therapeutic option in Rett syndrome. DOI:http://dx.doi.org/10.7554/eLife.14198.001 Rett syndrome is a childhood brain disorder that mainly affects girls and causes symptoms including anxiety, tremors, uncoordinated movements and breathing difficulties. Rett syndrome is caused by mutations in a gene called MECP2, which is found on the X chromosome. Males with MECP2 mutations are rare but have more severe symptoms and die young. Many researchers who study Rett syndrome use mice as a model of the disorder. In particular, male mice with the mouse equivalent of the human MECP2 gene switched off in every cell in the body (also known as Mecp2-null mice) show many of the features of Rett syndrome and die at a young age. The MECP2 gene is important for healthy brain activity. The brain contains two major types of neurons: excitatory neurons, which encourage other neurons to be active; and inhibitory neurons, which stop or dampen the activity of other neurons. In 2010, researchers reported that mice lacking Mecp2 in only their inhibitory neurons develop most of the same problems as those mice with no Mecp2 at all. This discovery led Ure et al. – including a researcher involved in the 2010 study – to ask if activating Mecp2 in the same neurons in otherwise Mecp2-null mice was enough to prevent some of their Rett syndrome-like symptoms. The experiments showed that male mice that only have Mecp2 activated in their inhibitory neurons lived several months longer than male Mecp2-null mice. These male “rescue mice” also moved normally and had a normal body weight, though they still experienced anxiety, tremors and breathing difficulties. Female mice represent a better model of human Rett syndrome patients, and Ure et al. found that female rescue mice showed smaller improvements than the males. These data suggest that when a brain is missing Mecp2 everywhere, as in male Mecp2-null mice, turning on Mecp2 in inhibitory neurons can make the brain network nearly normal and prevent most Rett-syndrome-like symptoms. However, the brains of female rescue mice contain both normal cells and cells with mutated Mecp2. This mixture of normal and abnormal cells appears to cause abnormalities that cannot be overcome by rescuing just the activity of the inhibitory neurons. These findings also highlight the importance of doing future studies in female mice to better understand the development of Rett syndrome. The next challenge is to test different ways of activating the inhibitory neurons in the female mouse brain, for example by using drugs that target these neurons. It is hoped these methods will help researchers to refine a path toward potential new treatments for Rett syndrome patients. Finally, in a related study, Meng et al. asked how deleting or activating Mecp2 only in the excitatory neurons of mice affected Rett-syndrome-like symptoms. DOI:http://dx.doi.org/10.7554/eLife.14198.002
Collapse
Affiliation(s)
- Kerstin Ure
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Hui Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Wei Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Aya Ito-Ishida
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Ling-Jie He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Yehezkel Sztainberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Wu Chen
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Cain Foundation Laboratories, Baylor College of Medicine, Houston, United States
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
50
|
Abstract
Synapses from neurons of the medial nucleus of the trapezoid body (MNTB) onto neurons of the lateral superior olive (LSO) in the auditory brainstem are glycinergic in maturity, but also GABAergic and glutamatergic in development. The role for this neurotransmitter cotransmission is poorly understood. Here we use electrophysiological recordings in brainstem slices from P3-P21 mice to demonstrate that GABA release evoked from MNTB axons can spill over to neighboring MNTB axons and cause excitation by activating GABAAR. This spillover excitation generates patterns of staggered neurotransmitter release from different MNTB axons resulting in characteristic "doublet" postsynaptic currents in LSO neurons. Postembedding immunogold labeling and electron microscopy provide evidence that GABAARs are localized at MNTB axon terminals. Photolytic uncaging of p-hydroxyphenacyl (pHP) GABA demonstrates backpropagation of GABAAR-mediated depolarizations from MNTB axon terminals to the soma, some hundreds of microns away. These somatic depolarizations enhanced somatic excitability by increasing the probability of action potential generation. GABA spillover excitation between MNTB axon terminals may entrain neighboring MNTB neurons, which may play a role in the developmental refinement of the MNTB-LSO pathway. Axonal spillover excitation persisted beyond the second postnatal week, suggesting that this mechanism may play a role in sound localization, by providing new avenues of communication between MNTB neurons via their distal axonal projections. Significance statement: In this study, a new mechanism of neuronal communication between auditory synapses in the mammalian sound localization pathway is described. Evidence is provided that the inhibitory neurotransmitter GABA can spill over between axon terminals to cause excitation of nearby synapses to further stimulate neurotransmitter release. Excitatory GABA spillover between inhibitory axon terminals may have important implications for the development and refinement of this auditory circuit and may play a role in the ability to precisely localize sound sources.
Collapse
|